/* * Copyright (c) 2008, 2009, 2010, 2011, 2012, 2013 Nicira, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "timeval.h" #include #include #include #include #include #include #include #include #include "coverage.h" #include "dummy.h" #include "dynamic-string.h" #include "fatal-signal.h" #include "hash.h" #include "hmap.h" #include "signals.h" #include "unixctl.h" #include "util.h" #include "vlog.h" /* backtrace() from is really useful, but it is not signal safe * everywhere, such as on x86-64. */ #if HAVE_BACKTRACE && !defined __x86_64__ # define USE_BACKTRACE 1 # include #else # define USE_BACKTRACE 0 #endif VLOG_DEFINE_THIS_MODULE(timeval); /* The clock to use for measuring time intervals. This is CLOCK_MONOTONIC by * preference, but on systems that don't have a monotonic clock we fall back * to CLOCK_REALTIME. */ static clockid_t monotonic_clock; /* Has a timer tick occurred? Only relevant if CACHE_TIME is true. * * We initialize these to true to force time_init() to get called on the first * call to time_msec() or another function that queries the current time. */ static volatile sig_atomic_t wall_tick = true; static volatile sig_atomic_t monotonic_tick = true; /* The current time, as of the last refresh. */ static struct timespec wall_time; static struct timespec monotonic_time; /* The monotonic time at which the time module was initialized. */ static long long int boot_time; /* features for use by unit tests. */ static struct timespec warp_offset; /* Offset added to monotonic_time. */ static bool time_stopped; /* Disables real-time updates, if true. */ /* Time in milliseconds at which to die with SIGALRM (if not LLONG_MAX). */ static long long int deadline = LLONG_MAX; struct trace { void *backtrace[32]; /* Populated by backtrace(). */ size_t n_frames; /* Number of frames in 'backtrace'. */ /* format_backtraces() helper data. */ struct hmap_node node; size_t count; }; #define MAX_TRACES 50 static struct trace traces[MAX_TRACES]; static size_t trace_head = 0; static void set_up_timer(void); static void set_up_signal(int flags); static void sigalrm_handler(int); static void refresh_wall_if_ticked(void); static void refresh_monotonic_if_ticked(void); static void block_sigalrm(sigset_t *); static void unblock_sigalrm(const sigset_t *); static void log_poll_interval(long long int last_wakeup); static struct rusage *get_recent_rusage(void); static void refresh_rusage(void); static void timespec_add(struct timespec *sum, const struct timespec *a, const struct timespec *b); static unixctl_cb_func backtrace_cb; #if !USE_BACKTRACE static int backtrace(void **buffer OVS_UNUSED, int size OVS_UNUSED) { NOT_REACHED(); } static char ** backtrace_symbols(void *const *buffer OVS_UNUSED, int size OVS_UNUSED) { NOT_REACHED(); } #endif /* !USE_BACKTRACE */ /* Initializes the timetracking module, if not already initialized. */ static void time_init(void) { static bool inited; if (inited) { return; } inited = true; /* The implementation of backtrace() in glibc does some one time * initialization which is not signal safe. This can cause deadlocks if * run from the signal handler. As a workaround, force the initialization * to happen here. */ if (USE_BACKTRACE) { void *bt[1]; backtrace(bt, ARRAY_SIZE(bt)); } memset(traces, 0, sizeof traces); if (USE_BACKTRACE && CACHE_TIME) { unixctl_command_register("backtrace", "", 0, 0, backtrace_cb, NULL); } coverage_init(); if (!clock_gettime(CLOCK_MONOTONIC, &monotonic_time)) { monotonic_clock = CLOCK_MONOTONIC; } else { monotonic_clock = CLOCK_REALTIME; VLOG_DBG("monotonic timer not available"); } set_up_signal(SA_RESTART); set_up_timer(); boot_time = time_msec(); } static void set_up_signal(int flags) { struct sigaction sa; memset(&sa, 0, sizeof sa); sa.sa_handler = sigalrm_handler; sigemptyset(&sa.sa_mask); sa.sa_flags = flags; xsigaction(SIGALRM, &sa, NULL); } static void set_up_timer(void) { static timer_t timer_id; /* "static" to avoid apparent memory leak. */ struct itimerspec itimer; if (!CACHE_TIME) { return; } if (timer_create(monotonic_clock, NULL, &timer_id)) { VLOG_FATAL("timer_create failed (%s)", strerror(errno)); } itimer.it_interval.tv_sec = 0; itimer.it_interval.tv_nsec = TIME_UPDATE_INTERVAL * 1000 * 1000; itimer.it_value = itimer.it_interval; if (timer_settime(timer_id, 0, &itimer, NULL)) { VLOG_FATAL("timer_settime failed (%s)", strerror(errno)); } } /* Set up the interval timer, to ensure that time advances even without calling * time_refresh(). * * A child created with fork() does not inherit the parent's interval timer, so * this function needs to be called from the child after fork(). */ void time_postfork(void) { time_init(); set_up_timer(); } static void refresh_wall(void) { time_init(); clock_gettime(CLOCK_REALTIME, &wall_time); wall_tick = false; } static void refresh_monotonic(void) { time_init(); if (!time_stopped) { if (monotonic_clock == CLOCK_MONOTONIC) { clock_gettime(monotonic_clock, &monotonic_time); } else { refresh_wall_if_ticked(); monotonic_time = wall_time; } timespec_add(&monotonic_time, &monotonic_time, &warp_offset); monotonic_tick = false; } } /* Forces a refresh of the current time from the kernel. It is not usually * necessary to call this function, since the time will be refreshed * automatically at least every TIME_UPDATE_INTERVAL milliseconds. If * CACHE_TIME is false, we will always refresh the current time so this * function has no effect. */ void time_refresh(void) { wall_tick = monotonic_tick = true; } /* Returns a monotonic timer, in seconds. */ time_t time_now(void) { refresh_monotonic_if_ticked(); return monotonic_time.tv_sec; } /* Returns the current time, in seconds. */ time_t time_wall(void) { refresh_wall_if_ticked(); return wall_time.tv_sec; } /* Returns a monotonic timer, in ms (within TIME_UPDATE_INTERVAL ms). */ long long int time_msec(void) { refresh_monotonic_if_ticked(); return timespec_to_msec(&monotonic_time); } /* Returns the current time, in ms (within TIME_UPDATE_INTERVAL ms). */ long long int time_wall_msec(void) { refresh_wall_if_ticked(); return timespec_to_msec(&wall_time); } /* Stores a monotonic timer, accurate within TIME_UPDATE_INTERVAL ms, into * '*ts'. */ void time_timespec(struct timespec *ts) { refresh_monotonic_if_ticked(); *ts = monotonic_time; } /* Stores the current time, accurate within TIME_UPDATE_INTERVAL ms, into * '*ts'. */ void time_wall_timespec(struct timespec *ts) { refresh_wall_if_ticked(); *ts = wall_time; } /* Configures the program to die with SIGALRM 'secs' seconds from now, if * 'secs' is nonzero, or disables the feature if 'secs' is zero. */ void time_alarm(unsigned int secs) { long long int now; long long int msecs; time_init(); time_refresh(); now = time_msec(); msecs = secs * 1000LL; deadline = now < LLONG_MAX - msecs ? now + msecs : LLONG_MAX; } /* Like poll(), except: * * - The timeout is specified as an absolute time, as defined by * time_msec(), instead of a duration. * * - On error, returns a negative error code (instead of setting errno). * * - If interrupted by a signal, retries automatically until the original * timeout is reached. (Because of this property, this function will * never return -EINTR.) * * - As a side effect, refreshes the current time (like time_refresh()). * * Stores the number of milliseconds elapsed during poll in '*elapsed'. */ int time_poll(struct pollfd *pollfds, int n_pollfds, long long int timeout_when, int *elapsed) { static long long int last_wakeup = 0; long long int start; sigset_t oldsigs; bool blocked; int retval; time_refresh(); if (last_wakeup) { log_poll_interval(last_wakeup); } coverage_clear(); start = time_msec(); blocked = false; timeout_when = MIN(timeout_when, deadline); for (;;) { long long int now = time_msec(); int time_left; if (now >= timeout_when) { time_left = 0; } else if ((unsigned long long int) timeout_when - now > INT_MAX) { time_left = INT_MAX; } else { time_left = timeout_when - now; } retval = poll(pollfds, n_pollfds, time_left); if (retval < 0) { retval = -errno; } time_refresh(); if (deadline <= time_msec()) { fatal_signal_handler(SIGALRM); if (retval < 0) { retval = 0; } break; } if (retval != -EINTR) { break; } if (!blocked && CACHE_TIME) { block_sigalrm(&oldsigs); blocked = true; } } if (blocked) { unblock_sigalrm(&oldsigs); } last_wakeup = time_msec(); refresh_rusage(); *elapsed = last_wakeup - start; return retval; } static void sigalrm_handler(int sig_nr OVS_UNUSED) { wall_tick = true; monotonic_tick = true; if (USE_BACKTRACE && CACHE_TIME) { struct trace *trace = &traces[trace_head]; trace->n_frames = backtrace(trace->backtrace, ARRAY_SIZE(trace->backtrace)); trace_head = (trace_head + 1) % MAX_TRACES; } } static void refresh_wall_if_ticked(void) { if (!CACHE_TIME || wall_tick) { refresh_wall(); } } static void refresh_monotonic_if_ticked(void) { if (!CACHE_TIME || monotonic_tick) { refresh_monotonic(); } } static void block_sigalrm(sigset_t *oldsigs) { sigset_t sigalrm; sigemptyset(&sigalrm); sigaddset(&sigalrm, SIGALRM); xpthread_sigmask(SIG_BLOCK, &sigalrm, oldsigs); } static void unblock_sigalrm(const sigset_t *oldsigs) { xpthread_sigmask(SIG_SETMASK, oldsigs, NULL); } long long int timespec_to_msec(const struct timespec *ts) { return (long long int) ts->tv_sec * 1000 + ts->tv_nsec / (1000 * 1000); } long long int timeval_to_msec(const struct timeval *tv) { return (long long int) tv->tv_sec * 1000 + tv->tv_usec / 1000; } /* Returns the monotonic time at which the "time" module was initialized, in * milliseconds(). */ long long int time_boot_msec(void) { time_init(); return boot_time; } void xgettimeofday(struct timeval *tv) { if (gettimeofday(tv, NULL) == -1) { VLOG_FATAL("gettimeofday failed (%s)", strerror(errno)); } } static long long int timeval_diff_msec(const struct timeval *a, const struct timeval *b) { return timeval_to_msec(a) - timeval_to_msec(b); } static void timespec_add(struct timespec *sum, const struct timespec *a, const struct timespec *b) { struct timespec tmp; tmp.tv_sec = a->tv_sec + b->tv_sec; tmp.tv_nsec = a->tv_nsec + b->tv_nsec; if (tmp.tv_nsec >= 1000 * 1000 * 1000) { tmp.tv_nsec -= 1000 * 1000 * 1000; tmp.tv_sec++; } *sum = tmp; } static void log_poll_interval(long long int last_wakeup) { long long int interval = time_msec() - last_wakeup; if (interval >= 1000 && !warp_offset.tv_sec && !warp_offset.tv_nsec) { const struct rusage *last_rusage = get_recent_rusage(); struct rusage rusage; getrusage(RUSAGE_SELF, &rusage); VLOG_WARN("Unreasonably long %lldms poll interval" " (%lldms user, %lldms system)", interval, timeval_diff_msec(&rusage.ru_utime, &last_rusage->ru_utime), timeval_diff_msec(&rusage.ru_stime, &last_rusage->ru_stime)); if (rusage.ru_minflt > last_rusage->ru_minflt || rusage.ru_majflt > last_rusage->ru_majflt) { VLOG_WARN("faults: %ld minor, %ld major", rusage.ru_minflt - last_rusage->ru_minflt, rusage.ru_majflt - last_rusage->ru_majflt); } if (rusage.ru_inblock > last_rusage->ru_inblock || rusage.ru_oublock > last_rusage->ru_oublock) { VLOG_WARN("disk: %ld reads, %ld writes", rusage.ru_inblock - last_rusage->ru_inblock, rusage.ru_oublock - last_rusage->ru_oublock); } if (rusage.ru_nvcsw > last_rusage->ru_nvcsw || rusage.ru_nivcsw > last_rusage->ru_nivcsw) { VLOG_WARN("context switches: %ld voluntary, %ld involuntary", rusage.ru_nvcsw - last_rusage->ru_nvcsw, rusage.ru_nivcsw - last_rusage->ru_nivcsw); } coverage_log(); } } /* CPU usage tracking. */ struct cpu_usage { long long int when; /* Time that this sample was taken. */ unsigned long long int cpu; /* Total user+system CPU usage when sampled. */ }; static struct rusage recent_rusage; static struct cpu_usage older = { LLONG_MIN, 0 }; static struct cpu_usage newer = { LLONG_MIN, 0 }; static int cpu_usage = -1; static struct rusage * get_recent_rusage(void) { return &recent_rusage; } static void refresh_rusage(void) { long long int now; now = time_msec(); getrusage(RUSAGE_SELF, &recent_rusage); if (now >= newer.when + 3 * 1000) { older = newer; newer.when = now; newer.cpu = (timeval_to_msec(&recent_rusage.ru_utime) + timeval_to_msec(&recent_rusage.ru_stime)); if (older.when != LLONG_MIN && newer.cpu > older.cpu) { unsigned int dividend = newer.cpu - older.cpu; unsigned int divisor = (newer.when - older.when) / 100; cpu_usage = divisor > 0 ? dividend / divisor : -1; } else { cpu_usage = -1; } } } /* Returns an estimate of this process's CPU usage, as a percentage, over the * past few seconds of wall-clock time. Returns -1 if no estimate is available * (which will happen if the process has not been running long enough to have * an estimate, and can happen for other reasons as well). */ int get_cpu_usage(void) { return cpu_usage; } static uint32_t hash_trace(struct trace *trace) { return hash_bytes(trace->backtrace, trace->n_frames * sizeof *trace->backtrace, 0); } static struct trace * trace_map_lookup(struct hmap *trace_map, struct trace *key) { struct trace *value; HMAP_FOR_EACH_WITH_HASH (value, node, hash_trace(key), trace_map) { if (key->n_frames == value->n_frames && !memcmp(key->backtrace, value->backtrace, key->n_frames * sizeof *key->backtrace)) { return value; } } return NULL; } /* Appends a string to 'ds' representing backtraces recorded at regular * intervals in the recent past. This information can be used to get a sense * of what the process has been spending the majority of time doing. Will * ommit any backtraces which have not occurred at least 'min_count' times. */ void format_backtraces(struct ds *ds, size_t min_count) { time_init(); if (USE_BACKTRACE && CACHE_TIME) { struct hmap trace_map = HMAP_INITIALIZER(&trace_map); struct trace *trace, *next; sigset_t oldsigs; size_t i; block_sigalrm(&oldsigs); for (i = 0; i < MAX_TRACES; i++) { struct trace *trace = &traces[i]; struct trace *map_trace; if (!trace->n_frames) { continue; } map_trace = trace_map_lookup(&trace_map, trace); if (map_trace) { map_trace->count++; } else { hmap_insert(&trace_map, &trace->node, hash_trace(trace)); trace->count = 1; } } HMAP_FOR_EACH_SAFE (trace, next, node, &trace_map) { char **frame_strs; size_t j; hmap_remove(&trace_map, &trace->node); if (trace->count < min_count) { continue; } frame_strs = backtrace_symbols(trace->backtrace, trace->n_frames); ds_put_format(ds, "Count %zu\n", trace->count); for (j = 0; j < trace->n_frames; j++) { ds_put_format(ds, "%s\n", frame_strs[j]); } ds_put_cstr(ds, "\n"); free(frame_strs); } hmap_destroy(&trace_map); ds_chomp(ds, '\n'); unblock_sigalrm(&oldsigs); } } /* Unixctl interface. */ /* "time/stop" stops the monotonic time returned by e.g. time_msec() from * advancing, except due to later calls to "time/warp". */ static void timeval_stop_cb(struct unixctl_conn *conn, int argc OVS_UNUSED, const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED) { time_stopped = true; unixctl_command_reply(conn, NULL); } /* "time/warp MSECS" advances the current monotonic time by the specified * number of milliseconds. Unless "time/stop" has also been executed, the * monotonic clock continues to tick forward at the normal rate afterward. * * Does not affect wall clock readings. */ static void timeval_warp_cb(struct unixctl_conn *conn, int argc OVS_UNUSED, const char *argv[], void *aux OVS_UNUSED) { struct timespec ts; int msecs; msecs = atoi(argv[1]); if (msecs <= 0) { unixctl_command_reply_error(conn, "invalid MSECS"); return; } ts.tv_sec = msecs / 1000; ts.tv_nsec = (msecs % 1000) * 1000 * 1000; timespec_add(&warp_offset, &warp_offset, &ts); timespec_add(&monotonic_time, &monotonic_time, &ts); unixctl_command_reply(conn, "warped"); } static void backtrace_cb(struct unixctl_conn *conn, int argc OVS_UNUSED, const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED) { struct ds ds = DS_EMPTY_INITIALIZER; ovs_assert(USE_BACKTRACE && CACHE_TIME); format_backtraces(&ds, 0); unixctl_command_reply(conn, ds_cstr(&ds)); ds_destroy(&ds); } void timeval_dummy_register(void) { unixctl_command_register("time/stop", "", 0, 0, timeval_stop_cb, NULL); unixctl_command_register("time/warp", "MSECS", 1, 1, timeval_warp_cb, NULL); }