/* * Copyright (c) 2008, 2009 Nicira Networks. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "learning-switch.h" #include #include #include #include #include #include "flow.h" #include "mac-learning.h" #include "ofpbuf.h" #include "ofp-print.h" #include "openflow/openflow.h" #include "poll-loop.h" #include "queue.h" #include "rconn.h" #include "stp.h" #include "timeval.h" #include "vconn.h" #include "xtoxll.h" #define THIS_MODULE VLM_learning_switch #include "vlog.h" enum port_state { P_DISABLED = 1 << 0, P_LISTENING = 1 << 1, P_LEARNING = 1 << 2, P_FORWARDING = 1 << 3, P_BLOCKING = 1 << 4 }; struct lswitch { /* If nonnegative, the switch sets up flows that expire after the given * number of seconds (or never expire, if the value is OFP_FLOW_PERMANENT). * Otherwise, the switch processes every packet. */ int max_idle; unsigned long long int datapath_id; uint32_t capabilities; time_t last_features_request; struct mac_learning *ml; /* NULL to act as hub instead of switch. */ /* Number of outgoing queued packets on the rconn. */ struct rconn_packet_counter *queued; /* Spanning tree protocol implementation. * * We implement STP states by, whenever a port's STP state changes, * querying all the flows on the switch and then deleting any of them that * are inappropriate for a port's STP state. */ long long int next_query; /* Next time at which to query all flows. */ long long int last_query; /* Last time we sent a query. */ long long int last_reply; /* Last time we received a query reply. */ unsigned int port_states[STP_MAX_PORTS]; uint32_t query_xid; /* XID used for query. */ int n_flows, n_no_recv, n_no_send; }; /* The log messages here could actually be useful in debugging, so keep the * rate limit relatively high. */ static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(30, 300); static void queue_tx(struct lswitch *, struct rconn *, struct ofpbuf *); static void send_features_request(struct lswitch *, struct rconn *); static void schedule_query(struct lswitch *, long long int delay); static bool may_learn(const struct lswitch *, uint16_t port_no); static bool may_recv(const struct lswitch *, uint16_t port_no, bool any_actions); static bool may_send(const struct lswitch *, uint16_t port_no); typedef void packet_handler_func(struct lswitch *, struct rconn *, void *); static packet_handler_func process_switch_features; static packet_handler_func process_packet_in; static packet_handler_func process_echo_request; static packet_handler_func process_port_status; static packet_handler_func process_phy_port; static packet_handler_func process_stats_reply; /* Creates and returns a new learning switch. * * If 'learn_macs' is true, the new switch will learn the ports on which MAC * addresses appear. Otherwise, the new switch will flood all packets. * * If 'max_idle' is nonnegative, the new switch will set up flows that expire * after the given number of seconds (or never expire, if 'max_idle' is * OFP_FLOW_PERMANENT). Otherwise, the new switch will process every packet. * * 'rconn' is used to send out an OpenFlow features request. */ struct lswitch * lswitch_create(struct rconn *rconn, bool learn_macs, int max_idle) { struct lswitch *sw; size_t i; sw = xcalloc(1, sizeof *sw); sw->max_idle = max_idle; sw->datapath_id = 0; sw->last_features_request = time_now() - 1; sw->ml = learn_macs ? mac_learning_create() : NULL; sw->queued = rconn_packet_counter_create(); sw->next_query = LLONG_MIN; sw->last_query = LLONG_MIN; sw->last_reply = LLONG_MIN; for (i = 0; i < STP_MAX_PORTS; i++) { sw->port_states[i] = P_DISABLED; } send_features_request(sw, rconn); return sw; } /* Destroys 'sw'. */ void lswitch_destroy(struct lswitch *sw) { if (sw) { mac_learning_destroy(sw->ml); rconn_packet_counter_destroy(sw->queued); free(sw); } } /* Takes care of necessary 'sw' activity, except for receiving packets (which * the caller must do). */ void lswitch_run(struct lswitch *sw, struct rconn *rconn) { long long int now = time_msec(); if (sw->ml) { mac_learning_run(sw->ml, NULL); } /* If we're waiting for more replies, keeping waiting for up to 10 s. */ if (sw->last_reply != LLONG_MIN) { if (now - sw->last_reply > 10000) { VLOG_ERR_RL(&rl, "%012llx: No more flow stat replies last 10 s", sw->datapath_id); sw->last_reply = LLONG_MIN; sw->last_query = LLONG_MIN; schedule_query(sw, 0); } else { return; } } /* If we're waiting for any reply at all, keep waiting for up to 10 s. */ if (sw->last_query != LLONG_MIN) { if (now - sw->last_query > 10000) { VLOG_ERR_RL(&rl, "%012llx: No flow stat replies in last 10 s", sw->datapath_id); sw->last_query = LLONG_MIN; schedule_query(sw, 0); } else { return; } } /* If it's time to send another query, do so. */ if (sw->next_query != LLONG_MIN && now >= sw->next_query) { sw->next_query = LLONG_MIN; if (!rconn_is_connected(rconn)) { schedule_query(sw, 1000); } else { struct ofp_stats_request *osr; struct ofp_flow_stats_request *ofsr; struct ofpbuf *b; int error; VLOG_DBG("%012llx: Sending flow stats request to implement STP", sw->datapath_id); sw->last_query = now; sw->query_xid = random_uint32(); sw->n_flows = 0; sw->n_no_recv = 0; sw->n_no_send = 0; osr = make_openflow_xid(sizeof *osr + sizeof *ofsr, OFPT_STATS_REQUEST, sw->query_xid, &b); osr->type = htons(OFPST_FLOW); osr->flags = htons(0); ofsr = (struct ofp_flow_stats_request *) osr->body; ofsr->match.wildcards = htonl(OFPFW_ALL); ofsr->table_id = 0xff; ofsr->out_port = htons(OFPP_NONE); error = rconn_send(rconn, b, NULL); if (error) { VLOG_WARN_RL(&rl, "%012llx: sending flow stats request " "failed: %s", sw->datapath_id, strerror(error)); ofpbuf_delete(b); schedule_query(sw, 1000); } } } } static void wait_timeout(long long int started) { long long int now = time_msec(); long long int timeout = 10000 - (now - started); if (timeout <= 0) { poll_immediate_wake(); } else { poll_timer_wait(timeout); } } void lswitch_wait(struct lswitch *sw) { if (sw->ml) { mac_learning_wait(sw->ml); } if (sw->last_reply != LLONG_MIN) { wait_timeout(sw->last_reply); } else if (sw->last_query != LLONG_MIN) { wait_timeout(sw->last_query); } } /* Processes 'msg', which should be an OpenFlow received on 'rconn', according * to the learning switch state in 'sw'. The most likely result of processing * is that flow-setup and packet-out OpenFlow messages will be sent out on * 'rconn'. */ void lswitch_process_packet(struct lswitch *sw, struct rconn *rconn, const struct ofpbuf *msg) { struct processor { uint8_t type; size_t min_size; packet_handler_func *handler; }; static const struct processor processors[] = { { OFPT_ECHO_REQUEST, sizeof(struct ofp_header), process_echo_request }, { OFPT_FEATURES_REPLY, sizeof(struct ofp_switch_features), process_switch_features }, { OFPT_PACKET_IN, offsetof(struct ofp_packet_in, data), process_packet_in }, { OFPT_PORT_STATUS, sizeof(struct ofp_port_status), process_port_status }, { OFPT_STATS_REPLY, offsetof(struct ofp_stats_reply, body), process_stats_reply }, { OFPT_FLOW_EXPIRED, sizeof(struct ofp_flow_expired), NULL }, }; const size_t n_processors = ARRAY_SIZE(processors); const struct processor *p; struct ofp_header *oh; oh = msg->data; if (sw->datapath_id == 0 && oh->type != OFPT_ECHO_REQUEST && oh->type != OFPT_FEATURES_REPLY) { send_features_request(sw, rconn); return; } for (p = processors; p < &processors[n_processors]; p++) { if (oh->type == p->type) { if (msg->size < p->min_size) { VLOG_WARN_RL(&rl, "%012llx: %s: too short (%zu bytes) for " "type %"PRIu8" (min %zu)", sw->datapath_id, rconn_get_name(rconn), msg->size, oh->type, p->min_size); return; } if (p->handler) { (p->handler)(sw, rconn, msg->data); } return; } } if (VLOG_IS_DBG_ENABLED()) { char *p = ofp_to_string(msg->data, msg->size, 2); VLOG_DBG_RL(&rl, "%012llx: OpenFlow packet ignored: %s", sw->datapath_id, p); free(p); } } static void send_features_request(struct lswitch *sw, struct rconn *rconn) { time_t now = time_now(); if (now >= sw->last_features_request + 1) { struct ofpbuf *b; struct ofp_switch_config *osc; /* Send OFPT_FEATURES_REQUEST. */ make_openflow(sizeof(struct ofp_header), OFPT_FEATURES_REQUEST, &b); queue_tx(sw, rconn, b); /* Send OFPT_SET_CONFIG. */ osc = make_openflow(sizeof *osc, OFPT_SET_CONFIG, &b); osc->flags = htons(OFPC_SEND_FLOW_EXP); osc->miss_send_len = htons(OFP_DEFAULT_MISS_SEND_LEN); queue_tx(sw, rconn, b); sw->last_features_request = now; } } static void queue_tx(struct lswitch *sw, struct rconn *rconn, struct ofpbuf *b) { int retval = rconn_send_with_limit(rconn, b, sw->queued, 10); if (retval && retval != ENOTCONN) { if (retval == EAGAIN) { VLOG_INFO_RL(&rl, "%012llx: %s: tx queue overflow", sw->datapath_id, rconn_get_name(rconn)); } else { VLOG_WARN_RL(&rl, "%012llx: %s: send: %s", sw->datapath_id, rconn_get_name(rconn), strerror(retval)); } } } static void schedule_query(struct lswitch *sw, long long int delay) { long long int now = time_msec(); if (sw->next_query == LLONG_MIN || sw->next_query > now + delay) { sw->next_query = now + delay; } } static void process_switch_features(struct lswitch *sw, struct rconn *rconn, void *osf_) { struct ofp_switch_features *osf = osf_; size_t n_ports = ((ntohs(osf->header.length) - offsetof(struct ofp_switch_features, ports)) / sizeof *osf->ports); size_t i; sw->datapath_id = ntohll(osf->datapath_id); sw->capabilities = ntohl(osf->capabilities); for (i = 0; i < n_ports; i++) { process_phy_port(sw, rconn, &osf->ports[i]); } if (sw->capabilities & OFPC_STP) { schedule_query(sw, 1000); } } static void process_packet_in(struct lswitch *sw, struct rconn *rconn, void *opi_) { struct ofp_packet_in *opi = opi_; uint16_t in_port = ntohs(opi->in_port); uint16_t out_port = OFPP_FLOOD; size_t pkt_ofs, pkt_len; struct ofpbuf pkt; flow_t flow; /* Extract flow data from 'opi' into 'flow'. */ pkt_ofs = offsetof(struct ofp_packet_in, data); pkt_len = ntohs(opi->header.length) - pkt_ofs; pkt.data = opi->data; pkt.size = pkt_len; flow_extract(&pkt, in_port, &flow); if (may_learn(sw, in_port) && sw->ml) { if (mac_learning_learn(sw->ml, flow.dl_src, 0, in_port)) { VLOG_DBG_RL(&rl, "%012llx: learned that "ETH_ADDR_FMT" is on " "port %"PRIu16, sw->datapath_id, ETH_ADDR_ARGS(flow.dl_src), in_port); } } if (eth_addr_is_reserved(flow.dl_src)) { goto drop_it; } if (!may_recv(sw, in_port, false)) { /* STP prevents receiving anything on this port. */ goto drop_it; } if (sw->ml) { int learned_port = mac_learning_lookup(sw->ml, flow.dl_dst, 0); if (learned_port >= 0 && may_send(sw, learned_port)) { out_port = learned_port; } } if (in_port == out_port) { /* Don't send out packets on their input ports. */ goto drop_it; } else if (sw->max_idle >= 0 && (!sw->ml || out_port != OFPP_FLOOD)) { /* The output port is known, or we always flood everything, so add a * new flow. */ queue_tx(sw, rconn, make_add_simple_flow(&flow, ntohl(opi->buffer_id), out_port, sw->max_idle)); /* If the switch didn't buffer the packet, we need to send a copy. */ if (ntohl(opi->buffer_id) == UINT32_MAX) { queue_tx(sw, rconn, make_unbuffered_packet_out(&pkt, in_port, out_port)); } } else { /* We don't know that MAC, or we don't set up flows. Send along the * packet without setting up a flow. */ struct ofpbuf *b; if (ntohl(opi->buffer_id) == UINT32_MAX) { b = make_unbuffered_packet_out(&pkt, in_port, out_port); } else { b = make_buffered_packet_out(ntohl(opi->buffer_id), in_port, out_port); } queue_tx(sw, rconn, b); } return; drop_it: if (sw->max_idle >= 0) { /* Set up a flow to drop packets. */ queue_tx(sw, rconn, make_add_flow(&flow, ntohl(opi->buffer_id), sw->max_idle, 0)); } else { /* Just drop the packet, since we don't set up flows at all. * XXX we should send a packet_out with no actions if buffer_id != * UINT32_MAX, to avoid clogging the kernel buffers. */ } return; } static void process_echo_request(struct lswitch *sw, struct rconn *rconn, void *rq_) { struct ofp_header *rq = rq_; queue_tx(sw, rconn, make_echo_reply(rq)); } static void process_port_status(struct lswitch *sw, struct rconn *rconn, void *ops_) { struct ofp_port_status *ops = ops_; process_phy_port(sw, rconn, &ops->desc); } static void process_phy_port(struct lswitch *sw, struct rconn *rconn UNUSED, void *opp_) { const struct ofp_phy_port *opp = opp_; uint16_t port_no = ntohs(opp->port_no); if (sw->capabilities & OFPC_STP && port_no < STP_MAX_PORTS) { uint32_t config = ntohl(opp->config); uint32_t state = ntohl(opp->state); unsigned int *port_state = &sw->port_states[port_no]; unsigned int new_port_state; if (!(config & (OFPPC_NO_STP | OFPPC_PORT_DOWN)) && !(state & OFPPS_LINK_DOWN)) { switch (state & OFPPS_STP_MASK) { case OFPPS_STP_LISTEN: new_port_state = P_LISTENING; break; case OFPPS_STP_LEARN: new_port_state = P_LEARNING; break; case OFPPS_STP_FORWARD: new_port_state = P_FORWARDING; break; case OFPPS_STP_BLOCK: new_port_state = P_BLOCKING; break; default: new_port_state = P_DISABLED; break; } } else { new_port_state = P_FORWARDING; } if (*port_state != new_port_state) { *port_state = new_port_state; schedule_query(sw, 1000); } } } static unsigned int get_port_state(const struct lswitch *sw, uint16_t port_no) { return (port_no >= STP_MAX_PORTS || !(sw->capabilities & OFPC_STP) ? P_FORWARDING : sw->port_states[port_no]); } static bool may_learn(const struct lswitch *sw, uint16_t port_no) { return get_port_state(sw, port_no) & (P_LEARNING | P_FORWARDING); } static bool may_recv(const struct lswitch *sw, uint16_t port_no, bool any_actions) { unsigned int state = get_port_state(sw, port_no); return !(any_actions ? state & (P_DISABLED | P_LISTENING | P_BLOCKING) : state & (P_DISABLED | P_LISTENING | P_BLOCKING | P_LEARNING)); } static bool may_send(const struct lswitch *sw, uint16_t port_no) { return get_port_state(sw, port_no) & P_FORWARDING; } static void process_flow_stats(struct lswitch *sw, struct rconn *rconn, const struct ofp_flow_stats *ofs) { const char *end = (char *) ofs + ntohs(ofs->length); bool delete = false; /* Decide to delete the flow if it matches on an STP-disabled physical * port. But don't delete it if the flow just drops all received packets, * because that's a perfectly reasonable thing to do for disabled physical * ports. */ if (!(ofs->match.wildcards & htonl(OFPFW_IN_PORT))) { if (!may_recv(sw, ntohs(ofs->match.in_port), end > (char *) ofs->actions)) { delete = true; sw->n_no_recv++; } } /* Decide to delete the flow if it forwards to an STP-disabled physical * port. */ if (!delete) { const struct ofp_action_header *a; size_t len; for (a = ofs->actions; (char *) a < end; a += len / 8) { len = ntohs(a->len); if (len > end - (char *) a) { VLOG_DBG_RL(&rl, "%012llx: action exceeds available space " "(%zu > %td)", sw->datapath_id, len, end - (char *) a); break; } else if (len % 8) { VLOG_DBG_RL(&rl, "%012llx: action length (%zu) not multiple " "of 8 bytes", sw->datapath_id, len); break; } if (a->type == htons(OFPAT_OUTPUT)) { struct ofp_action_output *oao = (struct ofp_action_output *) a; if (!may_send(sw, ntohs(oao->port))) { delete = true; sw->n_no_send++; break; } } } } /* Delete the flow. */ if (delete) { struct ofp_flow_mod *ofm; struct ofpbuf *b; ofm = make_openflow(offsetof(struct ofp_flow_mod, actions), OFPT_FLOW_MOD, &b); ofm->match = ofs->match; ofm->command = OFPFC_DELETE_STRICT; rconn_send(rconn, b, NULL); } } static void process_stats_reply(struct lswitch *sw, struct rconn *rconn, void *osr_) { struct ofp_stats_reply *osr = osr_; struct flow_stats_iterator i; const struct ofp_flow_stats *fs; if (sw->last_query == LLONG_MIN || osr->type != htons(OFPST_FLOW) || osr->header.xid != sw->query_xid) { return; } for (fs = flow_stats_first(&i, osr); fs; fs = flow_stats_next(&i)) { sw->n_flows++; process_flow_stats(sw, rconn, fs); } if (!(osr->flags & htons(OFPSF_REPLY_MORE))) { VLOG_DBG("%012llx: Deleted %d of %d received flows to " "implement STP, %d because of no-recv, %d because of " "no-send", sw->datapath_id, sw->n_no_recv + sw->n_no_send, sw->n_flows, sw->n_no_recv, sw->n_no_send); sw->last_query = LLONG_MIN; sw->last_reply = LLONG_MIN; } else { sw->last_reply = time_msec(); } }