/* * Copyright (c) 2009, 2010, 2011, 2012, 2013 Nicira, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include "odp-util.h" #include #include #include #include #include #include #include #include "byte-order.h" #include "coverage.h" #include "dynamic-string.h" #include "flow.h" #include "netlink.h" #include "ofpbuf.h" #include "packets.h" #include "simap.h" #include "timeval.h" #include "util.h" #include "vlog.h" VLOG_DEFINE_THIS_MODULE(odp_util); /* The interface between userspace and kernel uses an "OVS_*" prefix. * Since this is fairly non-specific for the OVS userspace components, * "ODP_*" (Open vSwitch Datapath) is used as the prefix for * interactions with the datapath. */ /* The set of characters that may separate one action or one key attribute * from another. */ static const char *delimiters = ", \t\r\n"; static int parse_odp_key_attr(const char *, const struct simap *port_names, struct ofpbuf *); static void format_odp_key_attr(const struct nlattr *a, struct ds *ds); /* Returns one the following for the action with the given OVS_ACTION_ATTR_* * 'type': * * - For an action whose argument has a fixed length, returned that * nonnegative length in bytes. * * - For an action with a variable-length argument, returns -2. * * - For an invalid 'type', returns -1. */ static int odp_action_len(uint16_t type) { if (type > OVS_ACTION_ATTR_MAX) { return -1; } switch ((enum ovs_action_attr) type) { case OVS_ACTION_ATTR_OUTPUT: return sizeof(uint32_t); case OVS_ACTION_ATTR_USERSPACE: return -2; case OVS_ACTION_ATTR_PUSH_VLAN: return sizeof(struct ovs_action_push_vlan); case OVS_ACTION_ATTR_POP_VLAN: return 0; case OVS_ACTION_ATTR_PUSH_MPLS: return sizeof(struct ovs_action_push_mpls); case OVS_ACTION_ATTR_POP_MPLS: return sizeof(ovs_be16); case OVS_ACTION_ATTR_SET: return -2; case OVS_ACTION_ATTR_SAMPLE: return -2; case OVS_ACTION_ATTR_UNSPEC: case __OVS_ACTION_ATTR_MAX: return -1; } return -1; } static const char * ovs_key_attr_to_string(enum ovs_key_attr attr) { static char unknown_attr[3 + INT_STRLEN(unsigned int) + 1]; switch (attr) { case OVS_KEY_ATTR_UNSPEC: return "unspec"; case OVS_KEY_ATTR_ENCAP: return "encap"; case OVS_KEY_ATTR_PRIORITY: return "skb_priority"; case OVS_KEY_ATTR_SKB_MARK: return "skb_mark"; case OVS_KEY_ATTR_TUNNEL: return "tunnel"; case OVS_KEY_ATTR_IN_PORT: return "in_port"; case OVS_KEY_ATTR_ETHERNET: return "eth"; case OVS_KEY_ATTR_VLAN: return "vlan"; case OVS_KEY_ATTR_ETHERTYPE: return "eth_type"; case OVS_KEY_ATTR_IPV4: return "ipv4"; case OVS_KEY_ATTR_IPV6: return "ipv6"; case OVS_KEY_ATTR_TCP: return "tcp"; case OVS_KEY_ATTR_UDP: return "udp"; case OVS_KEY_ATTR_ICMP: return "icmp"; case OVS_KEY_ATTR_ICMPV6: return "icmpv6"; case OVS_KEY_ATTR_ARP: return "arp"; case OVS_KEY_ATTR_ND: return "nd"; case OVS_KEY_ATTR_MPLS: return "mpls"; case __OVS_KEY_ATTR_MAX: default: snprintf(unknown_attr, sizeof unknown_attr, "key%u", (unsigned int) attr); return unknown_attr; } } static void format_generic_odp_action(struct ds *ds, const struct nlattr *a) { size_t len = nl_attr_get_size(a); ds_put_format(ds, "action%"PRId16, nl_attr_type(a)); if (len) { const uint8_t *unspec; unsigned int i; unspec = nl_attr_get(a); for (i = 0; i < len; i++) { ds_put_char(ds, i ? ' ': '('); ds_put_format(ds, "%02x", unspec[i]); } ds_put_char(ds, ')'); } } static void format_odp_sample_action(struct ds *ds, const struct nlattr *attr) { static const struct nl_policy ovs_sample_policy[] = { [OVS_SAMPLE_ATTR_PROBABILITY] = { .type = NL_A_U32 }, [OVS_SAMPLE_ATTR_ACTIONS] = { .type = NL_A_NESTED } }; struct nlattr *a[ARRAY_SIZE(ovs_sample_policy)]; double percentage; const struct nlattr *nla_acts; int len; ds_put_cstr(ds, "sample"); if (!nl_parse_nested(attr, ovs_sample_policy, a, ARRAY_SIZE(a))) { ds_put_cstr(ds, "(error)"); return; } percentage = (100.0 * nl_attr_get_u32(a[OVS_SAMPLE_ATTR_PROBABILITY])) / UINT32_MAX; ds_put_format(ds, "(sample=%.1f%%,", percentage); ds_put_cstr(ds, "actions("); nla_acts = nl_attr_get(a[OVS_SAMPLE_ATTR_ACTIONS]); len = nl_attr_get_size(a[OVS_SAMPLE_ATTR_ACTIONS]); format_odp_actions(ds, nla_acts, len); ds_put_format(ds, "))"); } static const char * slow_path_reason_to_string(uint32_t data) { enum slow_path_reason bit = (enum slow_path_reason) data; switch (bit) { case SLOW_CFM: return "cfm"; case SLOW_LACP: return "lacp"; case SLOW_STP: return "stp"; case SLOW_IN_BAND: return "in_band"; case SLOW_CONTROLLER: return "controller"; case SLOW_MATCH: return "match"; default: return NULL; } } static int parse_flags(const char *s, const char *(*bit_to_string)(uint32_t), uint32_t *res) { uint32_t result = 0; int n = 0; if (s[n] != '(') { return -EINVAL; } n++; while (s[n] != ')') { unsigned long long int flags; uint32_t bit; int n0; if (sscanf(&s[n], "%lli%n", &flags, &n0) > 0 && n0 > 0) { n += n0 + (s[n + n0] == ','); result |= flags; continue; } for (bit = 1; bit; bit <<= 1) { const char *name = bit_to_string(bit); size_t len; if (!name) { continue; } len = strlen(name); if (!strncmp(s + n, name, len) && (s[n + len] == ',' || s[n + len] == ')')) { result |= bit; n += len + (s[n + len] == ','); break; } } if (!bit) { return -EINVAL; } } n++; *res = result; return n; } static void format_odp_userspace_action(struct ds *ds, const struct nlattr *attr) { static const struct nl_policy ovs_userspace_policy[] = { [OVS_USERSPACE_ATTR_PID] = { .type = NL_A_U32 }, [OVS_USERSPACE_ATTR_USERDATA] = { .type = NL_A_UNSPEC, .optional = true }, }; struct nlattr *a[ARRAY_SIZE(ovs_userspace_policy)]; const struct nlattr *userdata_attr; if (!nl_parse_nested(attr, ovs_userspace_policy, a, ARRAY_SIZE(a))) { ds_put_cstr(ds, "userspace(error)"); return; } ds_put_format(ds, "userspace(pid=%"PRIu32, nl_attr_get_u32(a[OVS_USERSPACE_ATTR_PID])); userdata_attr = a[OVS_USERSPACE_ATTR_USERDATA]; if (userdata_attr && nl_attr_get_size(userdata_attr) == sizeof(uint64_t)) { uint64_t userdata = nl_attr_get_u64(a[OVS_USERSPACE_ATTR_USERDATA]); union user_action_cookie cookie; memcpy(&cookie, &userdata, sizeof cookie); switch (cookie.type) { case USER_ACTION_COOKIE_SFLOW: ds_put_format(ds, ",sFlow(" "vid=%"PRIu16",pcp=%"PRIu8",output=%"PRIu32")", vlan_tci_to_vid(cookie.sflow.vlan_tci), vlan_tci_to_pcp(cookie.sflow.vlan_tci), cookie.sflow.output); break; case USER_ACTION_COOKIE_SLOW_PATH: ds_put_cstr(ds, ",slow_path("); format_flags(ds, slow_path_reason_to_string, cookie.slow_path.reason, ','); ds_put_format(ds, ")"); break; case USER_ACTION_COOKIE_UNSPEC: default: ds_put_format(ds, ",userdata=0x%"PRIx64, userdata); break; } } else if (userdata_attr) { const uint8_t *userdata = nl_attr_get(userdata_attr); size_t len = nl_attr_get_size(userdata_attr); size_t i; ds_put_format(ds, ",userdata("); for (i = 0; i < len; i++) { ds_put_format(ds, "%02x", userdata[i]); } ds_put_char(ds, ')'); } ds_put_char(ds, ')'); } static void format_vlan_tci(struct ds *ds, ovs_be16 vlan_tci) { ds_put_format(ds, "vid=%"PRIu16",pcp=%d", vlan_tci_to_vid(vlan_tci), vlan_tci_to_pcp(vlan_tci)); if (!(vlan_tci & htons(VLAN_CFI))) { ds_put_cstr(ds, ",cfi=0"); } } static void format_mpls_lse(struct ds *ds, ovs_be32 mpls_lse) { ds_put_format(ds, "label=%"PRIu32",tc=%d,ttl=%d,bos=%d", mpls_lse_to_label(mpls_lse), mpls_lse_to_tc(mpls_lse), mpls_lse_to_ttl(mpls_lse), mpls_lse_to_bos(mpls_lse)); } static void format_odp_action(struct ds *ds, const struct nlattr *a) { int expected_len; enum ovs_action_attr type = nl_attr_type(a); const struct ovs_action_push_vlan *vlan; expected_len = odp_action_len(nl_attr_type(a)); if (expected_len != -2 && nl_attr_get_size(a) != expected_len) { ds_put_format(ds, "bad length %zu, expected %d for: ", nl_attr_get_size(a), expected_len); format_generic_odp_action(ds, a); return; } switch (type) { case OVS_ACTION_ATTR_OUTPUT: ds_put_format(ds, "%"PRIu16, nl_attr_get_u32(a)); break; case OVS_ACTION_ATTR_USERSPACE: format_odp_userspace_action(ds, a); break; case OVS_ACTION_ATTR_SET: ds_put_cstr(ds, "set("); format_odp_key_attr(nl_attr_get(a), ds); ds_put_cstr(ds, ")"); break; case OVS_ACTION_ATTR_PUSH_VLAN: vlan = nl_attr_get(a); ds_put_cstr(ds, "push_vlan("); if (vlan->vlan_tpid != htons(ETH_TYPE_VLAN)) { ds_put_format(ds, "tpid=0x%04"PRIx16",", ntohs(vlan->vlan_tpid)); } format_vlan_tci(ds, vlan->vlan_tci); ds_put_char(ds, ')'); break; case OVS_ACTION_ATTR_POP_VLAN: ds_put_cstr(ds, "pop_vlan"); break; case OVS_ACTION_ATTR_PUSH_MPLS: { const struct ovs_action_push_mpls *mpls = nl_attr_get(a); ds_put_cstr(ds, "push_mpls("); format_mpls_lse(ds, mpls->mpls_lse); ds_put_format(ds, ",eth_type=0x%"PRIx16")", ntohs(mpls->mpls_ethertype)); break; } case OVS_ACTION_ATTR_POP_MPLS: { ovs_be16 ethertype = nl_attr_get_be16(a); ds_put_format(ds, "pop_mpls(eth_type=0x%"PRIx16")", ntohs(ethertype)); break; } case OVS_ACTION_ATTR_SAMPLE: format_odp_sample_action(ds, a); break; case OVS_ACTION_ATTR_UNSPEC: case __OVS_ACTION_ATTR_MAX: default: format_generic_odp_action(ds, a); break; } } void format_odp_actions(struct ds *ds, const struct nlattr *actions, size_t actions_len) { if (actions_len) { const struct nlattr *a; unsigned int left; NL_ATTR_FOR_EACH (a, left, actions, actions_len) { if (a != actions) { ds_put_char(ds, ','); } format_odp_action(ds, a); } if (left) { int i; if (left == actions_len) { ds_put_cstr(ds, ""); } ds_put_format(ds, ",***%u leftover bytes*** (", left); for (i = 0; i < left; i++) { ds_put_format(ds, "%02x", ((const uint8_t *) a)[i]); } ds_put_char(ds, ')'); } } else { ds_put_cstr(ds, "drop"); } } static int parse_odp_action(const char *s, const struct simap *port_names, struct ofpbuf *actions) { /* Many of the sscanf calls in this function use oversized destination * fields because some sscanf() implementations truncate the range of %i * directives, so that e.g. "%"SCNi16 interprets input of "0xfedc" as a * value of 0x7fff. The other alternatives are to allow only a single * radix (e.g. decimal or hexadecimal) or to write more sophisticated * parsers. * * The tun_id parser has to use an alternative approach because there is no * type larger than 64 bits. */ { unsigned long long int port; int n = -1; if (sscanf(s, "%lli%n", &port, &n) > 0 && n > 0) { nl_msg_put_u32(actions, OVS_ACTION_ATTR_OUTPUT, port); return n; } } if (port_names) { int len = strcspn(s, delimiters); struct simap_node *node; node = simap_find_len(port_names, s, len); if (node) { nl_msg_put_u32(actions, OVS_ACTION_ATTR_OUTPUT, node->data); return len; } } { unsigned long long int pid; unsigned long long int output; char userdata_s[32]; int vid, pcp; int n = -1; if (sscanf(s, "userspace(pid=%lli)%n", &pid, &n) > 0 && n > 0) { odp_put_userspace_action(pid, NULL, 0, actions); return n; } else if (sscanf(s, "userspace(pid=%lli,sFlow(vid=%i," "pcp=%i,output=%lli))%n", &pid, &vid, &pcp, &output, &n) > 0 && n > 0) { union user_action_cookie cookie; uint16_t tci; tci = vid | (pcp << VLAN_PCP_SHIFT); if (tci) { tci |= VLAN_CFI; } cookie.type = USER_ACTION_COOKIE_SFLOW; cookie.sflow.vlan_tci = htons(tci); cookie.sflow.output = output; odp_put_userspace_action(pid, &cookie, sizeof cookie, actions); return n; } else if (sscanf(s, "userspace(pid=%lli,slow_path%n", &pid, &n) > 0 && n > 0) { union user_action_cookie cookie; int res; cookie.type = USER_ACTION_COOKIE_SLOW_PATH; cookie.slow_path.unused = 0; cookie.slow_path.reason = 0; res = parse_flags(&s[n], slow_path_reason_to_string, &cookie.slow_path.reason); if (res < 0) { return res; } n += res; if (s[n] != ')') { return -EINVAL; } n++; odp_put_userspace_action(pid, &cookie, sizeof cookie, actions); return n; } else if (sscanf(s, "userspace(pid=%lli,userdata=" "%31[x0123456789abcdefABCDEF])%n", &pid, userdata_s, &n) > 0 && n > 0) { uint64_t userdata; userdata = strtoull(userdata_s, NULL, 0); odp_put_userspace_action(pid, &userdata, sizeof(userdata), actions); return n; } else if (sscanf(s, "userspace(pid=%lli,userdata(%n", &pid, &n) > 0 && n > 0) { struct ofpbuf buf; char *end; ofpbuf_init(&buf, 16); end = ofpbuf_put_hex(&buf, &s[n], NULL); if (end[0] == ')' && end[1] == ')') { odp_put_userspace_action(pid, buf.data, buf.size, actions); ofpbuf_uninit(&buf); return (end + 2) - s; } } } if (!strncmp(s, "set(", 4)) { size_t start_ofs; int retval; start_ofs = nl_msg_start_nested(actions, OVS_ACTION_ATTR_SET); retval = parse_odp_key_attr(s + 4, port_names, actions); if (retval < 0) { return retval; } if (s[retval + 4] != ')') { return -EINVAL; } nl_msg_end_nested(actions, start_ofs); return retval + 5; } { struct ovs_action_push_vlan push; int tpid = ETH_TYPE_VLAN; int vid, pcp; int cfi = 1; int n = -1; if ((sscanf(s, "push_vlan(vid=%i,pcp=%i)%n", &vid, &pcp, &n) > 0 && n > 0) || (sscanf(s, "push_vlan(vid=%i,pcp=%i,cfi=%i)%n", &vid, &pcp, &cfi, &n) > 0 && n > 0) || (sscanf(s, "push_vlan(tpid=%i,vid=%i,pcp=%i)%n", &tpid, &vid, &pcp, &n) > 0 && n > 0) || (sscanf(s, "push_vlan(tpid=%i,vid=%i,pcp=%i,cfi=%i)%n", &tpid, &vid, &pcp, &cfi, &n) > 0 && n > 0)) { push.vlan_tpid = htons(tpid); push.vlan_tci = htons((vid << VLAN_VID_SHIFT) | (pcp << VLAN_PCP_SHIFT) | (cfi ? VLAN_CFI : 0)); nl_msg_put_unspec(actions, OVS_ACTION_ATTR_PUSH_VLAN, &push, sizeof push); return n; } } if (!strncmp(s, "pop_vlan", 8)) { nl_msg_put_flag(actions, OVS_ACTION_ATTR_POP_VLAN); return 8; } { double percentage; int n = -1; if (sscanf(s, "sample(sample=%lf%%,actions(%n", &percentage, &n) > 0 && percentage >= 0. && percentage <= 100.0 && n > 0) { size_t sample_ofs, actions_ofs; double probability; probability = floor(UINT32_MAX * (percentage / 100.0) + .5); sample_ofs = nl_msg_start_nested(actions, OVS_ACTION_ATTR_SAMPLE); nl_msg_put_u32(actions, OVS_SAMPLE_ATTR_PROBABILITY, (probability <= 0 ? 0 : probability >= UINT32_MAX ? UINT32_MAX : probability)); actions_ofs = nl_msg_start_nested(actions, OVS_SAMPLE_ATTR_ACTIONS); for (;;) { int retval; n += strspn(s + n, delimiters); if (s[n] == ')') { break; } retval = parse_odp_action(s + n, port_names, actions); if (retval < 0) { return retval; } n += retval; } nl_msg_end_nested(actions, actions_ofs); nl_msg_end_nested(actions, sample_ofs); return s[n + 1] == ')' ? n + 2 : -EINVAL; } } return -EINVAL; } /* Parses the string representation of datapath actions, in the format output * by format_odp_action(). Returns 0 if successful, otherwise a positive errno * value. On success, the ODP actions are appended to 'actions' as a series of * Netlink attributes. On failure, no data is appended to 'actions'. Either * way, 'actions''s data might be reallocated. */ int odp_actions_from_string(const char *s, const struct simap *port_names, struct ofpbuf *actions) { size_t old_size; if (!strcasecmp(s, "drop")) { return 0; } old_size = actions->size; for (;;) { int retval; s += strspn(s, delimiters); if (!*s) { return 0; } retval = parse_odp_action(s, port_names, actions); if (retval < 0 || !strchr(delimiters, s[retval])) { actions->size = old_size; return -retval; } s += retval; } return 0; } /* Returns the correct length of the payload for a flow key attribute of the * specified 'type', -1 if 'type' is unknown, or -2 if the attribute's payload * is variable length. */ static int odp_flow_key_attr_len(uint16_t type) { if (type > OVS_KEY_ATTR_MAX) { return -1; } switch ((enum ovs_key_attr) type) { case OVS_KEY_ATTR_ENCAP: return -2; case OVS_KEY_ATTR_PRIORITY: return 4; case OVS_KEY_ATTR_SKB_MARK: return 4; case OVS_KEY_ATTR_TUNNEL: return -2; case OVS_KEY_ATTR_IN_PORT: return 4; case OVS_KEY_ATTR_ETHERNET: return sizeof(struct ovs_key_ethernet); case OVS_KEY_ATTR_VLAN: return sizeof(ovs_be16); case OVS_KEY_ATTR_ETHERTYPE: return 2; case OVS_KEY_ATTR_MPLS: return sizeof(struct ovs_key_mpls); case OVS_KEY_ATTR_IPV4: return sizeof(struct ovs_key_ipv4); case OVS_KEY_ATTR_IPV6: return sizeof(struct ovs_key_ipv6); case OVS_KEY_ATTR_TCP: return sizeof(struct ovs_key_tcp); case OVS_KEY_ATTR_UDP: return sizeof(struct ovs_key_udp); case OVS_KEY_ATTR_ICMP: return sizeof(struct ovs_key_icmp); case OVS_KEY_ATTR_ICMPV6: return sizeof(struct ovs_key_icmpv6); case OVS_KEY_ATTR_ARP: return sizeof(struct ovs_key_arp); case OVS_KEY_ATTR_ND: return sizeof(struct ovs_key_nd); case OVS_KEY_ATTR_UNSPEC: case __OVS_KEY_ATTR_MAX: return -1; } return -1; } static void format_generic_odp_key(const struct nlattr *a, struct ds *ds) { size_t len = nl_attr_get_size(a); if (len) { const uint8_t *unspec; unsigned int i; unspec = nl_attr_get(a); for (i = 0; i < len; i++) { ds_put_char(ds, i ? ' ': '('); ds_put_format(ds, "%02x", unspec[i]); } ds_put_char(ds, ')'); } } static const char * ovs_frag_type_to_string(enum ovs_frag_type type) { switch (type) { case OVS_FRAG_TYPE_NONE: return "no"; case OVS_FRAG_TYPE_FIRST: return "first"; case OVS_FRAG_TYPE_LATER: return "later"; case __OVS_FRAG_TYPE_MAX: default: return ""; } } static int tunnel_key_attr_len(int type) { switch (type) { case OVS_TUNNEL_KEY_ATTR_ID: return 8; case OVS_TUNNEL_KEY_ATTR_IPV4_SRC: return 4; case OVS_TUNNEL_KEY_ATTR_IPV4_DST: return 4; case OVS_TUNNEL_KEY_ATTR_TOS: return 1; case OVS_TUNNEL_KEY_ATTR_TTL: return 1; case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT: return 0; case OVS_TUNNEL_KEY_ATTR_CSUM: return 0; case __OVS_TUNNEL_KEY_ATTR_MAX: return -1; } return -1; } static enum odp_key_fitness tun_key_from_attr(const struct nlattr *attr, struct flow_tnl *tun) { unsigned int left; const struct nlattr *a; bool ttl = false; bool unknown = false; NL_NESTED_FOR_EACH(a, left, attr) { uint16_t type = nl_attr_type(a); size_t len = nl_attr_get_size(a); int expected_len = tunnel_key_attr_len(type); if (len != expected_len && expected_len >= 0) { return ODP_FIT_ERROR; } switch (type) { case OVS_TUNNEL_KEY_ATTR_ID: tun->tun_id = nl_attr_get_be64(a); tun->flags |= FLOW_TNL_F_KEY; break; case OVS_TUNNEL_KEY_ATTR_IPV4_SRC: tun->ip_src = nl_attr_get_be32(a); break; case OVS_TUNNEL_KEY_ATTR_IPV4_DST: tun->ip_dst = nl_attr_get_be32(a); break; case OVS_TUNNEL_KEY_ATTR_TOS: tun->ip_tos = nl_attr_get_u8(a); break; case OVS_TUNNEL_KEY_ATTR_TTL: tun->ip_ttl = nl_attr_get_u8(a); ttl = true; break; case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT: tun->flags |= FLOW_TNL_F_DONT_FRAGMENT; break; case OVS_TUNNEL_KEY_ATTR_CSUM: tun->flags |= FLOW_TNL_F_CSUM; break; default: /* Allow this to show up as unexpected, if there are unknown * tunnel attribute, eventually resulting in ODP_FIT_TOO_MUCH. */ unknown = true; break; } } if (!ttl) { return ODP_FIT_ERROR; } if (unknown) { return ODP_FIT_TOO_MUCH; } return ODP_FIT_PERFECT; } static void tun_key_to_attr(struct ofpbuf *a, const struct flow_tnl *tun_key) { size_t tun_key_ofs; tun_key_ofs = nl_msg_start_nested(a, OVS_KEY_ATTR_TUNNEL); if (tun_key->flags & FLOW_TNL_F_KEY) { nl_msg_put_be64(a, OVS_TUNNEL_KEY_ATTR_ID, tun_key->tun_id); } if (tun_key->ip_src) { nl_msg_put_be32(a, OVS_TUNNEL_KEY_ATTR_IPV4_SRC, tun_key->ip_src); } if (tun_key->ip_dst) { nl_msg_put_be32(a, OVS_TUNNEL_KEY_ATTR_IPV4_DST, tun_key->ip_dst); } if (tun_key->ip_tos) { nl_msg_put_u8(a, OVS_TUNNEL_KEY_ATTR_TOS, tun_key->ip_tos); } nl_msg_put_u8(a, OVS_TUNNEL_KEY_ATTR_TTL, tun_key->ip_ttl); if (tun_key->flags & FLOW_TNL_F_DONT_FRAGMENT) { nl_msg_put_flag(a, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT); } if (tun_key->flags & FLOW_TNL_F_CSUM) { nl_msg_put_flag(a, OVS_TUNNEL_KEY_ATTR_CSUM); } nl_msg_end_nested(a, tun_key_ofs); } static void format_odp_key_attr(const struct nlattr *a, struct ds *ds) { const struct ovs_key_ethernet *eth_key; const struct ovs_key_ipv4 *ipv4_key; const struct ovs_key_ipv6 *ipv6_key; const struct ovs_key_tcp *tcp_key; const struct ovs_key_udp *udp_key; const struct ovs_key_icmp *icmp_key; const struct ovs_key_icmpv6 *icmpv6_key; const struct ovs_key_arp *arp_key; const struct ovs_key_nd *nd_key; struct flow_tnl tun_key; enum ovs_key_attr attr = nl_attr_type(a); int expected_len; ds_put_cstr(ds, ovs_key_attr_to_string(attr)); expected_len = odp_flow_key_attr_len(nl_attr_type(a)); if (expected_len != -2 && nl_attr_get_size(a) != expected_len) { ds_put_format(ds, "(bad length %zu, expected %d)", nl_attr_get_size(a), odp_flow_key_attr_len(nl_attr_type(a))); format_generic_odp_key(a, ds); return; } switch (attr) { case OVS_KEY_ATTR_ENCAP: ds_put_cstr(ds, "("); if (nl_attr_get_size(a)) { odp_flow_key_format(nl_attr_get(a), nl_attr_get_size(a), ds); } ds_put_char(ds, ')'); break; case OVS_KEY_ATTR_PRIORITY: ds_put_format(ds, "(%#"PRIx32")", nl_attr_get_u32(a)); break; case OVS_KEY_ATTR_SKB_MARK: ds_put_format(ds, "(%#"PRIx32")", nl_attr_get_u32(a)); break; case OVS_KEY_ATTR_TUNNEL: memset(&tun_key, 0, sizeof tun_key); if (tun_key_from_attr(a, &tun_key) == ODP_FIT_ERROR) { ds_put_format(ds, "(error)"); } else { ds_put_format(ds, "(tun_id=0x%"PRIx64",src="IP_FMT",dst="IP_FMT"," "tos=0x%"PRIx8",ttl=%"PRIu8",flags(", ntohll(tun_key.tun_id), IP_ARGS(tun_key.ip_src), IP_ARGS(tun_key.ip_dst), tun_key.ip_tos, tun_key.ip_ttl); format_flags(ds, flow_tun_flag_to_string, (uint32_t) tun_key.flags, ','); ds_put_format(ds, "))"); } break; case OVS_KEY_ATTR_IN_PORT: ds_put_format(ds, "(%"PRIu32")", nl_attr_get_u32(a)); break; case OVS_KEY_ATTR_ETHERNET: eth_key = nl_attr_get(a); ds_put_format(ds, "(src="ETH_ADDR_FMT",dst="ETH_ADDR_FMT")", ETH_ADDR_ARGS(eth_key->eth_src), ETH_ADDR_ARGS(eth_key->eth_dst)); break; case OVS_KEY_ATTR_VLAN: ds_put_char(ds, '('); format_vlan_tci(ds, nl_attr_get_be16(a)); ds_put_char(ds, ')'); break; case OVS_KEY_ATTR_MPLS: { const struct ovs_key_mpls *mpls_key = nl_attr_get(a); ds_put_char(ds, '('); format_mpls_lse(ds, mpls_key->mpls_top_lse); ds_put_char(ds, ')'); break; } case OVS_KEY_ATTR_ETHERTYPE: ds_put_format(ds, "(0x%04"PRIx16")", ntohs(nl_attr_get_be16(a))); break; case OVS_KEY_ATTR_IPV4: ipv4_key = nl_attr_get(a); ds_put_format(ds, "(src="IP_FMT",dst="IP_FMT",proto=%"PRIu8 ",tos=%#"PRIx8",ttl=%"PRIu8",frag=%s)", IP_ARGS(ipv4_key->ipv4_src), IP_ARGS(ipv4_key->ipv4_dst), ipv4_key->ipv4_proto, ipv4_key->ipv4_tos, ipv4_key->ipv4_ttl, ovs_frag_type_to_string(ipv4_key->ipv4_frag)); break; case OVS_KEY_ATTR_IPV6: { char src_str[INET6_ADDRSTRLEN]; char dst_str[INET6_ADDRSTRLEN]; ipv6_key = nl_attr_get(a); inet_ntop(AF_INET6, ipv6_key->ipv6_src, src_str, sizeof src_str); inet_ntop(AF_INET6, ipv6_key->ipv6_dst, dst_str, sizeof dst_str); ds_put_format(ds, "(src=%s,dst=%s,label=%#"PRIx32",proto=%"PRIu8 ",tclass=%#"PRIx8",hlimit=%"PRIu8",frag=%s)", src_str, dst_str, ntohl(ipv6_key->ipv6_label), ipv6_key->ipv6_proto, ipv6_key->ipv6_tclass, ipv6_key->ipv6_hlimit, ovs_frag_type_to_string(ipv6_key->ipv6_frag)); break; } case OVS_KEY_ATTR_TCP: tcp_key = nl_attr_get(a); ds_put_format(ds, "(src=%"PRIu16",dst=%"PRIu16")", ntohs(tcp_key->tcp_src), ntohs(tcp_key->tcp_dst)); break; case OVS_KEY_ATTR_UDP: udp_key = nl_attr_get(a); ds_put_format(ds, "(src=%"PRIu16",dst=%"PRIu16")", ntohs(udp_key->udp_src), ntohs(udp_key->udp_dst)); break; case OVS_KEY_ATTR_ICMP: icmp_key = nl_attr_get(a); ds_put_format(ds, "(type=%"PRIu8",code=%"PRIu8")", icmp_key->icmp_type, icmp_key->icmp_code); break; case OVS_KEY_ATTR_ICMPV6: icmpv6_key = nl_attr_get(a); ds_put_format(ds, "(type=%"PRIu8",code=%"PRIu8")", icmpv6_key->icmpv6_type, icmpv6_key->icmpv6_code); break; case OVS_KEY_ATTR_ARP: arp_key = nl_attr_get(a); ds_put_format(ds, "(sip="IP_FMT",tip="IP_FMT",op=%"PRIu16"," "sha="ETH_ADDR_FMT",tha="ETH_ADDR_FMT")", IP_ARGS(arp_key->arp_sip), IP_ARGS(arp_key->arp_tip), ntohs(arp_key->arp_op), ETH_ADDR_ARGS(arp_key->arp_sha), ETH_ADDR_ARGS(arp_key->arp_tha)); break; case OVS_KEY_ATTR_ND: { char target[INET6_ADDRSTRLEN]; nd_key = nl_attr_get(a); inet_ntop(AF_INET6, nd_key->nd_target, target, sizeof target); ds_put_format(ds, "(target=%s", target); if (!eth_addr_is_zero(nd_key->nd_sll)) { ds_put_format(ds, ",sll="ETH_ADDR_FMT, ETH_ADDR_ARGS(nd_key->nd_sll)); } if (!eth_addr_is_zero(nd_key->nd_tll)) { ds_put_format(ds, ",tll="ETH_ADDR_FMT, ETH_ADDR_ARGS(nd_key->nd_tll)); } ds_put_char(ds, ')'); break; } case OVS_KEY_ATTR_UNSPEC: case __OVS_KEY_ATTR_MAX: default: format_generic_odp_key(a, ds); break; } } /* Appends to 'ds' a string representation of the 'key_len' bytes of * OVS_KEY_ATTR_* attributes in 'key'. */ void odp_flow_key_format(const struct nlattr *key, size_t key_len, struct ds *ds) { if (key_len) { const struct nlattr *a; unsigned int left; NL_ATTR_FOR_EACH (a, left, key, key_len) { if (a != key) { ds_put_char(ds, ','); } format_odp_key_attr(a, ds); } if (left) { int i; if (left == key_len) { ds_put_cstr(ds, ""); } ds_put_format(ds, ",***%u leftover bytes*** (", left); for (i = 0; i < left; i++) { ds_put_format(ds, "%02x", ((const uint8_t *) a)[i]); } ds_put_char(ds, ')'); } } else { ds_put_cstr(ds, ""); } } static int put_nd_key(int n, const char *nd_target_s, const uint8_t *nd_sll, const uint8_t *nd_tll, struct ofpbuf *key) { struct ovs_key_nd nd_key; memset(&nd_key, 0, sizeof nd_key); if (inet_pton(AF_INET6, nd_target_s, nd_key.nd_target) != 1) { return -EINVAL; } if (nd_sll) { memcpy(nd_key.nd_sll, nd_sll, ETH_ADDR_LEN); } if (nd_tll) { memcpy(nd_key.nd_tll, nd_tll, ETH_ADDR_LEN); } nl_msg_put_unspec(key, OVS_KEY_ATTR_ND, &nd_key, sizeof nd_key); return n; } static bool ovs_frag_type_from_string(const char *s, enum ovs_frag_type *type) { if (!strcasecmp(s, "no")) { *type = OVS_FRAG_TYPE_NONE; } else if (!strcasecmp(s, "first")) { *type = OVS_FRAG_TYPE_FIRST; } else if (!strcasecmp(s, "later")) { *type = OVS_FRAG_TYPE_LATER; } else { return false; } return true; } static ovs_be32 mpls_lse_from_components(int mpls_label, int mpls_tc, int mpls_ttl, int mpls_bos) { return (htonl((mpls_label << MPLS_LABEL_SHIFT) | (mpls_tc << MPLS_TC_SHIFT) | (mpls_ttl << MPLS_TTL_SHIFT) | (mpls_bos << MPLS_BOS_SHIFT))); } static int parse_odp_key_attr(const char *s, const struct simap *port_names, struct ofpbuf *key) { /* Many of the sscanf calls in this function use oversized destination * fields because some sscanf() implementations truncate the range of %i * directives, so that e.g. "%"SCNi16 interprets input of "0xfedc" as a * value of 0x7fff. The other alternatives are to allow only a single * radix (e.g. decimal or hexadecimal) or to write more sophisticated * parsers. * * The tun_id parser has to use an alternative approach because there is no * type larger than 64 bits. */ { unsigned long long int priority; int n = -1; if (sscanf(s, "skb_priority(%llx)%n", &priority, &n) > 0 && n > 0) { nl_msg_put_u32(key, OVS_KEY_ATTR_PRIORITY, priority); return n; } } { unsigned long long int mark; int n = -1; if (sscanf(s, "skb_mark(%llx)%n", &mark, &n) > 0 && n > 0) { nl_msg_put_u32(key, OVS_KEY_ATTR_SKB_MARK, mark); return n; } } { char tun_id_s[32]; int tos, ttl; struct flow_tnl tun_key; int n = -1; if (sscanf(s, "tunnel(tun_id=%31[x0123456789abcdefABCDEF]," "src="IP_SCAN_FMT",dst="IP_SCAN_FMT ",tos=%i,ttl=%i,flags%n", tun_id_s, IP_SCAN_ARGS(&tun_key.ip_src), IP_SCAN_ARGS(&tun_key.ip_dst), &tos, &ttl, &n) > 0 && n > 0) { int res; uint32_t flags; tun_key.tun_id = htonll(strtoull(tun_id_s, NULL, 0)); tun_key.ip_tos = tos; tun_key.ip_ttl = ttl; res = parse_flags(&s[n], flow_tun_flag_to_string, &flags); tun_key.flags = (uint16_t) flags; if (res < 0) { return res; } n += res; if (s[n] != ')') { return -EINVAL; } n++; tun_key_to_attr(key, &tun_key); return n; } } { unsigned long long int in_port; int n = -1; if (sscanf(s, "in_port(%lli)%n", &in_port, &n) > 0 && n > 0) { nl_msg_put_u32(key, OVS_KEY_ATTR_IN_PORT, in_port); return n; } } if (port_names && !strncmp(s, "in_port(", 8)) { const char *name; const struct simap_node *node; int name_len; name = s + 8; name_len = strcspn(s, ")"); node = simap_find_len(port_names, name, name_len); if (node) { nl_msg_put_u32(key, OVS_KEY_ATTR_IN_PORT, node->data); return 8 + name_len + 1; } } { struct ovs_key_ethernet eth_key; int n = -1; if (sscanf(s, "eth(src="ETH_ADDR_SCAN_FMT",dst="ETH_ADDR_SCAN_FMT")%n", ETH_ADDR_SCAN_ARGS(eth_key.eth_src), ETH_ADDR_SCAN_ARGS(eth_key.eth_dst), &n) > 0 && n > 0) { nl_msg_put_unspec(key, OVS_KEY_ATTR_ETHERNET, ð_key, sizeof eth_key); return n; } } { uint16_t vid; int pcp; int cfi; int n = -1; if ((sscanf(s, "vlan(vid=%"SCNi16",pcp=%i)%n", &vid, &pcp, &n) > 0 && n > 0)) { nl_msg_put_be16(key, OVS_KEY_ATTR_VLAN, htons((vid << VLAN_VID_SHIFT) | (pcp << VLAN_PCP_SHIFT) | VLAN_CFI)); return n; } else if ((sscanf(s, "vlan(vid=%"SCNi16",pcp=%i,cfi=%i)%n", &vid, &pcp, &cfi, &n) > 0 && n > 0)) { nl_msg_put_be16(key, OVS_KEY_ATTR_VLAN, htons((vid << VLAN_VID_SHIFT) | (pcp << VLAN_PCP_SHIFT) | (cfi ? VLAN_CFI : 0))); return n; } } { int eth_type; int n = -1; if (sscanf(s, "eth_type(%i)%n", ð_type, &n) > 0 && n > 0) { nl_msg_put_be16(key, OVS_KEY_ATTR_ETHERTYPE, htons(eth_type)); return n; } } { int label, tc, ttl, bos; int n = -1; if (sscanf(s, "mpls(label=%"SCNi32",tc=%i,ttl=%i,bos=%i)%n", &label, &tc, &ttl, &bos, &n) > 0 && n > 0) { struct ovs_key_mpls *mpls; mpls = nl_msg_put_unspec_uninit(key, OVS_KEY_ATTR_MPLS, sizeof *mpls); mpls->mpls_top_lse = mpls_lse_from_components(label, tc, ttl, bos); return n; } } { ovs_be32 ipv4_src; ovs_be32 ipv4_dst; int ipv4_proto; int ipv4_tos; int ipv4_ttl; char frag[8]; enum ovs_frag_type ipv4_frag; int n = -1; if (sscanf(s, "ipv4(src="IP_SCAN_FMT",dst="IP_SCAN_FMT"," "proto=%i,tos=%i,ttl=%i,frag=%7[a-z])%n", IP_SCAN_ARGS(&ipv4_src), IP_SCAN_ARGS(&ipv4_dst), &ipv4_proto, &ipv4_tos, &ipv4_ttl, frag, &n) > 0 && n > 0 && ovs_frag_type_from_string(frag, &ipv4_frag)) { struct ovs_key_ipv4 ipv4_key; ipv4_key.ipv4_src = ipv4_src; ipv4_key.ipv4_dst = ipv4_dst; ipv4_key.ipv4_proto = ipv4_proto; ipv4_key.ipv4_tos = ipv4_tos; ipv4_key.ipv4_ttl = ipv4_ttl; ipv4_key.ipv4_frag = ipv4_frag; nl_msg_put_unspec(key, OVS_KEY_ATTR_IPV4, &ipv4_key, sizeof ipv4_key); return n; } } { char ipv6_src_s[IPV6_SCAN_LEN + 1]; char ipv6_dst_s[IPV6_SCAN_LEN + 1]; int ipv6_label; int ipv6_proto; int ipv6_tclass; int ipv6_hlimit; char frag[8]; enum ovs_frag_type ipv6_frag; int n = -1; if (sscanf(s, "ipv6(src="IPV6_SCAN_FMT",dst="IPV6_SCAN_FMT"," "label=%i,proto=%i,tclass=%i,hlimit=%i,frag=%7[a-z])%n", ipv6_src_s, ipv6_dst_s, &ipv6_label, &ipv6_proto, &ipv6_tclass, &ipv6_hlimit, frag, &n) > 0 && n > 0 && ovs_frag_type_from_string(frag, &ipv6_frag)) { struct ovs_key_ipv6 ipv6_key; if (inet_pton(AF_INET6, ipv6_src_s, &ipv6_key.ipv6_src) != 1 || inet_pton(AF_INET6, ipv6_dst_s, &ipv6_key.ipv6_dst) != 1) { return -EINVAL; } ipv6_key.ipv6_label = htonl(ipv6_label); ipv6_key.ipv6_proto = ipv6_proto; ipv6_key.ipv6_tclass = ipv6_tclass; ipv6_key.ipv6_hlimit = ipv6_hlimit; ipv6_key.ipv6_frag = ipv6_frag; nl_msg_put_unspec(key, OVS_KEY_ATTR_IPV6, &ipv6_key, sizeof ipv6_key); return n; } } { int tcp_src; int tcp_dst; int n = -1; if (sscanf(s, "tcp(src=%i,dst=%i)%n",&tcp_src, &tcp_dst, &n) > 0 && n > 0) { struct ovs_key_tcp tcp_key; tcp_key.tcp_src = htons(tcp_src); tcp_key.tcp_dst = htons(tcp_dst); nl_msg_put_unspec(key, OVS_KEY_ATTR_TCP, &tcp_key, sizeof tcp_key); return n; } } { int udp_src; int udp_dst; int n = -1; if (sscanf(s, "udp(src=%i,dst=%i)%n", &udp_src, &udp_dst, &n) > 0 && n > 0) { struct ovs_key_udp udp_key; udp_key.udp_src = htons(udp_src); udp_key.udp_dst = htons(udp_dst); nl_msg_put_unspec(key, OVS_KEY_ATTR_UDP, &udp_key, sizeof udp_key); return n; } } { int icmp_type; int icmp_code; int n = -1; if (sscanf(s, "icmp(type=%i,code=%i)%n", &icmp_type, &icmp_code, &n) > 0 && n > 0) { struct ovs_key_icmp icmp_key; icmp_key.icmp_type = icmp_type; icmp_key.icmp_code = icmp_code; nl_msg_put_unspec(key, OVS_KEY_ATTR_ICMP, &icmp_key, sizeof icmp_key); return n; } } { struct ovs_key_icmpv6 icmpv6_key; int n = -1; if (sscanf(s, "icmpv6(type=%"SCNi8",code=%"SCNi8")%n", &icmpv6_key.icmpv6_type, &icmpv6_key.icmpv6_code,&n) > 0 && n > 0) { nl_msg_put_unspec(key, OVS_KEY_ATTR_ICMPV6, &icmpv6_key, sizeof icmpv6_key); return n; } } { ovs_be32 arp_sip; ovs_be32 arp_tip; int arp_op; uint8_t arp_sha[ETH_ADDR_LEN]; uint8_t arp_tha[ETH_ADDR_LEN]; int n = -1; if (sscanf(s, "arp(sip="IP_SCAN_FMT",tip="IP_SCAN_FMT"," "op=%i,sha="ETH_ADDR_SCAN_FMT",tha="ETH_ADDR_SCAN_FMT")%n", IP_SCAN_ARGS(&arp_sip), IP_SCAN_ARGS(&arp_tip), &arp_op, ETH_ADDR_SCAN_ARGS(arp_sha), ETH_ADDR_SCAN_ARGS(arp_tha), &n) > 0 && n > 0) { struct ovs_key_arp arp_key; memset(&arp_key, 0, sizeof arp_key); arp_key.arp_sip = arp_sip; arp_key.arp_tip = arp_tip; arp_key.arp_op = htons(arp_op); memcpy(arp_key.arp_sha, arp_sha, ETH_ADDR_LEN); memcpy(arp_key.arp_tha, arp_tha, ETH_ADDR_LEN); nl_msg_put_unspec(key, OVS_KEY_ATTR_ARP, &arp_key, sizeof arp_key); return n; } } { char nd_target_s[IPV6_SCAN_LEN + 1]; uint8_t nd_sll[ETH_ADDR_LEN]; uint8_t nd_tll[ETH_ADDR_LEN]; int n = -1; if (sscanf(s, "nd(target="IPV6_SCAN_FMT")%n", nd_target_s, &n) > 0 && n > 0) { return put_nd_key(n, nd_target_s, NULL, NULL, key); } if (sscanf(s, "nd(target="IPV6_SCAN_FMT",sll="ETH_ADDR_SCAN_FMT")%n", nd_target_s, ETH_ADDR_SCAN_ARGS(nd_sll), &n) > 0 && n > 0) { return put_nd_key(n, nd_target_s, nd_sll, NULL, key); } if (sscanf(s, "nd(target="IPV6_SCAN_FMT",tll="ETH_ADDR_SCAN_FMT")%n", nd_target_s, ETH_ADDR_SCAN_ARGS(nd_tll), &n) > 0 && n > 0) { return put_nd_key(n, nd_target_s, NULL, nd_tll, key); } if (sscanf(s, "nd(target="IPV6_SCAN_FMT",sll="ETH_ADDR_SCAN_FMT"," "tll="ETH_ADDR_SCAN_FMT")%n", nd_target_s, ETH_ADDR_SCAN_ARGS(nd_sll), ETH_ADDR_SCAN_ARGS(nd_tll), &n) > 0 && n > 0) { return put_nd_key(n, nd_target_s, nd_sll, nd_tll, key); } } if (!strncmp(s, "encap(", 6)) { const char *start = s; size_t encap; encap = nl_msg_start_nested(key, OVS_KEY_ATTR_ENCAP); s += 6; for (;;) { int retval; s += strspn(s, ", \t\r\n"); if (!*s) { return -EINVAL; } else if (*s == ')') { break; } retval = parse_odp_key_attr(s, port_names, key); if (retval < 0) { return retval; } s += retval; } s++; nl_msg_end_nested(key, encap); return s - start; } return -EINVAL; } /* Parses the string representation of a datapath flow key, in the * format output by odp_flow_key_format(). Returns 0 if successful, * otherwise a positive errno value. On success, the flow key is * appended to 'key' as a series of Netlink attributes. On failure, no * data is appended to 'key'. Either way, 'key''s data might be * reallocated. * * If 'port_names' is nonnull, it points to an simap that maps from a port name * to a port number. (Port names may be used instead of port numbers in * in_port.) * * On success, the attributes appended to 'key' are individually syntactically * valid, but they may not be valid as a sequence. 'key' might, for example, * have duplicated keys. odp_flow_key_to_flow() will detect those errors. */ int odp_flow_key_from_string(const char *s, const struct simap *port_names, struct ofpbuf *key) { const size_t old_size = key->size; for (;;) { int retval; s += strspn(s, delimiters); if (!*s) { return 0; } retval = parse_odp_key_attr(s, port_names, key); if (retval < 0) { key->size = old_size; return -retval; } s += retval; } return 0; } static uint8_t ovs_to_odp_frag(uint8_t nw_frag) { return (nw_frag == 0 ? OVS_FRAG_TYPE_NONE : nw_frag == FLOW_NW_FRAG_ANY ? OVS_FRAG_TYPE_FIRST : OVS_FRAG_TYPE_LATER); } /* Appends a representation of 'flow' as OVS_KEY_ATTR_* attributes to 'buf'. * 'flow->in_port' is ignored (since it is likely to be an OpenFlow port * number rather than a datapath port number). Instead, if 'odp_in_port' * is anything other than OVSP_NONE, it is included in 'buf' as the input * port. * * 'buf' must have at least ODPUTIL_FLOW_KEY_BYTES bytes of space, or be * capable of being expanded to allow for that much space. */ void odp_flow_key_from_flow(struct ofpbuf *buf, const struct flow *flow, uint32_t odp_in_port) { struct ovs_key_ethernet *eth_key; size_t encap; if (flow->skb_priority) { nl_msg_put_u32(buf, OVS_KEY_ATTR_PRIORITY, flow->skb_priority); } if (flow->tunnel.ip_dst) { tun_key_to_attr(buf, &flow->tunnel); } if (flow->skb_mark) { nl_msg_put_u32(buf, OVS_KEY_ATTR_SKB_MARK, flow->skb_mark); } if (odp_in_port != OVSP_NONE) { nl_msg_put_u32(buf, OVS_KEY_ATTR_IN_PORT, odp_in_port); } eth_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_ETHERNET, sizeof *eth_key); memcpy(eth_key->eth_src, flow->dl_src, ETH_ADDR_LEN); memcpy(eth_key->eth_dst, flow->dl_dst, ETH_ADDR_LEN); if (flow->vlan_tci != htons(0) || flow->dl_type == htons(ETH_TYPE_VLAN)) { nl_msg_put_be16(buf, OVS_KEY_ATTR_ETHERTYPE, htons(ETH_TYPE_VLAN)); nl_msg_put_be16(buf, OVS_KEY_ATTR_VLAN, flow->vlan_tci); encap = nl_msg_start_nested(buf, OVS_KEY_ATTR_ENCAP); if (flow->vlan_tci == htons(0)) { goto unencap; } } else { encap = 0; } if (ntohs(flow->dl_type) < ETH_TYPE_MIN) { goto unencap; } nl_msg_put_be16(buf, OVS_KEY_ATTR_ETHERTYPE, flow->dl_type); if (flow->dl_type == htons(ETH_TYPE_IP)) { struct ovs_key_ipv4 *ipv4_key; ipv4_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_IPV4, sizeof *ipv4_key); ipv4_key->ipv4_src = flow->nw_src; ipv4_key->ipv4_dst = flow->nw_dst; ipv4_key->ipv4_proto = flow->nw_proto; ipv4_key->ipv4_tos = flow->nw_tos; ipv4_key->ipv4_ttl = flow->nw_ttl; ipv4_key->ipv4_frag = ovs_to_odp_frag(flow->nw_frag); } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) { struct ovs_key_ipv6 *ipv6_key; ipv6_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_IPV6, sizeof *ipv6_key); memcpy(ipv6_key->ipv6_src, &flow->ipv6_src, sizeof ipv6_key->ipv6_src); memcpy(ipv6_key->ipv6_dst, &flow->ipv6_dst, sizeof ipv6_key->ipv6_dst); ipv6_key->ipv6_label = flow->ipv6_label; ipv6_key->ipv6_proto = flow->nw_proto; ipv6_key->ipv6_tclass = flow->nw_tos; ipv6_key->ipv6_hlimit = flow->nw_ttl; ipv6_key->ipv6_frag = ovs_to_odp_frag(flow->nw_frag); } else if (flow->dl_type == htons(ETH_TYPE_ARP) || flow->dl_type == htons(ETH_TYPE_RARP)) { struct ovs_key_arp *arp_key; arp_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_ARP, sizeof *arp_key); memset(arp_key, 0, sizeof *arp_key); arp_key->arp_sip = flow->nw_src; arp_key->arp_tip = flow->nw_dst; arp_key->arp_op = htons(flow->nw_proto); memcpy(arp_key->arp_sha, flow->arp_sha, ETH_ADDR_LEN); memcpy(arp_key->arp_tha, flow->arp_tha, ETH_ADDR_LEN); } if (flow->mpls_depth) { struct ovs_key_mpls *mpls_key; mpls_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_MPLS, sizeof *mpls_key); mpls_key->mpls_top_lse = flow->mpls_lse; } if (is_ip_any(flow) && !(flow->nw_frag & FLOW_NW_FRAG_LATER)) { if (flow->nw_proto == IPPROTO_TCP) { struct ovs_key_tcp *tcp_key; tcp_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_TCP, sizeof *tcp_key); tcp_key->tcp_src = flow->tp_src; tcp_key->tcp_dst = flow->tp_dst; } else if (flow->nw_proto == IPPROTO_UDP) { struct ovs_key_udp *udp_key; udp_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_UDP, sizeof *udp_key); udp_key->udp_src = flow->tp_src; udp_key->udp_dst = flow->tp_dst; } else if (flow->dl_type == htons(ETH_TYPE_IP) && flow->nw_proto == IPPROTO_ICMP) { struct ovs_key_icmp *icmp_key; icmp_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_ICMP, sizeof *icmp_key); icmp_key->icmp_type = ntohs(flow->tp_src); icmp_key->icmp_code = ntohs(flow->tp_dst); } else if (flow->dl_type == htons(ETH_TYPE_IPV6) && flow->nw_proto == IPPROTO_ICMPV6) { struct ovs_key_icmpv6 *icmpv6_key; icmpv6_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_ICMPV6, sizeof *icmpv6_key); icmpv6_key->icmpv6_type = ntohs(flow->tp_src); icmpv6_key->icmpv6_code = ntohs(flow->tp_dst); if (icmpv6_key->icmpv6_type == ND_NEIGHBOR_SOLICIT || icmpv6_key->icmpv6_type == ND_NEIGHBOR_ADVERT) { struct ovs_key_nd *nd_key; nd_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_ND, sizeof *nd_key); memcpy(nd_key->nd_target, &flow->nd_target, sizeof nd_key->nd_target); memcpy(nd_key->nd_sll, flow->arp_sha, ETH_ADDR_LEN); memcpy(nd_key->nd_tll, flow->arp_tha, ETH_ADDR_LEN); } } } unencap: if (encap) { nl_msg_end_nested(buf, encap); } } uint32_t odp_flow_key_hash(const struct nlattr *key, size_t key_len) { BUILD_ASSERT_DECL(!(NLA_ALIGNTO % sizeof(uint32_t))); return hash_words((const uint32_t *) key, key_len / sizeof(uint32_t), 0); } static void log_odp_key_attributes(struct vlog_rate_limit *rl, const char *title, uint64_t attrs, int out_of_range_attr, const struct nlattr *key, size_t key_len) { struct ds s; int i; if (VLOG_DROP_DBG(rl)) { return; } ds_init(&s); for (i = 0; i < 64; i++) { if (attrs & (UINT64_C(1) << i)) { ds_put_format(&s, " %s", ovs_key_attr_to_string(i)); } } if (out_of_range_attr) { ds_put_format(&s, " %d (and possibly others)", out_of_range_attr); } ds_put_cstr(&s, ": "); odp_flow_key_format(key, key_len, &s); VLOG_DBG("%s:%s", title, ds_cstr(&s)); ds_destroy(&s); } static bool odp_to_ovs_frag(uint8_t odp_frag, struct flow *flow) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); if (odp_frag > OVS_FRAG_TYPE_LATER) { VLOG_ERR_RL(&rl, "invalid frag %"PRIu8" in flow key", odp_frag); return false; } if (odp_frag != OVS_FRAG_TYPE_NONE) { flow->nw_frag |= FLOW_NW_FRAG_ANY; if (odp_frag == OVS_FRAG_TYPE_LATER) { flow->nw_frag |= FLOW_NW_FRAG_LATER; } } return true; } static bool parse_flow_nlattrs(const struct nlattr *key, size_t key_len, const struct nlattr *attrs[], uint64_t *present_attrsp, int *out_of_range_attrp) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(10, 10); const struct nlattr *nla; uint64_t present_attrs; size_t left; BUILD_ASSERT(OVS_KEY_ATTR_MAX < CHAR_BIT * sizeof present_attrs); present_attrs = 0; *out_of_range_attrp = 0; NL_ATTR_FOR_EACH (nla, left, key, key_len) { uint16_t type = nl_attr_type(nla); size_t len = nl_attr_get_size(nla); int expected_len = odp_flow_key_attr_len(type); if (len != expected_len && expected_len >= 0) { VLOG_ERR_RL(&rl, "attribute %s has length %zu but should have " "length %d", ovs_key_attr_to_string(type), len, expected_len); return false; } if (type > OVS_KEY_ATTR_MAX) { *out_of_range_attrp = type; } else { if (present_attrs & (UINT64_C(1) << type)) { VLOG_ERR_RL(&rl, "duplicate %s attribute in flow key", ovs_key_attr_to_string(type)); return false; } present_attrs |= UINT64_C(1) << type; attrs[type] = nla; } } if (left) { VLOG_ERR_RL(&rl, "trailing garbage in flow key"); return false; } *present_attrsp = present_attrs; return true; } static enum odp_key_fitness check_expectations(uint64_t present_attrs, int out_of_range_attr, uint64_t expected_attrs, const struct nlattr *key, size_t key_len) { uint64_t missing_attrs; uint64_t extra_attrs; missing_attrs = expected_attrs & ~present_attrs; if (missing_attrs) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(10, 10); log_odp_key_attributes(&rl, "expected but not present", missing_attrs, 0, key, key_len); return ODP_FIT_TOO_LITTLE; } extra_attrs = present_attrs & ~expected_attrs; if (extra_attrs || out_of_range_attr) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(10, 10); log_odp_key_attributes(&rl, "present but not expected", extra_attrs, out_of_range_attr, key, key_len); return ODP_FIT_TOO_MUCH; } return ODP_FIT_PERFECT; } static bool parse_ethertype(const struct nlattr *attrs[OVS_KEY_ATTR_MAX + 1], uint64_t present_attrs, uint64_t *expected_attrs, struct flow *flow) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_ETHERTYPE)) { flow->dl_type = nl_attr_get_be16(attrs[OVS_KEY_ATTR_ETHERTYPE]); if (ntohs(flow->dl_type) < 1536) { VLOG_ERR_RL(&rl, "invalid Ethertype %"PRIu16" in flow key", ntohs(flow->dl_type)); return false; } *expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_ETHERTYPE; } else { flow->dl_type = htons(FLOW_DL_TYPE_NONE); } return true; } static enum odp_key_fitness parse_l2_5_onward(const struct nlattr *attrs[OVS_KEY_ATTR_MAX + 1], uint64_t present_attrs, int out_of_range_attr, uint64_t expected_attrs, struct flow *flow, const struct nlattr *key, size_t key_len) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); if (eth_type_mpls(flow->dl_type)) { expected_attrs |= (UINT64_C(1) << OVS_KEY_ATTR_MPLS); if (!(present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_MPLS))) { return ODP_FIT_TOO_LITTLE; } flow->mpls_lse = nl_attr_get_be32(attrs[OVS_KEY_ATTR_MPLS]); flow->mpls_depth++; } else if (flow->dl_type == htons(ETH_TYPE_IP)) { expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_IPV4; if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_IPV4)) { const struct ovs_key_ipv4 *ipv4_key; ipv4_key = nl_attr_get(attrs[OVS_KEY_ATTR_IPV4]); flow->nw_src = ipv4_key->ipv4_src; flow->nw_dst = ipv4_key->ipv4_dst; flow->nw_proto = ipv4_key->ipv4_proto; flow->nw_tos = ipv4_key->ipv4_tos; flow->nw_ttl = ipv4_key->ipv4_ttl; if (!odp_to_ovs_frag(ipv4_key->ipv4_frag, flow)) { return ODP_FIT_ERROR; } } } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) { expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_IPV6; if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_IPV6)) { const struct ovs_key_ipv6 *ipv6_key; ipv6_key = nl_attr_get(attrs[OVS_KEY_ATTR_IPV6]); memcpy(&flow->ipv6_src, ipv6_key->ipv6_src, sizeof flow->ipv6_src); memcpy(&flow->ipv6_dst, ipv6_key->ipv6_dst, sizeof flow->ipv6_dst); flow->ipv6_label = ipv6_key->ipv6_label; flow->nw_proto = ipv6_key->ipv6_proto; flow->nw_tos = ipv6_key->ipv6_tclass; flow->nw_ttl = ipv6_key->ipv6_hlimit; if (!odp_to_ovs_frag(ipv6_key->ipv6_frag, flow)) { return ODP_FIT_ERROR; } } } else if (flow->dl_type == htons(ETH_TYPE_ARP) || flow->dl_type == htons(ETH_TYPE_RARP)) { expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_ARP; if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_ARP)) { const struct ovs_key_arp *arp_key; arp_key = nl_attr_get(attrs[OVS_KEY_ATTR_ARP]); flow->nw_src = arp_key->arp_sip; flow->nw_dst = arp_key->arp_tip; if (arp_key->arp_op & htons(0xff00)) { VLOG_ERR_RL(&rl, "unsupported ARP opcode %"PRIu16" in flow " "key", ntohs(arp_key->arp_op)); return ODP_FIT_ERROR; } flow->nw_proto = ntohs(arp_key->arp_op); memcpy(flow->arp_sha, arp_key->arp_sha, ETH_ADDR_LEN); memcpy(flow->arp_tha, arp_key->arp_tha, ETH_ADDR_LEN); } } if (flow->nw_proto == IPPROTO_TCP && (flow->dl_type == htons(ETH_TYPE_IP) || flow->dl_type == htons(ETH_TYPE_IPV6)) && !(flow->nw_frag & FLOW_NW_FRAG_LATER)) { expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_TCP; if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_TCP)) { const struct ovs_key_tcp *tcp_key; tcp_key = nl_attr_get(attrs[OVS_KEY_ATTR_TCP]); flow->tp_src = tcp_key->tcp_src; flow->tp_dst = tcp_key->tcp_dst; } } else if (flow->nw_proto == IPPROTO_UDP && (flow->dl_type == htons(ETH_TYPE_IP) || flow->dl_type == htons(ETH_TYPE_IPV6)) && !(flow->nw_frag & FLOW_NW_FRAG_LATER)) { expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_UDP; if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_UDP)) { const struct ovs_key_udp *udp_key; udp_key = nl_attr_get(attrs[OVS_KEY_ATTR_UDP]); flow->tp_src = udp_key->udp_src; flow->tp_dst = udp_key->udp_dst; } } else if (flow->nw_proto == IPPROTO_ICMP && flow->dl_type == htons(ETH_TYPE_IP) && !(flow->nw_frag & FLOW_NW_FRAG_LATER)) { expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_ICMP; if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_ICMP)) { const struct ovs_key_icmp *icmp_key; icmp_key = nl_attr_get(attrs[OVS_KEY_ATTR_ICMP]); flow->tp_src = htons(icmp_key->icmp_type); flow->tp_dst = htons(icmp_key->icmp_code); } } else if (flow->nw_proto == IPPROTO_ICMPV6 && flow->dl_type == htons(ETH_TYPE_IPV6) && !(flow->nw_frag & FLOW_NW_FRAG_LATER)) { expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_ICMPV6; if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_ICMPV6)) { const struct ovs_key_icmpv6 *icmpv6_key; icmpv6_key = nl_attr_get(attrs[OVS_KEY_ATTR_ICMPV6]); flow->tp_src = htons(icmpv6_key->icmpv6_type); flow->tp_dst = htons(icmpv6_key->icmpv6_code); if (flow->tp_src == htons(ND_NEIGHBOR_SOLICIT) || flow->tp_src == htons(ND_NEIGHBOR_ADVERT)) { expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_ND; if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_ND)) { const struct ovs_key_nd *nd_key; nd_key = nl_attr_get(attrs[OVS_KEY_ATTR_ND]); memcpy(&flow->nd_target, nd_key->nd_target, sizeof flow->nd_target); memcpy(flow->arp_sha, nd_key->nd_sll, ETH_ADDR_LEN); memcpy(flow->arp_tha, nd_key->nd_tll, ETH_ADDR_LEN); } } } } return check_expectations(present_attrs, out_of_range_attr, expected_attrs, key, key_len); } /* Parse 802.1Q header then encapsulated L3 attributes. */ static enum odp_key_fitness parse_8021q_onward(const struct nlattr *attrs[OVS_KEY_ATTR_MAX + 1], uint64_t present_attrs, int out_of_range_attr, uint64_t expected_attrs, struct flow *flow, const struct nlattr *key, size_t key_len) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); const struct nlattr *encap = (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_ENCAP) ? attrs[OVS_KEY_ATTR_ENCAP] : NULL); enum odp_key_fitness encap_fitness; enum odp_key_fitness fitness; ovs_be16 tci; /* Calulate fitness of outer attributes. */ expected_attrs |= ((UINT64_C(1) << OVS_KEY_ATTR_VLAN) | (UINT64_C(1) << OVS_KEY_ATTR_ENCAP)); fitness = check_expectations(present_attrs, out_of_range_attr, expected_attrs, key, key_len); /* Get the VLAN TCI value. */ if (!(present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_VLAN))) { return ODP_FIT_TOO_LITTLE; } tci = nl_attr_get_be16(attrs[OVS_KEY_ATTR_VLAN]); if (tci == htons(0)) { /* Corner case for a truncated 802.1Q header. */ if (fitness == ODP_FIT_PERFECT && nl_attr_get_size(encap)) { return ODP_FIT_TOO_MUCH; } return fitness; } else if (!(tci & htons(VLAN_CFI))) { VLOG_ERR_RL(&rl, "OVS_KEY_ATTR_VLAN 0x%04"PRIx16" is nonzero " "but CFI bit is not set", ntohs(tci)); return ODP_FIT_ERROR; } /* Set vlan_tci. * Remove the TPID from dl_type since it's not the real Ethertype. */ flow->vlan_tci = tci; flow->dl_type = htons(0); /* Now parse the encapsulated attributes. */ if (!parse_flow_nlattrs(nl_attr_get(encap), nl_attr_get_size(encap), attrs, &present_attrs, &out_of_range_attr)) { return ODP_FIT_ERROR; } expected_attrs = 0; if (!parse_ethertype(attrs, present_attrs, &expected_attrs, flow)) { return ODP_FIT_ERROR; } encap_fitness = parse_l2_5_onward(attrs, present_attrs, out_of_range_attr, expected_attrs, flow, key, key_len); /* The overall fitness is the worse of the outer and inner attributes. */ return MAX(fitness, encap_fitness); } /* Converts the 'key_len' bytes of OVS_KEY_ATTR_* attributes in 'key' to a flow * structure in 'flow'. Returns an ODP_FIT_* value that indicates how well * 'key' fits our expectations for what a flow key should contain. * * The 'in_port' will be the datapath's understanding of the port. The * caller will need to translate with odp_port_to_ofp_port() if the * OpenFlow port is needed. * * This function doesn't take the packet itself as an argument because none of * the currently understood OVS_KEY_ATTR_* attributes require it. Currently, * it is always possible to infer which additional attribute(s) should appear * by looking at the attributes for lower-level protocols, e.g. if the network * protocol in OVS_KEY_ATTR_IPV4 or OVS_KEY_ATTR_IPV6 is IPPROTO_TCP then we * know that a OVS_KEY_ATTR_TCP attribute must appear and that otherwise it * must be absent. */ enum odp_key_fitness odp_flow_key_to_flow(const struct nlattr *key, size_t key_len, struct flow *flow) { const struct nlattr *attrs[OVS_KEY_ATTR_MAX + 1]; uint64_t expected_attrs; uint64_t present_attrs; int out_of_range_attr; memset(flow, 0, sizeof *flow); /* Parse attributes. */ if (!parse_flow_nlattrs(key, key_len, attrs, &present_attrs, &out_of_range_attr)) { return ODP_FIT_ERROR; } expected_attrs = 0; /* Metadata. */ if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_PRIORITY)) { flow->skb_priority = nl_attr_get_u32(attrs[OVS_KEY_ATTR_PRIORITY]); expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_PRIORITY; } if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_SKB_MARK)) { flow->skb_mark = nl_attr_get_u32(attrs[OVS_KEY_ATTR_SKB_MARK]); expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_SKB_MARK; } if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_TUNNEL)) { enum odp_key_fitness res; res = tun_key_from_attr(attrs[OVS_KEY_ATTR_TUNNEL], &flow->tunnel); if (res == ODP_FIT_ERROR) { return ODP_FIT_ERROR; } else if (res == ODP_FIT_PERFECT) { expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_TUNNEL; } } if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_IN_PORT)) { flow->in_port = nl_attr_get_u32(attrs[OVS_KEY_ATTR_IN_PORT]); expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_IN_PORT; } else { flow->in_port = OVSP_NONE; } /* Ethernet header. */ if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_ETHERNET)) { const struct ovs_key_ethernet *eth_key; eth_key = nl_attr_get(attrs[OVS_KEY_ATTR_ETHERNET]); memcpy(flow->dl_src, eth_key->eth_src, ETH_ADDR_LEN); memcpy(flow->dl_dst, eth_key->eth_dst, ETH_ADDR_LEN); } expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_ETHERNET; /* Get Ethertype or 802.1Q TPID or FLOW_DL_TYPE_NONE. */ if (!parse_ethertype(attrs, present_attrs, &expected_attrs, flow)) { return ODP_FIT_ERROR; } if (flow->dl_type == htons(ETH_TYPE_VLAN)) { return parse_8021q_onward(attrs, present_attrs, out_of_range_attr, expected_attrs, flow, key, key_len); } return parse_l2_5_onward(attrs, present_attrs, out_of_range_attr, expected_attrs, flow, key, key_len); } /* Returns 'fitness' as a string, for use in debug messages. */ const char * odp_key_fitness_to_string(enum odp_key_fitness fitness) { switch (fitness) { case ODP_FIT_PERFECT: return "OK"; case ODP_FIT_TOO_MUCH: return "too_much"; case ODP_FIT_TOO_LITTLE: return "too_little"; case ODP_FIT_ERROR: return "error"; default: return ""; } } /* Appends an OVS_ACTION_ATTR_USERSPACE action to 'odp_actions' that specifies * Netlink PID 'pid'. If 'userdata' is nonnull, adds a userdata attribute * whose contents are the 'userdata_size' bytes at 'userdata' and returns the * offset within 'odp_actions' of the start of the cookie. (If 'userdata' is * null, then the return value is not meaningful.) */ size_t odp_put_userspace_action(uint32_t pid, const void *userdata, size_t userdata_size, struct ofpbuf *odp_actions) { size_t userdata_ofs; size_t offset; offset = nl_msg_start_nested(odp_actions, OVS_ACTION_ATTR_USERSPACE); nl_msg_put_u32(odp_actions, OVS_USERSPACE_ATTR_PID, pid); if (userdata) { userdata_ofs = odp_actions->size + NLA_HDRLEN; nl_msg_put_unspec(odp_actions, OVS_USERSPACE_ATTR_USERDATA, userdata, userdata_size); } else { userdata_ofs = 0; } nl_msg_end_nested(odp_actions, offset); return userdata_ofs; } void odp_put_tunnel_action(const struct flow_tnl *tunnel, struct ofpbuf *odp_actions) { size_t offset = nl_msg_start_nested(odp_actions, OVS_ACTION_ATTR_SET); tun_key_to_attr(odp_actions, tunnel); nl_msg_end_nested(odp_actions, offset); } /* The commit_odp_actions() function and its helpers. */ static void commit_set_action(struct ofpbuf *odp_actions, enum ovs_key_attr key_type, const void *key, size_t key_size) { size_t offset = nl_msg_start_nested(odp_actions, OVS_ACTION_ATTR_SET); nl_msg_put_unspec(odp_actions, key_type, key, key_size); nl_msg_end_nested(odp_actions, offset); } void odp_put_skb_mark_action(const uint32_t skb_mark, struct ofpbuf *odp_actions) { commit_set_action(odp_actions, OVS_KEY_ATTR_SKB_MARK, &skb_mark, sizeof(skb_mark)); } /* If any of the flow key data that ODP actions can modify are different in * 'base->tunnel' and 'flow->tunnel', appends a set_tunnel ODP action to * 'odp_actions' that change the flow tunneling information in key from * 'base->tunnel' into 'flow->tunnel', and then changes 'base->tunnel' in the * same way. In other words, operates the same as commit_odp_actions(), but * only on tunneling information. */ void commit_odp_tunnel_action(const struct flow *flow, struct flow *base, struct ofpbuf *odp_actions) { if (!memcmp(&base->tunnel, &flow->tunnel, sizeof base->tunnel)) { return; } memcpy(&base->tunnel, &flow->tunnel, sizeof base->tunnel); /* A valid IPV4_TUNNEL must have non-zero ip_dst. */ if (flow->tunnel.ip_dst) { odp_put_tunnel_action(&base->tunnel, odp_actions); } } static void commit_set_ether_addr_action(const struct flow *flow, struct flow *base, struct ofpbuf *odp_actions) { struct ovs_key_ethernet eth_key; if (eth_addr_equals(base->dl_src, flow->dl_src) && eth_addr_equals(base->dl_dst, flow->dl_dst)) { return; } memcpy(base->dl_src, flow->dl_src, ETH_ADDR_LEN); memcpy(base->dl_dst, flow->dl_dst, ETH_ADDR_LEN); memcpy(eth_key.eth_src, base->dl_src, ETH_ADDR_LEN); memcpy(eth_key.eth_dst, base->dl_dst, ETH_ADDR_LEN); commit_set_action(odp_actions, OVS_KEY_ATTR_ETHERNET, ð_key, sizeof(eth_key)); } static void commit_vlan_action(const struct flow *flow, struct flow *base, struct ofpbuf *odp_actions) { if (base->vlan_tci == flow->vlan_tci) { return; } if (base->vlan_tci & htons(VLAN_CFI)) { nl_msg_put_flag(odp_actions, OVS_ACTION_ATTR_POP_VLAN); } if (flow->vlan_tci & htons(VLAN_CFI)) { struct ovs_action_push_vlan vlan; vlan.vlan_tpid = htons(ETH_TYPE_VLAN); vlan.vlan_tci = flow->vlan_tci; nl_msg_put_unspec(odp_actions, OVS_ACTION_ATTR_PUSH_VLAN, &vlan, sizeof vlan); } base->vlan_tci = flow->vlan_tci; } static void commit_mpls_action(const struct flow *flow, struct flow *base, struct ofpbuf *odp_actions) { if (flow->mpls_lse == base->mpls_lse && flow->mpls_depth == base->mpls_depth) { return; } if (flow->mpls_depth < base->mpls_depth) { if (base->mpls_depth - flow->mpls_depth > 1) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(10, 10); VLOG_WARN_RL(&rl, "Multiple mpls_pop actions reduced to " " a single mpls_pop action"); } nl_msg_put_be16(odp_actions, OVS_ACTION_ATTR_POP_MPLS, flow->dl_type); } else if (flow->mpls_depth > base->mpls_depth) { struct ovs_action_push_mpls *mpls; if (flow->mpls_depth - base->mpls_depth > 1) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(10, 10); VLOG_WARN_RL(&rl, "Multiple mpls_push actions reduced to " " a single mpls_push action"); } mpls = nl_msg_put_unspec_uninit(odp_actions, OVS_ACTION_ATTR_PUSH_MPLS, sizeof *mpls); memset(mpls, 0, sizeof *mpls); mpls->mpls_ethertype = flow->dl_type; mpls->mpls_lse = flow->mpls_lse; } else { struct ovs_key_mpls mpls_key; mpls_key.mpls_top_lse = flow->mpls_lse; commit_set_action(odp_actions, OVS_KEY_ATTR_MPLS, &mpls_key, sizeof(mpls_key)); } base->dl_type = flow->dl_type; base->mpls_lse = flow->mpls_lse; base->mpls_depth = flow->mpls_depth; } static void commit_set_ipv4_action(const struct flow *flow, struct flow *base, struct ofpbuf *odp_actions) { struct ovs_key_ipv4 ipv4_key; if (base->nw_src == flow->nw_src && base->nw_dst == flow->nw_dst && base->nw_tos == flow->nw_tos && base->nw_ttl == flow->nw_ttl && base->nw_frag == flow->nw_frag) { return; } ipv4_key.ipv4_src = base->nw_src = flow->nw_src; ipv4_key.ipv4_dst = base->nw_dst = flow->nw_dst; ipv4_key.ipv4_tos = base->nw_tos = flow->nw_tos; ipv4_key.ipv4_ttl = base->nw_ttl = flow->nw_ttl; ipv4_key.ipv4_proto = base->nw_proto; ipv4_key.ipv4_frag = ovs_to_odp_frag(base->nw_frag); commit_set_action(odp_actions, OVS_KEY_ATTR_IPV4, &ipv4_key, sizeof(ipv4_key)); } static void commit_set_ipv6_action(const struct flow *flow, struct flow *base, struct ofpbuf *odp_actions) { struct ovs_key_ipv6 ipv6_key; if (ipv6_addr_equals(&base->ipv6_src, &flow->ipv6_src) && ipv6_addr_equals(&base->ipv6_dst, &flow->ipv6_dst) && base->ipv6_label == flow->ipv6_label && base->nw_tos == flow->nw_tos && base->nw_ttl == flow->nw_ttl && base->nw_frag == flow->nw_frag) { return; } base->ipv6_src = flow->ipv6_src; memcpy(&ipv6_key.ipv6_src, &base->ipv6_src, sizeof(ipv6_key.ipv6_src)); base->ipv6_dst = flow->ipv6_dst; memcpy(&ipv6_key.ipv6_dst, &base->ipv6_dst, sizeof(ipv6_key.ipv6_dst)); ipv6_key.ipv6_label = base->ipv6_label = flow->ipv6_label; ipv6_key.ipv6_tclass = base->nw_tos = flow->nw_tos; ipv6_key.ipv6_hlimit = base->nw_ttl = flow->nw_ttl; ipv6_key.ipv6_proto = base->nw_proto; ipv6_key.ipv6_frag = ovs_to_odp_frag(base->nw_frag); commit_set_action(odp_actions, OVS_KEY_ATTR_IPV6, &ipv6_key, sizeof(ipv6_key)); } static void commit_set_nw_action(const struct flow *flow, struct flow *base, struct ofpbuf *odp_actions) { /* Check if flow really have an IP header. */ if (!flow->nw_proto) { return; } if (base->dl_type == htons(ETH_TYPE_IP)) { commit_set_ipv4_action(flow, base, odp_actions); } else if (base->dl_type == htons(ETH_TYPE_IPV6)) { commit_set_ipv6_action(flow, base, odp_actions); } } static void commit_set_port_action(const struct flow *flow, struct flow *base, struct ofpbuf *odp_actions) { if (!is_ip_any(base) || (!base->tp_src && !base->tp_dst)) { return; } if (base->tp_src == flow->tp_src && base->tp_dst == flow->tp_dst) { return; } if (flow->nw_proto == IPPROTO_TCP) { struct ovs_key_tcp port_key; port_key.tcp_src = base->tp_src = flow->tp_src; port_key.tcp_dst = base->tp_dst = flow->tp_dst; commit_set_action(odp_actions, OVS_KEY_ATTR_TCP, &port_key, sizeof(port_key)); } else if (flow->nw_proto == IPPROTO_UDP) { struct ovs_key_udp port_key; port_key.udp_src = base->tp_src = flow->tp_src; port_key.udp_dst = base->tp_dst = flow->tp_dst; commit_set_action(odp_actions, OVS_KEY_ATTR_UDP, &port_key, sizeof(port_key)); } } static void commit_set_priority_action(const struct flow *flow, struct flow *base, struct ofpbuf *odp_actions) { if (base->skb_priority == flow->skb_priority) { return; } base->skb_priority = flow->skb_priority; commit_set_action(odp_actions, OVS_KEY_ATTR_PRIORITY, &base->skb_priority, sizeof(base->skb_priority)); } static void commit_set_skb_mark_action(const struct flow *flow, struct flow *base, struct ofpbuf *odp_actions) { if (base->skb_mark == flow->skb_mark) { return; } base->skb_mark = flow->skb_mark; odp_put_skb_mark_action(base->skb_mark, odp_actions); } /* If any of the flow key data that ODP actions can modify are different in * 'base' and 'flow', appends ODP actions to 'odp_actions' that change the flow * key from 'base' into 'flow', and then changes 'base' the same way. Does not * commit set_tunnel actions. Users should call commit_odp_tunnel_action() * in addition to this function if needed. */ void commit_odp_actions(const struct flow *flow, struct flow *base, struct ofpbuf *odp_actions) { commit_set_ether_addr_action(flow, base, odp_actions); commit_vlan_action(flow, base, odp_actions); commit_set_nw_action(flow, base, odp_actions); commit_set_port_action(flow, base, odp_actions); /* Commiting MPLS actions should occur after committing nw and port * actions. This is because committing MPLS actions may alter a packet so * that it is no longer IP and thus nw and port actions are no longer valid. */ commit_mpls_action(flow, base, odp_actions); commit_set_priority_action(flow, base, odp_actions); commit_set_skb_mark_action(flow, base, odp_actions); }