/* * Copyright (c) 2008, 2009, 2010 Nicira Networks. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "in-band.h" #include #include #include #include #include #include #include "dhcp.h" #include "dpif.h" #include "flow.h" #include "mac-learning.h" #include "netdev.h" #include "odp-util.h" #include "ofp-print.h" #include "ofproto.h" #include "ofpbuf.h" #include "openflow/openflow.h" #include "openvswitch/datapath-protocol.h" #include "packets.h" #include "poll-loop.h" #include "rconn.h" #include "status.h" #include "timeval.h" #include "vconn.h" #define THIS_MODULE VLM_in_band #include "vlog.h" /* In-band control allows a single network to be used for OpenFlow * traffic and other data traffic. Refer to ovs-vswitchd.conf(5) and * secchan(8) for a description of configuring in-band control. * * This comment is an attempt to describe how in-band control works at a * wire- and implementation-level. Correctly implementing in-band * control has proven difficult due to its many subtleties, and has thus * gone through many iterations. Please read through and understand the * reasoning behind the chosen rules before making modifications. * * In Open vSwitch, in-band control is implemented as "hidden" flows (in * that they are not visible through OpenFlow) and at a higher priority * than wildcarded flows can be set up by the controller. This is done * so that the controller cannot interfere with them and possibly break * connectivity with its switches. It is possible to see all flows, * including in-band ones, with the ovs-appctl "bridge/dump-flows" * command. * * The following rules are always enabled with the "normal" action by a * switch with in-band control: * * a. DHCP requests sent from the local port. * b. ARP replies to the local port's MAC address. * c. ARP requests from the local port's MAC address. * d. ARP replies to the remote side's MAC address. Note that the * remote side is either the controller or the gateway to reach * the controller. * e. ARP requests from the remote side's MAC address. Note that * like (d), the MAC is either for the controller or gateway. * f. ARP replies containing the controller's IP address as a target. * g. ARP requests containing the controller's IP address as a source. * h. OpenFlow (6633/tcp) traffic to the controller's IP. * i. OpenFlow (6633/tcp) traffic from the controller's IP. * * The goal of these rules is to be as narrow as possible to allow a * switch to join a network and be able to communicate with a * controller. As mentioned earlier, these rules have higher priority * than the controller's rules, so if they are too broad, they may * prevent the controller from implementing its policy. As such, * in-band actively monitors some aspects of flow and packet processing * so that the rules can be made more precise. * * In-band control monitors attempts to add flows into the datapath that * could interfere with its duties. The datapath only allows exact * match entries, so in-band control is able to be very precise about * the flows it prevents. Flows that miss in the datapath are sent to * userspace to be processed, so preventing these flows from being * cached in the "fast path" does not affect correctness. The only type * of flow that is currently prevented is one that would prevent DHCP * replies from being seen by the local port. For example, a rule that * forwarded all DHCP traffic to the controller would not be allowed, * but one that forwarded to all ports (including the local port) would. * * As mentioned earlier, packets that miss in the datapath are sent to * the userspace for processing. The userspace has its own flow table, * the "classifier", so in-band checks whether any special processing * is needed before the classifier is consulted. If a packet is a DHCP * response to a request from the local port, the packet is forwarded to * the local port, regardless of the flow table. Note that this requires * L7 processing of DHCP replies to determine whether the 'chaddr' field * matches the MAC address of the local port. * * It is interesting to note that for an L3-based in-band control * mechanism, the majority of rules are devoted to ARP traffic. At first * glance, some of these rules appear redundant. However, each serves an * important role. First, in order to determine the MAC address of the * remote side (controller or gateway) for other ARP rules, we must allow * ARP traffic for our local port with rules (b) and (c). If we are * between a switch and its connection to the controller, we have to * allow the other switch's ARP traffic to through. This is done with * rules (d) and (e), since we do not know the addresses of the other * switches a priori, but do know the controller's or gateway's. Finally, * if the controller is running in a local guest VM that is not reached * through the local port, the switch that is connected to the VM must * allow ARP traffic based on the controller's IP address, since it will * not know the MAC address of the local port that is sending the traffic * or the MAC address of the controller in the guest VM. * * With a few notable exceptions below, in-band should work in most * network setups. The following are considered "supported' in the * current implementation: * * - Locally Connected. The switch and controller are on the same * subnet. This uses rules (a), (b), (c), (h), and (i). * * - Reached through Gateway. The switch and controller are on * different subnets and must go through a gateway. This uses * rules (a), (b), (c), (h), and (i). * * - Between Switch and Controller. This switch is between another * switch and the controller, and we want to allow the other * switch's traffic through. This uses rules (d), (e), (h), and * (i). It uses (b) and (c) indirectly in order to know the MAC * address for rules (d) and (e). Note that DHCP for the other * switch will not work unless the controller explicitly lets this * switch pass the traffic. * * - Between Switch and Gateway. This switch is between another * switch and the gateway, and we want to allow the other switch's * traffic through. This uses the same rules and logic as the * "Between Switch and Controller" configuration described earlier. * * - Controller on Local VM. The controller is a guest VM on the * system running in-band control. This uses rules (a), (b), (c), * (h), and (i). * * - Controller on Local VM with Different Networks. The controller * is a guest VM on the system running in-band control, but the * local port is not used to connect to the controller. For * example, an IP address is configured on eth0 of the switch. The * controller's VM is connected through eth1 of the switch, but an * IP address has not been configured for that port on the switch. * As such, the switch will use eth0 to connect to the controller, * and eth1's rules about the local port will not work. In the * example, the switch attached to eth0 would use rules (a), (b), * (c), (h), and (i) on eth0. The switch attached to eth1 would use * rules (f), (g), (h), and (i). * * The following are explicitly *not* supported by in-band control: * * - Specify Controller by Name. Currently, the controller must be * identified by IP address. A naive approach would be to permit * all DNS traffic. Unfortunately, this would prevent the * controller from defining any policy over DNS. Since switches * that are located behind us need to connect to the controller, * in-band cannot simply add a rule that allows DNS traffic from * the local port. The "correct" way to support this is to parse * DNS requests to allow all traffic related to a request for the * controller's name through. Due to the potential security * problems and amount of processing, we decided to hold off for * the time-being. * * - Differing Controllers for Switches. All switches must know * the L3 addresses for all the controllers that other switches * may use, since rules need to be set up to allow traffic related * to those controllers through. See rules (f), (g), (h), and (i). * * - Differing Routes for Switches. In order for the switch to * allow other switches to connect to a controller through a * gateway, it allows the gateway's traffic through with rules (d) * and (e). If the routes to the controller differ for the two * switches, we will not know the MAC address of the alternate * gateway. */ /* Priorities used in classifier for in-band rules. These values are higher * than any that may be set with OpenFlow, and "18" kind of looks like "IB". * The ordering of priorities is not important because all of the rules set up * by in-band control have the same action. The only reason to use more than * one priority is to make the kind of flow easier to see during debugging. */ enum { IBR_FROM_LOCAL_DHCP = 180000, /* (a) From local port, DHCP. */ IBR_TO_LOCAL_ARP, /* (b) To local port, ARP. */ IBR_FROM_LOCAL_ARP, /* (c) From local port, ARP. */ IBR_TO_REMOTE_ARP, /* (d) To remote MAC, ARP. */ IBR_FROM_REMOTE_ARP, /* (e) From remote MAC, ARP. */ IBR_TO_CTL_ARP, /* (f) To controller IP, ARP. */ IBR_FROM_CTL_ARP, /* (g) From controller IP, ARP. */ IBR_TO_CTL_OFP, /* (h) To controller, OpenFlow port. */ IBR_FROM_CTL_OFP /* (i) From controller, OpenFlow port. */ }; struct in_band_rule { flow_t flow; uint32_t wildcards; unsigned int priority; }; /* Track one remote IP and next hop information. */ struct in_band_remote { struct rconn *rconn; /* Connection to remote. */ uint32_t remote_ip; /* Remote IP, 0 if unknown. */ uint8_t remote_mac[ETH_ADDR_LEN]; /* Next-hop MAC, all-zeros if unknown. */ uint8_t last_remote_mac[ETH_ADDR_LEN]; /* Previous nonzero next-hop MAC. */ struct netdev *remote_netdev; /* Device to send to next-hop MAC. */ }; struct in_band { struct ofproto *ofproto; struct status_category *ss_cat; /* Remote information. */ time_t next_remote_refresh; /* Refresh timer. */ struct in_band_remote *remotes; size_t n_remotes; /* Local information. */ time_t next_local_refresh; /* Refresh timer. */ uint8_t local_mac[ETH_ADDR_LEN]; /* Current MAC. */ struct netdev *local_netdev; /* Local port's network device. */ /* Local and remote addresses that are installed as flows. */ uint8_t installed_local_mac[ETH_ADDR_LEN]; uint32_t *remote_ips; uint32_t n_remote_ips; uint8_t *remote_macs; size_t n_remote_macs; }; static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(60, 60); static int refresh_remote(struct in_band *ib, struct in_band_remote *r) { struct in_addr remote_inaddr; struct in_addr next_hop_inaddr; char *next_hop_dev; int retval; /* Get remote IP address. */ r->remote_ip = rconn_get_remote_ip(r->rconn); /* Find the next-hop IP address. */ remote_inaddr.s_addr = r->remote_ip; memset(r->remote_mac, 0, sizeof r->remote_mac); retval = netdev_get_next_hop(ib->local_netdev, &remote_inaddr, &next_hop_inaddr, &next_hop_dev); if (retval) { VLOG_WARN("cannot find route for controller ("IP_FMT"): %s", IP_ARGS(&r->remote_ip), strerror(retval)); return 1; } if (!next_hop_inaddr.s_addr) { next_hop_inaddr.s_addr = remote_inaddr.s_addr; } /* Get the next-hop IP and network device. */ if (!r->remote_netdev || strcmp(netdev_get_name(r->remote_netdev), next_hop_dev)) { netdev_close(r->remote_netdev); retval = netdev_open_default(next_hop_dev, &r->remote_netdev); if (retval) { VLOG_WARN_RL(&rl, "cannot open netdev %s (next hop " "to controller "IP_FMT"): %s", next_hop_dev, IP_ARGS(&r->remote_ip), strerror(retval)); free(next_hop_dev); return 1; } } free(next_hop_dev); /* Look up the MAC address of the next-hop IP address. */ retval = netdev_arp_lookup(r->remote_netdev, next_hop_inaddr.s_addr, r->remote_mac); if (retval) { VLOG_DBG_RL(&rl, "cannot look up remote MAC address ("IP_FMT"): %s", IP_ARGS(&next_hop_inaddr.s_addr), strerror(retval)); } /* If we have an IP address but not a MAC address, then refresh quickly, * since we probably will get a MAC address soon (via ARP). Otherwise, we * can afford to wait a little while. */ return r->remote_ip && eth_addr_is_zero(r->remote_mac) ? 1 : 10; } static bool refresh_remotes(struct in_band *ib) { struct in_band_remote *r; bool any_changes; int min_refresh; if (time_now() < ib->next_remote_refresh) { return false; } any_changes = false; min_refresh = 10; for (r = ib->remotes; r < &ib->remotes[ib->n_remotes]; r++) { uint8_t old_remote_mac[ETH_ADDR_LEN]; uint32_t old_remote_ip; int refresh_interval; /* Save old remote information. */ old_remote_ip = r->remote_ip; memcpy(old_remote_mac, r->remote_mac, ETH_ADDR_LEN); /* Refresh remote information. */ refresh_interval = refresh_remote(ib, r); min_refresh = MIN(min_refresh, refresh_interval); /* If anything changed, log the changes. */ if (old_remote_ip != r->remote_ip) { any_changes = true; if (r->remote_ip) { VLOG_DBG("remote IP address changed from "IP_FMT" to "IP_FMT, IP_ARGS(&old_remote_ip), IP_ARGS(&r->remote_ip)); } } if (!eth_addr_equals(r->remote_mac, old_remote_mac)) { any_changes = true; if (!eth_addr_is_zero(r->remote_mac) && !eth_addr_equals(r->last_remote_mac, r->remote_mac)) { VLOG_DBG("remote MAC address changed from "ETH_ADDR_FMT " to "ETH_ADDR_FMT, ETH_ADDR_ARGS(r->last_remote_mac), ETH_ADDR_ARGS(r->remote_mac)); memcpy(r->last_remote_mac, r->remote_mac, ETH_ADDR_LEN); } } } ib->next_remote_refresh = time_now() + min_refresh; return any_changes; } /* Refreshes the MAC address of the local port into ib->local_mac, if it is due * for a refresh. Returns true if anything changed, otherwise false. */ static bool refresh_local(struct in_band *ib) { uint8_t ea[ETH_ADDR_LEN]; time_t now; now = time_now(); if (now < ib->next_local_refresh) { return false; } ib->next_local_refresh = now + 1; if (netdev_get_etheraddr(ib->local_netdev, ea) || eth_addr_equals(ea, ib->local_mac)) { return false; } memcpy(ib->local_mac, ea, ETH_ADDR_LEN); return true; } static void in_band_status_cb(struct status_reply *sr, void *in_band_) { struct in_band *in_band = in_band_; if (!eth_addr_is_zero(in_band->local_mac)) { status_reply_put(sr, "local-mac="ETH_ADDR_FMT, ETH_ADDR_ARGS(in_band->local_mac)); } if (in_band->n_remotes && !eth_addr_is_zero(in_band->remotes[0].remote_mac)) { status_reply_put(sr, "remote-mac="ETH_ADDR_FMT, ETH_ADDR_ARGS(in_band->remotes[0].remote_mac)); } } /* Returns true if 'packet' should be sent to the local port regardless * of the flow table. */ bool in_band_msg_in_hook(struct in_band *in_band, const flow_t *flow, const struct ofpbuf *packet) { if (!in_band) { return false; } /* Regardless of how the flow table is configured, we want to be * able to see replies to our DHCP requests. */ if (flow->dl_type == htons(ETH_TYPE_IP) && flow->nw_proto == IP_TYPE_UDP && flow->tp_src == htons(DHCP_SERVER_PORT) && flow->tp_dst == htons(DHCP_CLIENT_PORT) && packet->l7) { struct dhcp_header *dhcp; dhcp = ofpbuf_at(packet, (char *)packet->l7 - (char *)packet->data, sizeof *dhcp); if (!dhcp) { return false; } refresh_local(in_band); if (!eth_addr_is_zero(in_band->local_mac) && eth_addr_equals(dhcp->chaddr, in_band->local_mac)) { return true; } } return false; } /* Returns true if the rule that would match 'flow' with 'actions' is * allowed to be set up in the datapath. */ bool in_band_rule_check(struct in_band *in_band, const flow_t *flow, const struct odp_actions *actions) { if (!in_band) { return true; } /* Don't allow flows that would prevent DHCP replies from being seen * by the local port. */ if (flow->dl_type == htons(ETH_TYPE_IP) && flow->nw_proto == IP_TYPE_UDP && flow->tp_src == htons(DHCP_SERVER_PORT) && flow->tp_dst == htons(DHCP_CLIENT_PORT)) { int i; for (i=0; in_actions; i++) { if (actions->actions[i].output.type == ODPAT_OUTPUT && actions->actions[i].output.port == ODPP_LOCAL) { return true; } } return false; } return true; } static void init_rule(struct in_band_rule *rule, unsigned int priority) { rule->wildcards = OVSFW_ALL; rule->priority = priority; /* Not strictly necessary but seems cleaner. */ memset(&rule->flow, 0, sizeof rule->flow); } static void set_in_port(struct in_band_rule *rule, uint16_t odp_port) { rule->wildcards &= ~OFPFW_IN_PORT; rule->flow.in_port = odp_port; } static void set_dl_type(struct in_band_rule *rule, uint16_t dl_type) { rule->wildcards &= ~OFPFW_DL_TYPE; rule->flow.dl_type = htons(dl_type); } static void set_dl_src(struct in_band_rule *rule, const uint8_t dl_src[ETH_ADDR_LEN]) { rule->wildcards &= ~OFPFW_DL_SRC; memcpy(rule->flow.dl_src, dl_src, ETH_ADDR_LEN); } static void set_dl_dst(struct in_band_rule *rule, const uint8_t dl_dst[ETH_ADDR_LEN]) { rule->wildcards &= ~OFPFW_DL_DST; memcpy(rule->flow.dl_dst, dl_dst, ETH_ADDR_LEN); } static void set_tp_src(struct in_band_rule *rule, uint16_t tp_src) { rule->wildcards &= ~OFPFW_TP_SRC; rule->flow.tp_src = htons(tp_src); } static void set_tp_dst(struct in_band_rule *rule, uint16_t tp_dst) { rule->wildcards &= ~OFPFW_TP_DST; rule->flow.tp_dst = htons(tp_dst); } static void set_nw_proto(struct in_band_rule *rule, uint8_t nw_proto) { rule->wildcards &= ~OFPFW_NW_PROTO; rule->flow.nw_proto = nw_proto; } static void set_nw_src(struct in_band_rule *rule, uint32_t nw_src) { rule->wildcards &= ~OFPFW_NW_SRC_MASK; rule->flow.nw_src = nw_src; } static void set_nw_dst(struct in_band_rule *rule, uint32_t nw_dst) { rule->wildcards &= ~OFPFW_NW_DST_MASK; rule->flow.nw_dst = nw_dst; } static void make_rules(struct in_band *ib, void (*cb)(struct in_band *, const struct in_band_rule *)) { struct in_band_rule rule; size_t i; if (!eth_addr_is_zero(ib->installed_local_mac)) { /* Allow DHCP requests to be sent from the local port. */ init_rule(&rule, IBR_FROM_LOCAL_DHCP); set_in_port(&rule, ODPP_LOCAL); set_dl_type(&rule, ETH_TYPE_IP); set_dl_src(&rule, ib->installed_local_mac); set_nw_proto(&rule, IP_TYPE_UDP); set_tp_src(&rule, DHCP_CLIENT_PORT); set_tp_dst(&rule, DHCP_SERVER_PORT); cb(ib, &rule); /* Allow the connection's interface to receive directed ARP traffic. */ init_rule(&rule, IBR_TO_LOCAL_ARP); set_dl_type(&rule, ETH_TYPE_ARP); set_dl_dst(&rule, ib->installed_local_mac); set_nw_proto(&rule, ARP_OP_REPLY); cb(ib, &rule); /* Allow the connection's interface to be the source of ARP traffic. */ init_rule(&rule, IBR_FROM_LOCAL_ARP); set_dl_type(&rule, ETH_TYPE_ARP); set_dl_src(&rule, ib->installed_local_mac); set_nw_proto(&rule, ARP_OP_REQUEST); cb(ib, &rule); } for (i = 0; i < ib->n_remote_macs; i++) { const uint8_t *remote_mac = &ib->remote_macs[i * ETH_ADDR_LEN]; if (i > 0) { const uint8_t *prev_mac = &ib->remote_macs[(i - 1) * ETH_ADDR_LEN]; if (eth_addr_equals(remote_mac, prev_mac)) { /* Skip duplicates. */ continue; } } /* Allow ARP replies to the remote side's MAC. */ init_rule(&rule, IBR_TO_REMOTE_ARP); set_dl_type(&rule, ETH_TYPE_ARP); set_dl_dst(&rule, remote_mac); set_nw_proto(&rule, ARP_OP_REPLY); cb(ib, &rule); /* Allow ARP requests from the remote side's MAC. */ init_rule(&rule, IBR_FROM_REMOTE_ARP); set_dl_type(&rule, ETH_TYPE_ARP); set_dl_src(&rule, remote_mac); set_nw_proto(&rule, ARP_OP_REQUEST); cb(ib, &rule); } for (i = 0; i < ib->n_remote_ips; i++) { uint32_t remote_ip = ib->remote_ips[i]; if (i > 0 && ib->remote_ips[i - 1] == remote_ip) { /* Skip duplicates. */ continue; } /* Allow ARP replies to the controller's IP. */ init_rule(&rule, IBR_TO_CTL_ARP); set_dl_type(&rule, ETH_TYPE_ARP); set_nw_proto(&rule, ARP_OP_REPLY); set_nw_dst(&rule, remote_ip); cb(ib, &rule); /* Allow ARP requests from the controller's IP. */ init_rule(&rule, IBR_FROM_CTL_ARP); set_dl_type(&rule, ETH_TYPE_ARP); set_nw_proto(&rule, ARP_OP_REQUEST); set_nw_src(&rule, remote_ip); cb(ib, &rule); /* OpenFlow traffic to the controller. */ init_rule(&rule, IBR_TO_CTL_OFP); set_dl_type(&rule, ETH_TYPE_IP); set_nw_proto(&rule, IP_TYPE_TCP); set_nw_dst(&rule, remote_ip); set_tp_dst(&rule, OFP_TCP_PORT); cb(ib, &rule); /* OpenFlow traffic from the controller. */ init_rule(&rule, IBR_FROM_CTL_OFP); set_dl_type(&rule, ETH_TYPE_IP); set_nw_proto(&rule, IP_TYPE_TCP); set_nw_src(&rule, remote_ip); set_tp_src(&rule, OFP_TCP_PORT); cb(ib, &rule); } } static void clear_rules(struct in_band *ib) { memset(ib->installed_local_mac, 0, sizeof ib->installed_local_mac); free(ib->remote_ips); ib->remote_ips = NULL; ib->n_remote_ips = 0; free(ib->remote_macs); ib->remote_macs = NULL; ib->n_remote_macs = 0; } static void drop_rule(struct in_band *ib, const struct in_band_rule *rule) { ofproto_delete_flow(ib->ofproto, &rule->flow, rule->wildcards, rule->priority); } static void drop_rules(struct in_band *ib) { make_rules(ib, drop_rule); clear_rules(ib); } static void add_rule(struct in_band *ib, const struct in_band_rule *rule) { union ofp_action action; action.type = htons(OFPAT_OUTPUT); action.output.len = htons(sizeof action); action.output.port = htons(OFPP_NORMAL); action.output.max_len = htons(0); ofproto_add_flow(ib->ofproto, &rule->flow, rule->wildcards, rule->priority, &action, 1, 0); } static void add_rules(struct in_band *ib) { make_rules(ib, add_rule); } static int compare_ips(const void *a, const void *b) { return memcmp(a, b, sizeof(uint32_t)); } static int compare_macs(const void *a, const void *b) { return memcmp(a, b, ETH_ADDR_LEN); } void in_band_run(struct in_band *ib) { struct in_band_remote *r; if (!refresh_local(ib) && !refresh_remotes(ib)) { /* Nothing changed, nothing to do. */ return; } /* Drop old rules. */ drop_rules(ib); /* Figure out new rules. */ memcpy(ib->installed_local_mac, ib->local_mac, ETH_ADDR_LEN); ib->remote_ips = xmalloc(ib->n_remotes * sizeof *ib->remote_ips); ib->n_remote_ips = 0; ib->remote_macs = xmalloc(ib->n_remotes * ETH_ADDR_LEN); ib->n_remote_macs = 0; for (r = ib->remotes; r < &ib->remotes[ib->n_remotes]; r++) { if (r->remote_ip) { ib->remote_ips[ib->n_remote_ips++] = r->remote_ip; } if (!eth_addr_is_zero(r->remote_mac)) { memcpy(&ib->remote_macs[ib->n_remote_macs * ETH_ADDR_LEN], r->remote_mac, ETH_ADDR_LEN); ib->n_remote_macs++; } } /* Sort, to allow make_rules() to easily skip duplicates. */ qsort(ib->remote_ips, ib->n_remote_ips, sizeof *ib->remote_ips, compare_ips); qsort(ib->remote_macs, ib->n_remote_macs, ETH_ADDR_LEN, compare_macs); /* Add new rules. */ add_rules(ib); } void in_band_wait(struct in_band *in_band) { time_t now = time_now(); time_t wakeup = MIN(in_band->next_remote_refresh, in_band->next_local_refresh); if (wakeup > now) { poll_timer_wait((wakeup - now) * 1000); } else { poll_immediate_wake(); } } void in_band_flushed(struct in_band *in_band) { clear_rules(in_band); } int in_band_create(struct ofproto *ofproto, struct dpif *dpif, struct switch_status *ss, struct in_band **in_bandp) { struct in_band *in_band; char local_name[IF_NAMESIZE]; struct netdev *local_netdev; int error; error = dpif_port_get_name(dpif, ODPP_LOCAL, local_name, sizeof local_name); if (error) { VLOG_ERR("failed to initialize in-band control: cannot get name " "of datapath local port (%s)", strerror(error)); return error; } error = netdev_open_default(local_name, &local_netdev); if (error) { VLOG_ERR("failed to initialize in-band control: cannot open " "datapath local port %s (%s)", local_name, strerror(error)); return error; } in_band = xzalloc(sizeof *in_band); in_band->ofproto = ofproto; in_band->ss_cat = switch_status_register(ss, "in-band", in_band_status_cb, in_band); in_band->next_remote_refresh = TIME_MIN; in_band->next_local_refresh = TIME_MIN; in_band->local_netdev = local_netdev; *in_bandp = in_band; return 0; } void in_band_destroy(struct in_band *ib) { if (ib) { drop_rules(ib); in_band_set_remotes(ib, NULL, 0); switch_status_unregister(ib->ss_cat); netdev_close(ib->local_netdev); free(ib); } } void in_band_set_remotes(struct in_band *ib, struct rconn **remotes, size_t n) { size_t i; /* Optimize the case where the rconns are the same as last time. */ if (n == ib->n_remotes) { for (i = 0; i < n; i++) { if (ib->remotes[i].rconn != remotes[i]) { goto different; } } return; different:; } for (i = 0; i < ib->n_remotes; i++) { /* We don't own the rconn. */ netdev_close(ib->remotes[i].remote_netdev); } free(ib->remotes); ib->next_remote_refresh = TIME_MIN; ib->remotes = n ? xzalloc(n * sizeof *ib->remotes) : 0; ib->n_remotes = n; for (i = 0; i < n; i++) { ib->remotes[i].rconn = remotes[i]; } }