/* * NETLINK Kernel-user communication protocol. * * Authors: Alan Cox * Alexey Kuznetsov * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith * added netlink_proto_exit * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo * use nlk_sk, as sk->protinfo is on a diet 8) * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define Nprintk(a...) #if defined(CONFIG_NETLINK_DEV) || defined(CONFIG_NETLINK_DEV_MODULE) #define NL_EMULATE_DEV #endif struct netlink_opt { u32 pid; unsigned groups; u32 dst_pid; unsigned dst_groups; unsigned long state; int (*handler)(int unit, struct sk_buff *skb); wait_queue_head_t wait; struct netlink_callback *cb; spinlock_t cb_lock; void (*data_ready)(struct sock *sk, int bytes); }; #define nlk_sk(__sk) ((struct netlink_opt *)(__sk)->sk_protinfo) static struct hlist_head nl_table[MAX_LINKS]; static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait); static unsigned nl_nonroot[MAX_LINKS]; #ifdef NL_EMULATE_DEV static struct socket *netlink_kernel[MAX_LINKS]; #endif static int netlink_dump(struct sock *sk); static void netlink_destroy_callback(struct netlink_callback *cb); atomic_t netlink_sock_nr; static rwlock_t nl_table_lock = RW_LOCK_UNLOCKED; static atomic_t nl_table_users = ATOMIC_INIT(0); static struct notifier_block *netlink_chain; static void netlink_sock_destruct(struct sock *sk) { skb_queue_purge(&sk->sk_receive_queue); if (!sock_flag(sk, SOCK_DEAD)) { printk("Freeing alive netlink socket %p\n", sk); return; } BUG_TRAP(!atomic_read(&sk->sk_rmem_alloc)); BUG_TRAP(!atomic_read(&sk->sk_wmem_alloc)); BUG_TRAP(!nlk_sk(sk)->cb); kfree(nlk_sk(sk)); atomic_dec(&netlink_sock_nr); #ifdef NETLINK_REFCNT_DEBUG printk(KERN_DEBUG "NETLINK %p released, %d are still alive\n", sk, atomic_read(&netlink_sock_nr)); #endif } /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on SMP. * Look, when several writers sleep and reader wakes them up, all but one * immediately hit write lock and grab all the cpus. Exclusive sleep solves * this, _but_ remember, it adds useless work on UP machines. */ static void netlink_table_grab(void) { write_lock_bh(&nl_table_lock); if (atomic_read(&nl_table_users)) { DECLARE_WAITQUEUE(wait, current); add_wait_queue_exclusive(&nl_table_wait, &wait); for(;;) { set_current_state(TASK_UNINTERRUPTIBLE); if (atomic_read(&nl_table_users) == 0) break; write_unlock_bh(&nl_table_lock); schedule(); write_lock_bh(&nl_table_lock); } __set_current_state(TASK_RUNNING); remove_wait_queue(&nl_table_wait, &wait); } } static __inline__ void netlink_table_ungrab(void) { write_unlock_bh(&nl_table_lock); wake_up(&nl_table_wait); } static __inline__ void netlink_lock_table(void) { /* read_lock() synchronizes us to netlink_table_grab */ read_lock(&nl_table_lock); atomic_inc(&nl_table_users); read_unlock(&nl_table_lock); } static __inline__ void netlink_unlock_table(void) { if (atomic_dec_and_test(&nl_table_users)) wake_up(&nl_table_wait); } static __inline__ struct sock *netlink_lookup(int protocol, u32 pid) { struct sock *sk; struct hlist_node *node; read_lock(&nl_table_lock); sk_for_each(sk, node, &nl_table[protocol]) { if (nlk_sk(sk)->pid == pid) { sock_hold(sk); goto found; } } sk = NULL; found: read_unlock(&nl_table_lock); return sk; } static struct proto_ops netlink_ops; static int netlink_insert(struct sock *sk, u32 pid) { int err = -EADDRINUSE; struct sock *osk; struct hlist_node *node; netlink_table_grab(); sk_for_each(osk, node, &nl_table[sk->sk_protocol]) { if (nlk_sk(osk)->pid == pid) break; } if (!node) { err = -EBUSY; if (nlk_sk(sk)->pid == 0) { nlk_sk(sk)->pid = pid; sk_add_node(sk, &nl_table[sk->sk_protocol]); err = 0; } } netlink_table_ungrab(); return err; } static void netlink_remove(struct sock *sk) { netlink_table_grab(); sk_del_node_init(sk); netlink_table_ungrab(); } static int netlink_create(struct socket *sock, int protocol) { struct sock *sk; struct netlink_opt *nlk; sock->state = SS_UNCONNECTED; if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM) return -ESOCKTNOSUPPORT; if (protocol<0 || protocol >= MAX_LINKS) return -EPROTONOSUPPORT; sock->ops = &netlink_ops; sk = sk_alloc(PF_NETLINK, GFP_KERNEL, 1, NULL); if (!sk) return -ENOMEM; sock_init_data(sock,sk); sk_set_owner(sk, THIS_MODULE); nlk = sk->sk_protinfo = kmalloc(sizeof(*nlk), GFP_KERNEL); if (!nlk) { sk_free(sk); return -ENOMEM; } memset(nlk, 0, sizeof(*nlk)); spin_lock_init(&nlk->cb_lock); init_waitqueue_head(&nlk->wait); sk->sk_destruct = netlink_sock_destruct; atomic_inc(&netlink_sock_nr); set_vx_info(&sk->sk_vx_info, current->vx_info); sk->sk_xid = vx_current_xid(); vx_sock_inc(sk); set_nx_info(&sk->sk_nx_info, current->nx_info); sk->sk_nid = nx_current_nid(); sk->sk_protocol = protocol; return 0; } static int netlink_release(struct socket *sock) { struct sock *sk = sock->sk; struct netlink_opt *nlk; if (!sk) return 0; netlink_remove(sk); nlk = nlk_sk(sk); spin_lock(&nlk->cb_lock); if (nlk->cb) { nlk->cb->done(nlk->cb); netlink_destroy_callback(nlk->cb); nlk->cb = NULL; __sock_put(sk); } spin_unlock(&nlk->cb_lock); /* OK. Socket is unlinked, and, therefore, no new packets will arrive */ sock_orphan(sk); sock->sk = NULL; wake_up_interruptible_all(&nlk->wait); skb_queue_purge(&sk->sk_write_queue); if (nlk->pid && !nlk->groups) { struct netlink_notify n = { .protocol = sk->sk_protocol, .pid = nlk->pid, }; notifier_call_chain(&netlink_chain, NETLINK_URELEASE, &n); } vx_sock_dec(sk); clr_vx_info(&sk->sk_vx_info); sk->sk_xid = -1; clr_nx_info(&sk->sk_nx_info); sk->sk_nid = -1; sock_put(sk); return 0; } static int netlink_autobind(struct socket *sock) { struct sock *sk = sock->sk; struct sock *osk; struct hlist_node *node; s32 pid = current->pid; int err; retry: netlink_table_grab(); sk_for_each(osk, node, &nl_table[sk->sk_protocol]) { if (nlk_sk(osk)->pid == pid) { /* Bind collision, search negative pid values. */ if (pid > 0) pid = -4096; pid--; netlink_table_ungrab(); goto retry; } } netlink_table_ungrab(); err = netlink_insert(sk, pid); if (err == -EADDRINUSE) goto retry; nlk_sk(sk)->groups = 0; return 0; } static inline int netlink_capable(struct socket *sock, unsigned flag) { return (nl_nonroot[sock->sk->sk_protocol] & flag) || capable(CAP_NET_ADMIN); } static int netlink_bind(struct socket *sock, struct sockaddr *addr, int addr_len) { struct sock *sk = sock->sk; struct netlink_opt *nlk = nlk_sk(sk); struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; int err; if (nladdr->nl_family != AF_NETLINK) return -EINVAL; /* Only superuser is allowed to listen multicasts */ if (nladdr->nl_groups && !netlink_capable(sock, NL_NONROOT_RECV)) return -EPERM; if (nlk->pid) { if (nladdr->nl_pid != nlk->pid) return -EINVAL; nlk->groups = nladdr->nl_groups; return 0; } if (nladdr->nl_pid == 0) { err = netlink_autobind(sock); if (err == 0) nlk->groups = nladdr->nl_groups; return err; } err = netlink_insert(sk, nladdr->nl_pid); if (err == 0) nlk->groups = nladdr->nl_groups; return err; } static int netlink_connect(struct socket *sock, struct sockaddr *addr, int alen, int flags) { int err = 0; struct sock *sk = sock->sk; struct netlink_opt *nlk = nlk_sk(sk); struct sockaddr_nl *nladdr=(struct sockaddr_nl*)addr; if (addr->sa_family == AF_UNSPEC) { sk->sk_state = NETLINK_UNCONNECTED; nlk->dst_pid = 0; nlk->dst_groups = 0; return 0; } if (addr->sa_family != AF_NETLINK) return -EINVAL; /* Only superuser is allowed to send multicasts */ if (nladdr->nl_groups && !netlink_capable(sock, NL_NONROOT_SEND)) return -EPERM; if (!nlk->pid) err = netlink_autobind(sock); if (err == 0) { sk->sk_state = NETLINK_CONNECTED; nlk->dst_pid = nladdr->nl_pid; nlk->dst_groups = nladdr->nl_groups; } return err; } static int netlink_getname(struct socket *sock, struct sockaddr *addr, int *addr_len, int peer) { struct sock *sk = sock->sk; struct netlink_opt *nlk = nlk_sk(sk); struct sockaddr_nl *nladdr=(struct sockaddr_nl *)addr; nladdr->nl_family = AF_NETLINK; nladdr->nl_pad = 0; *addr_len = sizeof(*nladdr); if (peer) { nladdr->nl_pid = nlk->dst_pid; nladdr->nl_groups = nlk->dst_groups; } else { nladdr->nl_pid = nlk->pid; nladdr->nl_groups = nlk->groups; } return 0; } static void netlink_overrun(struct sock *sk) { if (!test_and_set_bit(0, &nlk_sk(sk)->state)) { sk->sk_err = ENOBUFS; sk->sk_error_report(sk); } } struct sock *netlink_getsockbypid(struct sock *ssk, u32 pid) { int protocol = ssk->sk_protocol; struct sock *sock; struct netlink_opt *nlk; sock = netlink_lookup(protocol, pid); if (!sock) return ERR_PTR(-ECONNREFUSED); /* Don't bother queuing skb if kernel socket has no input function */ nlk = nlk_sk(sock); if ((nlk->pid == 0 && !nlk->data_ready) || (sock->sk_state == NETLINK_CONNECTED && nlk->dst_pid != nlk_sk(ssk)->pid)) { sock_put(sock); return ERR_PTR(-ECONNREFUSED); } return sock; } struct sock *netlink_getsockbyfilp(struct file *filp) { struct inode *inode = filp->f_dentry->d_inode; struct socket *socket; struct sock *sock; if (!inode->i_sock || !(socket = SOCKET_I(inode))) return ERR_PTR(-ENOTSOCK); sock = socket->sk; if (sock->sk_family != AF_NETLINK) return ERR_PTR(-EINVAL); sock_hold(sock); return sock; } /* * Attach a skb to a netlink socket. * The caller must hold a reference to the destination socket. On error, the * reference is dropped. The skb is not send to the destination, just all * all error checks are performed and memory in the queue is reserved. * Return values: * < 0: error. skb freed, reference to sock dropped. * 0: continue * 1: repeat lookup - reference dropped while waiting for socket memory. */ int netlink_attachskb(struct sock *sk, struct sk_buff *skb, int nonblock, long timeo) { struct netlink_opt *nlk; nlk = nlk_sk(sk); #ifdef NL_EMULATE_DEV if (nlk->handler) return 0; #endif if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || test_bit(0, &nlk->state)) { DECLARE_WAITQUEUE(wait, current); if (!timeo) { if (!nlk->pid) netlink_overrun(sk); sock_put(sk); kfree_skb(skb); return -EAGAIN; } __set_current_state(TASK_INTERRUPTIBLE); add_wait_queue(&nlk->wait, &wait); if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || test_bit(0, &nlk->state)) && !sock_flag(sk, SOCK_DEAD)) timeo = schedule_timeout(timeo); __set_current_state(TASK_RUNNING); remove_wait_queue(&nlk->wait, &wait); sock_put(sk); if (signal_pending(current)) { kfree_skb(skb); return sock_intr_errno(timeo); } return 1; } skb_orphan(skb); skb_set_owner_r(skb, sk); return 0; } int netlink_sendskb(struct sock *sk, struct sk_buff *skb, int protocol) { struct netlink_opt *nlk; int len = skb->len; nlk = nlk_sk(sk); #ifdef NL_EMULATE_DEV if (nlk->handler) { skb_orphan(skb); len = nlk->handler(protocol, skb); sock_put(sk); return len; } #endif skb_queue_tail(&sk->sk_receive_queue, skb); sk->sk_data_ready(sk, len); sock_put(sk); return len; } void netlink_detachskb(struct sock *sk, struct sk_buff *skb) { kfree_skb(skb); sock_put(sk); } static inline void netlink_trim(struct sk_buff *skb, int allocation) { int delta = skb->end - skb->tail; /* If the packet is charged to a socket, the modification * of truesize below is illegal and will corrupt socket * buffer accounting state. */ BUG_ON(skb->list != NULL); if (delta * 2 < skb->truesize) return; if (pskb_expand_head(skb, 0, -delta, allocation)) return; skb->truesize -= delta; } int netlink_unicast(struct sock *ssk, struct sk_buff *skb, u32 pid, int nonblock) { struct sock *sk; int err; long timeo; netlink_trim(skb, gfp_any()); timeo = sock_sndtimeo(ssk, nonblock); retry: sk = netlink_getsockbypid(ssk, pid); if (IS_ERR(sk)) { kfree_skb(skb); return PTR_ERR(sk); } err = netlink_attachskb(sk, skb, nonblock, timeo); if (err == 1) goto retry; if (err) return err; return netlink_sendskb(sk, skb, ssk->sk_protocol); } static __inline__ int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb) { struct netlink_opt *nlk = nlk_sk(sk); #ifdef NL_EMULATE_DEV if (nlk->handler) { skb_orphan(skb); nlk->handler(sk->sk_protocol, skb); return 0; } else #endif if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && !test_bit(0, &nlk->state)) { skb_orphan(skb); skb_set_owner_r(skb, sk); skb_queue_tail(&sk->sk_receive_queue, skb); sk->sk_data_ready(sk, skb->len); return 0; } return -1; } int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 pid, u32 group, int allocation) { struct sock *sk; struct hlist_node *node; struct sk_buff *skb2 = NULL; int protocol = ssk->sk_protocol; int failure = 0, delivered = 0; netlink_trim(skb, allocation); /* While we sleep in clone, do not allow to change socket list */ netlink_lock_table(); sk_for_each(sk, node, &nl_table[protocol]) { struct netlink_opt *nlk = nlk_sk(sk); if (ssk == sk) continue; if (nlk->pid == pid || !(nlk->groups & group)) continue; if (failure) { netlink_overrun(sk); continue; } sock_hold(sk); if (skb2 == NULL) { if (atomic_read(&skb->users) != 1) { skb2 = skb_clone(skb, allocation); } else { skb2 = skb; atomic_inc(&skb->users); } } if (skb2 == NULL) { netlink_overrun(sk); /* Clone failed. Notify ALL listeners. */ failure = 1; } else if (netlink_broadcast_deliver(sk, skb2)) { netlink_overrun(sk); } else { delivered = 1; skb2 = NULL; } sock_put(sk); } netlink_unlock_table(); if (skb2) kfree_skb(skb2); kfree_skb(skb); if (delivered) return 0; if (failure) return -ENOBUFS; return -ESRCH; } void netlink_set_err(struct sock *ssk, u32 pid, u32 group, int code) { struct sock *sk; struct hlist_node *node; int protocol = ssk->sk_protocol; read_lock(&nl_table_lock); sk_for_each(sk, node, &nl_table[protocol]) { struct netlink_opt *nlk = nlk_sk(sk); if (ssk == sk) continue; if (nlk->pid == pid || !(nlk->groups & group)) continue; sk->sk_err = code; sk->sk_error_report(sk); } read_unlock(&nl_table_lock); } static inline void netlink_rcv_wake(struct sock *sk) { struct netlink_opt *nlk = nlk_sk(sk); if (!skb_queue_len(&sk->sk_receive_queue)) clear_bit(0, &nlk->state); if (!test_bit(0, &nlk->state)) wake_up_interruptible(&nlk->wait); } static int netlink_sendmsg(struct kiocb *kiocb, struct socket *sock, struct msghdr *msg, size_t len) { struct sock_iocb *siocb = kiocb_to_siocb(kiocb); struct sock *sk = sock->sk; struct netlink_opt *nlk = nlk_sk(sk); struct sockaddr_nl *addr=msg->msg_name; u32 dst_pid; u32 dst_groups; struct sk_buff *skb; int err; struct scm_cookie scm; if (msg->msg_flags&MSG_OOB) return -EOPNOTSUPP; if (NULL == siocb->scm) siocb->scm = &scm; err = scm_send(sock, msg, siocb->scm); if (err < 0) return err; if (msg->msg_namelen) { if (addr->nl_family != AF_NETLINK) return -EINVAL; dst_pid = addr->nl_pid; dst_groups = addr->nl_groups; if (dst_groups && !netlink_capable(sock, NL_NONROOT_SEND)) return -EPERM; } else { dst_pid = nlk->dst_pid; dst_groups = nlk->dst_groups; } if (!nlk->pid) { err = netlink_autobind(sock); if (err) goto out; } err = -EMSGSIZE; if (len > sk->sk_sndbuf - 32) goto out; err = -ENOBUFS; skb = alloc_skb(len, GFP_KERNEL); if (skb==NULL) goto out; NETLINK_CB(skb).pid = nlk->pid; NETLINK_CB(skb).groups = nlk->groups; NETLINK_CB(skb).dst_pid = dst_pid; NETLINK_CB(skb).dst_groups = dst_groups; memcpy(NETLINK_CREDS(skb), &siocb->scm->creds, sizeof(struct ucred)); /* What can I do? Netlink is asynchronous, so that we will have to save current capabilities to check them, when this message will be delivered to corresponding kernel module. --ANK (980802) */ err = -EFAULT; if (memcpy_fromiovec(skb_put(skb,len), msg->msg_iov, len)) { kfree_skb(skb); goto out; } err = security_netlink_send(sk, skb); if (err) { kfree_skb(skb); goto out; } if (dst_groups) { atomic_inc(&skb->users); netlink_broadcast(sk, skb, dst_pid, dst_groups, GFP_KERNEL); } err = netlink_unicast(sk, skb, dst_pid, msg->msg_flags&MSG_DONTWAIT); out: return err; } static int netlink_recvmsg(struct kiocb *kiocb, struct socket *sock, struct msghdr *msg, size_t len, int flags) { struct sock_iocb *siocb = kiocb_to_siocb(kiocb); struct scm_cookie scm; struct sock *sk = sock->sk; struct netlink_opt *nlk = nlk_sk(sk); int noblock = flags&MSG_DONTWAIT; size_t copied; struct sk_buff *skb; int err; if (flags&MSG_OOB) return -EOPNOTSUPP; copied = 0; skb = skb_recv_datagram(sk,flags,noblock,&err); if (skb==NULL) goto out; msg->msg_namelen = 0; copied = skb->len; if (len < copied) { msg->msg_flags |= MSG_TRUNC; copied = len; } skb->h.raw = skb->data; err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); if (msg->msg_name) { struct sockaddr_nl *addr = (struct sockaddr_nl*)msg->msg_name; addr->nl_family = AF_NETLINK; addr->nl_pad = 0; addr->nl_pid = NETLINK_CB(skb).pid; addr->nl_groups = NETLINK_CB(skb).dst_groups; msg->msg_namelen = sizeof(*addr); } if (NULL == siocb->scm) { memset(&scm, 0, sizeof(scm)); siocb->scm = &scm; } siocb->scm->creds = *NETLINK_CREDS(skb); skb_free_datagram(sk, skb); if (nlk->cb && atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) netlink_dump(sk); scm_recv(sock, msg, siocb->scm, flags); out: netlink_rcv_wake(sk); return err ? : copied; } static void netlink_data_ready(struct sock *sk, int len) { struct netlink_opt *nlk = nlk_sk(sk); if (nlk->data_ready) nlk->data_ready(sk, len); netlink_rcv_wake(sk); } /* * We export these functions to other modules. They provide a * complete set of kernel non-blocking support for message * queueing. */ struct sock * netlink_kernel_create(int unit, void (*input)(struct sock *sk, int len)) { struct socket *sock; struct sock *sk; if (unit<0 || unit>=MAX_LINKS) return NULL; if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock)) return NULL; if (netlink_create(sock, unit) < 0) { sock_release(sock); return NULL; } sk = sock->sk; sk->sk_data_ready = netlink_data_ready; if (input) nlk_sk(sk)->data_ready = input; netlink_insert(sk, 0); return sk; } void netlink_set_nonroot(int protocol, unsigned flags) { if ((unsigned)protocol < MAX_LINKS) nl_nonroot[protocol] = flags; } static void netlink_destroy_callback(struct netlink_callback *cb) { if (cb->skb) kfree_skb(cb->skb); kfree(cb); } /* * It looks a bit ugly. * It would be better to create kernel thread. */ static int netlink_dump(struct sock *sk) { struct netlink_opt *nlk = nlk_sk(sk); struct netlink_callback *cb; struct sk_buff *skb; struct nlmsghdr *nlh; int len; skb = sock_rmalloc(sk, NLMSG_GOODSIZE, 0, GFP_KERNEL); if (!skb) return -ENOBUFS; spin_lock(&nlk->cb_lock); cb = nlk->cb; if (cb == NULL) { spin_unlock(&nlk->cb_lock); kfree_skb(skb); return -EINVAL; } len = cb->dump(skb, cb); if (len > 0) { spin_unlock(&nlk->cb_lock); skb_queue_tail(&sk->sk_receive_queue, skb); sk->sk_data_ready(sk, len); return 0; } nlh = __nlmsg_put(skb, NETLINK_CB(cb->skb).pid, cb->nlh->nlmsg_seq, NLMSG_DONE, sizeof(int)); nlh->nlmsg_flags |= NLM_F_MULTI; memcpy(NLMSG_DATA(nlh), &len, sizeof(len)); skb_queue_tail(&sk->sk_receive_queue, skb); sk->sk_data_ready(sk, skb->len); cb->done(cb); nlk->cb = NULL; spin_unlock(&nlk->cb_lock); netlink_destroy_callback(cb); sock_put(sk); return 0; } int netlink_dump_start(struct sock *ssk, struct sk_buff *skb, struct nlmsghdr *nlh, int (*dump)(struct sk_buff *skb, struct netlink_callback*), int (*done)(struct netlink_callback*)) { struct netlink_callback *cb; struct sock *sk; struct netlink_opt *nlk; cb = kmalloc(sizeof(*cb), GFP_KERNEL); if (cb == NULL) return -ENOBUFS; memset(cb, 0, sizeof(*cb)); cb->dump = dump; cb->done = done; cb->nlh = nlh; atomic_inc(&skb->users); cb->skb = skb; sk = netlink_lookup(ssk->sk_protocol, NETLINK_CB(skb).pid); if (sk == NULL) { netlink_destroy_callback(cb); return -ECONNREFUSED; } nlk = nlk_sk(sk); /* A dump is in progress... */ spin_lock(&nlk->cb_lock); if (nlk->cb) { spin_unlock(&nlk->cb_lock); netlink_destroy_callback(cb); sock_put(sk); return -EBUSY; } nlk->cb = cb; spin_unlock(&nlk->cb_lock); netlink_dump(sk); return 0; } void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err) { struct sk_buff *skb; struct nlmsghdr *rep; struct nlmsgerr *errmsg; int size; if (err == 0) size = NLMSG_SPACE(sizeof(struct nlmsgerr)); else size = NLMSG_SPACE(4 + NLMSG_ALIGN(nlh->nlmsg_len)); skb = alloc_skb(size, GFP_KERNEL); if (!skb) { struct sock *sk; sk = netlink_lookup(in_skb->sk->sk_protocol, NETLINK_CB(in_skb).pid); if (sk) { sk->sk_err = ENOBUFS; sk->sk_error_report(sk); sock_put(sk); } return; } rep = __nlmsg_put(skb, NETLINK_CB(in_skb).pid, nlh->nlmsg_seq, NLMSG_ERROR, sizeof(struct nlmsgerr)); errmsg = NLMSG_DATA(rep); errmsg->error = err; memcpy(&errmsg->msg, nlh, err ? nlh->nlmsg_len : sizeof(struct nlmsghdr)); netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).pid, MSG_DONTWAIT); } #ifdef NL_EMULATE_DEV static rwlock_t nl_emu_lock = RW_LOCK_UNLOCKED; /* * Backward compatibility. */ int netlink_attach(int unit, int (*function)(int, struct sk_buff *skb)) { struct sock *sk = netlink_kernel_create(unit, NULL); if (sk == NULL) return -ENOBUFS; nlk_sk(sk)->handler = function; write_lock_bh(&nl_emu_lock); netlink_kernel[unit] = sk->sk_socket; write_unlock_bh(&nl_emu_lock); return 0; } void netlink_detach(int unit) { struct socket *sock; write_lock_bh(&nl_emu_lock); sock = netlink_kernel[unit]; netlink_kernel[unit] = NULL; write_unlock_bh(&nl_emu_lock); sock_release(sock); } int netlink_post(int unit, struct sk_buff *skb) { struct socket *sock; read_lock(&nl_emu_lock); sock = netlink_kernel[unit]; if (sock) { struct sock *sk = sock->sk; memset(skb->cb, 0, sizeof(skb->cb)); sock_hold(sk); read_unlock(&nl_emu_lock); netlink_broadcast(sk, skb, 0, ~0, GFP_ATOMIC); sock_put(sk); return 0; } read_unlock(&nl_emu_lock); return -EUNATCH; } #endif #ifdef CONFIG_PROC_FS static struct sock *netlink_seq_socket_idx(struct seq_file *seq, loff_t pos) { long i; struct sock *s; struct hlist_node *node; loff_t off = 0; for (i=0; iprivate = (void *) i; return s; } ++off; } } return NULL; } static void *netlink_seq_start(struct seq_file *seq, loff_t *pos) { read_lock(&nl_table_lock); return *pos ? netlink_seq_socket_idx(seq, *pos - 1) : SEQ_START_TOKEN; } static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos) { struct sock *s; ++*pos; if (v == SEQ_START_TOKEN) return netlink_seq_socket_idx(seq, 0); s = sk_next(v); if (!s) { long i = (long)seq->private; while (++i < MAX_LINKS) { s = sk_head(&nl_table[i]); if (s) { seq->private = (void *) i; break; } } } return s; } static void netlink_seq_stop(struct seq_file *seq, void *v) { read_unlock(&nl_table_lock); } static int netlink_seq_show(struct seq_file *seq, void *v) { if (v == SEQ_START_TOKEN) seq_puts(seq, "sk Eth Pid Groups " "Rmem Wmem Dump Locks\n"); else { struct sock *s = v; struct netlink_opt *nlk = nlk_sk(s); seq_printf(seq, "%p %-3d %-6d %08x %-8d %-8d %p %d\n", s, s->sk_protocol, nlk->pid, nlk->groups, atomic_read(&s->sk_rmem_alloc), atomic_read(&s->sk_wmem_alloc), nlk->cb, atomic_read(&s->sk_refcnt) ); } return 0; } static struct seq_operations netlink_seq_ops = { .start = netlink_seq_start, .next = netlink_seq_next, .stop = netlink_seq_stop, .show = netlink_seq_show, }; static int netlink_seq_open(struct inode *inode, struct file *file) { return seq_open(file, &netlink_seq_ops); } static struct file_operations netlink_seq_fops = { .owner = THIS_MODULE, .open = netlink_seq_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, }; #endif int netlink_register_notifier(struct notifier_block *nb) { return notifier_chain_register(&netlink_chain, nb); } int netlink_unregister_notifier(struct notifier_block *nb) { return notifier_chain_unregister(&netlink_chain, nb); } static struct proto_ops netlink_ops = { .family = PF_NETLINK, .owner = THIS_MODULE, .release = netlink_release, .bind = netlink_bind, .connect = netlink_connect, .socketpair = sock_no_socketpair, .accept = sock_no_accept, .getname = netlink_getname, .poll = datagram_poll, .ioctl = sock_no_ioctl, .listen = sock_no_listen, .shutdown = sock_no_shutdown, .setsockopt = sock_no_setsockopt, .getsockopt = sock_no_getsockopt, .sendmsg = netlink_sendmsg, .recvmsg = netlink_recvmsg, .mmap = sock_no_mmap, .sendpage = sock_no_sendpage, }; static struct net_proto_family netlink_family_ops = { .family = PF_NETLINK, .create = netlink_create, .owner = THIS_MODULE, /* for consistency 8) */ }; static int __init netlink_proto_init(void) { struct sk_buff *dummy_skb; if (sizeof(struct netlink_skb_parms) > sizeof(dummy_skb->cb)) { printk(KERN_CRIT "netlink_init: panic\n"); return -1; } sock_register(&netlink_family_ops); #ifdef CONFIG_PROC_FS proc_net_fops_create("netlink", 0, &netlink_seq_fops); #endif /* The netlink device handler may be needed early. */ rtnetlink_init(); return 0; } static void __exit netlink_proto_exit(void) { sock_unregister(PF_NETLINK); proc_net_remove("netlink"); } core_initcall(netlink_proto_init); module_exit(netlink_proto_exit); MODULE_LICENSE("GPL"); MODULE_ALIAS_NETPROTO(PF_NETLINK); EXPORT_SYMBOL(netlink_ack); EXPORT_SYMBOL(netlink_broadcast); EXPORT_SYMBOL(netlink_dump_start); EXPORT_SYMBOL(netlink_kernel_create); EXPORT_SYMBOL(netlink_register_notifier); EXPORT_SYMBOL(netlink_set_err); EXPORT_SYMBOL(netlink_set_nonroot); EXPORT_SYMBOL(netlink_unicast); EXPORT_SYMBOL(netlink_unregister_notifier); #if defined(CONFIG_NETLINK_DEV) || defined(CONFIG_NETLINK_DEV_MODULE) EXPORT_SYMBOL(netlink_attach); EXPORT_SYMBOL(netlink_detach); EXPORT_SYMBOL(netlink_post); #endif