/* * mm/rmap.c - physical to virtual reverse mappings * * Copyright 2001, Rik van Riel * Released under the General Public License (GPL). * * Simple, low overhead reverse mapping scheme. * Please try to keep this thing as modular as possible. * * Provides methods for unmapping each kind of mapped page: * the anon methods track anonymous pages, and * the file methods track pages belonging to an inode. * * Original design by Rik van Riel 2001 * File methods by Dave McCracken 2003, 2004 * Anonymous methods by Andrea Arcangeli 2004 * Contributions by Hugh Dickins 2003, 2004 */ /* * Locking: see "Lock ordering" summary in filemap.c. * In swapout, page_map_lock is held on entry to page_referenced and * try_to_unmap, so they trylock for i_mmap_lock and page_table_lock. */ #include #include #include #include #include #include #include #include #include //#define RMAP_DEBUG /* can be enabled only for debugging */ kmem_cache_t *anon_vma_cachep; static inline void validate_anon_vma(struct vm_area_struct *find_vma) { #ifdef RMAP_DEBUG struct anon_vma *anon_vma = find_vma->anon_vma; struct vm_area_struct *vma; unsigned int mapcount = 0; int found = 0; list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { mapcount++; BUG_ON(mapcount > 100000); if (vma == find_vma) found = 1; } BUG_ON(!found); #endif } /* This must be called under the mmap_sem. */ int anon_vma_prepare(struct vm_area_struct *vma) { struct anon_vma *anon_vma = vma->anon_vma; might_sleep(); if (unlikely(!anon_vma)) { struct mm_struct *mm = vma->vm_mm; struct anon_vma *allocated = NULL; anon_vma = find_mergeable_anon_vma(vma); if (!anon_vma) { anon_vma = anon_vma_alloc(); if (unlikely(!anon_vma)) return -ENOMEM; allocated = anon_vma; } /* page_table_lock to protect against threads */ spin_lock(&mm->page_table_lock); if (likely(!vma->anon_vma)) { if (!allocated) spin_lock(&anon_vma->lock); vma->anon_vma = anon_vma; list_add(&vma->anon_vma_node, &anon_vma->head); if (!allocated) spin_unlock(&anon_vma->lock); allocated = NULL; } spin_unlock(&mm->page_table_lock); if (unlikely(allocated)) anon_vma_free(allocated); } return 0; } void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next) { if (!vma->anon_vma) { BUG_ON(!next->anon_vma); vma->anon_vma = next->anon_vma; list_add(&vma->anon_vma_node, &next->anon_vma_node); } else { /* if they're both non-null they must be the same */ BUG_ON(vma->anon_vma != next->anon_vma); } list_del(&next->anon_vma_node); } void __anon_vma_link(struct vm_area_struct *vma) { struct anon_vma *anon_vma = vma->anon_vma; if (anon_vma) { list_add(&vma->anon_vma_node, &anon_vma->head); validate_anon_vma(vma); } } void anon_vma_link(struct vm_area_struct *vma) { struct anon_vma *anon_vma = vma->anon_vma; if (anon_vma) { spin_lock(&anon_vma->lock); list_add(&vma->anon_vma_node, &anon_vma->head); validate_anon_vma(vma); spin_unlock(&anon_vma->lock); } } void anon_vma_unlink(struct vm_area_struct *vma) { struct anon_vma *anon_vma = vma->anon_vma; int empty; if (!anon_vma) return; spin_lock(&anon_vma->lock); validate_anon_vma(vma); list_del(&vma->anon_vma_node); /* We must garbage collect the anon_vma if it's empty */ empty = list_empty(&anon_vma->head); spin_unlock(&anon_vma->lock); if (empty) anon_vma_free(anon_vma); } static void anon_vma_ctor(void *data, kmem_cache_t *cachep, unsigned long flags) { if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == SLAB_CTOR_CONSTRUCTOR) { struct anon_vma *anon_vma = data; spin_lock_init(&anon_vma->lock); INIT_LIST_HEAD(&anon_vma->head); } } void __init anon_vma_init(void) { anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 0, SLAB_PANIC, anon_vma_ctor, NULL); } /* this needs the page->flags PG_maplock held */ static inline void clear_page_anon(struct page *page) { BUG_ON(!page->mapping); page->mapping = NULL; ClearPageAnon(page); } /* * At what user virtual address is page expected in vma? */ static inline unsigned long vma_address(struct page *page, struct vm_area_struct *vma) { pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); unsigned long address; address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); if (unlikely(address < vma->vm_start || address >= vma->vm_end)) { /* page should be within any vma from prio_tree_next */ BUG_ON(!PageAnon(page)); return -EFAULT; } return address; } /* * Subfunctions of page_referenced: page_referenced_one called * repeatedly from either page_referenced_anon or page_referenced_file. */ static int page_referenced_one(struct page *page, struct vm_area_struct *vma, unsigned int *mapcount) { struct mm_struct *mm = vma->vm_mm; unsigned long address; pgd_t *pgd; pmd_t *pmd; pte_t *pte; int referenced = 0; if (!mm->rss) goto out; address = vma_address(page, vma); if (address == -EFAULT) goto out; if (!spin_trylock(&mm->page_table_lock)) goto out; pgd = pgd_offset(mm, address); if (!pgd_present(*pgd)) goto out_unlock; pmd = pmd_offset(pgd, address); if (!pmd_present(*pmd)) goto out_unlock; pte = pte_offset_map(pmd, address); if (!pte_present(*pte)) goto out_unmap; if (page_to_pfn(page) != pte_pfn(*pte)) goto out_unmap; if (ptep_clear_flush_young(vma, address, pte)) referenced++; (*mapcount)--; out_unmap: pte_unmap(pte); out_unlock: spin_unlock(&mm->page_table_lock); out: return referenced; } static inline int page_referenced_anon(struct page *page) { unsigned int mapcount = page->mapcount; struct anon_vma *anon_vma = (struct anon_vma *) page->mapping; struct vm_area_struct *vma; int referenced = 0; spin_lock(&anon_vma->lock); BUG_ON(list_empty(&anon_vma->head)); list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { referenced += page_referenced_one(page, vma, &mapcount); if (!mapcount) break; } spin_unlock(&anon_vma->lock); return referenced; } /** * page_referenced_file - referenced check for object-based rmap * @page: the page we're checking references on. * * For an object-based mapped page, find all the places it is mapped and * check/clear the referenced flag. This is done by following the page->mapping * pointer, then walking the chain of vmas it holds. It returns the number * of references it found. * * This function is only called from page_referenced for object-based pages. * * The spinlock address_space->i_mmap_lock is tried. If it can't be gotten, * assume a reference count of 0, so try_to_unmap will then have a go. */ static inline int page_referenced_file(struct page *page) { unsigned int mapcount = page->mapcount; struct address_space *mapping = page->mapping; pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); struct vm_area_struct *vma = NULL; struct prio_tree_iter iter; int referenced = 0; if (!spin_trylock(&mapping->i_mmap_lock)) return 0; while ((vma = vma_prio_tree_next(vma, &mapping->i_mmap, &iter, pgoff, pgoff)) != NULL) { if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE)) == (VM_LOCKED|VM_MAYSHARE)) { referenced++; break; } referenced += page_referenced_one(page, vma, &mapcount); if (!mapcount) break; } spin_unlock(&mapping->i_mmap_lock); return referenced; } /** * page_referenced - test if the page was referenced * @page: the page to test * * Quick test_and_clear_referenced for all mappings to a page, * returns the number of ptes which referenced the page. * Caller needs to hold the rmap lock. */ int page_referenced(struct page *page) { int referenced = 0; if (page_test_and_clear_young(page)) referenced++; if (TestClearPageReferenced(page)) referenced++; if (page->mapcount && page->mapping) { if (PageAnon(page)) referenced += page_referenced_anon(page); else referenced += page_referenced_file(page); } return referenced; } /** * page_add_anon_rmap - add pte mapping to an anonymous page * @page: the page to add the mapping to * @vma: the vm area in which the mapping is added * @address: the user virtual address mapped * * The caller needs to hold the mm->page_table_lock. */ void page_add_anon_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address) { struct anon_vma *anon_vma = vma->anon_vma; pgoff_t index; BUG_ON(PageReserved(page)); BUG_ON(!anon_vma); index = (address - vma->vm_start) >> PAGE_SHIFT; index += vma->vm_pgoff; index >>= PAGE_CACHE_SHIFT - PAGE_SHIFT; /* * Setting and clearing PG_anon must always happen inside * page_map_lock to avoid races between mapping and * unmapping on different processes of the same * shared cow swapcache page. And while we take the * page_map_lock PG_anon cannot change from under us. * Actually PG_anon cannot change under fork either * since fork holds a reference on the page so it cannot * be unmapped under fork and in turn copy_page_range is * allowed to read PG_anon outside the page_map_lock. */ page_map_lock(page); if (!page->mapcount) { BUG_ON(PageAnon(page)); BUG_ON(page->mapping); SetPageAnon(page); page->index = index; page->mapping = (struct address_space *) anon_vma; inc_page_state(nr_mapped); } else { BUG_ON(!PageAnon(page)); BUG_ON(page->index != index); BUG_ON(page->mapping != (struct address_space *) anon_vma); } page->mapcount++; page_map_unlock(page); } /** * page_add_file_rmap - add pte mapping to a file page * @page: the page to add the mapping to * * The caller needs to hold the mm->page_table_lock. */ void page_add_file_rmap(struct page *page) { BUG_ON(PageAnon(page)); if (!pfn_valid(page_to_pfn(page)) || PageReserved(page)) return; page_map_lock(page); if (!page->mapcount) inc_page_state(nr_mapped); page->mapcount++; page_map_unlock(page); } /** * page_remove_rmap - take down pte mapping from a page * @page: page to remove mapping from * * Caller needs to hold the mm->page_table_lock. */ void page_remove_rmap(struct page *page) { BUG_ON(PageReserved(page)); BUG_ON(!page->mapcount); page_map_lock(page); page->mapcount--; if (!page->mapcount) { if (page_test_and_clear_dirty(page)) set_page_dirty(page); if (PageAnon(page)) clear_page_anon(page); dec_page_state(nr_mapped); } page_map_unlock(page); } /* * Subfunctions of try_to_unmap: try_to_unmap_one called * repeatedly from either try_to_unmap_anon or try_to_unmap_file. */ static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma) { struct mm_struct *mm = vma->vm_mm; unsigned long address; pgd_t *pgd; pmd_t *pmd; pte_t *pte; pte_t pteval; int ret = SWAP_AGAIN; if (!mm->rss) goto out; address = vma_address(page, vma); if (address == -EFAULT) goto out; /* * We need the page_table_lock to protect us from page faults, * munmap, fork, etc... */ if (!spin_trylock(&mm->page_table_lock)) goto out; pgd = pgd_offset(mm, address); if (!pgd_present(*pgd)) goto out_unlock; pmd = pmd_offset(pgd, address); if (!pmd_present(*pmd)) goto out_unlock; pte = pte_offset_map(pmd, address); if (!pte_present(*pte)) goto out_unmap; if (page_to_pfn(page) != pte_pfn(*pte)) goto out_unmap; /* * If the page is mlock()d, we cannot swap it out. * If it's recently referenced (perhaps page_referenced * skipped over this mm) then we should reactivate it. */ if ((vma->vm_flags & (VM_LOCKED|VM_RESERVED)) || ptep_clear_flush_young(vma, address, pte)) { ret = SWAP_FAIL; goto out_unmap; } /* * Don't pull an anonymous page out from under get_user_pages. * GUP carefully breaks COW and raises page count (while holding * page_table_lock, as we have here) to make sure that the page * cannot be freed. If we unmap that page here, a user write * access to the virtual address will bring back the page, but * its raised count will (ironically) be taken to mean it's not * an exclusive swap page, do_wp_page will replace it by a copy * page, and the user never get to see the data GUP was holding * the original page for. * * This test is also useful for when swapoff (unuse_process) has * to drop page lock: its reference to the page stops existing * ptes from being unmapped, so swapoff can make progress. */ if (PageSwapCache(page) && page_count(page) != page->mapcount + 2) { ret = SWAP_FAIL; goto out_unmap; } /* Nuke the page table entry. */ flush_cache_page(vma, address); pteval = ptep_clear_flush(vma, address, pte); /* Move the dirty bit to the physical page now the pte is gone. */ if (pte_dirty(pteval)) set_page_dirty(page); if (PageAnon(page)) { swp_entry_t entry = { .val = page->private }; /* * Store the swap location in the pte. * See handle_pte_fault() ... */ BUG_ON(!PageSwapCache(page)); swap_duplicate(entry); set_pte(pte, swp_entry_to_pte(entry)); BUG_ON(pte_file(*pte)); } // mm->rss--; vx_rsspages_dec(mm); BUG_ON(!page->mapcount); page->mapcount--; page_cache_release(page); out_unmap: pte_unmap(pte); out_unlock: spin_unlock(&mm->page_table_lock); out: return ret; } /* * objrmap doesn't work for nonlinear VMAs because the assumption that * offset-into-file correlates with offset-into-virtual-addresses does not hold. * Consequently, given a particular page and its ->index, we cannot locate the * ptes which are mapping that page without an exhaustive linear search. * * So what this code does is a mini "virtual scan" of each nonlinear VMA which * maps the file to which the target page belongs. The ->vm_private_data field * holds the current cursor into that scan. Successive searches will circulate * around the vma's virtual address space. * * So as more replacement pressure is applied to the pages in a nonlinear VMA, * more scanning pressure is placed against them as well. Eventually pages * will become fully unmapped and are eligible for eviction. * * For very sparsely populated VMAs this is a little inefficient - chances are * there there won't be many ptes located within the scan cluster. In this case * maybe we could scan further - to the end of the pte page, perhaps. */ #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) #define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount, struct vm_area_struct *vma) { struct mm_struct *mm = vma->vm_mm; pgd_t *pgd; pmd_t *pmd; pte_t *pte; pte_t pteval; struct page *page; unsigned long address; unsigned long end; unsigned long pfn; /* * We need the page_table_lock to protect us from page faults, * munmap, fork, etc... */ if (!spin_trylock(&mm->page_table_lock)) return SWAP_FAIL; address = (vma->vm_start + cursor) & CLUSTER_MASK; end = address + CLUSTER_SIZE; if (address < vma->vm_start) address = vma->vm_start; if (end > vma->vm_end) end = vma->vm_end; pgd = pgd_offset(mm, address); if (!pgd_present(*pgd)) goto out_unlock; pmd = pmd_offset(pgd, address); if (!pmd_present(*pmd)) goto out_unlock; for (pte = pte_offset_map(pmd, address); address < end; pte++, address += PAGE_SIZE) { if (!pte_present(*pte)) continue; pfn = pte_pfn(*pte); if (!pfn_valid(pfn)) continue; page = pfn_to_page(pfn); BUG_ON(PageAnon(page)); if (PageReserved(page)) continue; if (ptep_clear_flush_young(vma, address, pte)) continue; /* Nuke the page table entry. */ flush_cache_page(vma, address); pteval = ptep_clear_flush(vma, address, pte); /* If nonlinear, store the file page offset in the pte. */ if (page->index != linear_page_index(vma, address)) set_pte(pte, pgoff_to_pte(page->index)); /* Move the dirty bit to the physical page now the pte is gone. */ if (pte_dirty(pteval)) set_page_dirty(page); page_remove_rmap(page); page_cache_release(page); // mm->rss--; vx_rsspages_dec(mm); (*mapcount)--; } pte_unmap(pte); out_unlock: spin_unlock(&mm->page_table_lock); return SWAP_AGAIN; } static inline int try_to_unmap_anon(struct page *page) { struct anon_vma *anon_vma = (struct anon_vma *) page->mapping; struct vm_area_struct *vma; int ret = SWAP_AGAIN; spin_lock(&anon_vma->lock); BUG_ON(list_empty(&anon_vma->head)); list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { ret = try_to_unmap_one(page, vma); if (ret == SWAP_FAIL || !page->mapcount) break; } spin_unlock(&anon_vma->lock); return ret; } /** * try_to_unmap_file - unmap file page using the object-based rmap method * @page: the page to unmap * * Find all the mappings of a page using the mapping pointer and the vma chains * contained in the address_space struct it points to. * * This function is only called from try_to_unmap for object-based pages. * * The spinlock address_space->i_mmap_lock is tried. If it can't be gotten, * return a temporary error. */ static inline int try_to_unmap_file(struct page *page) { struct address_space *mapping = page->mapping; pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); struct vm_area_struct *vma = NULL; struct prio_tree_iter iter; int ret = SWAP_AGAIN; unsigned long cursor; unsigned long max_nl_cursor = 0; unsigned long max_nl_size = 0; unsigned int mapcount; if (!spin_trylock(&mapping->i_mmap_lock)) return ret; while ((vma = vma_prio_tree_next(vma, &mapping->i_mmap, &iter, pgoff, pgoff)) != NULL) { ret = try_to_unmap_one(page, vma); if (ret == SWAP_FAIL || !page->mapcount) goto out; } if (list_empty(&mapping->i_mmap_nonlinear)) goto out; list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) { if (vma->vm_flags & (VM_LOCKED|VM_RESERVED)) continue; cursor = (unsigned long) vma->vm_private_data; if (cursor > max_nl_cursor) max_nl_cursor = cursor; cursor = vma->vm_end - vma->vm_start; if (cursor > max_nl_size) max_nl_size = cursor; } if (max_nl_size == 0) /* any nonlinears locked or reserved */ goto out; /* * We don't try to search for this page in the nonlinear vmas, * and page_referenced wouldn't have found it anyway. Instead * just walk the nonlinear vmas trying to age and unmap some. * The mapcount of the page we came in with is irrelevant, * but even so use it as a guide to how hard we should try? */ mapcount = page->mapcount; page_map_unlock(page); cond_resched_lock(&mapping->i_mmap_lock); max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; if (max_nl_cursor == 0) max_nl_cursor = CLUSTER_SIZE; do { list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) { if (vma->vm_flags & (VM_LOCKED|VM_RESERVED)) continue; cursor = (unsigned long) vma->vm_private_data; while (vma->vm_mm->rss && cursor < max_nl_cursor && cursor < vma->vm_end - vma->vm_start) { ret = try_to_unmap_cluster( cursor, &mapcount, vma); if (ret == SWAP_FAIL) break; cursor += CLUSTER_SIZE; vma->vm_private_data = (void *) cursor; if ((int)mapcount <= 0) goto relock; } if (ret != SWAP_FAIL) vma->vm_private_data = (void *) max_nl_cursor; ret = SWAP_AGAIN; } cond_resched_lock(&mapping->i_mmap_lock); max_nl_cursor += CLUSTER_SIZE; } while (max_nl_cursor <= max_nl_size); /* * Don't loop forever (perhaps all the remaining pages are * in locked vmas). Reset cursor on all unreserved nonlinear * vmas, now forgetting on which ones it had fallen behind. */ list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) { if (!(vma->vm_flags & VM_RESERVED)) vma->vm_private_data = NULL; } relock: page_map_lock(page); out: spin_unlock(&mapping->i_mmap_lock); return ret; } /** * try_to_unmap - try to remove all page table mappings to a page * @page: the page to get unmapped * * Tries to remove all the page table entries which are mapping this * page, used in the pageout path. Caller must hold the page lock * and its rmap lock. Return values are: * * SWAP_SUCCESS - we succeeded in removing all mappings * SWAP_AGAIN - we missed a trylock, try again later * SWAP_FAIL - the page is unswappable */ int try_to_unmap(struct page *page) { int ret; BUG_ON(PageReserved(page)); BUG_ON(!PageLocked(page)); BUG_ON(!page->mapcount); if (PageAnon(page)) ret = try_to_unmap_anon(page); else ret = try_to_unmap_file(page); if (!page->mapcount) { if (page_test_and_clear_dirty(page)) set_page_dirty(page); if (PageAnon(page)) clear_page_anon(page); dec_page_state(nr_mapped); ret = SWAP_SUCCESS; } return ret; }