/* * Copyright (c) 2008, 2009, 2010 Nicira Networks. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "learning-switch.h" #include #include #include #include #include #include "flow.h" #include "hmap.h" #include "mac-learning.h" #include "ofpbuf.h" #include "ofp-parse.h" #include "ofp-print.h" #include "ofp-util.h" #include "openflow/openflow.h" #include "poll-loop.h" #include "queue.h" #include "rconn.h" #include "shash.h" #include "timeval.h" #include "vconn.h" #include "vlog.h" #include "xtoxll.h" VLOG_DEFINE_THIS_MODULE(learning_switch) struct lswitch_port { struct hmap_node hmap_node; /* Hash node for port number. */ uint16_t port_no; /* OpenFlow port number, in host byte order. */ uint32_t queue_id; /* OpenFlow queue number. */ }; struct lswitch { /* If nonnegative, the switch sets up flows that expire after the given * number of seconds (or never expire, if the value is OFP_FLOW_PERMANENT). * Otherwise, the switch processes every packet. */ int max_idle; unsigned long long int datapath_id; time_t last_features_request; struct mac_learning *ml; /* NULL to act as hub instead of switch. */ uint32_t wildcards; /* Wildcards to apply to flows. */ bool action_normal; /* Use OFPP_NORMAL? */ /* Queue distribution. */ uint32_t default_queue; /* Default OpenFlow queue, or UINT32_MAX. */ struct hmap queue_numbers; /* Map from port number to lswitch_port. */ struct shash queue_names; /* Map from port name to lswitch_port. */ /* Number of outgoing queued packets on the rconn. */ struct rconn_packet_counter *queued; }; /* The log messages here could actually be useful in debugging, so keep the * rate limit relatively high. */ static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(30, 300); static void queue_tx(struct lswitch *, struct rconn *, struct ofpbuf *); static void send_features_request(struct lswitch *, struct rconn *); typedef void packet_handler_func(struct lswitch *, struct rconn *, void *); static packet_handler_func process_switch_features; static packet_handler_func process_packet_in; static packet_handler_func process_echo_request; /* Creates and returns a new learning switch whose configuration is given by * 'cfg'. * * 'rconn' is used to send out an OpenFlow features request. */ struct lswitch * lswitch_create(struct rconn *rconn, const struct lswitch_config *cfg) { const struct ofpbuf *b; struct lswitch *sw; sw = xzalloc(sizeof *sw); sw->max_idle = cfg->max_idle; sw->datapath_id = 0; sw->last_features_request = time_now() - 1; sw->ml = cfg->mode == LSW_LEARN ? mac_learning_create() : NULL; sw->action_normal = cfg->mode == LSW_NORMAL; if (cfg->exact_flows) { /* Exact match. */ sw->wildcards = 0; } else { /* We cannot wildcard all fields. * We need in_port to detect moves. * We need both SA and DA to do learning. */ sw->wildcards = (OFPFW_DL_TYPE | OFPFW_NW_SRC_MASK | OFPFW_NW_DST_MASK | OFPFW_NW_PROTO | OFPFW_TP_SRC | OFPFW_TP_DST); } sw->default_queue = cfg->default_queue; hmap_init(&sw->queue_numbers); shash_init(&sw->queue_names); if (cfg->port_queues) { struct shash_node *node; SHASH_FOR_EACH (node, cfg->port_queues) { struct lswitch_port *port = xmalloc(sizeof *port); hmap_node_nullify(&port->hmap_node); port->queue_id = (uintptr_t) node->data; shash_add(&sw->queue_names, node->name, port); } } sw->queued = rconn_packet_counter_create(); send_features_request(sw, rconn); for (b = cfg->default_flows; b; b = b->next) { queue_tx(sw, rconn, ofpbuf_clone(b)); } return sw; } /* Destroys 'sw'. */ void lswitch_destroy(struct lswitch *sw) { if (sw) { struct lswitch_port *node, *next; HMAP_FOR_EACH_SAFE (node, next, hmap_node, &sw->queue_numbers) { hmap_remove(&sw->queue_numbers, &node->hmap_node); free(node); } shash_destroy(&sw->queue_names); mac_learning_destroy(sw->ml); rconn_packet_counter_destroy(sw->queued); free(sw); } } /* Takes care of necessary 'sw' activity, except for receiving packets (which * the caller must do). */ void lswitch_run(struct lswitch *sw) { if (sw->ml) { mac_learning_run(sw->ml, NULL); } } void lswitch_wait(struct lswitch *sw) { if (sw->ml) { mac_learning_wait(sw->ml); } } /* Processes 'msg', which should be an OpenFlow received on 'rconn', according * to the learning switch state in 'sw'. The most likely result of processing * is that flow-setup and packet-out OpenFlow messages will be sent out on * 'rconn'. */ void lswitch_process_packet(struct lswitch *sw, struct rconn *rconn, const struct ofpbuf *msg) { struct processor { uint8_t type; size_t min_size; packet_handler_func *handler; }; static const struct processor processors[] = { { OFPT_ECHO_REQUEST, sizeof(struct ofp_header), process_echo_request }, { OFPT_FEATURES_REPLY, sizeof(struct ofp_switch_features), process_switch_features }, { OFPT_PACKET_IN, offsetof(struct ofp_packet_in, data), process_packet_in }, { OFPT_FLOW_REMOVED, sizeof(struct ofp_flow_removed), NULL }, }; const size_t n_processors = ARRAY_SIZE(processors); const struct processor *p; struct ofp_header *oh; oh = msg->data; if (sw->datapath_id == 0 && oh->type != OFPT_ECHO_REQUEST && oh->type != OFPT_FEATURES_REPLY) { send_features_request(sw, rconn); return; } for (p = processors; p < &processors[n_processors]; p++) { if (oh->type == p->type) { if (msg->size < p->min_size) { VLOG_WARN_RL(&rl, "%016llx: %s: too short (%zu bytes) for " "type %"PRIu8" (min %zu)", sw->datapath_id, rconn_get_name(rconn), msg->size, oh->type, p->min_size); return; } if (p->handler) { (p->handler)(sw, rconn, msg->data); } return; } } if (VLOG_IS_DBG_ENABLED()) { char *s = ofp_to_string(msg->data, msg->size, 2); VLOG_DBG_RL(&rl, "%016llx: OpenFlow packet ignored: %s", sw->datapath_id, s); free(s); } } static void send_features_request(struct lswitch *sw, struct rconn *rconn) { time_t now = time_now(); if (now >= sw->last_features_request + 1) { struct ofpbuf *b; struct ofp_switch_config *osc; /* Send OFPT_FEATURES_REQUEST. */ make_openflow(sizeof(struct ofp_header), OFPT_FEATURES_REQUEST, &b); queue_tx(sw, rconn, b); /* Send OFPT_SET_CONFIG. */ osc = make_openflow(sizeof *osc, OFPT_SET_CONFIG, &b); osc->miss_send_len = htons(OFP_DEFAULT_MISS_SEND_LEN); queue_tx(sw, rconn, b); sw->last_features_request = now; } } static void queue_tx(struct lswitch *sw, struct rconn *rconn, struct ofpbuf *b) { int retval = rconn_send_with_limit(rconn, b, sw->queued, 10); if (retval && retval != ENOTCONN) { if (retval == EAGAIN) { VLOG_INFO_RL(&rl, "%016llx: %s: tx queue overflow", sw->datapath_id, rconn_get_name(rconn)); } else { VLOG_WARN_RL(&rl, "%016llx: %s: send: %s", sw->datapath_id, rconn_get_name(rconn), strerror(retval)); } } } static void process_switch_features(struct lswitch *sw, struct rconn *rconn OVS_UNUSED, void *osf_) { struct ofp_switch_features *osf = osf_; size_t n_ports; size_t i; if (check_ofp_message_array(&osf->header, OFPT_FEATURES_REPLY, sizeof *osf, sizeof *osf->ports, &n_ports)) { return; } sw->datapath_id = ntohll(osf->datapath_id); for (i = 0; i < n_ports; i++) { struct ofp_phy_port *opp = &osf->ports[i]; struct lswitch_port *lp; opp->name[OFP_MAX_PORT_NAME_LEN - 1] = '\0'; lp = shash_find_data(&sw->queue_names, (char *) opp->name); if (lp && hmap_node_is_null(&lp->hmap_node)) { lp->port_no = ntohs(opp->port_no); hmap_insert(&sw->queue_numbers, &lp->hmap_node, hash_int(lp->port_no, 0)); } } } static uint16_t lswitch_choose_destination(struct lswitch *sw, const flow_t *flow) { uint16_t out_port; /* Learn the source MAC. */ if (sw->ml) { if (mac_learning_learn(sw->ml, flow->dl_src, 0, flow->in_port, GRAT_ARP_LOCK_NONE)) { VLOG_DBG_RL(&rl, "%016llx: learned that "ETH_ADDR_FMT" is on " "port %"PRIu16, sw->datapath_id, ETH_ADDR_ARGS(flow->dl_src), flow->in_port); } } /* Drop frames for reserved multicast addresses. */ if (eth_addr_is_reserved(flow->dl_dst)) { return OFPP_NONE; } out_port = OFPP_FLOOD; if (sw->ml) { int learned_port = mac_learning_lookup(sw->ml, flow->dl_dst, 0, NULL); if (learned_port >= 0) { out_port = learned_port; if (out_port == flow->in_port) { /* Don't send a packet back out its input port. */ return OFPP_NONE; } } } /* Check if we need to use "NORMAL" action. */ if (sw->action_normal && out_port != OFPP_FLOOD) { return OFPP_NORMAL; } return out_port; } static uint32_t get_queue_id(const struct lswitch *sw, uint16_t in_port) { const struct lswitch_port *port; HMAP_FOR_EACH_WITH_HASH (port, hmap_node, hash_int(in_port, 0), &sw->queue_numbers) { if (port->port_no == in_port) { return port->queue_id; } } return sw->default_queue; } static void process_packet_in(struct lswitch *sw, struct rconn *rconn, void *opi_) { struct ofp_packet_in *opi = opi_; uint16_t in_port = ntohs(opi->in_port); uint32_t queue_id; uint16_t out_port; struct ofp_action_header actions[2]; size_t actions_len; size_t pkt_ofs, pkt_len; struct ofpbuf pkt; flow_t flow; /* Ignore packets sent via output to OFPP_CONTROLLER. This library never * uses such an action. You never know what experiments might be going on, * though, and it seems best not to interfere with them. */ if (opi->reason != OFPR_NO_MATCH) { return; } /* Extract flow data from 'opi' into 'flow'. */ pkt_ofs = offsetof(struct ofp_packet_in, data); pkt_len = ntohs(opi->header.length) - pkt_ofs; pkt.data = opi->data; pkt.size = pkt_len; flow_extract(&pkt, 0, in_port, &flow); /* Choose output port. */ out_port = lswitch_choose_destination(sw, &flow); /* Make actions. */ queue_id = get_queue_id(sw, in_port); if (out_port == OFPP_NONE) { actions_len = 0; } else if (queue_id == UINT32_MAX || out_port >= OFPP_MAX) { struct ofp_action_output oao; memset(&oao, 0, sizeof oao); oao.type = htons(OFPAT_OUTPUT); oao.len = htons(sizeof oao); oao.port = htons(out_port); memcpy(actions, &oao, sizeof oao); actions_len = sizeof oao; } else { struct ofp_action_enqueue oae; memset(&oae, 0, sizeof oae); oae.type = htons(OFPAT_ENQUEUE); oae.len = htons(sizeof oae); oae.port = htons(out_port); oae.queue_id = htonl(queue_id); memcpy(actions, &oae, sizeof oae); actions_len = sizeof oae; } assert(actions_len <= sizeof actions); /* Send the packet, and possibly the whole flow, to the output port. */ if (sw->max_idle >= 0 && (!sw->ml || out_port != OFPP_FLOOD)) { struct ofpbuf *buffer; struct ofp_flow_mod *ofm; /* The output port is known, or we always flood everything, so add a * new flow. */ buffer = make_add_flow(&flow, ntohl(opi->buffer_id), sw->max_idle, actions_len); ofpbuf_put(buffer, actions, actions_len); ofm = buffer->data; ofm->match.wildcards = htonl(sw->wildcards); queue_tx(sw, rconn, buffer); /* If the switch didn't buffer the packet, we need to send a copy. */ if (ntohl(opi->buffer_id) == UINT32_MAX && actions_len > 0) { queue_tx(sw, rconn, make_packet_out(&pkt, UINT32_MAX, in_port, actions, actions_len / sizeof *actions)); } } else { /* We don't know that MAC, or we don't set up flows. Send along the * packet without setting up a flow. */ if (ntohl(opi->buffer_id) != UINT32_MAX || actions_len > 0) { queue_tx(sw, rconn, make_packet_out(&pkt, ntohl(opi->buffer_id), in_port, actions, actions_len / sizeof *actions)); } } } static void process_echo_request(struct lswitch *sw, struct rconn *rconn, void *rq_) { struct ofp_header *rq = rq_; queue_tx(sw, rconn, make_echo_reply(rq)); }