/* * Copyright (c) 2009, 2010, 2011, 2012, 2013 Nicira, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "ofproto/ofproto-provider.h" #include #include "bond.h" #include "bundle.h" #include "byte-order.h" #include "connmgr.h" #include "coverage.h" #include "cfm.h" #include "dpif.h" #include "dynamic-string.h" #include "fail-open.h" #include "hmapx.h" #include "lacp.h" #include "learn.h" #include "mac-learning.h" #include "meta-flow.h" #include "multipath.h" #include "netdev-vport.h" #include "netdev.h" #include "netlink.h" #include "nx-match.h" #include "odp-util.h" #include "ofp-util.h" #include "ofpbuf.h" #include "ofp-actions.h" #include "ofp-parse.h" #include "ofp-print.h" #include "ofproto-dpif-governor.h" #include "ofproto-dpif-sflow.h" #include "poll-loop.h" #include "simap.h" #include "smap.h" #include "timer.h" #include "tunnel.h" #include "unaligned.h" #include "unixctl.h" #include "vlan-bitmap.h" #include "vlog.h" VLOG_DEFINE_THIS_MODULE(ofproto_dpif); COVERAGE_DEFINE(ofproto_dpif_expired); COVERAGE_DEFINE(ofproto_dpif_xlate); COVERAGE_DEFINE(facet_changed_rule); COVERAGE_DEFINE(facet_revalidate); COVERAGE_DEFINE(facet_unexpected); COVERAGE_DEFINE(facet_suppress); /* Maximum depth of flow table recursion (due to resubmit actions) in a * flow translation. */ #define MAX_RESUBMIT_RECURSION 64 /* Number of implemented OpenFlow tables. */ enum { N_TABLES = 255 }; enum { TBL_INTERNAL = N_TABLES - 1 }; /* Used for internal hidden rules. */ BUILD_ASSERT_DECL(N_TABLES >= 2 && N_TABLES <= 255); struct ofport_dpif; struct ofproto_dpif; struct flow_miss; struct facet; struct rule_dpif { struct rule up; /* These statistics: * * - Do include packets and bytes from facets that have been deleted or * whose own statistics have been folded into the rule. * * - Do include packets and bytes sent "by hand" that were accounted to * the rule without any facet being involved (this is a rare corner * case in rule_execute()). * * - Do not include packet or bytes that can be obtained from any facet's * packet_count or byte_count member or that can be obtained from the * datapath by, e.g., dpif_flow_get() for any subfacet. */ uint64_t packet_count; /* Number of packets received. */ uint64_t byte_count; /* Number of bytes received. */ tag_type tag; /* Caches rule_calculate_tag() result. */ struct list facets; /* List of "struct facet"s. */ }; static struct rule_dpif *rule_dpif_cast(const struct rule *rule) { return rule ? CONTAINER_OF(rule, struct rule_dpif, up) : NULL; } static struct rule_dpif *rule_dpif_lookup(struct ofproto_dpif *, const struct flow *); static struct rule_dpif *rule_dpif_lookup__(struct ofproto_dpif *, const struct flow *, uint8_t table); static struct rule_dpif *rule_dpif_miss_rule(struct ofproto_dpif *ofproto, const struct flow *flow); static void rule_credit_stats(struct rule_dpif *, const struct dpif_flow_stats *); static void flow_push_stats(struct facet *, const struct dpif_flow_stats *); static tag_type rule_calculate_tag(const struct flow *, const struct minimask *, uint32_t basis); static void rule_invalidate(const struct rule_dpif *); #define MAX_MIRRORS 32 typedef uint32_t mirror_mask_t; #define MIRROR_MASK_C(X) UINT32_C(X) BUILD_ASSERT_DECL(sizeof(mirror_mask_t) * CHAR_BIT >= MAX_MIRRORS); struct ofmirror { struct ofproto_dpif *ofproto; /* Owning ofproto. */ size_t idx; /* In ofproto's "mirrors" array. */ void *aux; /* Key supplied by ofproto's client. */ char *name; /* Identifier for log messages. */ /* Selection criteria. */ struct hmapx srcs; /* Contains "struct ofbundle *"s. */ struct hmapx dsts; /* Contains "struct ofbundle *"s. */ unsigned long *vlans; /* Bitmap of chosen VLANs, NULL selects all. */ /* Output (exactly one of out == NULL and out_vlan == -1 is true). */ struct ofbundle *out; /* Output port or NULL. */ int out_vlan; /* Output VLAN or -1. */ mirror_mask_t dup_mirrors; /* Bitmap of mirrors with the same output. */ /* Counters. */ int64_t packet_count; /* Number of packets sent. */ int64_t byte_count; /* Number of bytes sent. */ }; static void mirror_destroy(struct ofmirror *); static void update_mirror_stats(struct ofproto_dpif *ofproto, mirror_mask_t mirrors, uint64_t packets, uint64_t bytes); struct ofbundle { struct hmap_node hmap_node; /* In struct ofproto's "bundles" hmap. */ struct ofproto_dpif *ofproto; /* Owning ofproto. */ void *aux; /* Key supplied by ofproto's client. */ char *name; /* Identifier for log messages. */ /* Configuration. */ struct list ports; /* Contains "struct ofport"s. */ enum port_vlan_mode vlan_mode; /* VLAN mode */ int vlan; /* -1=trunk port, else a 12-bit VLAN ID. */ unsigned long *trunks; /* Bitmap of trunked VLANs, if 'vlan' == -1. * NULL if all VLANs are trunked. */ struct lacp *lacp; /* LACP if LACP is enabled, otherwise NULL. */ struct bond *bond; /* Nonnull iff more than one port. */ bool use_priority_tags; /* Use 802.1p tag for frames in VLAN 0? */ /* Status. */ bool floodable; /* True if no port has OFPUTIL_PC_NO_FLOOD set. */ /* Port mirroring info. */ mirror_mask_t src_mirrors; /* Mirrors triggered when packet received. */ mirror_mask_t dst_mirrors; /* Mirrors triggered when packet sent. */ mirror_mask_t mirror_out; /* Mirrors that output to this bundle. */ }; static void bundle_remove(struct ofport *); static void bundle_update(struct ofbundle *); static void bundle_destroy(struct ofbundle *); static void bundle_del_port(struct ofport_dpif *); static void bundle_run(struct ofbundle *); static void bundle_wait(struct ofbundle *); static struct ofbundle *lookup_input_bundle(const struct ofproto_dpif *, uint16_t in_port, bool warn, struct ofport_dpif **in_ofportp); /* A controller may use OFPP_NONE as the ingress port to indicate that * it did not arrive on a "real" port. 'ofpp_none_bundle' exists for * when an input bundle is needed for validation (e.g., mirroring or * OFPP_NORMAL processing). It is not connected to an 'ofproto' or have * any 'port' structs, so care must be taken when dealing with it. */ static struct ofbundle ofpp_none_bundle = { .name = "OFPP_NONE", .vlan_mode = PORT_VLAN_TRUNK }; static void stp_run(struct ofproto_dpif *ofproto); static void stp_wait(struct ofproto_dpif *ofproto); static int set_stp_port(struct ofport *, const struct ofproto_port_stp_settings *); static bool ofbundle_includes_vlan(const struct ofbundle *, uint16_t vlan); struct action_xlate_ctx { /* action_xlate_ctx_init() initializes these members. */ /* The ofproto. */ struct ofproto_dpif *ofproto; /* Flow to which the OpenFlow actions apply. xlate_actions() will modify * this flow when actions change header fields. */ struct flow flow; /* stack for the push and pop actions. * Each stack element is of the type "union mf_subvalue". */ struct ofpbuf stack; union mf_subvalue init_stack[1024 / sizeof(union mf_subvalue)]; /* The packet corresponding to 'flow', or a null pointer if we are * revalidating without a packet to refer to. */ const struct ofpbuf *packet; /* Should OFPP_NORMAL update the MAC learning table? Should "learn" * actions update the flow table? * * We want to update these tables if we are actually processing a packet, * or if we are accounting for packets that the datapath has processed, but * not if we are just revalidating. */ bool may_learn; /* The rule that we are currently translating, or NULL. */ struct rule_dpif *rule; /* Union of the set of TCP flags seen so far in this flow. (Used only by * NXAST_FIN_TIMEOUT. Set to zero to avoid updating updating rules' * timeouts.) */ uint8_t tcp_flags; /* If nonnull, flow translation calls this function just before executing a * resubmit or OFPP_TABLE action. In addition, disables logging of traces * when the recursion depth is exceeded. * * 'rule' is the rule being submitted into. It will be null if the * resubmit or OFPP_TABLE action didn't find a matching rule. * * This is normally null so the client has to set it manually after * calling action_xlate_ctx_init(). */ void (*resubmit_hook)(struct action_xlate_ctx *, struct rule_dpif *rule); /* If nonnull, flow translation calls this function to report some * significant decision, e.g. to explain why OFPP_NORMAL translation * dropped a packet. */ void (*report_hook)(struct action_xlate_ctx *, const char *s); /* If nonnull, flow translation credits the specified statistics to each * rule reached through a resubmit or OFPP_TABLE action. * * This is normally null so the client has to set it manually after * calling action_xlate_ctx_init(). */ const struct dpif_flow_stats *resubmit_stats; /* xlate_actions() initializes and uses these members. The client might want * to look at them after it returns. */ struct ofpbuf *odp_actions; /* Datapath actions. */ tag_type tags; /* Tags associated with actions. */ enum slow_path_reason slow; /* 0 if fast path may be used. */ bool has_learn; /* Actions include NXAST_LEARN? */ bool has_normal; /* Actions output to OFPP_NORMAL? */ bool has_fin_timeout; /* Actions include NXAST_FIN_TIMEOUT? */ uint16_t nf_output_iface; /* Output interface index for NetFlow. */ mirror_mask_t mirrors; /* Bitmap of associated mirrors. */ /* xlate_actions() initializes and uses these members, but the client has no * reason to look at them. */ int recurse; /* Recursion level, via xlate_table_action. */ bool max_resubmit_trigger; /* Recursed too deeply during translation. */ struct flow base_flow; /* Flow at the last commit. */ uint32_t orig_skb_priority; /* Priority when packet arrived. */ uint8_t table_id; /* OpenFlow table ID where flow was found. */ uint32_t sflow_n_outputs; /* Number of output ports. */ uint32_t sflow_odp_port; /* Output port for composing sFlow action. */ uint16_t user_cookie_offset;/* Used for user_action_cookie fixup. */ bool exit; /* No further actions should be processed. */ }; /* Initial values of fields of the packet that may be changed during * flow processing and needed later. */ struct initial_vals { /* This is the value of vlan_tci in the packet as actually received from * dpif. This is the same as the facet's flow.vlan_tci unless the packet * was received via a VLAN splinter. In that case, this value is 0 * (because the packet as actually received from the dpif had no 802.1Q * tag) but the facet's flow.vlan_tci is set to the VLAN that the splinter * represents. * * This member should be removed when the VLAN splinters feature is no * longer needed. */ ovs_be16 vlan_tci; /* If received on a tunnel, the IP TOS value of the tunnel. */ uint8_t tunnel_ip_tos; }; static void action_xlate_ctx_init(struct action_xlate_ctx *, struct ofproto_dpif *, const struct flow *, const struct initial_vals *initial_vals, struct rule_dpif *, uint8_t tcp_flags, const struct ofpbuf *); static void xlate_actions(struct action_xlate_ctx *, const struct ofpact *ofpacts, size_t ofpacts_len, struct ofpbuf *odp_actions); static void xlate_actions_for_side_effects(struct action_xlate_ctx *, const struct ofpact *ofpacts, size_t ofpacts_len); static void xlate_table_action(struct action_xlate_ctx *, uint16_t in_port, uint8_t table_id, bool may_packet_in); static size_t put_userspace_action(const struct ofproto_dpif *, struct ofpbuf *odp_actions, const struct flow *, const union user_action_cookie *); static void compose_slow_path(const struct ofproto_dpif *, const struct flow *, enum slow_path_reason, uint64_t *stub, size_t stub_size, const struct nlattr **actionsp, size_t *actions_lenp); static void xlate_report(struct action_xlate_ctx *ctx, const char *s); /* A subfacet (see "struct subfacet" below) has three possible installation * states: * * - SF_NOT_INSTALLED: Not installed in the datapath. This will only be the * case just after the subfacet is created, just before the subfacet is * destroyed, or if the datapath returns an error when we try to install a * subfacet. * * - SF_FAST_PATH: The subfacet's actions are installed in the datapath. * * - SF_SLOW_PATH: An action that sends every packet for the subfacet through * ofproto_dpif is installed in the datapath. */ enum subfacet_path { SF_NOT_INSTALLED, /* No datapath flow for this subfacet. */ SF_FAST_PATH, /* Full actions are installed. */ SF_SLOW_PATH, /* Send-to-userspace action is installed. */ }; static const char *subfacet_path_to_string(enum subfacet_path); /* A dpif flow and actions associated with a facet. * * See also the large comment on struct facet. */ struct subfacet { /* Owners. */ struct hmap_node hmap_node; /* In struct ofproto_dpif 'subfacets' list. */ struct list list_node; /* In struct facet's 'facets' list. */ struct facet *facet; /* Owning facet. */ enum odp_key_fitness key_fitness; struct nlattr *key; int key_len; long long int used; /* Time last used; time created if not used. */ long long int created; /* Time created. */ uint64_t dp_packet_count; /* Last known packet count in the datapath. */ uint64_t dp_byte_count; /* Last known byte count in the datapath. */ /* Datapath actions. * * These should be essentially identical for every subfacet in a facet, but * may differ in trivial ways due to VLAN splinters. */ size_t actions_len; /* Number of bytes in actions[]. */ struct nlattr *actions; /* Datapath actions. */ enum slow_path_reason slow; /* 0 if fast path may be used. */ enum subfacet_path path; /* Installed in datapath? */ /* Initial values of the packet that may be needed later. */ struct initial_vals initial_vals; /* Datapath port the packet arrived on. This is needed to remove * flows for ports that are no longer part of the bridge. Since the * flow definition only has the OpenFlow port number and the port is * no longer part of the bridge, we can't determine the datapath port * number needed to delete the flow from the datapath. */ uint32_t odp_in_port; }; #define SUBFACET_DESTROY_MAX_BATCH 50 static struct subfacet *subfacet_create(struct facet *, struct flow_miss *miss, long long int now); static struct subfacet *subfacet_find(struct ofproto_dpif *, const struct nlattr *key, size_t key_len, uint32_t key_hash); static void subfacet_destroy(struct subfacet *); static void subfacet_destroy__(struct subfacet *); static void subfacet_destroy_batch(struct ofproto_dpif *, struct subfacet **, int n); static void subfacet_reset_dp_stats(struct subfacet *, struct dpif_flow_stats *); static void subfacet_update_time(struct subfacet *, long long int used); static void subfacet_update_stats(struct subfacet *, const struct dpif_flow_stats *); static void subfacet_make_actions(struct subfacet *, const struct ofpbuf *packet, struct ofpbuf *odp_actions); static int subfacet_install(struct subfacet *, const struct nlattr *actions, size_t actions_len, struct dpif_flow_stats *, enum slow_path_reason); static void subfacet_uninstall(struct subfacet *); static enum subfacet_path subfacet_want_path(enum slow_path_reason); /* An exact-match instantiation of an OpenFlow flow. * * A facet associates a "struct flow", which represents the Open vSwitch * userspace idea of an exact-match flow, with one or more subfacets. Each * subfacet tracks the datapath's idea of the exact-match flow equivalent to * the facet. When the kernel module (or other dpif implementation) and Open * vSwitch userspace agree on the definition of a flow key, there is exactly * one subfacet per facet. If the dpif implementation supports more-specific * flow matching than userspace, however, a facet can have more than one * subfacet, each of which corresponds to some distinction in flow that * userspace simply doesn't understand. * * Flow expiration works in terms of subfacets, so a facet must have at least * one subfacet or it will never expire, leaking memory. */ struct facet { /* Owners. */ struct hmap_node hmap_node; /* In owning ofproto's 'facets' hmap. */ struct list list_node; /* In owning rule's 'facets' list. */ struct rule_dpif *rule; /* Owning rule. */ /* Owned data. */ struct list subfacets; long long int used; /* Time last used; time created if not used. */ /* Key. */ struct flow flow; /* These statistics: * * - Do include packets and bytes sent "by hand", e.g. with * dpif_execute(). * * - Do include packets and bytes that were obtained from the datapath * when a subfacet's statistics were reset (e.g. dpif_flow_put() with * DPIF_FP_ZERO_STATS). * * - Do not include packets or bytes that can be obtained from the * datapath for any existing subfacet. */ uint64_t packet_count; /* Number of packets received. */ uint64_t byte_count; /* Number of bytes received. */ /* Resubmit statistics. */ uint64_t prev_packet_count; /* Number of packets from last stats push. */ uint64_t prev_byte_count; /* Number of bytes from last stats push. */ long long int prev_used; /* Used time from last stats push. */ /* Accounting. */ uint64_t accounted_bytes; /* Bytes processed by facet_account(). */ struct netflow_flow nf_flow; /* Per-flow NetFlow tracking data. */ uint8_t tcp_flags; /* TCP flags seen for this 'rule'. */ /* Properties of datapath actions. * * Every subfacet has its own actions because actions can differ slightly * between splintered and non-splintered subfacets due to the VLAN tag * being initially different (present vs. absent). All of them have these * properties in common so we just store one copy of them here. */ bool has_learn; /* Actions include NXAST_LEARN? */ bool has_normal; /* Actions output to OFPP_NORMAL? */ bool has_fin_timeout; /* Actions include NXAST_FIN_TIMEOUT? */ tag_type tags; /* Tags that would require revalidation. */ mirror_mask_t mirrors; /* Bitmap of dependent mirrors. */ /* Storage for a single subfacet, to reduce malloc() time and space * overhead. (A facet always has at least one subfacet and in the common * case has exactly one subfacet. However, 'one_subfacet' may not * always be valid, since it could have been removed after newer * subfacets were pushed onto the 'subfacets' list.) */ struct subfacet one_subfacet; long long int learn_rl; /* Rate limiter for facet_learn(). */ }; static struct facet *facet_create(struct rule_dpif *, const struct flow *, uint32_t hash); static void facet_remove(struct facet *); static void facet_free(struct facet *); static struct facet *facet_find(struct ofproto_dpif *, const struct flow *, uint32_t hash); static struct facet *facet_lookup_valid(struct ofproto_dpif *, const struct flow *, uint32_t hash); static void facet_revalidate(struct facet *); static bool facet_check_consistency(struct facet *); static void facet_flush_stats(struct facet *); static void facet_update_time(struct facet *, long long int used); static void facet_reset_counters(struct facet *); static void facet_push_stats(struct facet *); static void facet_learn(struct facet *); static void facet_account(struct facet *); static void push_all_stats(void); static struct subfacet *facet_get_subfacet(struct facet *); static bool facet_is_controller_flow(struct facet *); struct ofport_dpif { struct hmap_node odp_port_node; /* In dpif_backer's "odp_to_ofport_map". */ struct ofport up; uint32_t odp_port; struct ofbundle *bundle; /* Bundle that contains this port, if any. */ struct list bundle_node; /* In struct ofbundle's "ports" list. */ struct cfm *cfm; /* Connectivity Fault Management, if any. */ tag_type tag; /* Tag associated with this port. */ bool may_enable; /* May be enabled in bonds. */ long long int carrier_seq; /* Carrier status changes. */ struct tnl_port *tnl_port; /* Tunnel handle, or null. */ /* Spanning tree. */ struct stp_port *stp_port; /* Spanning Tree Protocol, if any. */ enum stp_state stp_state; /* Always STP_DISABLED if STP not in use. */ long long int stp_state_entered; struct hmap priorities; /* Map of attached 'priority_to_dscp's. */ /* Linux VLAN device support (e.g. "eth0.10" for VLAN 10.) * * This is deprecated. It is only for compatibility with broken device * drivers in old versions of Linux that do not properly support VLANs when * VLAN devices are not used. When broken device drivers are no longer in * widespread use, we will delete these interfaces. */ uint16_t realdev_ofp_port; int vlandev_vid; }; /* Node in 'ofport_dpif''s 'priorities' map. Used to maintain a map from * 'priority' (the datapath's term for QoS queue) to the dscp bits which all * traffic egressing the 'ofport' with that priority should be marked with. */ struct priority_to_dscp { struct hmap_node hmap_node; /* Node in 'ofport_dpif''s 'priorities' map. */ uint32_t priority; /* Priority of this queue (see struct flow). */ uint8_t dscp; /* DSCP bits to mark outgoing traffic with. */ }; /* Linux VLAN device support (e.g. "eth0.10" for VLAN 10.) * * This is deprecated. It is only for compatibility with broken device drivers * in old versions of Linux that do not properly support VLANs when VLAN * devices are not used. When broken device drivers are no longer in * widespread use, we will delete these interfaces. */ struct vlan_splinter { struct hmap_node realdev_vid_node; struct hmap_node vlandev_node; uint16_t realdev_ofp_port; uint16_t vlandev_ofp_port; int vid; }; static uint32_t vsp_realdev_to_vlandev(const struct ofproto_dpif *, uint32_t realdev, ovs_be16 vlan_tci); static bool vsp_adjust_flow(const struct ofproto_dpif *, struct flow *); static void vsp_remove(struct ofport_dpif *); static void vsp_add(struct ofport_dpif *, uint16_t realdev_ofp_port, int vid); static uint32_t ofp_port_to_odp_port(const struct ofproto_dpif *, uint16_t ofp_port); static uint16_t odp_port_to_ofp_port(const struct ofproto_dpif *, uint32_t odp_port); static struct ofport_dpif * ofport_dpif_cast(const struct ofport *ofport) { ovs_assert(ofport->ofproto->ofproto_class == &ofproto_dpif_class); return ofport ? CONTAINER_OF(ofport, struct ofport_dpif, up) : NULL; } static void port_run(struct ofport_dpif *); static void port_run_fast(struct ofport_dpif *); static void port_wait(struct ofport_dpif *); static int set_cfm(struct ofport *, const struct cfm_settings *); static void ofport_clear_priorities(struct ofport_dpif *); static void run_fast_rl(void); struct dpif_completion { struct list list_node; struct ofoperation *op; }; /* Extra information about a classifier table. * Currently used just for optimized flow revalidation. */ struct table_dpif { /* If either of these is nonnull, then this table has a form that allows * flows to be tagged to avoid revalidating most flows for the most common * kinds of flow table changes. */ struct cls_table *catchall_table; /* Table that wildcards all fields. */ struct cls_table *other_table; /* Table with any other wildcard set. */ uint32_t basis; /* Keeps each table's tags separate. */ }; /* Reasons that we might need to revalidate every facet, and corresponding * coverage counters. * * A value of 0 means that there is no need to revalidate. * * It would be nice to have some cleaner way to integrate with coverage * counters, but with only a few reasons I guess this is good enough for * now. */ enum revalidate_reason { REV_RECONFIGURE = 1, /* Switch configuration changed. */ REV_STP, /* Spanning tree protocol port status change. */ REV_PORT_TOGGLED, /* Port enabled or disabled by CFM, LACP, ...*/ REV_FLOW_TABLE, /* Flow table changed. */ REV_INCONSISTENCY /* Facet self-check failed. */ }; COVERAGE_DEFINE(rev_reconfigure); COVERAGE_DEFINE(rev_stp); COVERAGE_DEFINE(rev_port_toggled); COVERAGE_DEFINE(rev_flow_table); COVERAGE_DEFINE(rev_inconsistency); /* Drop keys are odp flow keys which have drop flows installed in the kernel. * These are datapath flows which have no associated ofproto, if they did we * would use facets. */ struct drop_key { struct hmap_node hmap_node; struct nlattr *key; size_t key_len; }; /* All datapaths of a given type share a single dpif backer instance. */ struct dpif_backer { char *type; int refcount; struct dpif *dpif; struct timer next_expiration; struct hmap odp_to_ofport_map; /* ODP port to ofport mapping. */ struct simap tnl_backers; /* Set of dpif ports backing tunnels. */ /* Facet revalidation flags applying to facets which use this backer. */ enum revalidate_reason need_revalidate; /* Revalidate every facet. */ struct tag_set revalidate_set; /* Revalidate only matching facets. */ struct hmap drop_keys; /* Set of dropped odp keys. */ }; /* All existing ofproto_backer instances, indexed by ofproto->up.type. */ static struct shash all_dpif_backers = SHASH_INITIALIZER(&all_dpif_backers); static void drop_key_clear(struct dpif_backer *); static struct ofport_dpif * odp_port_to_ofport(const struct dpif_backer *, uint32_t odp_port); static void dpif_stats_update_hit_count(struct ofproto_dpif *ofproto, uint64_t delta); struct avg_subfacet_rates { double add_rate; /* Moving average of new flows created per minute. */ double del_rate; /* Moving average of flows deleted per minute. */ }; static void show_dp_rates(struct ds *ds, const char *heading, const struct avg_subfacet_rates *rates); static void exp_mavg(double *avg, int base, double new); struct ofproto_dpif { struct hmap_node all_ofproto_dpifs_node; /* In 'all_ofproto_dpifs'. */ struct ofproto up; struct dpif_backer *backer; /* Special OpenFlow rules. */ struct rule_dpif *miss_rule; /* Sends flow table misses to controller. */ struct rule_dpif *no_packet_in_rule; /* Drops flow table misses. */ /* Statistics. */ uint64_t n_matches; /* Bridging. */ struct netflow *netflow; struct dpif_sflow *sflow; struct hmap bundles; /* Contains "struct ofbundle"s. */ struct mac_learning *ml; struct ofmirror *mirrors[MAX_MIRRORS]; bool has_mirrors; bool has_bonded_bundles; /* Facets. */ struct hmap facets; struct hmap subfacets; struct governor *governor; long long int consistency_rl; /* Revalidation. */ struct table_dpif tables[N_TABLES]; /* Support for debugging async flow mods. */ struct list completions; bool has_bundle_action; /* True when the first bundle action appears. */ struct netdev_stats stats; /* To account packets generated and consumed in * userspace. */ /* Spanning tree. */ struct stp *stp; long long int stp_last_tick; /* VLAN splinters. */ struct hmap realdev_vid_map; /* (realdev,vid) -> vlandev. */ struct hmap vlandev_map; /* vlandev -> (realdev,vid). */ /* Ports. */ struct sset ports; /* Set of standard port names. */ struct sset ghost_ports; /* Ports with no datapath port. */ struct sset port_poll_set; /* Queued names for port_poll() reply. */ int port_poll_errno; /* Last errno for port_poll() reply. */ /* Per ofproto's dpif stats. */ uint64_t n_hit; uint64_t n_missed; /* Subfacet statistics. * * These keep track of the total number of subfacets added and deleted and * flow life span. They are useful for computing the flow rates stats * exposed via "ovs-appctl dpif/show". The goal is to learn about * traffic patterns in ways that we can use later to improve Open vSwitch * performance in new situations. */ long long int created; /* Time when it is created. */ unsigned int max_n_subfacet; /* Maximum number of flows */ /* The average number of subfacets... */ struct avg_subfacet_rates hourly; /* ...over the last hour. */ struct avg_subfacet_rates daily; /* ...over the last day. */ long long int last_minute; /* Last time 'hourly' was updated. */ /* Number of subfacets added or deleted since 'last_minute'. */ unsigned int subfacet_add_count; unsigned int subfacet_del_count; /* Number of subfacets added or deleted from 'created' to 'last_minute.' */ unsigned long long int total_subfacet_add_count; unsigned long long int total_subfacet_del_count; /* Sum of the number of milliseconds that each subfacet existed, * over the subfacets that have been added and then later deleted. */ unsigned long long int total_subfacet_life_span; /* Incremented by the number of currently existing subfacets, each * time we pull statistics from the kernel. */ unsigned long long int total_subfacet_count; /* Number of times we pull statistics from the kernel. */ unsigned long long int n_update_stats; }; static unsigned long long int avg_subfacet_life_span( const struct ofproto_dpif *); static double avg_subfacet_count(const struct ofproto_dpif *ofproto); static void update_moving_averages(struct ofproto_dpif *ofproto); static void dpif_stats_update_hit_count(struct ofproto_dpif *ofproto, uint64_t delta); static void update_max_subfacet_count(struct ofproto_dpif *ofproto); /* Defer flow mod completion until "ovs-appctl ofproto/unclog"? (Useful only * for debugging the asynchronous flow_mod implementation.) */ static bool clogged; /* All existing ofproto_dpif instances, indexed by ->up.name. */ static struct hmap all_ofproto_dpifs = HMAP_INITIALIZER(&all_ofproto_dpifs); static void ofproto_dpif_unixctl_init(void); static struct ofproto_dpif * ofproto_dpif_cast(const struct ofproto *ofproto) { ovs_assert(ofproto->ofproto_class == &ofproto_dpif_class); return CONTAINER_OF(ofproto, struct ofproto_dpif, up); } static struct ofport_dpif *get_ofp_port(const struct ofproto_dpif *, uint16_t ofp_port); static struct ofport_dpif *get_odp_port(const struct ofproto_dpif *, uint32_t odp_port); static void ofproto_trace(struct ofproto_dpif *, const struct flow *, const struct ofpbuf *, const struct initial_vals *, struct ds *); /* Packet processing. */ static void update_learning_table(struct ofproto_dpif *, const struct flow *, int vlan, struct ofbundle *); /* Upcalls. */ #define FLOW_MISS_MAX_BATCH 50 static int handle_upcalls(struct dpif_backer *, unsigned int max_batch); /* Flow expiration. */ static int expire(struct dpif_backer *); /* NetFlow. */ static void send_netflow_active_timeouts(struct ofproto_dpif *); /* Utilities. */ static int send_packet(const struct ofport_dpif *, struct ofpbuf *packet); static size_t compose_sflow_action(const struct ofproto_dpif *, struct ofpbuf *odp_actions, const struct flow *, uint32_t odp_port); static void add_mirror_actions(struct action_xlate_ctx *ctx, const struct flow *flow); /* Global variables. */ static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); /* Initial mappings of port to bridge mappings. */ static struct shash init_ofp_ports = SHASH_INITIALIZER(&init_ofp_ports); /* Factory functions. */ static void init(const struct shash *iface_hints) { struct shash_node *node; /* Make a local copy, since we don't own 'iface_hints' elements. */ SHASH_FOR_EACH(node, iface_hints) { const struct iface_hint *orig_hint = node->data; struct iface_hint *new_hint = xmalloc(sizeof *new_hint); new_hint->br_name = xstrdup(orig_hint->br_name); new_hint->br_type = xstrdup(orig_hint->br_type); new_hint->ofp_port = orig_hint->ofp_port; shash_add(&init_ofp_ports, node->name, new_hint); } } static void enumerate_types(struct sset *types) { dp_enumerate_types(types); } static int enumerate_names(const char *type, struct sset *names) { struct ofproto_dpif *ofproto; sset_clear(names); HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) { if (strcmp(type, ofproto->up.type)) { continue; } sset_add(names, ofproto->up.name); } return 0; } static int del(const char *type, const char *name) { struct dpif *dpif; int error; error = dpif_open(name, type, &dpif); if (!error) { error = dpif_delete(dpif); dpif_close(dpif); } return error; } static const char * port_open_type(const char *datapath_type, const char *port_type) { return dpif_port_open_type(datapath_type, port_type); } /* Type functions. */ static struct ofproto_dpif * lookup_ofproto_dpif_by_port_name(const char *name) { struct ofproto_dpif *ofproto; HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) { if (sset_contains(&ofproto->ports, name)) { return ofproto; } } return NULL; } static int type_run(const char *type) { static long long int push_timer = LLONG_MIN; struct dpif_backer *backer; char *devname; int error; backer = shash_find_data(&all_dpif_backers, type); if (!backer) { /* This is not necessarily a problem, since backers are only * created on demand. */ return 0; } dpif_run(backer->dpif); /* The most natural place to push facet statistics is when they're pulled * from the datapath. However, when there are many flows in the datapath, * this expensive operation can occur so frequently, that it reduces our * ability to quickly set up flows. To reduce the cost, we push statistics * here instead. */ if (time_msec() > push_timer) { push_timer = time_msec() + 2000; push_all_stats(); } if (backer->need_revalidate || !tag_set_is_empty(&backer->revalidate_set)) { struct tag_set revalidate_set = backer->revalidate_set; bool need_revalidate = backer->need_revalidate; struct ofproto_dpif *ofproto; struct simap_node *node; struct simap tmp_backers; /* Handle tunnel garbage collection. */ simap_init(&tmp_backers); simap_swap(&backer->tnl_backers, &tmp_backers); HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) { struct ofport_dpif *iter; if (backer != ofproto->backer) { continue; } HMAP_FOR_EACH (iter, up.hmap_node, &ofproto->up.ports) { const char *dp_port; if (!iter->tnl_port) { continue; } dp_port = netdev_vport_get_dpif_port(iter->up.netdev); node = simap_find(&tmp_backers, dp_port); if (node) { simap_put(&backer->tnl_backers, dp_port, node->data); simap_delete(&tmp_backers, node); node = simap_find(&backer->tnl_backers, dp_port); } else { node = simap_find(&backer->tnl_backers, dp_port); if (!node) { uint32_t odp_port = UINT32_MAX; if (!dpif_port_add(backer->dpif, iter->up.netdev, &odp_port)) { simap_put(&backer->tnl_backers, dp_port, odp_port); node = simap_find(&backer->tnl_backers, dp_port); } } } iter->odp_port = node ? node->data : OVSP_NONE; if (tnl_port_reconfigure(&iter->up, iter->odp_port, &iter->tnl_port)) { backer->need_revalidate = REV_RECONFIGURE; } } } SIMAP_FOR_EACH (node, &tmp_backers) { dpif_port_del(backer->dpif, node->data); } simap_destroy(&tmp_backers); switch (backer->need_revalidate) { case REV_RECONFIGURE: COVERAGE_INC(rev_reconfigure); break; case REV_STP: COVERAGE_INC(rev_stp); break; case REV_PORT_TOGGLED: COVERAGE_INC(rev_port_toggled); break; case REV_FLOW_TABLE: COVERAGE_INC(rev_flow_table); break; case REV_INCONSISTENCY: COVERAGE_INC(rev_inconsistency); break; } if (backer->need_revalidate) { /* Clear the drop_keys in case we should now be accepting some * formerly dropped flows. */ drop_key_clear(backer); } /* Clear the revalidation flags. */ tag_set_init(&backer->revalidate_set); backer->need_revalidate = 0; HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) { struct facet *facet, *next; if (ofproto->backer != backer) { continue; } HMAP_FOR_EACH_SAFE (facet, next, hmap_node, &ofproto->facets) { if (need_revalidate || tag_set_intersects(&revalidate_set, facet->tags)) { facet_revalidate(facet); run_fast_rl(); } } } } if (timer_expired(&backer->next_expiration)) { int delay = expire(backer); timer_set_duration(&backer->next_expiration, delay); } /* Check for port changes in the dpif. */ while ((error = dpif_port_poll(backer->dpif, &devname)) == 0) { struct ofproto_dpif *ofproto; struct dpif_port port; /* Don't report on the datapath's device. */ if (!strcmp(devname, dpif_base_name(backer->dpif))) { goto next; } HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) { if (simap_contains(&ofproto->backer->tnl_backers, devname)) { goto next; } } ofproto = lookup_ofproto_dpif_by_port_name(devname); if (dpif_port_query_by_name(backer->dpif, devname, &port)) { /* The port was removed. If we know the datapath, * report it through poll_set(). If we don't, it may be * notifying us of a removal we initiated, so ignore it. * If there's a pending ENOBUFS, let it stand, since * everything will be reevaluated. */ if (ofproto && ofproto->port_poll_errno != ENOBUFS) { sset_add(&ofproto->port_poll_set, devname); ofproto->port_poll_errno = 0; } } else if (!ofproto) { /* The port was added, but we don't know with which * ofproto we should associate it. Delete it. */ dpif_port_del(backer->dpif, port.port_no); } dpif_port_destroy(&port); next: free(devname); } if (error != EAGAIN) { struct ofproto_dpif *ofproto; /* There was some sort of error, so propagate it to all * ofprotos that use this backer. */ HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) { if (ofproto->backer == backer) { sset_clear(&ofproto->port_poll_set); ofproto->port_poll_errno = error; } } } return 0; } static int dpif_backer_run_fast(struct dpif_backer *backer, int max_batch) { unsigned int work; /* Handle one or more batches of upcalls, until there's nothing left to do * or until we do a fixed total amount of work. * * We do work in batches because it can be much cheaper to set up a number * of flows and fire off their patches all at once. We do multiple batches * because in some cases handling a packet can cause another packet to be * queued almost immediately as part of the return flow. Both * optimizations can make major improvements on some benchmarks and * presumably for real traffic as well. */ work = 0; while (work < max_batch) { int retval = handle_upcalls(backer, max_batch - work); if (retval <= 0) { return -retval; } work += retval; } return 0; } static int type_run_fast(const char *type) { struct dpif_backer *backer; backer = shash_find_data(&all_dpif_backers, type); if (!backer) { /* This is not necessarily a problem, since backers are only * created on demand. */ return 0; } return dpif_backer_run_fast(backer, FLOW_MISS_MAX_BATCH); } static void run_fast_rl(void) { static long long int port_rl = LLONG_MIN; static unsigned int backer_rl = 0; if (time_msec() >= port_rl) { struct ofproto_dpif *ofproto; struct ofport_dpif *ofport; HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) { HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) { port_run_fast(ofport); } } port_rl = time_msec() + 200; } /* XXX: We have to be careful not to do too much work in this function. If * we call dpif_backer_run_fast() too often, or with too large a batch, * performance improves signifcantly, but at a cost. It's possible for the * number of flows in the datapath to increase without bound, and for poll * loops to take 10s of seconds. The correct solution to this problem, * long term, is to separate flow miss handling into it's own thread so it * isn't affected by revalidations, and expirations. Until then, this is * the best we can do. */ if (++backer_rl >= 10) { struct shash_node *node; backer_rl = 0; SHASH_FOR_EACH (node, &all_dpif_backers) { dpif_backer_run_fast(node->data, 1); } } } static void type_wait(const char *type) { struct dpif_backer *backer; backer = shash_find_data(&all_dpif_backers, type); if (!backer) { /* This is not necessarily a problem, since backers are only * created on demand. */ return; } timer_wait(&backer->next_expiration); } /* Basic life-cycle. */ static int add_internal_flows(struct ofproto_dpif *); static struct ofproto * alloc(void) { struct ofproto_dpif *ofproto = xmalloc(sizeof *ofproto); return &ofproto->up; } static void dealloc(struct ofproto *ofproto_) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); free(ofproto); } static void close_dpif_backer(struct dpif_backer *backer) { struct shash_node *node; ovs_assert(backer->refcount > 0); if (--backer->refcount) { return; } drop_key_clear(backer); hmap_destroy(&backer->drop_keys); simap_destroy(&backer->tnl_backers); hmap_destroy(&backer->odp_to_ofport_map); node = shash_find(&all_dpif_backers, backer->type); free(backer->type); shash_delete(&all_dpif_backers, node); dpif_close(backer->dpif); free(backer); } /* Datapath port slated for removal from datapath. */ struct odp_garbage { struct list list_node; uint32_t odp_port; }; static int open_dpif_backer(const char *type, struct dpif_backer **backerp) { struct dpif_backer *backer; struct dpif_port_dump port_dump; struct dpif_port port; struct shash_node *node; struct list garbage_list; struct odp_garbage *garbage, *next; struct sset names; char *backer_name; const char *name; int error; backer = shash_find_data(&all_dpif_backers, type); if (backer) { backer->refcount++; *backerp = backer; return 0; } backer_name = xasprintf("ovs-%s", type); /* Remove any existing datapaths, since we assume we're the only * userspace controlling the datapath. */ sset_init(&names); dp_enumerate_names(type, &names); SSET_FOR_EACH(name, &names) { struct dpif *old_dpif; /* Don't remove our backer if it exists. */ if (!strcmp(name, backer_name)) { continue; } if (dpif_open(name, type, &old_dpif)) { VLOG_WARN("couldn't open old datapath %s to remove it", name); } else { dpif_delete(old_dpif); dpif_close(old_dpif); } } sset_destroy(&names); backer = xmalloc(sizeof *backer); error = dpif_create_and_open(backer_name, type, &backer->dpif); free(backer_name); if (error) { VLOG_ERR("failed to open datapath of type %s: %s", type, strerror(error)); free(backer); return error; } backer->type = xstrdup(type); backer->refcount = 1; hmap_init(&backer->odp_to_ofport_map); hmap_init(&backer->drop_keys); timer_set_duration(&backer->next_expiration, 1000); backer->need_revalidate = 0; simap_init(&backer->tnl_backers); tag_set_init(&backer->revalidate_set); *backerp = backer; dpif_flow_flush(backer->dpif); /* Loop through the ports already on the datapath and remove any * that we don't need anymore. */ list_init(&garbage_list); dpif_port_dump_start(&port_dump, backer->dpif); while (dpif_port_dump_next(&port_dump, &port)) { node = shash_find(&init_ofp_ports, port.name); if (!node && strcmp(port.name, dpif_base_name(backer->dpif))) { garbage = xmalloc(sizeof *garbage); garbage->odp_port = port.port_no; list_push_front(&garbage_list, &garbage->list_node); } } dpif_port_dump_done(&port_dump); LIST_FOR_EACH_SAFE (garbage, next, list_node, &garbage_list) { dpif_port_del(backer->dpif, garbage->odp_port); list_remove(&garbage->list_node); free(garbage); } shash_add(&all_dpif_backers, type, backer); error = dpif_recv_set(backer->dpif, true); if (error) { VLOG_ERR("failed to listen on datapath of type %s: %s", type, strerror(error)); close_dpif_backer(backer); return error; } return error; } static int construct(struct ofproto *ofproto_) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); struct shash_node *node, *next; int max_ports; int error; int i; error = open_dpif_backer(ofproto->up.type, &ofproto->backer); if (error) { return error; } max_ports = dpif_get_max_ports(ofproto->backer->dpif); ofproto_init_max_ports(ofproto_, MIN(max_ports, OFPP_MAX)); ofproto->n_matches = 0; ofproto->netflow = NULL; ofproto->sflow = NULL; ofproto->stp = NULL; hmap_init(&ofproto->bundles); ofproto->ml = mac_learning_create(MAC_ENTRY_DEFAULT_IDLE_TIME); for (i = 0; i < MAX_MIRRORS; i++) { ofproto->mirrors[i] = NULL; } ofproto->has_bonded_bundles = false; hmap_init(&ofproto->facets); hmap_init(&ofproto->subfacets); ofproto->governor = NULL; ofproto->consistency_rl = LLONG_MIN; for (i = 0; i < N_TABLES; i++) { struct table_dpif *table = &ofproto->tables[i]; table->catchall_table = NULL; table->other_table = NULL; table->basis = random_uint32(); } list_init(&ofproto->completions); ofproto_dpif_unixctl_init(); ofproto->has_mirrors = false; ofproto->has_bundle_action = false; hmap_init(&ofproto->vlandev_map); hmap_init(&ofproto->realdev_vid_map); sset_init(&ofproto->ports); sset_init(&ofproto->ghost_ports); sset_init(&ofproto->port_poll_set); ofproto->port_poll_errno = 0; SHASH_FOR_EACH_SAFE (node, next, &init_ofp_ports) { struct iface_hint *iface_hint = node->data; if (!strcmp(iface_hint->br_name, ofproto->up.name)) { /* Check if the datapath already has this port. */ if (dpif_port_exists(ofproto->backer->dpif, node->name)) { sset_add(&ofproto->ports, node->name); } free(iface_hint->br_name); free(iface_hint->br_type); free(iface_hint); shash_delete(&init_ofp_ports, node); } } hmap_insert(&all_ofproto_dpifs, &ofproto->all_ofproto_dpifs_node, hash_string(ofproto->up.name, 0)); memset(&ofproto->stats, 0, sizeof ofproto->stats); ofproto_init_tables(ofproto_, N_TABLES); error = add_internal_flows(ofproto); ofproto->up.tables[TBL_INTERNAL].flags = OFTABLE_HIDDEN | OFTABLE_READONLY; ofproto->n_hit = 0; ofproto->n_missed = 0; ofproto->max_n_subfacet = 0; ofproto->created = time_msec(); ofproto->last_minute = ofproto->created; memset(&ofproto->hourly, 0, sizeof ofproto->hourly); memset(&ofproto->daily, 0, sizeof ofproto->daily); ofproto->subfacet_add_count = 0; ofproto->subfacet_del_count = 0; ofproto->total_subfacet_add_count = 0; ofproto->total_subfacet_del_count = 0; ofproto->total_subfacet_life_span = 0; ofproto->total_subfacet_count = 0; ofproto->n_update_stats = 0; return error; } static int add_internal_flow(struct ofproto_dpif *ofproto, int id, const struct ofpbuf *ofpacts, struct rule_dpif **rulep) { struct ofputil_flow_mod fm; int error; match_init_catchall(&fm.match); fm.priority = 0; match_set_reg(&fm.match, 0, id); fm.new_cookie = htonll(0); fm.cookie = htonll(0); fm.cookie_mask = htonll(0); fm.table_id = TBL_INTERNAL; fm.command = OFPFC_ADD; fm.idle_timeout = 0; fm.hard_timeout = 0; fm.buffer_id = 0; fm.out_port = 0; fm.flags = 0; fm.ofpacts = ofpacts->data; fm.ofpacts_len = ofpacts->size; error = ofproto_flow_mod(&ofproto->up, &fm); if (error) { VLOG_ERR_RL(&rl, "failed to add internal flow %d (%s)", id, ofperr_to_string(error)); return error; } *rulep = rule_dpif_lookup__(ofproto, &fm.match.flow, TBL_INTERNAL); ovs_assert(*rulep != NULL); return 0; } static int add_internal_flows(struct ofproto_dpif *ofproto) { struct ofpact_controller *controller; uint64_t ofpacts_stub[128 / 8]; struct ofpbuf ofpacts; int error; int id; ofpbuf_use_stack(&ofpacts, ofpacts_stub, sizeof ofpacts_stub); id = 1; controller = ofpact_put_CONTROLLER(&ofpacts); controller->max_len = UINT16_MAX; controller->controller_id = 0; controller->reason = OFPR_NO_MATCH; ofpact_pad(&ofpacts); error = add_internal_flow(ofproto, id++, &ofpacts, &ofproto->miss_rule); if (error) { return error; } ofpbuf_clear(&ofpacts); error = add_internal_flow(ofproto, id++, &ofpacts, &ofproto->no_packet_in_rule); return error; } static void complete_operations(struct ofproto_dpif *ofproto) { struct dpif_completion *c, *next; LIST_FOR_EACH_SAFE (c, next, list_node, &ofproto->completions) { ofoperation_complete(c->op, 0); list_remove(&c->list_node); free(c); } } static void destruct(struct ofproto *ofproto_) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); struct rule_dpif *rule, *next_rule; struct oftable *table; int i; hmap_remove(&all_ofproto_dpifs, &ofproto->all_ofproto_dpifs_node); complete_operations(ofproto); OFPROTO_FOR_EACH_TABLE (table, &ofproto->up) { struct cls_cursor cursor; cls_cursor_init(&cursor, &table->cls, NULL); CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, up.cr, &cursor) { ofproto_rule_destroy(&rule->up); } } for (i = 0; i < MAX_MIRRORS; i++) { mirror_destroy(ofproto->mirrors[i]); } netflow_destroy(ofproto->netflow); dpif_sflow_destroy(ofproto->sflow); hmap_destroy(&ofproto->bundles); mac_learning_destroy(ofproto->ml); hmap_destroy(&ofproto->facets); hmap_destroy(&ofproto->subfacets); governor_destroy(ofproto->governor); hmap_destroy(&ofproto->vlandev_map); hmap_destroy(&ofproto->realdev_vid_map); sset_destroy(&ofproto->ports); sset_destroy(&ofproto->ghost_ports); sset_destroy(&ofproto->port_poll_set); close_dpif_backer(ofproto->backer); } static int run_fast(struct ofproto *ofproto_) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); struct ofport_dpif *ofport; HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) { port_run_fast(ofport); } return 0; } static int run(struct ofproto *ofproto_) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); struct ofport_dpif *ofport; struct ofbundle *bundle; int error; if (!clogged) { complete_operations(ofproto); } error = run_fast(ofproto_); if (error) { return error; } if (ofproto->netflow) { if (netflow_run(ofproto->netflow)) { send_netflow_active_timeouts(ofproto); } } if (ofproto->sflow) { dpif_sflow_run(ofproto->sflow); } HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) { port_run(ofport); } HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) { bundle_run(bundle); } stp_run(ofproto); mac_learning_run(ofproto->ml, &ofproto->backer->revalidate_set); /* Check the consistency of a random facet, to aid debugging. */ if (time_msec() >= ofproto->consistency_rl && !hmap_is_empty(&ofproto->facets) && !ofproto->backer->need_revalidate) { struct facet *facet; ofproto->consistency_rl = time_msec() + 250; facet = CONTAINER_OF(hmap_random_node(&ofproto->facets), struct facet, hmap_node); if (!tag_set_intersects(&ofproto->backer->revalidate_set, facet->tags)) { if (!facet_check_consistency(facet)) { ofproto->backer->need_revalidate = REV_INCONSISTENCY; } } } if (ofproto->governor) { size_t n_subfacets; governor_run(ofproto->governor); /* If the governor has shrunk to its minimum size and the number of * subfacets has dwindled, then drop the governor entirely. * * For hysteresis, the number of subfacets to drop the governor is * smaller than the number needed to trigger its creation. */ n_subfacets = hmap_count(&ofproto->subfacets); if (n_subfacets * 4 < ofproto->up.flow_eviction_threshold && governor_is_idle(ofproto->governor)) { governor_destroy(ofproto->governor); ofproto->governor = NULL; } } return 0; } static void wait(struct ofproto *ofproto_) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); struct ofport_dpif *ofport; struct ofbundle *bundle; if (!clogged && !list_is_empty(&ofproto->completions)) { poll_immediate_wake(); } dpif_wait(ofproto->backer->dpif); dpif_recv_wait(ofproto->backer->dpif); if (ofproto->sflow) { dpif_sflow_wait(ofproto->sflow); } if (!tag_set_is_empty(&ofproto->backer->revalidate_set)) { poll_immediate_wake(); } HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) { port_wait(ofport); } HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) { bundle_wait(bundle); } if (ofproto->netflow) { netflow_wait(ofproto->netflow); } mac_learning_wait(ofproto->ml); stp_wait(ofproto); if (ofproto->backer->need_revalidate) { /* Shouldn't happen, but if it does just go around again. */ VLOG_DBG_RL(&rl, "need revalidate in ofproto_wait_cb()"); poll_immediate_wake(); } if (ofproto->governor) { governor_wait(ofproto->governor); } } static void get_memory_usage(const struct ofproto *ofproto_, struct simap *usage) { const struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); simap_increase(usage, "facets", hmap_count(&ofproto->facets)); simap_increase(usage, "subfacets", hmap_count(&ofproto->subfacets)); } static void flush(struct ofproto *ofproto_) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); struct subfacet *subfacet, *next_subfacet; struct subfacet *batch[SUBFACET_DESTROY_MAX_BATCH]; int n_batch; n_batch = 0; HMAP_FOR_EACH_SAFE (subfacet, next_subfacet, hmap_node, &ofproto->subfacets) { if (subfacet->path != SF_NOT_INSTALLED) { batch[n_batch++] = subfacet; if (n_batch >= SUBFACET_DESTROY_MAX_BATCH) { subfacet_destroy_batch(ofproto, batch, n_batch); n_batch = 0; } } else { subfacet_destroy(subfacet); } } if (n_batch > 0) { subfacet_destroy_batch(ofproto, batch, n_batch); } } static void get_features(struct ofproto *ofproto_ OVS_UNUSED, bool *arp_match_ip, enum ofputil_action_bitmap *actions) { *arp_match_ip = true; *actions = (OFPUTIL_A_OUTPUT | OFPUTIL_A_SET_VLAN_VID | OFPUTIL_A_SET_VLAN_PCP | OFPUTIL_A_STRIP_VLAN | OFPUTIL_A_SET_DL_SRC | OFPUTIL_A_SET_DL_DST | OFPUTIL_A_SET_NW_SRC | OFPUTIL_A_SET_NW_DST | OFPUTIL_A_SET_NW_TOS | OFPUTIL_A_SET_TP_SRC | OFPUTIL_A_SET_TP_DST | OFPUTIL_A_ENQUEUE); } static void get_tables(struct ofproto *ofproto_, struct ofp12_table_stats *ots) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); struct dpif_dp_stats s; strcpy(ots->name, "classifier"); dpif_get_dp_stats(ofproto->backer->dpif, &s); ots->lookup_count = htonll(s.n_hit + s.n_missed); ots->matched_count = htonll(s.n_hit + ofproto->n_matches); } static struct ofport * port_alloc(void) { struct ofport_dpif *port = xmalloc(sizeof *port); return &port->up; } static void port_dealloc(struct ofport *port_) { struct ofport_dpif *port = ofport_dpif_cast(port_); free(port); } static int port_construct(struct ofport *port_) { struct ofport_dpif *port = ofport_dpif_cast(port_); struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto); const struct netdev *netdev = port->up.netdev; struct dpif_port dpif_port; int error; ofproto->backer->need_revalidate = REV_RECONFIGURE; port->bundle = NULL; port->cfm = NULL; port->tag = tag_create_random(); port->may_enable = true; port->stp_port = NULL; port->stp_state = STP_DISABLED; port->tnl_port = NULL; hmap_init(&port->priorities); port->realdev_ofp_port = 0; port->vlandev_vid = 0; port->carrier_seq = netdev_get_carrier_resets(netdev); if (netdev_vport_is_patch(netdev)) { /* XXX By bailing out here, we don't do required sFlow work. */ port->odp_port = OVSP_NONE; return 0; } error = dpif_port_query_by_name(ofproto->backer->dpif, netdev_vport_get_dpif_port(netdev), &dpif_port); if (error) { return error; } port->odp_port = dpif_port.port_no; if (netdev_get_tunnel_config(netdev)) { port->tnl_port = tnl_port_add(&port->up, port->odp_port); } else { /* Sanity-check that a mapping doesn't already exist. This * shouldn't happen for non-tunnel ports. */ if (odp_port_to_ofp_port(ofproto, port->odp_port) != OFPP_NONE) { VLOG_ERR("port %s already has an OpenFlow port number", dpif_port.name); dpif_port_destroy(&dpif_port); return EBUSY; } hmap_insert(&ofproto->backer->odp_to_ofport_map, &port->odp_port_node, hash_int(port->odp_port, 0)); } dpif_port_destroy(&dpif_port); if (ofproto->sflow) { dpif_sflow_add_port(ofproto->sflow, port_, port->odp_port); } return 0; } static void port_destruct(struct ofport *port_) { struct ofport_dpif *port = ofport_dpif_cast(port_); struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto); const char *dp_port_name = netdev_vport_get_dpif_port(port->up.netdev); const char *devname = netdev_get_name(port->up.netdev); if (dpif_port_exists(ofproto->backer->dpif, dp_port_name)) { /* The underlying device is still there, so delete it. This * happens when the ofproto is being destroyed, since the caller * assumes that removal of attached ports will happen as part of * destruction. */ if (!port->tnl_port) { dpif_port_del(ofproto->backer->dpif, port->odp_port); } ofproto->backer->need_revalidate = REV_RECONFIGURE; } if (port->odp_port != OVSP_NONE && !port->tnl_port) { hmap_remove(&ofproto->backer->odp_to_ofport_map, &port->odp_port_node); } tnl_port_del(port->tnl_port); sset_find_and_delete(&ofproto->ports, devname); sset_find_and_delete(&ofproto->ghost_ports, devname); ofproto->backer->need_revalidate = REV_RECONFIGURE; bundle_remove(port_); set_cfm(port_, NULL); if (ofproto->sflow) { dpif_sflow_del_port(ofproto->sflow, port->odp_port); } ofport_clear_priorities(port); hmap_destroy(&port->priorities); } static void port_modified(struct ofport *port_) { struct ofport_dpif *port = ofport_dpif_cast(port_); if (port->bundle && port->bundle->bond) { bond_slave_set_netdev(port->bundle->bond, port, port->up.netdev); } } static void port_reconfigured(struct ofport *port_, enum ofputil_port_config old_config) { struct ofport_dpif *port = ofport_dpif_cast(port_); struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto); enum ofputil_port_config changed = old_config ^ port->up.pp.config; if (changed & (OFPUTIL_PC_NO_RECV | OFPUTIL_PC_NO_RECV_STP | OFPUTIL_PC_NO_FWD | OFPUTIL_PC_NO_FLOOD | OFPUTIL_PC_NO_PACKET_IN)) { ofproto->backer->need_revalidate = REV_RECONFIGURE; if (changed & OFPUTIL_PC_NO_FLOOD && port->bundle) { bundle_update(port->bundle); } } } static int set_sflow(struct ofproto *ofproto_, const struct ofproto_sflow_options *sflow_options) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); struct dpif_sflow *ds = ofproto->sflow; if (sflow_options) { if (!ds) { struct ofport_dpif *ofport; ds = ofproto->sflow = dpif_sflow_create(); HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) { dpif_sflow_add_port(ds, &ofport->up, ofport->odp_port); } ofproto->backer->need_revalidate = REV_RECONFIGURE; } dpif_sflow_set_options(ds, sflow_options); } else { if (ds) { dpif_sflow_destroy(ds); ofproto->backer->need_revalidate = REV_RECONFIGURE; ofproto->sflow = NULL; } } return 0; } static int set_cfm(struct ofport *ofport_, const struct cfm_settings *s) { struct ofport_dpif *ofport = ofport_dpif_cast(ofport_); int error; if (!s) { error = 0; } else { if (!ofport->cfm) { struct ofproto_dpif *ofproto; ofproto = ofproto_dpif_cast(ofport->up.ofproto); ofproto->backer->need_revalidate = REV_RECONFIGURE; ofport->cfm = cfm_create(netdev_get_name(ofport->up.netdev)); } if (cfm_configure(ofport->cfm, s)) { return 0; } error = EINVAL; } cfm_destroy(ofport->cfm); ofport->cfm = NULL; return error; } static bool get_cfm_status(const struct ofport *ofport_, struct ofproto_cfm_status *status) { struct ofport_dpif *ofport = ofport_dpif_cast(ofport_); if (ofport->cfm) { status->faults = cfm_get_fault(ofport->cfm); status->remote_opstate = cfm_get_opup(ofport->cfm); status->health = cfm_get_health(ofport->cfm); cfm_get_remote_mpids(ofport->cfm, &status->rmps, &status->n_rmps); return true; } else { return false; } } /* Spanning Tree. */ static void send_bpdu_cb(struct ofpbuf *pkt, int port_num, void *ofproto_) { struct ofproto_dpif *ofproto = ofproto_; struct stp_port *sp = stp_get_port(ofproto->stp, port_num); struct ofport_dpif *ofport; ofport = stp_port_get_aux(sp); if (!ofport) { VLOG_WARN_RL(&rl, "%s: cannot send BPDU on unknown port %d", ofproto->up.name, port_num); } else { struct eth_header *eth = pkt->l2; netdev_get_etheraddr(ofport->up.netdev, eth->eth_src); if (eth_addr_is_zero(eth->eth_src)) { VLOG_WARN_RL(&rl, "%s: cannot send BPDU on port %d " "with unknown MAC", ofproto->up.name, port_num); } else { send_packet(ofport, pkt); } } ofpbuf_delete(pkt); } /* Configures STP on 'ofproto_' using the settings defined in 's'. */ static int set_stp(struct ofproto *ofproto_, const struct ofproto_stp_settings *s) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); /* Only revalidate flows if the configuration changed. */ if (!s != !ofproto->stp) { ofproto->backer->need_revalidate = REV_RECONFIGURE; } if (s) { if (!ofproto->stp) { ofproto->stp = stp_create(ofproto_->name, s->system_id, send_bpdu_cb, ofproto); ofproto->stp_last_tick = time_msec(); } stp_set_bridge_id(ofproto->stp, s->system_id); stp_set_bridge_priority(ofproto->stp, s->priority); stp_set_hello_time(ofproto->stp, s->hello_time); stp_set_max_age(ofproto->stp, s->max_age); stp_set_forward_delay(ofproto->stp, s->fwd_delay); } else { struct ofport *ofport; HMAP_FOR_EACH (ofport, hmap_node, &ofproto->up.ports) { set_stp_port(ofport, NULL); } stp_destroy(ofproto->stp); ofproto->stp = NULL; } return 0; } static int get_stp_status(struct ofproto *ofproto_, struct ofproto_stp_status *s) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); if (ofproto->stp) { s->enabled = true; s->bridge_id = stp_get_bridge_id(ofproto->stp); s->designated_root = stp_get_designated_root(ofproto->stp); s->root_path_cost = stp_get_root_path_cost(ofproto->stp); } else { s->enabled = false; } return 0; } static void update_stp_port_state(struct ofport_dpif *ofport) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto); enum stp_state state; /* Figure out new state. */ state = ofport->stp_port ? stp_port_get_state(ofport->stp_port) : STP_DISABLED; /* Update state. */ if (ofport->stp_state != state) { enum ofputil_port_state of_state; bool fwd_change; VLOG_DBG_RL(&rl, "port %s: STP state changed from %s to %s", netdev_get_name(ofport->up.netdev), stp_state_name(ofport->stp_state), stp_state_name(state)); if (stp_learn_in_state(ofport->stp_state) != stp_learn_in_state(state)) { /* xxx Learning action flows should also be flushed. */ mac_learning_flush(ofproto->ml, &ofproto->backer->revalidate_set); } fwd_change = stp_forward_in_state(ofport->stp_state) != stp_forward_in_state(state); ofproto->backer->need_revalidate = REV_STP; ofport->stp_state = state; ofport->stp_state_entered = time_msec(); if (fwd_change && ofport->bundle) { bundle_update(ofport->bundle); } /* Update the STP state bits in the OpenFlow port description. */ of_state = ofport->up.pp.state & ~OFPUTIL_PS_STP_MASK; of_state |= (state == STP_LISTENING ? OFPUTIL_PS_STP_LISTEN : state == STP_LEARNING ? OFPUTIL_PS_STP_LEARN : state == STP_FORWARDING ? OFPUTIL_PS_STP_FORWARD : state == STP_BLOCKING ? OFPUTIL_PS_STP_BLOCK : 0); ofproto_port_set_state(&ofport->up, of_state); } } /* Configures STP on 'ofport_' using the settings defined in 's'. The * caller is responsible for assigning STP port numbers and ensuring * there are no duplicates. */ static int set_stp_port(struct ofport *ofport_, const struct ofproto_port_stp_settings *s) { struct ofport_dpif *ofport = ofport_dpif_cast(ofport_); struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto); struct stp_port *sp = ofport->stp_port; if (!s || !s->enable) { if (sp) { ofport->stp_port = NULL; stp_port_disable(sp); update_stp_port_state(ofport); } return 0; } else if (sp && stp_port_no(sp) != s->port_num && ofport == stp_port_get_aux(sp)) { /* The port-id changed, so disable the old one if it's not * already in use by another port. */ stp_port_disable(sp); } sp = ofport->stp_port = stp_get_port(ofproto->stp, s->port_num); stp_port_enable(sp); stp_port_set_aux(sp, ofport); stp_port_set_priority(sp, s->priority); stp_port_set_path_cost(sp, s->path_cost); update_stp_port_state(ofport); return 0; } static int get_stp_port_status(struct ofport *ofport_, struct ofproto_port_stp_status *s) { struct ofport_dpif *ofport = ofport_dpif_cast(ofport_); struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto); struct stp_port *sp = ofport->stp_port; if (!ofproto->stp || !sp) { s->enabled = false; return 0; } s->enabled = true; s->port_id = stp_port_get_id(sp); s->state = stp_port_get_state(sp); s->sec_in_state = (time_msec() - ofport->stp_state_entered) / 1000; s->role = stp_port_get_role(sp); stp_port_get_counts(sp, &s->tx_count, &s->rx_count, &s->error_count); return 0; } static void stp_run(struct ofproto_dpif *ofproto) { if (ofproto->stp) { long long int now = time_msec(); long long int elapsed = now - ofproto->stp_last_tick; struct stp_port *sp; if (elapsed > 0) { stp_tick(ofproto->stp, MIN(INT_MAX, elapsed)); ofproto->stp_last_tick = now; } while (stp_get_changed_port(ofproto->stp, &sp)) { struct ofport_dpif *ofport = stp_port_get_aux(sp); if (ofport) { update_stp_port_state(ofport); } } if (stp_check_and_reset_fdb_flush(ofproto->stp)) { mac_learning_flush(ofproto->ml, &ofproto->backer->revalidate_set); } } } static void stp_wait(struct ofproto_dpif *ofproto) { if (ofproto->stp) { poll_timer_wait(1000); } } /* Returns true if STP should process 'flow'. */ static bool stp_should_process_flow(const struct flow *flow) { return eth_addr_equals(flow->dl_dst, eth_addr_stp); } static void stp_process_packet(const struct ofport_dpif *ofport, const struct ofpbuf *packet) { struct ofpbuf payload = *packet; struct eth_header *eth = payload.data; struct stp_port *sp = ofport->stp_port; /* Sink packets on ports that have STP disabled when the bridge has * STP enabled. */ if (!sp || stp_port_get_state(sp) == STP_DISABLED) { return; } /* Trim off padding on payload. */ if (payload.size > ntohs(eth->eth_type) + ETH_HEADER_LEN) { payload.size = ntohs(eth->eth_type) + ETH_HEADER_LEN; } if (ofpbuf_try_pull(&payload, ETH_HEADER_LEN + LLC_HEADER_LEN)) { stp_received_bpdu(sp, payload.data, payload.size); } } static struct priority_to_dscp * get_priority(const struct ofport_dpif *ofport, uint32_t priority) { struct priority_to_dscp *pdscp; uint32_t hash; hash = hash_int(priority, 0); HMAP_FOR_EACH_IN_BUCKET (pdscp, hmap_node, hash, &ofport->priorities) { if (pdscp->priority == priority) { return pdscp; } } return NULL; } static void ofport_clear_priorities(struct ofport_dpif *ofport) { struct priority_to_dscp *pdscp, *next; HMAP_FOR_EACH_SAFE (pdscp, next, hmap_node, &ofport->priorities) { hmap_remove(&ofport->priorities, &pdscp->hmap_node); free(pdscp); } } static int set_queues(struct ofport *ofport_, const struct ofproto_port_queue *qdscp_list, size_t n_qdscp) { struct ofport_dpif *ofport = ofport_dpif_cast(ofport_); struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto); struct hmap new = HMAP_INITIALIZER(&new); size_t i; for (i = 0; i < n_qdscp; i++) { struct priority_to_dscp *pdscp; uint32_t priority; uint8_t dscp; dscp = (qdscp_list[i].dscp << 2) & IP_DSCP_MASK; if (dpif_queue_to_priority(ofproto->backer->dpif, qdscp_list[i].queue, &priority)) { continue; } pdscp = get_priority(ofport, priority); if (pdscp) { hmap_remove(&ofport->priorities, &pdscp->hmap_node); } else { pdscp = xmalloc(sizeof *pdscp); pdscp->priority = priority; pdscp->dscp = dscp; ofproto->backer->need_revalidate = REV_RECONFIGURE; } if (pdscp->dscp != dscp) { pdscp->dscp = dscp; ofproto->backer->need_revalidate = REV_RECONFIGURE; } hmap_insert(&new, &pdscp->hmap_node, hash_int(pdscp->priority, 0)); } if (!hmap_is_empty(&ofport->priorities)) { ofport_clear_priorities(ofport); ofproto->backer->need_revalidate = REV_RECONFIGURE; } hmap_swap(&new, &ofport->priorities); hmap_destroy(&new); return 0; } /* Bundles. */ /* Expires all MAC learning entries associated with 'bundle' and forces its * ofproto to revalidate every flow. * * Normally MAC learning entries are removed only from the ofproto associated * with 'bundle', but if 'all_ofprotos' is true, then the MAC learning entries * are removed from every ofproto. When patch ports and SLB bonds are in use * and a VM migration happens and the gratuitous ARPs are somehow lost, this * avoids a MAC_ENTRY_IDLE_TIME delay before the migrated VM can communicate * with the host from which it migrated. */ static void bundle_flush_macs(struct ofbundle *bundle, bool all_ofprotos) { struct ofproto_dpif *ofproto = bundle->ofproto; struct mac_learning *ml = ofproto->ml; struct mac_entry *mac, *next_mac; ofproto->backer->need_revalidate = REV_RECONFIGURE; LIST_FOR_EACH_SAFE (mac, next_mac, lru_node, &ml->lrus) { if (mac->port.p == bundle) { if (all_ofprotos) { struct ofproto_dpif *o; HMAP_FOR_EACH (o, all_ofproto_dpifs_node, &all_ofproto_dpifs) { if (o != ofproto) { struct mac_entry *e; e = mac_learning_lookup(o->ml, mac->mac, mac->vlan, NULL); if (e) { mac_learning_expire(o->ml, e); } } } } mac_learning_expire(ml, mac); } } } static struct ofbundle * bundle_lookup(const struct ofproto_dpif *ofproto, void *aux) { struct ofbundle *bundle; HMAP_FOR_EACH_IN_BUCKET (bundle, hmap_node, hash_pointer(aux, 0), &ofproto->bundles) { if (bundle->aux == aux) { return bundle; } } return NULL; } /* Looks up each of the 'n_auxes' pointers in 'auxes' as bundles and adds the * ones that are found to 'bundles'. */ static void bundle_lookup_multiple(struct ofproto_dpif *ofproto, void **auxes, size_t n_auxes, struct hmapx *bundles) { size_t i; hmapx_init(bundles); for (i = 0; i < n_auxes; i++) { struct ofbundle *bundle = bundle_lookup(ofproto, auxes[i]); if (bundle) { hmapx_add(bundles, bundle); } } } static void bundle_update(struct ofbundle *bundle) { struct ofport_dpif *port; bundle->floodable = true; LIST_FOR_EACH (port, bundle_node, &bundle->ports) { if (port->up.pp.config & OFPUTIL_PC_NO_FLOOD || !stp_forward_in_state(port->stp_state)) { bundle->floodable = false; break; } } } static void bundle_del_port(struct ofport_dpif *port) { struct ofbundle *bundle = port->bundle; bundle->ofproto->backer->need_revalidate = REV_RECONFIGURE; list_remove(&port->bundle_node); port->bundle = NULL; if (bundle->lacp) { lacp_slave_unregister(bundle->lacp, port); } if (bundle->bond) { bond_slave_unregister(bundle->bond, port); } bundle_update(bundle); } static bool bundle_add_port(struct ofbundle *bundle, uint32_t ofp_port, struct lacp_slave_settings *lacp) { struct ofport_dpif *port; port = get_ofp_port(bundle->ofproto, ofp_port); if (!port) { return false; } if (port->bundle != bundle) { bundle->ofproto->backer->need_revalidate = REV_RECONFIGURE; if (port->bundle) { bundle_del_port(port); } port->bundle = bundle; list_push_back(&bundle->ports, &port->bundle_node); if (port->up.pp.config & OFPUTIL_PC_NO_FLOOD || !stp_forward_in_state(port->stp_state)) { bundle->floodable = false; } } if (lacp) { bundle->ofproto->backer->need_revalidate = REV_RECONFIGURE; lacp_slave_register(bundle->lacp, port, lacp); } return true; } static void bundle_destroy(struct ofbundle *bundle) { struct ofproto_dpif *ofproto; struct ofport_dpif *port, *next_port; int i; if (!bundle) { return; } ofproto = bundle->ofproto; for (i = 0; i < MAX_MIRRORS; i++) { struct ofmirror *m = ofproto->mirrors[i]; if (m) { if (m->out == bundle) { mirror_destroy(m); } else if (hmapx_find_and_delete(&m->srcs, bundle) || hmapx_find_and_delete(&m->dsts, bundle)) { ofproto->backer->need_revalidate = REV_RECONFIGURE; } } } LIST_FOR_EACH_SAFE (port, next_port, bundle_node, &bundle->ports) { bundle_del_port(port); } bundle_flush_macs(bundle, true); hmap_remove(&ofproto->bundles, &bundle->hmap_node); free(bundle->name); free(bundle->trunks); lacp_destroy(bundle->lacp); bond_destroy(bundle->bond); free(bundle); } static int bundle_set(struct ofproto *ofproto_, void *aux, const struct ofproto_bundle_settings *s) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); bool need_flush = false; struct ofport_dpif *port; struct ofbundle *bundle; unsigned long *trunks; int vlan; size_t i; bool ok; if (!s) { bundle_destroy(bundle_lookup(ofproto, aux)); return 0; } ovs_assert(s->n_slaves == 1 || s->bond != NULL); ovs_assert((s->lacp != NULL) == (s->lacp_slaves != NULL)); bundle = bundle_lookup(ofproto, aux); if (!bundle) { bundle = xmalloc(sizeof *bundle); bundle->ofproto = ofproto; hmap_insert(&ofproto->bundles, &bundle->hmap_node, hash_pointer(aux, 0)); bundle->aux = aux; bundle->name = NULL; list_init(&bundle->ports); bundle->vlan_mode = PORT_VLAN_TRUNK; bundle->vlan = -1; bundle->trunks = NULL; bundle->use_priority_tags = s->use_priority_tags; bundle->lacp = NULL; bundle->bond = NULL; bundle->floodable = true; bundle->src_mirrors = 0; bundle->dst_mirrors = 0; bundle->mirror_out = 0; } if (!bundle->name || strcmp(s->name, bundle->name)) { free(bundle->name); bundle->name = xstrdup(s->name); } /* LACP. */ if (s->lacp) { if (!bundle->lacp) { ofproto->backer->need_revalidate = REV_RECONFIGURE; bundle->lacp = lacp_create(); } lacp_configure(bundle->lacp, s->lacp); } else { lacp_destroy(bundle->lacp); bundle->lacp = NULL; } /* Update set of ports. */ ok = true; for (i = 0; i < s->n_slaves; i++) { if (!bundle_add_port(bundle, s->slaves[i], s->lacp ? &s->lacp_slaves[i] : NULL)) { ok = false; } } if (!ok || list_size(&bundle->ports) != s->n_slaves) { struct ofport_dpif *next_port; LIST_FOR_EACH_SAFE (port, next_port, bundle_node, &bundle->ports) { for (i = 0; i < s->n_slaves; i++) { if (s->slaves[i] == port->up.ofp_port) { goto found; } } bundle_del_port(port); found: ; } } ovs_assert(list_size(&bundle->ports) <= s->n_slaves); if (list_is_empty(&bundle->ports)) { bundle_destroy(bundle); return EINVAL; } /* Set VLAN tagging mode */ if (s->vlan_mode != bundle->vlan_mode || s->use_priority_tags != bundle->use_priority_tags) { bundle->vlan_mode = s->vlan_mode; bundle->use_priority_tags = s->use_priority_tags; need_flush = true; } /* Set VLAN tag. */ vlan = (s->vlan_mode == PORT_VLAN_TRUNK ? -1 : s->vlan >= 0 && s->vlan <= 4095 ? s->vlan : 0); if (vlan != bundle->vlan) { bundle->vlan = vlan; need_flush = true; } /* Get trunked VLANs. */ switch (s->vlan_mode) { case PORT_VLAN_ACCESS: trunks = NULL; break; case PORT_VLAN_TRUNK: trunks = CONST_CAST(unsigned long *, s->trunks); break; case PORT_VLAN_NATIVE_UNTAGGED: case PORT_VLAN_NATIVE_TAGGED: if (vlan != 0 && (!s->trunks || !bitmap_is_set(s->trunks, vlan) || bitmap_is_set(s->trunks, 0))) { /* Force trunking the native VLAN and prohibit trunking VLAN 0. */ if (s->trunks) { trunks = bitmap_clone(s->trunks, 4096); } else { trunks = bitmap_allocate1(4096); } bitmap_set1(trunks, vlan); bitmap_set0(trunks, 0); } else { trunks = CONST_CAST(unsigned long *, s->trunks); } break; default: NOT_REACHED(); } if (!vlan_bitmap_equal(trunks, bundle->trunks)) { free(bundle->trunks); if (trunks == s->trunks) { bundle->trunks = vlan_bitmap_clone(trunks); } else { bundle->trunks = trunks; trunks = NULL; } need_flush = true; } if (trunks != s->trunks) { free(trunks); } /* Bonding. */ if (!list_is_short(&bundle->ports)) { bundle->ofproto->has_bonded_bundles = true; if (bundle->bond) { if (bond_reconfigure(bundle->bond, s->bond)) { ofproto->backer->need_revalidate = REV_RECONFIGURE; } } else { bundle->bond = bond_create(s->bond); ofproto->backer->need_revalidate = REV_RECONFIGURE; } LIST_FOR_EACH (port, bundle_node, &bundle->ports) { bond_slave_register(bundle->bond, port, port->up.netdev); } } else { bond_destroy(bundle->bond); bundle->bond = NULL; } /* If we changed something that would affect MAC learning, un-learn * everything on this port and force flow revalidation. */ if (need_flush) { bundle_flush_macs(bundle, false); } return 0; } static void bundle_remove(struct ofport *port_) { struct ofport_dpif *port = ofport_dpif_cast(port_); struct ofbundle *bundle = port->bundle; if (bundle) { bundle_del_port(port); if (list_is_empty(&bundle->ports)) { bundle_destroy(bundle); } else if (list_is_short(&bundle->ports)) { bond_destroy(bundle->bond); bundle->bond = NULL; } } } static void send_pdu_cb(void *port_, const void *pdu, size_t pdu_size) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 10); struct ofport_dpif *port = port_; uint8_t ea[ETH_ADDR_LEN]; int error; error = netdev_get_etheraddr(port->up.netdev, ea); if (!error) { struct ofpbuf packet; void *packet_pdu; ofpbuf_init(&packet, 0); packet_pdu = eth_compose(&packet, eth_addr_lacp, ea, ETH_TYPE_LACP, pdu_size); memcpy(packet_pdu, pdu, pdu_size); send_packet(port, &packet); ofpbuf_uninit(&packet); } else { VLOG_ERR_RL(&rl, "port %s: cannot obtain Ethernet address of iface " "%s (%s)", port->bundle->name, netdev_get_name(port->up.netdev), strerror(error)); } } static void bundle_send_learning_packets(struct ofbundle *bundle) { struct ofproto_dpif *ofproto = bundle->ofproto; int error, n_packets, n_errors; struct mac_entry *e; error = n_packets = n_errors = 0; LIST_FOR_EACH (e, lru_node, &ofproto->ml->lrus) { if (e->port.p != bundle) { struct ofpbuf *learning_packet; struct ofport_dpif *port; void *port_void; int ret; /* The assignment to "port" is unnecessary but makes "grep"ing for * struct ofport_dpif more effective. */ learning_packet = bond_compose_learning_packet(bundle->bond, e->mac, e->vlan, &port_void); port = port_void; ret = send_packet(port, learning_packet); ofpbuf_delete(learning_packet); if (ret) { error = ret; n_errors++; } n_packets++; } } if (n_errors) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_WARN_RL(&rl, "bond %s: %d errors sending %d gratuitous learning " "packets, last error was: %s", bundle->name, n_errors, n_packets, strerror(error)); } else { VLOG_DBG("bond %s: sent %d gratuitous learning packets", bundle->name, n_packets); } } static void bundle_run(struct ofbundle *bundle) { if (bundle->lacp) { lacp_run(bundle->lacp, send_pdu_cb); } if (bundle->bond) { struct ofport_dpif *port; LIST_FOR_EACH (port, bundle_node, &bundle->ports) { bond_slave_set_may_enable(bundle->bond, port, port->may_enable); } bond_run(bundle->bond, &bundle->ofproto->backer->revalidate_set, lacp_status(bundle->lacp)); if (bond_should_send_learning_packets(bundle->bond)) { bundle_send_learning_packets(bundle); } } } static void bundle_wait(struct ofbundle *bundle) { if (bundle->lacp) { lacp_wait(bundle->lacp); } if (bundle->bond) { bond_wait(bundle->bond); } } /* Mirrors. */ static int mirror_scan(struct ofproto_dpif *ofproto) { int idx; for (idx = 0; idx < MAX_MIRRORS; idx++) { if (!ofproto->mirrors[idx]) { return idx; } } return -1; } static struct ofmirror * mirror_lookup(struct ofproto_dpif *ofproto, void *aux) { int i; for (i = 0; i < MAX_MIRRORS; i++) { struct ofmirror *mirror = ofproto->mirrors[i]; if (mirror && mirror->aux == aux) { return mirror; } } return NULL; } /* Update the 'dup_mirrors' member of each of the ofmirrors in 'ofproto'. */ static void mirror_update_dups(struct ofproto_dpif *ofproto) { int i; for (i = 0; i < MAX_MIRRORS; i++) { struct ofmirror *m = ofproto->mirrors[i]; if (m) { m->dup_mirrors = MIRROR_MASK_C(1) << i; } } for (i = 0; i < MAX_MIRRORS; i++) { struct ofmirror *m1 = ofproto->mirrors[i]; int j; if (!m1) { continue; } for (j = i + 1; j < MAX_MIRRORS; j++) { struct ofmirror *m2 = ofproto->mirrors[j]; if (m2 && m1->out == m2->out && m1->out_vlan == m2->out_vlan) { m1->dup_mirrors |= MIRROR_MASK_C(1) << j; m2->dup_mirrors |= m1->dup_mirrors; } } } } static int mirror_set(struct ofproto *ofproto_, void *aux, const struct ofproto_mirror_settings *s) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); mirror_mask_t mirror_bit; struct ofbundle *bundle; struct ofmirror *mirror; struct ofbundle *out; struct hmapx srcs; /* Contains "struct ofbundle *"s. */ struct hmapx dsts; /* Contains "struct ofbundle *"s. */ int out_vlan; mirror = mirror_lookup(ofproto, aux); if (!s) { mirror_destroy(mirror); return 0; } if (!mirror) { int idx; idx = mirror_scan(ofproto); if (idx < 0) { VLOG_WARN("bridge %s: maximum of %d port mirrors reached, " "cannot create %s", ofproto->up.name, MAX_MIRRORS, s->name); return EFBIG; } mirror = ofproto->mirrors[idx] = xzalloc(sizeof *mirror); mirror->ofproto = ofproto; mirror->idx = idx; mirror->aux = aux; mirror->out_vlan = -1; mirror->name = NULL; } if (!mirror->name || strcmp(s->name, mirror->name)) { free(mirror->name); mirror->name = xstrdup(s->name); } /* Get the new configuration. */ if (s->out_bundle) { out = bundle_lookup(ofproto, s->out_bundle); if (!out) { mirror_destroy(mirror); return EINVAL; } out_vlan = -1; } else { out = NULL; out_vlan = s->out_vlan; } bundle_lookup_multiple(ofproto, s->srcs, s->n_srcs, &srcs); bundle_lookup_multiple(ofproto, s->dsts, s->n_dsts, &dsts); /* If the configuration has not changed, do nothing. */ if (hmapx_equals(&srcs, &mirror->srcs) && hmapx_equals(&dsts, &mirror->dsts) && vlan_bitmap_equal(mirror->vlans, s->src_vlans) && mirror->out == out && mirror->out_vlan == out_vlan) { hmapx_destroy(&srcs); hmapx_destroy(&dsts); return 0; } hmapx_swap(&srcs, &mirror->srcs); hmapx_destroy(&srcs); hmapx_swap(&dsts, &mirror->dsts); hmapx_destroy(&dsts); free(mirror->vlans); mirror->vlans = vlan_bitmap_clone(s->src_vlans); mirror->out = out; mirror->out_vlan = out_vlan; /* Update bundles. */ mirror_bit = MIRROR_MASK_C(1) << mirror->idx; HMAP_FOR_EACH (bundle, hmap_node, &mirror->ofproto->bundles) { if (hmapx_contains(&mirror->srcs, bundle)) { bundle->src_mirrors |= mirror_bit; } else { bundle->src_mirrors &= ~mirror_bit; } if (hmapx_contains(&mirror->dsts, bundle)) { bundle->dst_mirrors |= mirror_bit; } else { bundle->dst_mirrors &= ~mirror_bit; } if (mirror->out == bundle) { bundle->mirror_out |= mirror_bit; } else { bundle->mirror_out &= ~mirror_bit; } } ofproto->backer->need_revalidate = REV_RECONFIGURE; ofproto->has_mirrors = true; mac_learning_flush(ofproto->ml, &ofproto->backer->revalidate_set); mirror_update_dups(ofproto); return 0; } static void mirror_destroy(struct ofmirror *mirror) { struct ofproto_dpif *ofproto; mirror_mask_t mirror_bit; struct ofbundle *bundle; int i; if (!mirror) { return; } ofproto = mirror->ofproto; ofproto->backer->need_revalidate = REV_RECONFIGURE; mac_learning_flush(ofproto->ml, &ofproto->backer->revalidate_set); mirror_bit = MIRROR_MASK_C(1) << mirror->idx; HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) { bundle->src_mirrors &= ~mirror_bit; bundle->dst_mirrors &= ~mirror_bit; bundle->mirror_out &= ~mirror_bit; } hmapx_destroy(&mirror->srcs); hmapx_destroy(&mirror->dsts); free(mirror->vlans); ofproto->mirrors[mirror->idx] = NULL; free(mirror->name); free(mirror); mirror_update_dups(ofproto); ofproto->has_mirrors = false; for (i = 0; i < MAX_MIRRORS; i++) { if (ofproto->mirrors[i]) { ofproto->has_mirrors = true; break; } } } static int mirror_get_stats(struct ofproto *ofproto_, void *aux, uint64_t *packets, uint64_t *bytes) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); struct ofmirror *mirror = mirror_lookup(ofproto, aux); if (!mirror) { *packets = *bytes = UINT64_MAX; return 0; } push_all_stats(); *packets = mirror->packet_count; *bytes = mirror->byte_count; return 0; } static int set_flood_vlans(struct ofproto *ofproto_, unsigned long *flood_vlans) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); if (mac_learning_set_flood_vlans(ofproto->ml, flood_vlans)) { mac_learning_flush(ofproto->ml, &ofproto->backer->revalidate_set); } return 0; } static bool is_mirror_output_bundle(const struct ofproto *ofproto_, void *aux) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); struct ofbundle *bundle = bundle_lookup(ofproto, aux); return bundle && bundle->mirror_out != 0; } static void forward_bpdu_changed(struct ofproto *ofproto_) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); ofproto->backer->need_revalidate = REV_RECONFIGURE; } static void set_mac_table_config(struct ofproto *ofproto_, unsigned int idle_time, size_t max_entries) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); mac_learning_set_idle_time(ofproto->ml, idle_time); mac_learning_set_max_entries(ofproto->ml, max_entries); } /* Ports. */ static struct ofport_dpif * get_ofp_port(const struct ofproto_dpif *ofproto, uint16_t ofp_port) { struct ofport *ofport = ofproto_get_port(&ofproto->up, ofp_port); return ofport ? ofport_dpif_cast(ofport) : NULL; } static struct ofport_dpif * get_odp_port(const struct ofproto_dpif *ofproto, uint32_t odp_port) { struct ofport_dpif *port = odp_port_to_ofport(ofproto->backer, odp_port); return port && &ofproto->up == port->up.ofproto ? port : NULL; } static void ofproto_port_from_dpif_port(struct ofproto_dpif *ofproto, struct ofproto_port *ofproto_port, struct dpif_port *dpif_port) { ofproto_port->name = dpif_port->name; ofproto_port->type = dpif_port->type; ofproto_port->ofp_port = odp_port_to_ofp_port(ofproto, dpif_port->port_no); } static struct ofport_dpif * ofport_get_peer(const struct ofport_dpif *ofport_dpif) { const struct ofproto_dpif *ofproto; const char *peer; peer = netdev_vport_patch_peer(ofport_dpif->up.netdev); if (!peer) { return NULL; } HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) { struct ofport *ofport; ofport = shash_find_data(&ofproto->up.port_by_name, peer); if (ofport && ofport->ofproto->ofproto_class == &ofproto_dpif_class) { return ofport_dpif_cast(ofport); } } return NULL; } static void port_run_fast(struct ofport_dpif *ofport) { if (ofport->cfm && cfm_should_send_ccm(ofport->cfm)) { struct ofpbuf packet; ofpbuf_init(&packet, 0); cfm_compose_ccm(ofport->cfm, &packet, ofport->up.pp.hw_addr); send_packet(ofport, &packet); ofpbuf_uninit(&packet); } } static void port_run(struct ofport_dpif *ofport) { long long int carrier_seq = netdev_get_carrier_resets(ofport->up.netdev); bool carrier_changed = carrier_seq != ofport->carrier_seq; bool enable = netdev_get_carrier(ofport->up.netdev); ofport->carrier_seq = carrier_seq; port_run_fast(ofport); if (ofport->tnl_port && tnl_port_reconfigure(&ofport->up, ofport->odp_port, &ofport->tnl_port)) { ofproto_dpif_cast(ofport->up.ofproto)->backer->need_revalidate = true; } if (ofport->cfm) { int cfm_opup = cfm_get_opup(ofport->cfm); cfm_run(ofport->cfm); enable = enable && !cfm_get_fault(ofport->cfm); if (cfm_opup >= 0) { enable = enable && cfm_opup; } } if (ofport->bundle) { enable = enable && lacp_slave_may_enable(ofport->bundle->lacp, ofport); if (carrier_changed) { lacp_slave_carrier_changed(ofport->bundle->lacp, ofport); } } if (ofport->may_enable != enable) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto); if (ofproto->has_bundle_action) { ofproto->backer->need_revalidate = REV_PORT_TOGGLED; } } ofport->may_enable = enable; } static void port_wait(struct ofport_dpif *ofport) { if (ofport->cfm) { cfm_wait(ofport->cfm); } } static int port_query_by_name(const struct ofproto *ofproto_, const char *devname, struct ofproto_port *ofproto_port) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); struct dpif_port dpif_port; int error; if (sset_contains(&ofproto->ghost_ports, devname)) { const char *type = netdev_get_type_from_name(devname); /* We may be called before ofproto->up.port_by_name is populated with * the appropriate ofport. For this reason, we must get the name and * type from the netdev layer directly. */ if (type) { const struct ofport *ofport; ofport = shash_find_data(&ofproto->up.port_by_name, devname); ofproto_port->ofp_port = ofport ? ofport->ofp_port : OFPP_NONE; ofproto_port->name = xstrdup(devname); ofproto_port->type = xstrdup(type); return 0; } return ENODEV; } if (!sset_contains(&ofproto->ports, devname)) { return ENODEV; } error = dpif_port_query_by_name(ofproto->backer->dpif, devname, &dpif_port); if (!error) { ofproto_port_from_dpif_port(ofproto, ofproto_port, &dpif_port); } return error; } static int port_add(struct ofproto *ofproto_, struct netdev *netdev) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); const char *dp_port_name = netdev_vport_get_dpif_port(netdev); const char *devname = netdev_get_name(netdev); if (netdev_vport_is_patch(netdev)) { sset_add(&ofproto->ghost_ports, netdev_get_name(netdev)); return 0; } if (!dpif_port_exists(ofproto->backer->dpif, dp_port_name)) { uint32_t port_no = UINT32_MAX; int error; error = dpif_port_add(ofproto->backer->dpif, netdev, &port_no); if (error) { return error; } if (netdev_get_tunnel_config(netdev)) { simap_put(&ofproto->backer->tnl_backers, dp_port_name, port_no); } } if (netdev_get_tunnel_config(netdev)) { sset_add(&ofproto->ghost_ports, devname); } else { sset_add(&ofproto->ports, devname); } return 0; } static int port_del(struct ofproto *ofproto_, uint16_t ofp_port) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); struct ofport_dpif *ofport = get_ofp_port(ofproto, ofp_port); int error = 0; if (!ofport) { return 0; } sset_find_and_delete(&ofproto->ghost_ports, netdev_get_name(ofport->up.netdev)); ofproto->backer->need_revalidate = REV_RECONFIGURE; if (!ofport->tnl_port) { error = dpif_port_del(ofproto->backer->dpif, ofport->odp_port); if (!error) { /* The caller is going to close ofport->up.netdev. If this is a * bonded port, then the bond is using that netdev, so remove it * from the bond. The client will need to reconfigure everything * after deleting ports, so then the slave will get re-added. */ bundle_remove(&ofport->up); } } return error; } static int port_get_stats(const struct ofport *ofport_, struct netdev_stats *stats) { struct ofport_dpif *ofport = ofport_dpif_cast(ofport_); int error; push_all_stats(); error = netdev_get_stats(ofport->up.netdev, stats); if (!error && ofport_->ofp_port == OFPP_LOCAL) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto); /* ofproto->stats.tx_packets represents packets that we created * internally and sent to some port (e.g. packets sent with * send_packet()). Account for them as if they had come from * OFPP_LOCAL and got forwarded. */ if (stats->rx_packets != UINT64_MAX) { stats->rx_packets += ofproto->stats.tx_packets; } if (stats->rx_bytes != UINT64_MAX) { stats->rx_bytes += ofproto->stats.tx_bytes; } /* ofproto->stats.rx_packets represents packets that were received on * some port and we processed internally and dropped (e.g. STP). * Account for them as if they had been forwarded to OFPP_LOCAL. */ if (stats->tx_packets != UINT64_MAX) { stats->tx_packets += ofproto->stats.rx_packets; } if (stats->tx_bytes != UINT64_MAX) { stats->tx_bytes += ofproto->stats.rx_bytes; } } return error; } /* Account packets for LOCAL port. */ static void ofproto_update_local_port_stats(const struct ofproto *ofproto_, size_t tx_size, size_t rx_size) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); if (rx_size) { ofproto->stats.rx_packets++; ofproto->stats.rx_bytes += rx_size; } if (tx_size) { ofproto->stats.tx_packets++; ofproto->stats.tx_bytes += tx_size; } } struct port_dump_state { uint32_t bucket; uint32_t offset; bool ghost; struct ofproto_port port; bool has_port; }; static int port_dump_start(const struct ofproto *ofproto_ OVS_UNUSED, void **statep) { *statep = xzalloc(sizeof(struct port_dump_state)); return 0; } static int port_dump_next(const struct ofproto *ofproto_, void *state_, struct ofproto_port *port) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); struct port_dump_state *state = state_; const struct sset *sset; struct sset_node *node; if (state->has_port) { ofproto_port_destroy(&state->port); state->has_port = false; } sset = state->ghost ? &ofproto->ghost_ports : &ofproto->ports; while ((node = sset_at_position(sset, &state->bucket, &state->offset))) { int error; error = port_query_by_name(ofproto_, node->name, &state->port); if (!error) { *port = state->port; state->has_port = true; return 0; } else if (error != ENODEV) { return error; } } if (!state->ghost) { state->ghost = true; state->bucket = 0; state->offset = 0; return port_dump_next(ofproto_, state_, port); } return EOF; } static int port_dump_done(const struct ofproto *ofproto_ OVS_UNUSED, void *state_) { struct port_dump_state *state = state_; if (state->has_port) { ofproto_port_destroy(&state->port); } free(state); return 0; } static int port_poll(const struct ofproto *ofproto_, char **devnamep) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); if (ofproto->port_poll_errno) { int error = ofproto->port_poll_errno; ofproto->port_poll_errno = 0; return error; } if (sset_is_empty(&ofproto->port_poll_set)) { return EAGAIN; } *devnamep = sset_pop(&ofproto->port_poll_set); return 0; } static void port_poll_wait(const struct ofproto *ofproto_) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); dpif_port_poll_wait(ofproto->backer->dpif); } static int port_is_lacp_current(const struct ofport *ofport_) { const struct ofport_dpif *ofport = ofport_dpif_cast(ofport_); return (ofport->bundle && ofport->bundle->lacp ? lacp_slave_is_current(ofport->bundle->lacp, ofport) : -1); } /* Upcall handling. */ /* Flow miss batching. * * Some dpifs implement operations faster when you hand them off in a batch. * To allow batching, "struct flow_miss" queues the dpif-related work needed * for a given flow. Each "struct flow_miss" corresponds to sending one or * more packets, plus possibly installing the flow in the dpif. * * So far we only batch the operations that affect flow setup time the most. * It's possible to batch more than that, but the benefit might be minimal. */ struct flow_miss { struct hmap_node hmap_node; struct ofproto_dpif *ofproto; struct flow flow; enum odp_key_fitness key_fitness; const struct nlattr *key; size_t key_len; struct initial_vals initial_vals; struct list packets; enum dpif_upcall_type upcall_type; uint32_t odp_in_port; }; struct flow_miss_op { struct dpif_op dpif_op; void *garbage; /* Pointer to pass to free(), NULL if none. */ uint64_t stub[1024 / 8]; /* Temporary buffer. */ }; /* Sends an OFPT_PACKET_IN message for 'packet' of type OFPR_NO_MATCH to each * OpenFlow controller as necessary according to their individual * configurations. */ static void send_packet_in_miss(struct ofproto_dpif *ofproto, const struct ofpbuf *packet, const struct flow *flow) { struct ofputil_packet_in pin; pin.packet = packet->data; pin.packet_len = packet->size; pin.reason = OFPR_NO_MATCH; pin.controller_id = 0; pin.table_id = 0; pin.cookie = 0; pin.send_len = 0; /* not used for flow table misses */ flow_get_metadata(flow, &pin.fmd); connmgr_send_packet_in(ofproto->up.connmgr, &pin); } static enum slow_path_reason process_special(struct ofproto_dpif *ofproto, const struct flow *flow, const struct ofport_dpif *ofport, const struct ofpbuf *packet) { if (!ofport) { return 0; } else if (ofport->cfm && cfm_should_process_flow(ofport->cfm, flow)) { if (packet) { cfm_process_heartbeat(ofport->cfm, packet); } return SLOW_CFM; } else if (ofport->bundle && ofport->bundle->lacp && flow->dl_type == htons(ETH_TYPE_LACP)) { if (packet) { lacp_process_packet(ofport->bundle->lacp, ofport, packet); } return SLOW_LACP; } else if (ofproto->stp && stp_should_process_flow(flow)) { if (packet) { stp_process_packet(ofport, packet); } return SLOW_STP; } else { return 0; } } static struct flow_miss * flow_miss_find(struct hmap *todo, const struct ofproto_dpif *ofproto, const struct flow *flow, uint32_t hash) { struct flow_miss *miss; HMAP_FOR_EACH_WITH_HASH (miss, hmap_node, hash, todo) { if (miss->ofproto == ofproto && flow_equal(&miss->flow, flow)) { return miss; } } return NULL; } /* Partially Initializes 'op' as an "execute" operation for 'miss' and * 'packet'. The caller must initialize op->actions and op->actions_len. If * 'miss' is associated with a subfacet the caller must also initialize the * returned op->subfacet, and if anything needs to be freed after processing * the op, the caller must initialize op->garbage also. */ static void init_flow_miss_execute_op(struct flow_miss *miss, struct ofpbuf *packet, struct flow_miss_op *op) { if (miss->flow.vlan_tci != miss->initial_vals.vlan_tci) { /* This packet was received on a VLAN splinter port. We * added a VLAN to the packet to make the packet resemble * the flow, but the actions were composed assuming that * the packet contained no VLAN. So, we must remove the * VLAN header from the packet before trying to execute the * actions. */ eth_pop_vlan(packet); } op->garbage = NULL; op->dpif_op.type = DPIF_OP_EXECUTE; op->dpif_op.u.execute.key = miss->key; op->dpif_op.u.execute.key_len = miss->key_len; op->dpif_op.u.execute.packet = packet; } /* Helper for handle_flow_miss_without_facet() and * handle_flow_miss_with_facet(). */ static void handle_flow_miss_common(struct rule_dpif *rule, struct ofpbuf *packet, const struct flow *flow) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto); ofproto->n_matches++; if (rule->up.cr.priority == FAIL_OPEN_PRIORITY) { /* * Extra-special case for fail-open mode. * * We are in fail-open mode and the packet matched the fail-open * rule, but we are connected to a controller too. We should send * the packet up to the controller in the hope that it will try to * set up a flow and thereby allow us to exit fail-open. * * See the top-level comment in fail-open.c for more information. */ send_packet_in_miss(ofproto, packet, flow); } } /* Figures out whether a flow that missed in 'ofproto', whose details are in * 'miss', is likely to be worth tracking in detail in userspace and (usually) * installing a datapath flow. The answer is usually "yes" (a return value of * true). However, for short flows the cost of bookkeeping is much higher than * the benefits, so when the datapath holds a large number of flows we impose * some heuristics to decide which flows are likely to be worth tracking. */ static bool flow_miss_should_make_facet(struct ofproto_dpif *ofproto, struct flow_miss *miss, uint32_t hash) { if (!ofproto->governor) { size_t n_subfacets; n_subfacets = hmap_count(&ofproto->subfacets); if (n_subfacets * 2 <= ofproto->up.flow_eviction_threshold) { return true; } ofproto->governor = governor_create(ofproto->up.name); } return governor_should_install_flow(ofproto->governor, hash, list_size(&miss->packets)); } /* Handles 'miss', which matches 'rule', without creating a facet or subfacet * or creating any datapath flow. May add an "execute" operation to 'ops' and * increment '*n_ops'. */ static void handle_flow_miss_without_facet(struct flow_miss *miss, struct rule_dpif *rule, struct flow_miss_op *ops, size_t *n_ops) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto); long long int now = time_msec(); struct action_xlate_ctx ctx; struct ofpbuf *packet; LIST_FOR_EACH (packet, list_node, &miss->packets) { struct flow_miss_op *op = &ops[*n_ops]; struct dpif_flow_stats stats; struct ofpbuf odp_actions; COVERAGE_INC(facet_suppress); ofpbuf_use_stub(&odp_actions, op->stub, sizeof op->stub); dpif_flow_stats_extract(&miss->flow, packet, now, &stats); rule_credit_stats(rule, &stats); action_xlate_ctx_init(&ctx, ofproto, &miss->flow, &miss->initial_vals, rule, 0, packet); ctx.resubmit_stats = &stats; xlate_actions(&ctx, rule->up.ofpacts, rule->up.ofpacts_len, &odp_actions); if (odp_actions.size) { struct dpif_execute *execute = &op->dpif_op.u.execute; init_flow_miss_execute_op(miss, packet, op); execute->actions = odp_actions.data; execute->actions_len = odp_actions.size; op->garbage = ofpbuf_get_uninit_pointer(&odp_actions); (*n_ops)++; } else { ofpbuf_uninit(&odp_actions); } } } /* Handles 'miss', which matches 'facet'. May add any required datapath * operations to 'ops', incrementing '*n_ops' for each new op. * * All of the packets in 'miss' are considered to have arrived at time 'now'. * This is really important only for new facets: if we just called time_msec() * here, then the new subfacet or its packets could look (occasionally) as * though it was used some time after the facet was used. That can make a * one-packet flow look like it has a nonzero duration, which looks odd in * e.g. NetFlow statistics. */ static void handle_flow_miss_with_facet(struct flow_miss *miss, struct facet *facet, long long int now, struct flow_miss_op *ops, size_t *n_ops) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto); enum subfacet_path want_path; struct subfacet *subfacet; struct ofpbuf *packet; subfacet = subfacet_create(facet, miss, now); LIST_FOR_EACH (packet, list_node, &miss->packets) { struct flow_miss_op *op = &ops[*n_ops]; struct dpif_flow_stats stats; struct ofpbuf odp_actions; handle_flow_miss_common(facet->rule, packet, &miss->flow); ofpbuf_use_stub(&odp_actions, op->stub, sizeof op->stub); if (!subfacet->actions || subfacet->slow) { subfacet_make_actions(subfacet, packet, &odp_actions); } dpif_flow_stats_extract(&facet->flow, packet, now, &stats); subfacet_update_stats(subfacet, &stats); if (subfacet->actions_len) { struct dpif_execute *execute = &op->dpif_op.u.execute; init_flow_miss_execute_op(miss, packet, op); if (!subfacet->slow) { execute->actions = subfacet->actions; execute->actions_len = subfacet->actions_len; ofpbuf_uninit(&odp_actions); } else { execute->actions = odp_actions.data; execute->actions_len = odp_actions.size; op->garbage = ofpbuf_get_uninit_pointer(&odp_actions); } (*n_ops)++; } else { ofpbuf_uninit(&odp_actions); } } want_path = subfacet_want_path(subfacet->slow); if (miss->upcall_type == DPIF_UC_MISS || subfacet->path != want_path) { struct flow_miss_op *op = &ops[(*n_ops)++]; struct dpif_flow_put *put = &op->dpif_op.u.flow_put; subfacet->path = want_path; op->garbage = NULL; op->dpif_op.type = DPIF_OP_FLOW_PUT; put->flags = DPIF_FP_CREATE | DPIF_FP_MODIFY; put->key = miss->key; put->key_len = miss->key_len; if (want_path == SF_FAST_PATH) { put->actions = subfacet->actions; put->actions_len = subfacet->actions_len; } else { compose_slow_path(ofproto, &facet->flow, subfacet->slow, op->stub, sizeof op->stub, &put->actions, &put->actions_len); } put->stats = NULL; } } /* Handles flow miss 'miss'. May add any required datapath operations * to 'ops', incrementing '*n_ops' for each new op. */ static void handle_flow_miss(struct flow_miss *miss, struct flow_miss_op *ops, size_t *n_ops) { struct ofproto_dpif *ofproto = miss->ofproto; struct facet *facet; long long int now; uint32_t hash; /* The caller must ensure that miss->hmap_node.hash contains * flow_hash(miss->flow, 0). */ hash = miss->hmap_node.hash; facet = facet_lookup_valid(ofproto, &miss->flow, hash); if (!facet) { struct rule_dpif *rule = rule_dpif_lookup(ofproto, &miss->flow); if (!flow_miss_should_make_facet(ofproto, miss, hash)) { handle_flow_miss_without_facet(miss, rule, ops, n_ops); return; } facet = facet_create(rule, &miss->flow, hash); now = facet->used; } else { now = time_msec(); } handle_flow_miss_with_facet(miss, facet, now, ops, n_ops); } static struct drop_key * drop_key_lookup(const struct dpif_backer *backer, const struct nlattr *key, size_t key_len) { struct drop_key *drop_key; HMAP_FOR_EACH_WITH_HASH (drop_key, hmap_node, hash_bytes(key, key_len, 0), &backer->drop_keys) { if (drop_key->key_len == key_len && !memcmp(drop_key->key, key, key_len)) { return drop_key; } } return NULL; } static void drop_key_clear(struct dpif_backer *backer) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 15); struct drop_key *drop_key, *next; HMAP_FOR_EACH_SAFE (drop_key, next, hmap_node, &backer->drop_keys) { int error; error = dpif_flow_del(backer->dpif, drop_key->key, drop_key->key_len, NULL); if (error && !VLOG_DROP_WARN(&rl)) { struct ds ds = DS_EMPTY_INITIALIZER; odp_flow_key_format(drop_key->key, drop_key->key_len, &ds); VLOG_WARN("Failed to delete drop key (%s) (%s)", strerror(error), ds_cstr(&ds)); ds_destroy(&ds); } hmap_remove(&backer->drop_keys, &drop_key->hmap_node); free(drop_key->key); free(drop_key); } } /* Given a datpath, packet, and flow metadata ('backer', 'packet', and 'key' * respectively), populates 'flow' with the result of odp_flow_key_to_flow(). * Optionally, if nonnull, populates 'fitnessp' with the fitness of 'flow' as * returned by odp_flow_key_to_flow(). Also, optionally populates 'ofproto' * with the ofproto_dpif, and 'odp_in_port' with the datapath in_port, that * 'packet' ingressed. * * If 'ofproto' is nonnull, requires 'flow''s in_port to exist. Otherwise sets * 'flow''s in_port to OFPP_NONE. * * This function does post-processing on data returned from * odp_flow_key_to_flow() to help make VLAN splinters transparent to the rest * of the upcall processing logic. In particular, if the extracted in_port is * a VLAN splinter port, it replaces flow->in_port by the "real" port, sets * flow->vlan_tci correctly for the VLAN of the VLAN splinter port, and pushes * a VLAN header onto 'packet' (if it is nonnull). * * Optionally, if 'initial_vals' is nonnull, sets 'initial_vals->vlan_tci' * to the VLAN TCI with which the packet was really received, that is, the * actual VLAN TCI extracted by odp_flow_key_to_flow(). (This differs from * the value returned in flow->vlan_tci only for packets received on * VLAN splinters.) Also, if received on an IP tunnel, sets * 'initial_vals->tunnel_ip_tos' to the tunnel's IP TOS. * * Similarly, this function also includes some logic to help with tunnels. It * may modify 'flow' as necessary to make the tunneling implementation * transparent to the upcall processing logic. * * Returns 0 if successful, ENODEV if the parsed flow has no associated ofport, * or some other positive errno if there are other problems. */ static int ofproto_receive(const struct dpif_backer *backer, struct ofpbuf *packet, const struct nlattr *key, size_t key_len, struct flow *flow, enum odp_key_fitness *fitnessp, struct ofproto_dpif **ofproto, uint32_t *odp_in_port, struct initial_vals *initial_vals) { const struct ofport_dpif *port; enum odp_key_fitness fitness; int error = ENODEV; fitness = odp_flow_key_to_flow(key, key_len, flow); if (fitness == ODP_FIT_ERROR) { error = EINVAL; goto exit; } if (initial_vals) { initial_vals->vlan_tci = flow->vlan_tci; initial_vals->tunnel_ip_tos = flow->tunnel.ip_tos; } if (odp_in_port) { *odp_in_port = flow->in_port; } if (tnl_port_should_receive(flow)) { const struct ofport *ofport = tnl_port_receive(flow); if (!ofport) { flow->in_port = OFPP_NONE; goto exit; } port = ofport_dpif_cast(ofport); /* We can't reproduce 'key' from 'flow'. */ fitness = fitness == ODP_FIT_PERFECT ? ODP_FIT_TOO_MUCH : fitness; /* XXX: Since the tunnel module is not scoped per backer, it's * theoretically possible that we'll receive an ofport belonging to an * entirely different datapath. In practice, this can't happen because * no platforms has two separate datapaths which each support * tunneling. */ ovs_assert(ofproto_dpif_cast(port->up.ofproto)->backer == backer); } else { port = odp_port_to_ofport(backer, flow->in_port); if (!port) { flow->in_port = OFPP_NONE; goto exit; } flow->in_port = port->up.ofp_port; if (vsp_adjust_flow(ofproto_dpif_cast(port->up.ofproto), flow)) { if (packet) { /* Make the packet resemble the flow, so that it gets sent to * an OpenFlow controller properly, so that it looks correct * for sFlow, and so that flow_extract() will get the correct * vlan_tci if it is called on 'packet'. * * The allocated space inside 'packet' probably also contains * 'key', that is, both 'packet' and 'key' are probably part of * a struct dpif_upcall (see the large comment on that * structure definition), so pushing data on 'packet' is in * general not a good idea since it could overwrite 'key' or * free it as a side effect. However, it's OK in this special * case because we know that 'packet' is inside a Netlink * attribute: pushing 4 bytes will just overwrite the 4-byte * "struct nlattr", which is fine since we don't need that * header anymore. */ eth_push_vlan(packet, flow->vlan_tci); } /* We can't reproduce 'key' from 'flow'. */ fitness = fitness == ODP_FIT_PERFECT ? ODP_FIT_TOO_MUCH : fitness; } } error = 0; if (ofproto) { *ofproto = ofproto_dpif_cast(port->up.ofproto); } exit: if (fitnessp) { *fitnessp = fitness; } return error; } static void handle_miss_upcalls(struct dpif_backer *backer, struct dpif_upcall *upcalls, size_t n_upcalls) { struct dpif_upcall *upcall; struct flow_miss *miss; struct flow_miss misses[FLOW_MISS_MAX_BATCH]; struct flow_miss_op flow_miss_ops[FLOW_MISS_MAX_BATCH * 2]; struct dpif_op *dpif_ops[FLOW_MISS_MAX_BATCH * 2]; struct hmap todo; int n_misses; size_t n_ops; size_t i; if (!n_upcalls) { return; } /* Construct the to-do list. * * This just amounts to extracting the flow from each packet and sticking * the packets that have the same flow in the same "flow_miss" structure so * that we can process them together. */ hmap_init(&todo); n_misses = 0; for (upcall = upcalls; upcall < &upcalls[n_upcalls]; upcall++) { struct flow_miss *miss = &misses[n_misses]; struct flow_miss *existing_miss; struct ofproto_dpif *ofproto; uint32_t odp_in_port; struct flow flow; uint32_t hash; int error; error = ofproto_receive(backer, upcall->packet, upcall->key, upcall->key_len, &flow, &miss->key_fitness, &ofproto, &odp_in_port, &miss->initial_vals); if (error == ENODEV) { struct drop_key *drop_key; /* Received packet on port for which we couldn't associate * an ofproto. This can happen if a port is removed while * traffic is being received. Print a rate-limited message * in case it happens frequently. Install a drop flow so * that future packets of the flow are inexpensively dropped * in the kernel. */ VLOG_INFO_RL(&rl, "received packet on unassociated port %"PRIu32, flow.in_port); drop_key = drop_key_lookup(backer, upcall->key, upcall->key_len); if (!drop_key) { drop_key = xmalloc(sizeof *drop_key); drop_key->key = xmemdup(upcall->key, upcall->key_len); drop_key->key_len = upcall->key_len; hmap_insert(&backer->drop_keys, &drop_key->hmap_node, hash_bytes(drop_key->key, drop_key->key_len, 0)); dpif_flow_put(backer->dpif, DPIF_FP_CREATE | DPIF_FP_MODIFY, drop_key->key, drop_key->key_len, NULL, 0, NULL); } continue; } if (error) { continue; } ofproto->n_missed++; flow_extract(upcall->packet, flow.skb_priority, flow.skb_mark, &flow.tunnel, flow.in_port, &miss->flow); /* Add other packets to a to-do list. */ hash = flow_hash(&miss->flow, 0); existing_miss = flow_miss_find(&todo, ofproto, &miss->flow, hash); if (!existing_miss) { hmap_insert(&todo, &miss->hmap_node, hash); miss->ofproto = ofproto; miss->key = upcall->key; miss->key_len = upcall->key_len; miss->upcall_type = upcall->type; miss->odp_in_port = odp_in_port; list_init(&miss->packets); n_misses++; } else { miss = existing_miss; } list_push_back(&miss->packets, &upcall->packet->list_node); } /* Process each element in the to-do list, constructing the set of * operations to batch. */ n_ops = 0; HMAP_FOR_EACH (miss, hmap_node, &todo) { handle_flow_miss(miss, flow_miss_ops, &n_ops); } ovs_assert(n_ops <= ARRAY_SIZE(flow_miss_ops)); /* Execute batch. */ for (i = 0; i < n_ops; i++) { dpif_ops[i] = &flow_miss_ops[i].dpif_op; } dpif_operate(backer->dpif, dpif_ops, n_ops); /* Free memory. */ for (i = 0; i < n_ops; i++) { free(flow_miss_ops[i].garbage); } hmap_destroy(&todo); } static enum { SFLOW_UPCALL, MISS_UPCALL, BAD_UPCALL } classify_upcall(const struct dpif_upcall *upcall) { union user_action_cookie cookie; /* First look at the upcall type. */ switch (upcall->type) { case DPIF_UC_ACTION: break; case DPIF_UC_MISS: return MISS_UPCALL; case DPIF_N_UC_TYPES: default: VLOG_WARN_RL(&rl, "upcall has unexpected type %"PRIu32, upcall->type); return BAD_UPCALL; } /* "action" upcalls need a closer look. */ if (!upcall->userdata) { VLOG_WARN_RL(&rl, "action upcall missing cookie"); return BAD_UPCALL; } if (nl_attr_get_size(upcall->userdata) != sizeof(cookie)) { VLOG_WARN_RL(&rl, "action upcall cookie has unexpected size %zu", nl_attr_get_size(upcall->userdata)); return BAD_UPCALL; } memcpy(&cookie, nl_attr_get(upcall->userdata), sizeof(cookie)); switch (cookie.type) { case USER_ACTION_COOKIE_SFLOW: return SFLOW_UPCALL; case USER_ACTION_COOKIE_SLOW_PATH: return MISS_UPCALL; case USER_ACTION_COOKIE_UNSPEC: default: VLOG_WARN_RL(&rl, "invalid user cookie : 0x%"PRIx64, nl_attr_get_u64(upcall->userdata)); return BAD_UPCALL; } } static void handle_sflow_upcall(struct dpif_backer *backer, const struct dpif_upcall *upcall) { struct ofproto_dpif *ofproto; union user_action_cookie cookie; struct flow flow; uint32_t odp_in_port; if (ofproto_receive(backer, upcall->packet, upcall->key, upcall->key_len, &flow, NULL, &ofproto, &odp_in_port, NULL) || !ofproto->sflow) { return; } memcpy(&cookie, nl_attr_get(upcall->userdata), sizeof(cookie)); dpif_sflow_received(ofproto->sflow, upcall->packet, &flow, odp_in_port, &cookie); } static int handle_upcalls(struct dpif_backer *backer, unsigned int max_batch) { struct dpif_upcall misses[FLOW_MISS_MAX_BATCH]; struct ofpbuf miss_bufs[FLOW_MISS_MAX_BATCH]; uint64_t miss_buf_stubs[FLOW_MISS_MAX_BATCH][4096 / 8]; int n_processed; int n_misses; int i; ovs_assert(max_batch <= FLOW_MISS_MAX_BATCH); n_misses = 0; for (n_processed = 0; n_processed < max_batch; n_processed++) { struct dpif_upcall *upcall = &misses[n_misses]; struct ofpbuf *buf = &miss_bufs[n_misses]; int error; ofpbuf_use_stub(buf, miss_buf_stubs[n_misses], sizeof miss_buf_stubs[n_misses]); error = dpif_recv(backer->dpif, upcall, buf); if (error) { ofpbuf_uninit(buf); break; } switch (classify_upcall(upcall)) { case MISS_UPCALL: /* Handle it later. */ n_misses++; break; case SFLOW_UPCALL: handle_sflow_upcall(backer, upcall); ofpbuf_uninit(buf); break; case BAD_UPCALL: ofpbuf_uninit(buf); break; } } /* Handle deferred MISS_UPCALL processing. */ handle_miss_upcalls(backer, misses, n_misses); for (i = 0; i < n_misses; i++) { ofpbuf_uninit(&miss_bufs[i]); } return n_processed; } /* Flow expiration. */ static int subfacet_max_idle(const struct ofproto_dpif *); static void update_stats(struct dpif_backer *); static void rule_expire(struct rule_dpif *); static void expire_subfacets(struct ofproto_dpif *, int dp_max_idle); /* This function is called periodically by run(). Its job is to collect * updates for the flows that have been installed into the datapath, most * importantly when they last were used, and then use that information to * expire flows that have not been used recently. * * Returns the number of milliseconds after which it should be called again. */ static int expire(struct dpif_backer *backer) { struct ofproto_dpif *ofproto; int max_idle = INT32_MAX; /* Periodically clear out the drop keys in an effort to keep them * relatively few. */ drop_key_clear(backer); /* Update stats for each flow in the backer. */ update_stats(backer); HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) { struct rule *rule, *next_rule; int dp_max_idle; if (ofproto->backer != backer) { continue; } /* Keep track of the max number of flows per ofproto_dpif. */ update_max_subfacet_count(ofproto); /* Expire subfacets that have been idle too long. */ dp_max_idle = subfacet_max_idle(ofproto); expire_subfacets(ofproto, dp_max_idle); max_idle = MIN(max_idle, dp_max_idle); /* Expire OpenFlow flows whose idle_timeout or hard_timeout * has passed. */ LIST_FOR_EACH_SAFE (rule, next_rule, expirable, &ofproto->up.expirable) { rule_expire(rule_dpif_cast(rule)); } /* All outstanding data in existing flows has been accounted, so it's a * good time to do bond rebalancing. */ if (ofproto->has_bonded_bundles) { struct ofbundle *bundle; HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) { if (bundle->bond) { bond_rebalance(bundle->bond, &backer->revalidate_set); } } } } return MIN(max_idle, 1000); } /* Updates flow table statistics given that the datapath just reported 'stats' * as 'subfacet''s statistics. */ static void update_subfacet_stats(struct subfacet *subfacet, const struct dpif_flow_stats *stats) { struct facet *facet = subfacet->facet; if (stats->n_packets >= subfacet->dp_packet_count) { uint64_t extra = stats->n_packets - subfacet->dp_packet_count; facet->packet_count += extra; } else { VLOG_WARN_RL(&rl, "unexpected packet count from the datapath"); } if (stats->n_bytes >= subfacet->dp_byte_count) { facet->byte_count += stats->n_bytes - subfacet->dp_byte_count; } else { VLOG_WARN_RL(&rl, "unexpected byte count from datapath"); } subfacet->dp_packet_count = stats->n_packets; subfacet->dp_byte_count = stats->n_bytes; facet->tcp_flags |= stats->tcp_flags; subfacet_update_time(subfacet, stats->used); if (facet->accounted_bytes < facet->byte_count) { facet_learn(facet); facet_account(facet); facet->accounted_bytes = facet->byte_count; } } /* 'key' with length 'key_len' bytes is a flow in 'dpif' that we know nothing * about, or a flow that shouldn't be installed but was anyway. Delete it. */ static void delete_unexpected_flow(struct ofproto_dpif *ofproto, const struct nlattr *key, size_t key_len) { if (!VLOG_DROP_WARN(&rl)) { struct ds s; ds_init(&s); odp_flow_key_format(key, key_len, &s); VLOG_WARN("unexpected flow on %s: %s", ofproto->up.name, ds_cstr(&s)); ds_destroy(&s); } COVERAGE_INC(facet_unexpected); dpif_flow_del(ofproto->backer->dpif, key, key_len, NULL); } /* Update 'packet_count', 'byte_count', and 'used' members of installed facets. * * This function also pushes statistics updates to rules which each facet * resubmits into. Generally these statistics will be accurate. However, if a * facet changes the rule it resubmits into at some time in between * update_stats() runs, it is possible that statistics accrued to the * old rule will be incorrectly attributed to the new rule. This could be * avoided by calling update_stats() whenever rules are created or * deleted. However, the performance impact of making so many calls to the * datapath do not justify the benefit of having perfectly accurate statistics. * * In addition, this function maintains per ofproto flow hit counts. The patch * port is not treated specially. e.g. A packet ingress from br0 patched into * br1 will increase the hit count of br0 by 1, however, does not affect * the hit or miss counts of br1. */ static void update_stats(struct dpif_backer *backer) { const struct dpif_flow_stats *stats; struct dpif_flow_dump dump; const struct nlattr *key; size_t key_len; dpif_flow_dump_start(&dump, backer->dpif); while (dpif_flow_dump_next(&dump, &key, &key_len, NULL, NULL, &stats)) { struct flow flow; struct subfacet *subfacet; struct ofproto_dpif *ofproto; struct ofport_dpif *ofport; uint32_t key_hash; if (ofproto_receive(backer, NULL, key, key_len, &flow, NULL, &ofproto, NULL, NULL)) { continue; } ofproto->total_subfacet_count += hmap_count(&ofproto->subfacets); ofproto->n_update_stats++; update_moving_averages(ofproto); ofport = get_ofp_port(ofproto, flow.in_port); if (ofport && ofport->tnl_port) { netdev_vport_inc_rx(ofport->up.netdev, stats); } key_hash = odp_flow_key_hash(key, key_len); subfacet = subfacet_find(ofproto, key, key_len, key_hash); switch (subfacet ? subfacet->path : SF_NOT_INSTALLED) { case SF_FAST_PATH: /* Update ofproto_dpif's hit count. */ if (stats->n_packets > subfacet->dp_packet_count) { uint64_t delta = stats->n_packets - subfacet->dp_packet_count; dpif_stats_update_hit_count(ofproto, delta); } update_subfacet_stats(subfacet, stats); break; case SF_SLOW_PATH: /* Stats are updated per-packet. */ break; case SF_NOT_INSTALLED: default: delete_unexpected_flow(ofproto, key, key_len); break; } run_fast_rl(); } dpif_flow_dump_done(&dump); } /* Calculates and returns the number of milliseconds of idle time after which * subfacets should expire from the datapath. When a subfacet expires, we fold * its statistics into its facet, and when a facet's last subfacet expires, we * fold its statistic into its rule. */ static int subfacet_max_idle(const struct ofproto_dpif *ofproto) { /* * Idle time histogram. * * Most of the time a switch has a relatively small number of subfacets. * When this is the case we might as well keep statistics for all of them * in userspace and to cache them in the kernel datapath for performance as * well. * * As the number of subfacets increases, the memory required to maintain * statistics about them in userspace and in the kernel becomes * significant. However, with a large number of subfacets it is likely * that only a few of them are "heavy hitters" that consume a large amount * of bandwidth. At this point, only heavy hitters are worth caching in * the kernel and maintaining in userspaces; other subfacets we can * discard. * * The technique used to compute the idle time is to build a histogram with * N_BUCKETS buckets whose width is BUCKET_WIDTH msecs each. Each subfacet * that is installed in the kernel gets dropped in the appropriate bucket. * After the histogram has been built, we compute the cutoff so that only * the most-recently-used 1% of subfacets (but at least * ofproto->up.flow_eviction_threshold flows) are kept cached. At least * the most-recently-used bucket of subfacets is kept, so actually an * arbitrary number of subfacets can be kept in any given expiration run * (though the next run will delete most of those unless they receive * additional data). * * This requires a second pass through the subfacets, in addition to the * pass made by update_stats(), because the former function never looks at * uninstallable subfacets. */ enum { BUCKET_WIDTH = ROUND_UP(100, TIME_UPDATE_INTERVAL) }; enum { N_BUCKETS = 5000 / BUCKET_WIDTH }; int buckets[N_BUCKETS] = { 0 }; int total, subtotal, bucket; struct subfacet *subfacet; long long int now; int i; total = hmap_count(&ofproto->subfacets); if (total <= ofproto->up.flow_eviction_threshold) { return N_BUCKETS * BUCKET_WIDTH; } /* Build histogram. */ now = time_msec(); HMAP_FOR_EACH (subfacet, hmap_node, &ofproto->subfacets) { long long int idle = now - subfacet->used; int bucket = (idle <= 0 ? 0 : idle >= BUCKET_WIDTH * N_BUCKETS ? N_BUCKETS - 1 : (unsigned int) idle / BUCKET_WIDTH); buckets[bucket]++; } /* Find the first bucket whose flows should be expired. */ subtotal = bucket = 0; do { subtotal += buckets[bucket++]; } while (bucket < N_BUCKETS && subtotal < MAX(ofproto->up.flow_eviction_threshold, total / 100)); if (VLOG_IS_DBG_ENABLED()) { struct ds s; ds_init(&s); ds_put_cstr(&s, "keep"); for (i = 0; i < N_BUCKETS; i++) { if (i == bucket) { ds_put_cstr(&s, ", drop"); } if (buckets[i]) { ds_put_format(&s, " %d:%d", i * BUCKET_WIDTH, buckets[i]); } } VLOG_INFO("%s: %s (msec:count)", ofproto->up.name, ds_cstr(&s)); ds_destroy(&s); } return bucket * BUCKET_WIDTH; } static void expire_subfacets(struct ofproto_dpif *ofproto, int dp_max_idle) { /* Cutoff time for most flows. */ long long int normal_cutoff = time_msec() - dp_max_idle; /* We really want to keep flows for special protocols around, so use a more * conservative cutoff. */ long long int special_cutoff = time_msec() - 10000; struct subfacet *subfacet, *next_subfacet; struct subfacet *batch[SUBFACET_DESTROY_MAX_BATCH]; int n_batch; n_batch = 0; HMAP_FOR_EACH_SAFE (subfacet, next_subfacet, hmap_node, &ofproto->subfacets) { long long int cutoff; cutoff = (subfacet->slow & (SLOW_CFM | SLOW_LACP | SLOW_STP) ? special_cutoff : normal_cutoff); if (subfacet->used < cutoff) { if (subfacet->path != SF_NOT_INSTALLED) { batch[n_batch++] = subfacet; if (n_batch >= SUBFACET_DESTROY_MAX_BATCH) { subfacet_destroy_batch(ofproto, batch, n_batch); n_batch = 0; } } else { subfacet_destroy(subfacet); } } } if (n_batch > 0) { subfacet_destroy_batch(ofproto, batch, n_batch); } } /* If 'rule' is an OpenFlow rule, that has expired according to OpenFlow rules, * then delete it entirely. */ static void rule_expire(struct rule_dpif *rule) { struct facet *facet, *next_facet; long long int now; uint8_t reason; if (rule->up.pending) { /* We'll have to expire it later. */ return; } /* Has 'rule' expired? */ now = time_msec(); if (rule->up.hard_timeout && now > rule->up.modified + rule->up.hard_timeout * 1000) { reason = OFPRR_HARD_TIMEOUT; } else if (rule->up.idle_timeout && now > rule->up.used + rule->up.idle_timeout * 1000) { reason = OFPRR_IDLE_TIMEOUT; } else { return; } COVERAGE_INC(ofproto_dpif_expired); /* Update stats. (This is a no-op if the rule expired due to an idle * timeout, because that only happens when the rule has no facets left.) */ LIST_FOR_EACH_SAFE (facet, next_facet, list_node, &rule->facets) { facet_remove(facet); } /* Get rid of the rule. */ ofproto_rule_expire(&rule->up, reason); } /* Facets. */ /* Creates and returns a new facet owned by 'rule', given a 'flow'. * * The caller must already have determined that no facet with an identical * 'flow' exists in 'ofproto' and that 'flow' is the best match for 'rule' in * the ofproto's classifier table. * * 'hash' must be the return value of flow_hash(flow, 0). * * The facet will initially have no subfacets. The caller should create (at * least) one subfacet with subfacet_create(). */ static struct facet * facet_create(struct rule_dpif *rule, const struct flow *flow, uint32_t hash) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto); struct facet *facet; facet = xzalloc(sizeof *facet); facet->used = time_msec(); hmap_insert(&ofproto->facets, &facet->hmap_node, hash); list_push_back(&rule->facets, &facet->list_node); facet->rule = rule; facet->flow = *flow; list_init(&facet->subfacets); netflow_flow_init(&facet->nf_flow); netflow_flow_update_time(ofproto->netflow, &facet->nf_flow, facet->used); facet->learn_rl = time_msec() + 500; return facet; } static void facet_free(struct facet *facet) { free(facet); } /* Executes, within 'ofproto', the 'n_actions' actions in 'actions' on * 'packet', which arrived on 'in_port'. */ static bool execute_odp_actions(struct ofproto_dpif *ofproto, const struct flow *flow, const struct nlattr *odp_actions, size_t actions_len, struct ofpbuf *packet) { struct odputil_keybuf keybuf; struct ofpbuf key; int error; ofpbuf_use_stack(&key, &keybuf, sizeof keybuf); odp_flow_key_from_flow(&key, flow, ofp_port_to_odp_port(ofproto, flow->in_port)); error = dpif_execute(ofproto->backer->dpif, key.data, key.size, odp_actions, actions_len, packet); return !error; } /* Remove 'facet' from 'ofproto' and free up the associated memory: * * - If 'facet' was installed in the datapath, uninstalls it and updates its * rule's statistics, via subfacet_uninstall(). * * - Removes 'facet' from its rule and from ofproto->facets. */ static void facet_remove(struct facet *facet) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto); struct subfacet *subfacet, *next_subfacet; ovs_assert(!list_is_empty(&facet->subfacets)); /* First uninstall all of the subfacets to get final statistics. */ LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) { subfacet_uninstall(subfacet); } /* Flush the final stats to the rule. * * This might require us to have at least one subfacet around so that we * can use its actions for accounting in facet_account(), which is why we * have uninstalled but not yet destroyed the subfacets. */ facet_flush_stats(facet); /* Now we're really all done so destroy everything. */ LIST_FOR_EACH_SAFE (subfacet, next_subfacet, list_node, &facet->subfacets) { subfacet_destroy__(subfacet); } hmap_remove(&ofproto->facets, &facet->hmap_node); list_remove(&facet->list_node); facet_free(facet); } /* Feed information from 'facet' back into the learning table to keep it in * sync with what is actually flowing through the datapath. */ static void facet_learn(struct facet *facet) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto); struct subfacet *subfacet= CONTAINER_OF(list_front(&facet->subfacets), struct subfacet, list_node); long long int now = time_msec(); struct action_xlate_ctx ctx; if (!facet->has_fin_timeout && now < facet->learn_rl) { return; } facet->learn_rl = now + 500; if (!facet->has_learn && !facet->has_normal && (!facet->has_fin_timeout || !(facet->tcp_flags & (TCP_FIN | TCP_RST)))) { return; } action_xlate_ctx_init(&ctx, ofproto, &facet->flow, &subfacet->initial_vals, facet->rule, facet->tcp_flags, NULL); ctx.may_learn = true; xlate_actions_for_side_effects(&ctx, facet->rule->up.ofpacts, facet->rule->up.ofpacts_len); } static void facet_account(struct facet *facet) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto); struct subfacet *subfacet = facet_get_subfacet(facet); const struct nlattr *a; unsigned int left; ovs_be16 vlan_tci; uint64_t n_bytes; if (!facet->has_normal || !ofproto->has_bonded_bundles) { return; } n_bytes = facet->byte_count - facet->accounted_bytes; /* This loop feeds byte counters to bond_account() for rebalancing to use * as a basis. We also need to track the actual VLAN on which the packet * is going to be sent to ensure that it matches the one passed to * bond_choose_output_slave(). (Otherwise, we will account to the wrong * hash bucket.) * * We use the actions from an arbitrary subfacet because they should all * be equally valid for our purpose. */ vlan_tci = facet->flow.vlan_tci; NL_ATTR_FOR_EACH_UNSAFE (a, left, subfacet->actions, subfacet->actions_len) { const struct ovs_action_push_vlan *vlan; struct ofport_dpif *port; switch (nl_attr_type(a)) { case OVS_ACTION_ATTR_OUTPUT: port = get_odp_port(ofproto, nl_attr_get_u32(a)); if (port && port->bundle && port->bundle->bond) { bond_account(port->bundle->bond, &facet->flow, vlan_tci_to_vid(vlan_tci), n_bytes); } break; case OVS_ACTION_ATTR_POP_VLAN: vlan_tci = htons(0); break; case OVS_ACTION_ATTR_PUSH_VLAN: vlan = nl_attr_get(a); vlan_tci = vlan->vlan_tci; break; } } } /* Returns true if the only action for 'facet' is to send to the controller. * (We don't report NetFlow expiration messages for such facets because they * are just part of the control logic for the network, not real traffic). */ static bool facet_is_controller_flow(struct facet *facet) { if (facet) { const struct rule *rule = &facet->rule->up; const struct ofpact *ofpacts = rule->ofpacts; size_t ofpacts_len = rule->ofpacts_len; if (ofpacts_len > 0 && ofpacts->type == OFPACT_CONTROLLER && ofpact_next(ofpacts) >= ofpact_end(ofpacts, ofpacts_len)) { return true; } } return false; } /* Folds all of 'facet''s statistics into its rule. Also updates the * accounting ofhook and emits a NetFlow expiration if appropriate. All of * 'facet''s statistics in the datapath should have been zeroed and folded into * its packet and byte counts before this function is called. */ static void facet_flush_stats(struct facet *facet) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto); struct subfacet *subfacet; LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) { ovs_assert(!subfacet->dp_byte_count); ovs_assert(!subfacet->dp_packet_count); } facet_push_stats(facet); if (facet->accounted_bytes < facet->byte_count) { facet_account(facet); facet->accounted_bytes = facet->byte_count; } if (ofproto->netflow && !facet_is_controller_flow(facet)) { struct ofexpired expired; expired.flow = facet->flow; expired.packet_count = facet->packet_count; expired.byte_count = facet->byte_count; expired.used = facet->used; netflow_expire(ofproto->netflow, &facet->nf_flow, &expired); } facet->rule->packet_count += facet->packet_count; facet->rule->byte_count += facet->byte_count; /* Reset counters to prevent double counting if 'facet' ever gets * reinstalled. */ facet_reset_counters(facet); netflow_flow_clear(&facet->nf_flow); facet->tcp_flags = 0; } /* Searches 'ofproto''s table of facets for one exactly equal to 'flow'. * Returns it if found, otherwise a null pointer. * * 'hash' must be the return value of flow_hash(flow, 0). * * The returned facet might need revalidation; use facet_lookup_valid() * instead if that is important. */ static struct facet * facet_find(struct ofproto_dpif *ofproto, const struct flow *flow, uint32_t hash) { struct facet *facet; HMAP_FOR_EACH_WITH_HASH (facet, hmap_node, hash, &ofproto->facets) { if (flow_equal(flow, &facet->flow)) { return facet; } } return NULL; } /* Searches 'ofproto''s table of facets for one exactly equal to 'flow'. * Returns it if found, otherwise a null pointer. * * 'hash' must be the return value of flow_hash(flow, 0). * * The returned facet is guaranteed to be valid. */ static struct facet * facet_lookup_valid(struct ofproto_dpif *ofproto, const struct flow *flow, uint32_t hash) { struct facet *facet; facet = facet_find(ofproto, flow, hash); if (facet && (ofproto->backer->need_revalidate || tag_set_intersects(&ofproto->backer->revalidate_set, facet->tags))) { facet_revalidate(facet); /* facet_revalidate() may have destroyed 'facet'. */ facet = facet_find(ofproto, flow, hash); } return facet; } /* Return a subfacet from 'facet'. A facet consists of one or more * subfacets, and this function returns one of them. */ static struct subfacet *facet_get_subfacet(struct facet *facet) { return CONTAINER_OF(list_front(&facet->subfacets), struct subfacet, list_node); } static const char * subfacet_path_to_string(enum subfacet_path path) { switch (path) { case SF_NOT_INSTALLED: return "not installed"; case SF_FAST_PATH: return "in fast path"; case SF_SLOW_PATH: return "in slow path"; default: return ""; } } /* Returns the path in which a subfacet should be installed if its 'slow' * member has the specified value. */ static enum subfacet_path subfacet_want_path(enum slow_path_reason slow) { return slow ? SF_SLOW_PATH : SF_FAST_PATH; } /* Returns true if 'subfacet' needs to have its datapath flow updated, * supposing that its actions have been recalculated as 'want_actions' and that * 'slow' is nonzero iff 'subfacet' should be in the slow path. */ static bool subfacet_should_install(struct subfacet *subfacet, enum slow_path_reason slow, const struct ofpbuf *want_actions) { enum subfacet_path want_path = subfacet_want_path(slow); return (want_path != subfacet->path || (want_path == SF_FAST_PATH && (subfacet->actions_len != want_actions->size || memcmp(subfacet->actions, want_actions->data, subfacet->actions_len)))); } static bool facet_check_consistency(struct facet *facet) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 15); struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto); uint64_t odp_actions_stub[1024 / 8]; struct ofpbuf odp_actions; struct rule_dpif *rule; struct subfacet *subfacet; bool may_log = false; bool ok; /* Check the rule for consistency. */ rule = rule_dpif_lookup(ofproto, &facet->flow); ok = rule == facet->rule; if (!ok) { may_log = !VLOG_DROP_WARN(&rl); if (may_log) { struct ds s; ds_init(&s); flow_format(&s, &facet->flow); ds_put_format(&s, ": facet associated with wrong rule (was " "table=%"PRIu8",", facet->rule->up.table_id); cls_rule_format(&facet->rule->up.cr, &s); ds_put_format(&s, ") (should have been table=%"PRIu8",", rule->up.table_id); cls_rule_format(&rule->up.cr, &s); ds_put_char(&s, ')'); VLOG_WARN("%s", ds_cstr(&s)); ds_destroy(&s); } } /* Check the datapath actions for consistency. */ ofpbuf_use_stub(&odp_actions, odp_actions_stub, sizeof odp_actions_stub); LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) { enum subfacet_path want_path; struct action_xlate_ctx ctx; struct ds s; action_xlate_ctx_init(&ctx, ofproto, &facet->flow, &subfacet->initial_vals, rule, 0, NULL); xlate_actions(&ctx, rule->up.ofpacts, rule->up.ofpacts_len, &odp_actions); if (subfacet->path == SF_NOT_INSTALLED) { /* This only happens if the datapath reported an error when we * tried to install the flow. Don't flag another error here. */ continue; } want_path = subfacet_want_path(subfacet->slow); if (want_path == SF_SLOW_PATH && subfacet->path == SF_SLOW_PATH) { /* The actions for slow-path flows may legitimately vary from one * packet to the next. We're done. */ continue; } if (!subfacet_should_install(subfacet, subfacet->slow, &odp_actions)) { continue; } /* Inconsistency! */ if (ok) { may_log = !VLOG_DROP_WARN(&rl); ok = false; } if (!may_log) { /* Rate-limited, skip reporting. */ continue; } ds_init(&s); odp_flow_key_format(subfacet->key, subfacet->key_len, &s); ds_put_cstr(&s, ": inconsistency in subfacet"); if (want_path != subfacet->path) { enum odp_key_fitness fitness = subfacet->key_fitness; ds_put_format(&s, " (%s, fitness=%s)", subfacet_path_to_string(subfacet->path), odp_key_fitness_to_string(fitness)); ds_put_format(&s, " (should have been %s)", subfacet_path_to_string(want_path)); } else if (want_path == SF_FAST_PATH) { ds_put_cstr(&s, " (actions were: "); format_odp_actions(&s, subfacet->actions, subfacet->actions_len); ds_put_cstr(&s, ") (correct actions: "); format_odp_actions(&s, odp_actions.data, odp_actions.size); ds_put_char(&s, ')'); } else { ds_put_cstr(&s, " (actions: "); format_odp_actions(&s, subfacet->actions, subfacet->actions_len); ds_put_char(&s, ')'); } VLOG_WARN("%s", ds_cstr(&s)); ds_destroy(&s); } ofpbuf_uninit(&odp_actions); return ok; } /* Re-searches the classifier for 'facet': * * - If the rule found is different from 'facet''s current rule, moves * 'facet' to the new rule and recompiles its actions. * * - If the rule found is the same as 'facet''s current rule, leaves 'facet' * where it is and recompiles its actions anyway. * * - If any of 'facet''s subfacets correspond to a new flow according to * ofproto_receive(), 'facet' is removed. */ static void facet_revalidate(struct facet *facet) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto); struct actions { struct nlattr *odp_actions; size_t actions_len; }; struct actions *new_actions; struct action_xlate_ctx ctx; uint64_t odp_actions_stub[1024 / 8]; struct ofpbuf odp_actions; struct rule_dpif *new_rule; struct subfacet *subfacet; int i; COVERAGE_INC(facet_revalidate); /* Check that child subfacets still correspond to this facet. Tunnel * configuration changes could cause a subfacet's OpenFlow in_port to * change. */ LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) { struct ofproto_dpif *recv_ofproto; struct flow recv_flow; int error; error = ofproto_receive(ofproto->backer, NULL, subfacet->key, subfacet->key_len, &recv_flow, NULL, &recv_ofproto, NULL, NULL); if (error || recv_ofproto != ofproto || memcmp(&recv_flow, &facet->flow, sizeof recv_flow)) { facet_remove(facet); return; } } new_rule = rule_dpif_lookup(ofproto, &facet->flow); /* Calculate new datapath actions. * * We do not modify any 'facet' state yet, because we might need to, e.g., * emit a NetFlow expiration and, if so, we need to have the old state * around to properly compose it. */ /* If the datapath actions changed or the installability changed, * then we need to talk to the datapath. */ i = 0; new_actions = NULL; memset(&ctx, 0, sizeof ctx); ofpbuf_use_stub(&odp_actions, odp_actions_stub, sizeof odp_actions_stub); LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) { enum slow_path_reason slow; action_xlate_ctx_init(&ctx, ofproto, &facet->flow, &subfacet->initial_vals, new_rule, 0, NULL); xlate_actions(&ctx, new_rule->up.ofpacts, new_rule->up.ofpacts_len, &odp_actions); slow = (subfacet->slow & SLOW_MATCH) | ctx.slow; if (subfacet_should_install(subfacet, slow, &odp_actions)) { struct dpif_flow_stats stats; subfacet_install(subfacet, odp_actions.data, odp_actions.size, &stats, slow); subfacet_update_stats(subfacet, &stats); if (!new_actions) { new_actions = xcalloc(list_size(&facet->subfacets), sizeof *new_actions); } new_actions[i].odp_actions = xmemdup(odp_actions.data, odp_actions.size); new_actions[i].actions_len = odp_actions.size; } i++; } ofpbuf_uninit(&odp_actions); if (new_actions) { facet_flush_stats(facet); } /* Update 'facet' now that we've taken care of all the old state. */ facet->tags = ctx.tags; facet->nf_flow.output_iface = ctx.nf_output_iface; facet->has_learn = ctx.has_learn; facet->has_normal = ctx.has_normal; facet->has_fin_timeout = ctx.has_fin_timeout; facet->mirrors = ctx.mirrors; i = 0; LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) { subfacet->slow = (subfacet->slow & SLOW_MATCH) | ctx.slow; if (new_actions && new_actions[i].odp_actions) { free(subfacet->actions); subfacet->actions = new_actions[i].odp_actions; subfacet->actions_len = new_actions[i].actions_len; } i++; } free(new_actions); if (facet->rule != new_rule) { COVERAGE_INC(facet_changed_rule); list_remove(&facet->list_node); list_push_back(&new_rule->facets, &facet->list_node); facet->rule = new_rule; facet->used = new_rule->up.created; facet->prev_used = facet->used; } } /* Updates 'facet''s used time. Caller is responsible for calling * facet_push_stats() to update the flows which 'facet' resubmits into. */ static void facet_update_time(struct facet *facet, long long int used) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto); if (used > facet->used) { facet->used = used; ofproto_rule_update_used(&facet->rule->up, used); netflow_flow_update_time(ofproto->netflow, &facet->nf_flow, used); } } static void facet_reset_counters(struct facet *facet) { facet->packet_count = 0; facet->byte_count = 0; facet->prev_packet_count = 0; facet->prev_byte_count = 0; facet->accounted_bytes = 0; } static void facet_push_stats(struct facet *facet) { struct dpif_flow_stats stats; ovs_assert(facet->packet_count >= facet->prev_packet_count); ovs_assert(facet->byte_count >= facet->prev_byte_count); ovs_assert(facet->used >= facet->prev_used); stats.n_packets = facet->packet_count - facet->prev_packet_count; stats.n_bytes = facet->byte_count - facet->prev_byte_count; stats.used = facet->used; stats.tcp_flags = 0; if (stats.n_packets || stats.n_bytes || facet->used > facet->prev_used) { facet->prev_packet_count = facet->packet_count; facet->prev_byte_count = facet->byte_count; facet->prev_used = facet->used; flow_push_stats(facet, &stats); update_mirror_stats(ofproto_dpif_cast(facet->rule->up.ofproto), facet->mirrors, stats.n_packets, stats.n_bytes); } } static void push_all_stats(void) { static long long int rl = LLONG_MIN; struct ofproto_dpif *ofproto; if (time_msec() < rl) { return; } HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) { struct facet *facet; HMAP_FOR_EACH (facet, hmap_node, &ofproto->facets) { facet_push_stats(facet); run_fast_rl(); } } rl = time_msec() + 100; } static void rule_credit_stats(struct rule_dpif *rule, const struct dpif_flow_stats *stats) { rule->packet_count += stats->n_packets; rule->byte_count += stats->n_bytes; ofproto_rule_update_used(&rule->up, stats->used); } /* Pushes flow statistics to the rules which 'facet->flow' resubmits * into given 'facet->rule''s actions and mirrors. */ static void flow_push_stats(struct facet *facet, const struct dpif_flow_stats *stats) { struct rule_dpif *rule = facet->rule; struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto); struct subfacet *subfacet = facet_get_subfacet(facet); struct action_xlate_ctx ctx; ofproto_rule_update_used(&rule->up, stats->used); action_xlate_ctx_init(&ctx, ofproto, &facet->flow, &subfacet->initial_vals, rule, 0, NULL); ctx.resubmit_stats = stats; xlate_actions_for_side_effects(&ctx, rule->up.ofpacts, rule->up.ofpacts_len); } /* Subfacets. */ static struct subfacet * subfacet_find(struct ofproto_dpif *ofproto, const struct nlattr *key, size_t key_len, uint32_t key_hash) { struct subfacet *subfacet; HMAP_FOR_EACH_WITH_HASH (subfacet, hmap_node, key_hash, &ofproto->subfacets) { if (subfacet->key_len == key_len && !memcmp(key, subfacet->key, key_len)) { return subfacet; } } return NULL; } /* Searches 'facet' (within 'ofproto') for a subfacet with the specified * 'key_fitness', 'key', and 'key_len' members in 'miss'. Returns the * existing subfacet if there is one, otherwise creates and returns a * new subfacet. * * If the returned subfacet is new, then subfacet->actions will be NULL, in * which case the caller must populate the actions with * subfacet_make_actions(). */ static struct subfacet * subfacet_create(struct facet *facet, struct flow_miss *miss, long long int now) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto); enum odp_key_fitness key_fitness = miss->key_fitness; const struct nlattr *key = miss->key; size_t key_len = miss->key_len; uint32_t key_hash; struct subfacet *subfacet; key_hash = odp_flow_key_hash(key, key_len); if (list_is_empty(&facet->subfacets)) { subfacet = &facet->one_subfacet; } else { subfacet = subfacet_find(ofproto, key, key_len, key_hash); if (subfacet) { if (subfacet->facet == facet) { return subfacet; } /* This shouldn't happen. */ VLOG_ERR_RL(&rl, "subfacet with wrong facet"); subfacet_destroy(subfacet); } subfacet = xmalloc(sizeof *subfacet); } hmap_insert(&ofproto->subfacets, &subfacet->hmap_node, key_hash); list_push_back(&facet->subfacets, &subfacet->list_node); subfacet->facet = facet; subfacet->key_fitness = key_fitness; subfacet->key = xmemdup(key, key_len); subfacet->key_len = key_len; subfacet->used = now; subfacet->created = now; subfacet->dp_packet_count = 0; subfacet->dp_byte_count = 0; subfacet->actions_len = 0; subfacet->actions = NULL; subfacet->slow = (subfacet->key_fitness == ODP_FIT_TOO_LITTLE ? SLOW_MATCH : 0); subfacet->path = SF_NOT_INSTALLED; subfacet->initial_vals = miss->initial_vals; subfacet->odp_in_port = miss->odp_in_port; ofproto->subfacet_add_count++; return subfacet; } /* Uninstalls 'subfacet' from the datapath, if it is installed, removes it from * its facet within 'ofproto', and frees it. */ static void subfacet_destroy__(struct subfacet *subfacet) { struct facet *facet = subfacet->facet; struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto); /* Update ofproto stats before uninstall the subfacet. */ ofproto->subfacet_del_count++; ofproto->total_subfacet_life_span += (time_msec() - subfacet->created); subfacet_uninstall(subfacet); hmap_remove(&ofproto->subfacets, &subfacet->hmap_node); list_remove(&subfacet->list_node); free(subfacet->key); free(subfacet->actions); if (subfacet != &facet->one_subfacet) { free(subfacet); } } /* Destroys 'subfacet', as with subfacet_destroy__(), and then if this was the * last remaining subfacet in its facet destroys the facet too. */ static void subfacet_destroy(struct subfacet *subfacet) { struct facet *facet = subfacet->facet; if (list_is_singleton(&facet->subfacets)) { /* facet_remove() needs at least one subfacet (it will remove it). */ facet_remove(facet); } else { subfacet_destroy__(subfacet); } } static void subfacet_destroy_batch(struct ofproto_dpif *ofproto, struct subfacet **subfacets, int n) { struct dpif_op ops[SUBFACET_DESTROY_MAX_BATCH]; struct dpif_op *opsp[SUBFACET_DESTROY_MAX_BATCH]; struct dpif_flow_stats stats[SUBFACET_DESTROY_MAX_BATCH]; int i; for (i = 0; i < n; i++) { ops[i].type = DPIF_OP_FLOW_DEL; ops[i].u.flow_del.key = subfacets[i]->key; ops[i].u.flow_del.key_len = subfacets[i]->key_len; ops[i].u.flow_del.stats = &stats[i]; opsp[i] = &ops[i]; } dpif_operate(ofproto->backer->dpif, opsp, n); for (i = 0; i < n; i++) { subfacet_reset_dp_stats(subfacets[i], &stats[i]); subfacets[i]->path = SF_NOT_INSTALLED; subfacet_destroy(subfacets[i]); run_fast_rl(); } } /* Composes the datapath actions for 'subfacet' based on its rule's actions. * Translates the actions into 'odp_actions', which the caller must have * initialized and is responsible for uninitializing. */ static void subfacet_make_actions(struct subfacet *subfacet, const struct ofpbuf *packet, struct ofpbuf *odp_actions) { struct facet *facet = subfacet->facet; struct rule_dpif *rule = facet->rule; struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto); struct action_xlate_ctx ctx; action_xlate_ctx_init(&ctx, ofproto, &facet->flow, &subfacet->initial_vals, rule, 0, packet); xlate_actions(&ctx, rule->up.ofpacts, rule->up.ofpacts_len, odp_actions); facet->tags = ctx.tags; facet->has_learn = ctx.has_learn; facet->has_normal = ctx.has_normal; facet->has_fin_timeout = ctx.has_fin_timeout; facet->nf_flow.output_iface = ctx.nf_output_iface; facet->mirrors = ctx.mirrors; subfacet->slow = (subfacet->slow & SLOW_MATCH) | ctx.slow; if (subfacet->actions_len != odp_actions->size || memcmp(subfacet->actions, odp_actions->data, odp_actions->size)) { free(subfacet->actions); subfacet->actions_len = odp_actions->size; subfacet->actions = xmemdup(odp_actions->data, odp_actions->size); } } /* Updates 'subfacet''s datapath flow, setting its actions to 'actions_len' * bytes of actions in 'actions'. If 'stats' is non-null, statistics counters * in the datapath will be zeroed and 'stats' will be updated with traffic new * since 'subfacet' was last updated. * * Returns 0 if successful, otherwise a positive errno value. */ static int subfacet_install(struct subfacet *subfacet, const struct nlattr *actions, size_t actions_len, struct dpif_flow_stats *stats, enum slow_path_reason slow) { struct facet *facet = subfacet->facet; struct ofproto_dpif *ofproto = ofproto_dpif_cast(facet->rule->up.ofproto); enum subfacet_path path = subfacet_want_path(slow); uint64_t slow_path_stub[128 / 8]; enum dpif_flow_put_flags flags; int ret; flags = DPIF_FP_CREATE | DPIF_FP_MODIFY; if (stats) { flags |= DPIF_FP_ZERO_STATS; } if (path == SF_SLOW_PATH) { compose_slow_path(ofproto, &facet->flow, slow, slow_path_stub, sizeof slow_path_stub, &actions, &actions_len); } ret = dpif_flow_put(ofproto->backer->dpif, flags, subfacet->key, subfacet->key_len, actions, actions_len, stats); if (stats) { subfacet_reset_dp_stats(subfacet, stats); } if (!ret) { subfacet->path = path; } return ret; } static int subfacet_reinstall(struct subfacet *subfacet, struct dpif_flow_stats *stats) { return subfacet_install(subfacet, subfacet->actions, subfacet->actions_len, stats, subfacet->slow); } /* If 'subfacet' is installed in the datapath, uninstalls it. */ static void subfacet_uninstall(struct subfacet *subfacet) { if (subfacet->path != SF_NOT_INSTALLED) { struct rule_dpif *rule = subfacet->facet->rule; struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto); struct dpif_flow_stats stats; int error; error = dpif_flow_del(ofproto->backer->dpif, subfacet->key, subfacet->key_len, &stats); subfacet_reset_dp_stats(subfacet, &stats); if (!error) { subfacet_update_stats(subfacet, &stats); } subfacet->path = SF_NOT_INSTALLED; } else { ovs_assert(subfacet->dp_packet_count == 0); ovs_assert(subfacet->dp_byte_count == 0); } } /* Resets 'subfacet''s datapath statistics counters. This should be called * when 'subfacet''s statistics are cleared in the datapath. If 'stats' is * non-null, it should contain the statistics returned by dpif when 'subfacet' * was reset in the datapath. 'stats' will be modified to include only * statistics new since 'subfacet' was last updated. */ static void subfacet_reset_dp_stats(struct subfacet *subfacet, struct dpif_flow_stats *stats) { if (stats && subfacet->dp_packet_count <= stats->n_packets && subfacet->dp_byte_count <= stats->n_bytes) { stats->n_packets -= subfacet->dp_packet_count; stats->n_bytes -= subfacet->dp_byte_count; } subfacet->dp_packet_count = 0; subfacet->dp_byte_count = 0; } /* Updates 'subfacet''s used time. The caller is responsible for calling * facet_push_stats() to update the flows which 'subfacet' resubmits into. */ static void subfacet_update_time(struct subfacet *subfacet, long long int used) { if (used > subfacet->used) { subfacet->used = used; facet_update_time(subfacet->facet, used); } } /* Folds the statistics from 'stats' into the counters in 'subfacet'. * * Because of the meaning of a subfacet's counters, it only makes sense to do * this if 'stats' are not tracked in the datapath, that is, if 'stats' * represents a packet that was sent by hand or if it represents statistics * that have been cleared out of the datapath. */ static void subfacet_update_stats(struct subfacet *subfacet, const struct dpif_flow_stats *stats) { if (stats->n_packets || stats->used > subfacet->used) { struct facet *facet = subfacet->facet; subfacet_update_time(subfacet, stats->used); facet->packet_count += stats->n_packets; facet->byte_count += stats->n_bytes; facet->tcp_flags |= stats->tcp_flags; netflow_flow_update_flags(&facet->nf_flow, stats->tcp_flags); } } /* Rules. */ static struct rule_dpif * rule_dpif_lookup(struct ofproto_dpif *ofproto, const struct flow *flow) { struct rule_dpif *rule; rule = rule_dpif_lookup__(ofproto, flow, 0); if (rule) { return rule; } return rule_dpif_miss_rule(ofproto, flow); } static struct rule_dpif * rule_dpif_lookup__(struct ofproto_dpif *ofproto, const struct flow *flow, uint8_t table_id) { struct cls_rule *cls_rule; struct classifier *cls; if (table_id >= N_TABLES) { return NULL; } cls = &ofproto->up.tables[table_id].cls; if (flow->nw_frag & FLOW_NW_FRAG_ANY && ofproto->up.frag_handling == OFPC_FRAG_NORMAL) { /* For OFPC_NORMAL frag_handling, we must pretend that transport ports * are unavailable. */ struct flow ofpc_normal_flow = *flow; ofpc_normal_flow.tp_src = htons(0); ofpc_normal_flow.tp_dst = htons(0); cls_rule = classifier_lookup(cls, &ofpc_normal_flow); } else { cls_rule = classifier_lookup(cls, flow); } return rule_dpif_cast(rule_from_cls_rule(cls_rule)); } static struct rule_dpif * rule_dpif_miss_rule(struct ofproto_dpif *ofproto, const struct flow *flow) { struct ofport_dpif *port; port = get_ofp_port(ofproto, flow->in_port); if (!port) { VLOG_WARN_RL(&rl, "packet-in on unknown port %"PRIu16, flow->in_port); return ofproto->miss_rule; } if (port->up.pp.config & OFPUTIL_PC_NO_PACKET_IN) { return ofproto->no_packet_in_rule; } return ofproto->miss_rule; } static void complete_operation(struct rule_dpif *rule) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto); rule_invalidate(rule); if (clogged) { struct dpif_completion *c = xmalloc(sizeof *c); c->op = rule->up.pending; list_push_back(&ofproto->completions, &c->list_node); } else { ofoperation_complete(rule->up.pending, 0); } } static struct rule * rule_alloc(void) { struct rule_dpif *rule = xmalloc(sizeof *rule); return &rule->up; } static void rule_dealloc(struct rule *rule_) { struct rule_dpif *rule = rule_dpif_cast(rule_); free(rule); } static enum ofperr rule_construct(struct rule *rule_) { struct rule_dpif *rule = rule_dpif_cast(rule_); struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto); struct rule_dpif *victim; uint8_t table_id; rule->packet_count = 0; rule->byte_count = 0; victim = rule_dpif_cast(ofoperation_get_victim(rule->up.pending)); if (victim && !list_is_empty(&victim->facets)) { struct facet *facet; rule->facets = victim->facets; list_moved(&rule->facets); LIST_FOR_EACH (facet, list_node, &rule->facets) { /* XXX: We're only clearing our local counters here. It's possible * that quite a few packets are unaccounted for in the datapath * statistics. These will be accounted to the new rule instead of * cleared as required. This could be fixed by clearing out the * datapath statistics for this facet, but currently it doesn't * seem worth it. */ facet_reset_counters(facet); facet->rule = rule; } } else { /* Must avoid list_moved() in this case. */ list_init(&rule->facets); } table_id = rule->up.table_id; if (victim) { rule->tag = victim->tag; } else if (table_id == 0) { rule->tag = 0; } else { struct flow flow; miniflow_expand(&rule->up.cr.match.flow, &flow); rule->tag = rule_calculate_tag(&flow, &rule->up.cr.match.mask, ofproto->tables[table_id].basis); } complete_operation(rule); return 0; } static void rule_destruct(struct rule *rule_) { struct rule_dpif *rule = rule_dpif_cast(rule_); struct facet *facet, *next_facet; LIST_FOR_EACH_SAFE (facet, next_facet, list_node, &rule->facets) { facet_revalidate(facet); } complete_operation(rule); } static void rule_get_stats(struct rule *rule_, uint64_t *packets, uint64_t *bytes) { struct rule_dpif *rule = rule_dpif_cast(rule_); struct facet *facet; push_all_stats(); /* Start from historical data for 'rule' itself that are no longer tracked * in facets. This counts, for example, facets that have expired. */ *packets = rule->packet_count; *bytes = rule->byte_count; /* Add any statistics that are tracked by facets. This includes * statistical data recently updated by ofproto_update_stats() as well as * stats for packets that were executed "by hand" via dpif_execute(). */ LIST_FOR_EACH (facet, list_node, &rule->facets) { *packets += facet->packet_count; *bytes += facet->byte_count; } } static void rule_dpif_execute(struct rule_dpif *rule, const struct flow *flow, struct ofpbuf *packet) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto); struct initial_vals initial_vals; struct dpif_flow_stats stats; struct action_xlate_ctx ctx; uint64_t odp_actions_stub[1024 / 8]; struct ofpbuf odp_actions; dpif_flow_stats_extract(flow, packet, time_msec(), &stats); rule_credit_stats(rule, &stats); initial_vals.vlan_tci = flow->vlan_tci; initial_vals.tunnel_ip_tos = flow->tunnel.ip_tos; ofpbuf_use_stub(&odp_actions, odp_actions_stub, sizeof odp_actions_stub); action_xlate_ctx_init(&ctx, ofproto, flow, &initial_vals, rule, stats.tcp_flags, packet); ctx.resubmit_stats = &stats; xlate_actions(&ctx, rule->up.ofpacts, rule->up.ofpacts_len, &odp_actions); execute_odp_actions(ofproto, flow, odp_actions.data, odp_actions.size, packet); ofpbuf_uninit(&odp_actions); } static enum ofperr rule_execute(struct rule *rule, const struct flow *flow, struct ofpbuf *packet) { rule_dpif_execute(rule_dpif_cast(rule), flow, packet); ofpbuf_delete(packet); return 0; } static void rule_modify_actions(struct rule *rule_) { struct rule_dpif *rule = rule_dpif_cast(rule_); complete_operation(rule); } /* Sends 'packet' out 'ofport'. * May modify 'packet'. * Returns 0 if successful, otherwise a positive errno value. */ static int send_packet(const struct ofport_dpif *ofport, struct ofpbuf *packet) { const struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto); uint64_t odp_actions_stub[1024 / 8]; struct ofpbuf key, odp_actions; struct odputil_keybuf keybuf; uint32_t odp_port; struct flow flow; int error; flow_extract(packet, 0, 0, NULL, OFPP_LOCAL, &flow); if (netdev_vport_is_patch(ofport->up.netdev)) { struct ofproto_dpif *peer_ofproto; struct dpif_flow_stats stats; struct ofport_dpif *peer; struct rule_dpif *rule; peer = ofport_get_peer(ofport); if (!peer) { return ENODEV; } dpif_flow_stats_extract(&flow, packet, time_msec(), &stats); netdev_vport_inc_tx(ofport->up.netdev, &stats); netdev_vport_inc_rx(peer->up.netdev, &stats); flow.in_port = peer->up.ofp_port; peer_ofproto = ofproto_dpif_cast(peer->up.ofproto); rule = rule_dpif_lookup(peer_ofproto, &flow); rule_dpif_execute(rule, &flow, packet); return 0; } ofpbuf_use_stub(&odp_actions, odp_actions_stub, sizeof odp_actions_stub); if (ofport->tnl_port) { struct dpif_flow_stats stats; odp_port = tnl_port_send(ofport->tnl_port, &flow); if (odp_port == OVSP_NONE) { return ENODEV; } dpif_flow_stats_extract(&flow, packet, time_msec(), &stats); netdev_vport_inc_tx(ofport->up.netdev, &stats); odp_put_tunnel_action(&flow.tunnel, &odp_actions); odp_put_skb_mark_action(flow.skb_mark, &odp_actions); } else { odp_port = vsp_realdev_to_vlandev(ofproto, ofport->odp_port, flow.vlan_tci); if (odp_port != ofport->odp_port) { eth_pop_vlan(packet); flow.vlan_tci = htons(0); } } ofpbuf_use_stack(&key, &keybuf, sizeof keybuf); odp_flow_key_from_flow(&key, &flow, ofp_port_to_odp_port(ofproto, flow.in_port)); compose_sflow_action(ofproto, &odp_actions, &flow, odp_port); nl_msg_put_u32(&odp_actions, OVS_ACTION_ATTR_OUTPUT, odp_port); error = dpif_execute(ofproto->backer->dpif, key.data, key.size, odp_actions.data, odp_actions.size, packet); ofpbuf_uninit(&odp_actions); if (error) { VLOG_WARN_RL(&rl, "%s: failed to send packet on port %"PRIu32" (%s)", ofproto->up.name, odp_port, strerror(error)); } ofproto_update_local_port_stats(ofport->up.ofproto, packet->size, 0); return error; } /* OpenFlow to datapath action translation. */ static bool may_receive(const struct ofport_dpif *, struct action_xlate_ctx *); static void do_xlate_actions(const struct ofpact *, size_t ofpacts_len, struct action_xlate_ctx *); static void xlate_normal(struct action_xlate_ctx *); /* Composes an ODP action for a "slow path" action for 'flow' within 'ofproto'. * The action will state 'slow' as the reason that the action is in the slow * path. (This is purely informational: it allows a human viewing "ovs-dpctl * dump-flows" output to see why a flow is in the slow path.) * * The 'stub_size' bytes in 'stub' will be used to store the action. * 'stub_size' must be large enough for the action. * * The action and its size will be stored in '*actionsp' and '*actions_lenp', * respectively. */ static void compose_slow_path(const struct ofproto_dpif *ofproto, const struct flow *flow, enum slow_path_reason slow, uint64_t *stub, size_t stub_size, const struct nlattr **actionsp, size_t *actions_lenp) { union user_action_cookie cookie; struct ofpbuf buf; cookie.type = USER_ACTION_COOKIE_SLOW_PATH; cookie.slow_path.unused = 0; cookie.slow_path.reason = slow; ofpbuf_use_stack(&buf, stub, stub_size); if (slow & (SLOW_CFM | SLOW_LACP | SLOW_STP)) { uint32_t pid = dpif_port_get_pid(ofproto->backer->dpif, UINT32_MAX); odp_put_userspace_action(pid, &cookie, sizeof cookie, &buf); } else { put_userspace_action(ofproto, &buf, flow, &cookie); } *actionsp = buf.data; *actions_lenp = buf.size; } static size_t put_userspace_action(const struct ofproto_dpif *ofproto, struct ofpbuf *odp_actions, const struct flow *flow, const union user_action_cookie *cookie) { uint32_t pid; pid = dpif_port_get_pid(ofproto->backer->dpif, ofp_port_to_odp_port(ofproto, flow->in_port)); return odp_put_userspace_action(pid, cookie, sizeof *cookie, odp_actions); } static void compose_sflow_cookie(const struct ofproto_dpif *ofproto, ovs_be16 vlan_tci, uint32_t odp_port, unsigned int n_outputs, union user_action_cookie *cookie) { int ifindex; cookie->type = USER_ACTION_COOKIE_SFLOW; cookie->sflow.vlan_tci = vlan_tci; /* See http://www.sflow.org/sflow_version_5.txt (search for "Input/output * port information") for the interpretation of cookie->output. */ switch (n_outputs) { case 0: /* 0x40000000 | 256 means "packet dropped for unknown reason". */ cookie->sflow.output = 0x40000000 | 256; break; case 1: ifindex = dpif_sflow_odp_port_to_ifindex(ofproto->sflow, odp_port); if (ifindex) { cookie->sflow.output = ifindex; break; } /* Fall through. */ default: /* 0x80000000 means "multiple output ports. */ cookie->sflow.output = 0x80000000 | n_outputs; break; } } /* Compose SAMPLE action for sFlow. */ static size_t compose_sflow_action(const struct ofproto_dpif *ofproto, struct ofpbuf *odp_actions, const struct flow *flow, uint32_t odp_port) { uint32_t probability; union user_action_cookie cookie; size_t sample_offset, actions_offset; int cookie_offset; if (!ofproto->sflow || flow->in_port == OFPP_NONE) { return 0; } sample_offset = nl_msg_start_nested(odp_actions, OVS_ACTION_ATTR_SAMPLE); /* Number of packets out of UINT_MAX to sample. */ probability = dpif_sflow_get_probability(ofproto->sflow); nl_msg_put_u32(odp_actions, OVS_SAMPLE_ATTR_PROBABILITY, probability); actions_offset = nl_msg_start_nested(odp_actions, OVS_SAMPLE_ATTR_ACTIONS); compose_sflow_cookie(ofproto, htons(0), odp_port, odp_port == OVSP_NONE ? 0 : 1, &cookie); cookie_offset = put_userspace_action(ofproto, odp_actions, flow, &cookie); nl_msg_end_nested(odp_actions, actions_offset); nl_msg_end_nested(odp_actions, sample_offset); return cookie_offset; } /* SAMPLE action must be first action in any given list of actions. * At this point we do not have all information required to build it. So try to * build sample action as complete as possible. */ static void add_sflow_action(struct action_xlate_ctx *ctx) { ctx->user_cookie_offset = compose_sflow_action(ctx->ofproto, ctx->odp_actions, &ctx->flow, OVSP_NONE); ctx->sflow_odp_port = 0; ctx->sflow_n_outputs = 0; } /* Fix SAMPLE action according to data collected while composing ODP actions. * We need to fix SAMPLE actions OVS_SAMPLE_ATTR_ACTIONS attribute, i.e. nested * USERSPACE action's user-cookie which is required for sflow. */ static void fix_sflow_action(struct action_xlate_ctx *ctx) { const struct flow *base = &ctx->base_flow; union user_action_cookie *cookie; if (!ctx->user_cookie_offset) { return; } cookie = ofpbuf_at(ctx->odp_actions, ctx->user_cookie_offset, sizeof(*cookie)); ovs_assert(cookie->type == USER_ACTION_COOKIE_SFLOW); compose_sflow_cookie(ctx->ofproto, base->vlan_tci, ctx->sflow_odp_port, ctx->sflow_n_outputs, cookie); } static void compose_output_action__(struct action_xlate_ctx *ctx, uint16_t ofp_port, bool check_stp) { const struct ofport_dpif *ofport = get_ofp_port(ctx->ofproto, ofp_port); ovs_be16 flow_vlan_tci = ctx->flow.vlan_tci; ovs_be64 flow_tun_id = ctx->flow.tunnel.tun_id; uint8_t flow_nw_tos = ctx->flow.nw_tos; struct priority_to_dscp *pdscp; uint32_t out_port, odp_port; /* If 'struct flow' gets additional metadata, we'll need to zero it out * before traversing a patch port. */ BUILD_ASSERT_DECL(FLOW_WC_SEQ == 20); if (!ofport) { xlate_report(ctx, "Nonexistent output port"); return; } else if (ofport->up.pp.config & OFPUTIL_PC_NO_FWD) { xlate_report(ctx, "OFPPC_NO_FWD set, skipping output"); return; } else if (check_stp && !stp_forward_in_state(ofport->stp_state)) { xlate_report(ctx, "STP not in forwarding state, skipping output"); return; } if (netdev_vport_is_patch(ofport->up.netdev)) { struct ofport_dpif *peer = ofport_get_peer(ofport); struct flow old_flow = ctx->flow; const struct ofproto_dpif *peer_ofproto; enum slow_path_reason special; struct ofport_dpif *in_port; if (!peer) { xlate_report(ctx, "Nonexistent patch port peer"); return; } peer_ofproto = ofproto_dpif_cast(peer->up.ofproto); if (peer_ofproto->backer != ctx->ofproto->backer) { xlate_report(ctx, "Patch port peer on a different datapath"); return; } ctx->ofproto = ofproto_dpif_cast(peer->up.ofproto); ctx->flow.in_port = peer->up.ofp_port; ctx->flow.metadata = htonll(0); memset(&ctx->flow.tunnel, 0, sizeof ctx->flow.tunnel); memset(ctx->flow.regs, 0, sizeof ctx->flow.regs); in_port = get_ofp_port(ctx->ofproto, ctx->flow.in_port); special = process_special(ctx->ofproto, &ctx->flow, in_port, ctx->packet); if (special) { ctx->slow |= special; } else if (!in_port || may_receive(in_port, ctx)) { if (!in_port || stp_forward_in_state(in_port->stp_state)) { xlate_table_action(ctx, ctx->flow.in_port, 0, true); } else { /* Forwarding is disabled by STP. Let OFPP_NORMAL and the * learning action look at the packet, then drop it. */ struct flow old_base_flow = ctx->base_flow; size_t old_size = ctx->odp_actions->size; xlate_table_action(ctx, ctx->flow.in_port, 0, true); ctx->base_flow = old_base_flow; ctx->odp_actions->size = old_size; } } ctx->flow = old_flow; ctx->ofproto = ofproto_dpif_cast(ofport->up.ofproto); if (ctx->resubmit_stats) { netdev_vport_inc_tx(ofport->up.netdev, ctx->resubmit_stats); netdev_vport_inc_rx(peer->up.netdev, ctx->resubmit_stats); } return; } pdscp = get_priority(ofport, ctx->flow.skb_priority); if (pdscp) { ctx->flow.nw_tos &= ~IP_DSCP_MASK; ctx->flow.nw_tos |= pdscp->dscp; } if (ofport->tnl_port) { odp_port = tnl_port_send(ofport->tnl_port, &ctx->flow); if (odp_port == OVSP_NONE) { xlate_report(ctx, "Tunneling decided against output"); return; } if (ctx->resubmit_stats) { netdev_vport_inc_tx(ofport->up.netdev, ctx->resubmit_stats); } out_port = odp_port; commit_odp_tunnel_action(&ctx->flow, &ctx->base_flow, ctx->odp_actions); } else { odp_port = ofport->odp_port; out_port = vsp_realdev_to_vlandev(ctx->ofproto, odp_port, ctx->flow.vlan_tci); if (out_port != odp_port) { ctx->flow.vlan_tci = htons(0); } ctx->flow.skb_mark &= ~IPSEC_MARK; } commit_odp_actions(&ctx->flow, &ctx->base_flow, ctx->odp_actions); nl_msg_put_u32(ctx->odp_actions, OVS_ACTION_ATTR_OUTPUT, out_port); ctx->sflow_odp_port = odp_port; ctx->sflow_n_outputs++; ctx->nf_output_iface = ofp_port; ctx->flow.tunnel.tun_id = flow_tun_id; ctx->flow.vlan_tci = flow_vlan_tci; ctx->flow.nw_tos = flow_nw_tos; } static void compose_output_action(struct action_xlate_ctx *ctx, uint16_t ofp_port) { compose_output_action__(ctx, ofp_port, true); } static void tag_the_flow(struct action_xlate_ctx *ctx, struct rule_dpif *rule) { struct ofproto_dpif *ofproto = ctx->ofproto; uint8_t table_id = ctx->table_id; if (table_id > 0 && table_id < N_TABLES) { struct table_dpif *table = &ofproto->tables[table_id]; if (table->other_table) { ctx->tags |= (rule && rule->tag ? rule->tag : rule_calculate_tag(&ctx->flow, &table->other_table->mask, table->basis)); } } } /* Common rule processing in one place to avoid duplicating code. */ static struct rule_dpif * ctx_rule_hooks(struct action_xlate_ctx *ctx, struct rule_dpif *rule, bool may_packet_in) { if (ctx->resubmit_hook) { ctx->resubmit_hook(ctx, rule); } if (rule == NULL && may_packet_in) { /* XXX * check if table configuration flags * OFPTC_TABLE_MISS_CONTROLLER, default. * OFPTC_TABLE_MISS_CONTINUE, * OFPTC_TABLE_MISS_DROP * When OF1.0, OFPTC_TABLE_MISS_CONTINUE is used. What to do? */ rule = rule_dpif_miss_rule(ctx->ofproto, &ctx->flow); } if (rule && ctx->resubmit_stats) { rule_credit_stats(rule, ctx->resubmit_stats); } return rule; } static void xlate_table_action(struct action_xlate_ctx *ctx, uint16_t in_port, uint8_t table_id, bool may_packet_in) { if (ctx->recurse < MAX_RESUBMIT_RECURSION) { struct rule_dpif *rule; uint16_t old_in_port = ctx->flow.in_port; uint8_t old_table_id = ctx->table_id; ctx->table_id = table_id; /* Look up a flow with 'in_port' as the input port. */ ctx->flow.in_port = in_port; rule = rule_dpif_lookup__(ctx->ofproto, &ctx->flow, table_id); tag_the_flow(ctx, rule); /* Restore the original input port. Otherwise OFPP_NORMAL and * OFPP_IN_PORT will have surprising behavior. */ ctx->flow.in_port = old_in_port; rule = ctx_rule_hooks(ctx, rule, may_packet_in); if (rule) { struct rule_dpif *old_rule = ctx->rule; ctx->recurse++; ctx->rule = rule; do_xlate_actions(rule->up.ofpacts, rule->up.ofpacts_len, ctx); ctx->rule = old_rule; ctx->recurse--; } ctx->table_id = old_table_id; } else { static struct vlog_rate_limit recurse_rl = VLOG_RATE_LIMIT_INIT(1, 1); VLOG_ERR_RL(&recurse_rl, "resubmit actions recursed over %d times", MAX_RESUBMIT_RECURSION); ctx->max_resubmit_trigger = true; } } static void xlate_ofpact_resubmit(struct action_xlate_ctx *ctx, const struct ofpact_resubmit *resubmit) { uint16_t in_port; uint8_t table_id; in_port = resubmit->in_port; if (in_port == OFPP_IN_PORT) { in_port = ctx->flow.in_port; } table_id = resubmit->table_id; if (table_id == 255) { table_id = ctx->table_id; } xlate_table_action(ctx, in_port, table_id, false); } static void flood_packets(struct action_xlate_ctx *ctx, bool all) { struct ofport_dpif *ofport; HMAP_FOR_EACH (ofport, up.hmap_node, &ctx->ofproto->up.ports) { uint16_t ofp_port = ofport->up.ofp_port; if (ofp_port == ctx->flow.in_port) { continue; } if (all) { compose_output_action__(ctx, ofp_port, false); } else if (!(ofport->up.pp.config & OFPUTIL_PC_NO_FLOOD)) { compose_output_action(ctx, ofp_port); } } ctx->nf_output_iface = NF_OUT_FLOOD; } static void execute_controller_action(struct action_xlate_ctx *ctx, int len, enum ofp_packet_in_reason reason, uint16_t controller_id) { struct ofputil_packet_in pin; struct ofpbuf *packet; ctx->slow |= SLOW_CONTROLLER; if (!ctx->packet) { return; } packet = ofpbuf_clone(ctx->packet); if (packet->l2 && packet->l3) { struct eth_header *eh; uint16_t mpls_depth; eth_pop_vlan(packet); eh = packet->l2; memcpy(eh->eth_src, ctx->flow.dl_src, sizeof eh->eth_src); memcpy(eh->eth_dst, ctx->flow.dl_dst, sizeof eh->eth_dst); if (ctx->flow.vlan_tci & htons(VLAN_CFI)) { eth_push_vlan(packet, ctx->flow.vlan_tci); } mpls_depth = eth_mpls_depth(packet); if (mpls_depth < ctx->flow.mpls_depth) { push_mpls(packet, ctx->flow.dl_type, ctx->flow.mpls_lse); } else if (mpls_depth > ctx->flow.mpls_depth) { pop_mpls(packet, ctx->flow.dl_type); } else if (mpls_depth) { set_mpls_lse(packet, ctx->flow.mpls_lse); } if (packet->l4) { if (ctx->flow.dl_type == htons(ETH_TYPE_IP)) { packet_set_ipv4(packet, ctx->flow.nw_src, ctx->flow.nw_dst, ctx->flow.nw_tos, ctx->flow.nw_ttl); } if (packet->l7) { if (ctx->flow.nw_proto == IPPROTO_TCP) { packet_set_tcp_port(packet, ctx->flow.tp_src, ctx->flow.tp_dst); } else if (ctx->flow.nw_proto == IPPROTO_UDP) { packet_set_udp_port(packet, ctx->flow.tp_src, ctx->flow.tp_dst); } } } } pin.packet = packet->data; pin.packet_len = packet->size; pin.reason = reason; pin.controller_id = controller_id; pin.table_id = ctx->table_id; pin.cookie = ctx->rule ? ctx->rule->up.flow_cookie : 0; pin.send_len = len; flow_get_metadata(&ctx->flow, &pin.fmd); connmgr_send_packet_in(ctx->ofproto->up.connmgr, &pin); ofpbuf_delete(packet); } static void execute_mpls_push_action(struct action_xlate_ctx *ctx, ovs_be16 eth_type) { ovs_assert(eth_type_mpls(eth_type)); if (ctx->base_flow.mpls_depth) { ctx->flow.mpls_lse &= ~htonl(MPLS_BOS_MASK); ctx->flow.mpls_depth++; } else { ovs_be32 label; uint8_t tc, ttl; if (ctx->flow.dl_type == htons(ETH_TYPE_IPV6)) { label = htonl(0x2); /* IPV6 Explicit Null. */ } else { label = htonl(0x0); /* IPV4 Explicit Null. */ } tc = (ctx->flow.nw_tos & IP_DSCP_MASK) >> 2; ttl = ctx->flow.nw_ttl ? ctx->flow.nw_ttl : 0x40; ctx->flow.mpls_lse = set_mpls_lse_values(ttl, tc, 1, label); ctx->flow.mpls_depth = 1; } ctx->flow.dl_type = eth_type; } static void execute_mpls_pop_action(struct action_xlate_ctx *ctx, ovs_be16 eth_type) { ovs_assert(eth_type_mpls(ctx->flow.dl_type)); ovs_assert(!eth_type_mpls(eth_type)); if (ctx->flow.mpls_depth) { ctx->flow.mpls_depth--; ctx->flow.mpls_lse = htonl(0); if (!ctx->flow.mpls_depth) { ctx->flow.dl_type = eth_type; } } } static bool compose_dec_ttl(struct action_xlate_ctx *ctx, struct ofpact_cnt_ids *ids) { if (ctx->flow.dl_type != htons(ETH_TYPE_IP) && ctx->flow.dl_type != htons(ETH_TYPE_IPV6)) { return false; } if (ctx->flow.nw_ttl > 1) { ctx->flow.nw_ttl--; return false; } else { size_t i; for (i = 0; i < ids->n_controllers; i++) { execute_controller_action(ctx, UINT16_MAX, OFPR_INVALID_TTL, ids->cnt_ids[i]); } /* Stop processing for current table. */ return true; } } static bool execute_set_mpls_ttl_action(struct action_xlate_ctx *ctx, uint8_t ttl) { if (!eth_type_mpls(ctx->flow.dl_type)) { return true; } set_mpls_lse_ttl(&ctx->flow.mpls_lse, ttl); return false; } static bool execute_dec_mpls_ttl_action(struct action_xlate_ctx *ctx) { uint8_t ttl = mpls_lse_to_ttl(ctx->flow.mpls_lse); if (!eth_type_mpls(ctx->flow.dl_type)) { return false; } if (ttl > 1) { ttl--; set_mpls_lse_ttl(&ctx->flow.mpls_lse, ttl); return false; } else { execute_controller_action(ctx, UINT16_MAX, OFPR_INVALID_TTL, 0); /* Stop processing for current table. */ return true; } } static void xlate_output_action(struct action_xlate_ctx *ctx, uint16_t port, uint16_t max_len, bool may_packet_in) { uint16_t prev_nf_output_iface = ctx->nf_output_iface; ctx->nf_output_iface = NF_OUT_DROP; switch (port) { case OFPP_IN_PORT: compose_output_action(ctx, ctx->flow.in_port); break; case OFPP_TABLE: xlate_table_action(ctx, ctx->flow.in_port, 0, may_packet_in); break; case OFPP_NORMAL: xlate_normal(ctx); break; case OFPP_FLOOD: flood_packets(ctx, false); break; case OFPP_ALL: flood_packets(ctx, true); break; case OFPP_CONTROLLER: execute_controller_action(ctx, max_len, OFPR_ACTION, 0); break; case OFPP_NONE: break; case OFPP_LOCAL: default: if (port != ctx->flow.in_port) { compose_output_action(ctx, port); } else { xlate_report(ctx, "skipping output to input port"); } break; } if (prev_nf_output_iface == NF_OUT_FLOOD) { ctx->nf_output_iface = NF_OUT_FLOOD; } else if (ctx->nf_output_iface == NF_OUT_DROP) { ctx->nf_output_iface = prev_nf_output_iface; } else if (prev_nf_output_iface != NF_OUT_DROP && ctx->nf_output_iface != NF_OUT_FLOOD) { ctx->nf_output_iface = NF_OUT_MULTI; } } static void xlate_output_reg_action(struct action_xlate_ctx *ctx, const struct ofpact_output_reg *or) { uint64_t port = mf_get_subfield(&or->src, &ctx->flow); if (port <= UINT16_MAX) { xlate_output_action(ctx, port, or->max_len, false); } } static void xlate_enqueue_action(struct action_xlate_ctx *ctx, const struct ofpact_enqueue *enqueue) { uint16_t ofp_port = enqueue->port; uint32_t queue_id = enqueue->queue; uint32_t flow_priority, priority; int error; /* Translate queue to priority. */ error = dpif_queue_to_priority(ctx->ofproto->backer->dpif, queue_id, &priority); if (error) { /* Fall back to ordinary output action. */ xlate_output_action(ctx, enqueue->port, 0, false); return; } /* Check output port. */ if (ofp_port == OFPP_IN_PORT) { ofp_port = ctx->flow.in_port; } else if (ofp_port == ctx->flow.in_port) { return; } /* Add datapath actions. */ flow_priority = ctx->flow.skb_priority; ctx->flow.skb_priority = priority; compose_output_action(ctx, ofp_port); ctx->flow.skb_priority = flow_priority; /* Update NetFlow output port. */ if (ctx->nf_output_iface == NF_OUT_DROP) { ctx->nf_output_iface = ofp_port; } else if (ctx->nf_output_iface != NF_OUT_FLOOD) { ctx->nf_output_iface = NF_OUT_MULTI; } } static void xlate_set_queue_action(struct action_xlate_ctx *ctx, uint32_t queue_id) { uint32_t skb_priority; if (!dpif_queue_to_priority(ctx->ofproto->backer->dpif, queue_id, &skb_priority)) { ctx->flow.skb_priority = skb_priority; } else { /* Couldn't translate queue to a priority. Nothing to do. A warning * has already been logged. */ } } struct xlate_reg_state { ovs_be16 vlan_tci; ovs_be64 tun_id; }; static bool slave_enabled_cb(uint16_t ofp_port, void *ofproto_) { struct ofproto_dpif *ofproto = ofproto_; struct ofport_dpif *port; switch (ofp_port) { case OFPP_IN_PORT: case OFPP_TABLE: case OFPP_NORMAL: case OFPP_FLOOD: case OFPP_ALL: case OFPP_NONE: return true; case OFPP_CONTROLLER: /* Not supported by the bundle action. */ return false; default: port = get_ofp_port(ofproto, ofp_port); return port ? port->may_enable : false; } } static void xlate_bundle_action(struct action_xlate_ctx *ctx, const struct ofpact_bundle *bundle) { uint16_t port; port = bundle_execute(bundle, &ctx->flow, slave_enabled_cb, ctx->ofproto); if (bundle->dst.field) { nxm_reg_load(&bundle->dst, port, &ctx->flow); } else { xlate_output_action(ctx, port, 0, false); } } static void xlate_learn_action(struct action_xlate_ctx *ctx, const struct ofpact_learn *learn) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(5, 1); struct ofputil_flow_mod fm; uint64_t ofpacts_stub[1024 / 8]; struct ofpbuf ofpacts; int error; ofpbuf_use_stack(&ofpacts, ofpacts_stub, sizeof ofpacts_stub); learn_execute(learn, &ctx->flow, &fm, &ofpacts); error = ofproto_flow_mod(&ctx->ofproto->up, &fm); if (error && !VLOG_DROP_WARN(&rl)) { VLOG_WARN("learning action failed to modify flow table (%s)", ofperr_get_name(error)); } ofpbuf_uninit(&ofpacts); } /* Reduces '*timeout' to no more than 'max'. A value of zero in either case * means "infinite". */ static void reduce_timeout(uint16_t max, uint16_t *timeout) { if (max && (!*timeout || *timeout > max)) { *timeout = max; } } static void xlate_fin_timeout(struct action_xlate_ctx *ctx, const struct ofpact_fin_timeout *oft) { if (ctx->tcp_flags & (TCP_FIN | TCP_RST) && ctx->rule) { struct rule_dpif *rule = ctx->rule; reduce_timeout(oft->fin_idle_timeout, &rule->up.idle_timeout); reduce_timeout(oft->fin_hard_timeout, &rule->up.hard_timeout); } } static bool may_receive(const struct ofport_dpif *port, struct action_xlate_ctx *ctx) { if (port->up.pp.config & (eth_addr_equals(ctx->flow.dl_dst, eth_addr_stp) ? OFPUTIL_PC_NO_RECV_STP : OFPUTIL_PC_NO_RECV)) { return false; } /* Only drop packets here if both forwarding and learning are * disabled. If just learning is enabled, we need to have * OFPP_NORMAL and the learning action have a look at the packet * before we can drop it. */ if (!stp_forward_in_state(port->stp_state) && !stp_learn_in_state(port->stp_state)) { return false; } return true; } static bool tunnel_ecn_ok(struct action_xlate_ctx *ctx) { if (is_ip_any(&ctx->base_flow) && (ctx->base_flow.tunnel.ip_tos & IP_ECN_MASK) == IP_ECN_CE) { if ((ctx->base_flow.nw_tos & IP_ECN_MASK) == IP_ECN_NOT_ECT) { VLOG_WARN_RL(&rl, "dropping tunnel packet marked ECN CE" " but is not ECN capable"); return false; } else { /* Set the ECN CE value in the tunneled packet. */ ctx->flow.nw_tos |= IP_ECN_CE; } } return true; } static void do_xlate_actions(const struct ofpact *ofpacts, size_t ofpacts_len, struct action_xlate_ctx *ctx) { bool was_evictable = true; const struct ofpact *a; if (ctx->rule) { /* Don't let the rule we're working on get evicted underneath us. */ was_evictable = ctx->rule->up.evictable; ctx->rule->up.evictable = false; } do_xlate_actions_again: OFPACT_FOR_EACH (a, ofpacts, ofpacts_len) { struct ofpact_controller *controller; const struct ofpact_metadata *metadata; if (ctx->exit) { break; } switch (a->type) { case OFPACT_OUTPUT: xlate_output_action(ctx, ofpact_get_OUTPUT(a)->port, ofpact_get_OUTPUT(a)->max_len, true); break; case OFPACT_CONTROLLER: controller = ofpact_get_CONTROLLER(a); execute_controller_action(ctx, controller->max_len, controller->reason, controller->controller_id); break; case OFPACT_ENQUEUE: xlate_enqueue_action(ctx, ofpact_get_ENQUEUE(a)); break; case OFPACT_SET_VLAN_VID: ctx->flow.vlan_tci &= ~htons(VLAN_VID_MASK); ctx->flow.vlan_tci |= (htons(ofpact_get_SET_VLAN_VID(a)->vlan_vid) | htons(VLAN_CFI)); break; case OFPACT_SET_VLAN_PCP: ctx->flow.vlan_tci &= ~htons(VLAN_PCP_MASK); ctx->flow.vlan_tci |= htons((ofpact_get_SET_VLAN_PCP(a)->vlan_pcp << VLAN_PCP_SHIFT) | VLAN_CFI); break; case OFPACT_STRIP_VLAN: ctx->flow.vlan_tci = htons(0); break; case OFPACT_PUSH_VLAN: /* XXX 802.1AD(QinQ) */ ctx->flow.vlan_tci = htons(VLAN_CFI); break; case OFPACT_SET_ETH_SRC: memcpy(ctx->flow.dl_src, ofpact_get_SET_ETH_SRC(a)->mac, ETH_ADDR_LEN); break; case OFPACT_SET_ETH_DST: memcpy(ctx->flow.dl_dst, ofpact_get_SET_ETH_DST(a)->mac, ETH_ADDR_LEN); break; case OFPACT_SET_IPV4_SRC: if (ctx->flow.dl_type == htons(ETH_TYPE_IP)) { ctx->flow.nw_src = ofpact_get_SET_IPV4_SRC(a)->ipv4; } break; case OFPACT_SET_IPV4_DST: if (ctx->flow.dl_type == htons(ETH_TYPE_IP)) { ctx->flow.nw_dst = ofpact_get_SET_IPV4_DST(a)->ipv4; } break; case OFPACT_SET_IPV4_DSCP: /* OpenFlow 1.0 only supports IPv4. */ if (ctx->flow.dl_type == htons(ETH_TYPE_IP)) { ctx->flow.nw_tos &= ~IP_DSCP_MASK; ctx->flow.nw_tos |= ofpact_get_SET_IPV4_DSCP(a)->dscp; } break; case OFPACT_SET_L4_SRC_PORT: if (is_ip_any(&ctx->flow)) { ctx->flow.tp_src = htons(ofpact_get_SET_L4_SRC_PORT(a)->port); } break; case OFPACT_SET_L4_DST_PORT: if (is_ip_any(&ctx->flow)) { ctx->flow.tp_dst = htons(ofpact_get_SET_L4_DST_PORT(a)->port); } break; case OFPACT_RESUBMIT: xlate_ofpact_resubmit(ctx, ofpact_get_RESUBMIT(a)); break; case OFPACT_SET_TUNNEL: ctx->flow.tunnel.tun_id = htonll(ofpact_get_SET_TUNNEL(a)->tun_id); break; case OFPACT_SET_QUEUE: xlate_set_queue_action(ctx, ofpact_get_SET_QUEUE(a)->queue_id); break; case OFPACT_POP_QUEUE: ctx->flow.skb_priority = ctx->orig_skb_priority; break; case OFPACT_REG_MOVE: nxm_execute_reg_move(ofpact_get_REG_MOVE(a), &ctx->flow); break; case OFPACT_REG_LOAD: nxm_execute_reg_load(ofpact_get_REG_LOAD(a), &ctx->flow); break; case OFPACT_STACK_PUSH: nxm_execute_stack_push(ofpact_get_STACK_PUSH(a), &ctx->flow, &ctx->stack); break; case OFPACT_STACK_POP: nxm_execute_stack_pop(ofpact_get_STACK_POP(a), &ctx->flow, &ctx->stack); break; case OFPACT_PUSH_MPLS: execute_mpls_push_action(ctx, ofpact_get_PUSH_MPLS(a)->ethertype); break; case OFPACT_POP_MPLS: execute_mpls_pop_action(ctx, ofpact_get_POP_MPLS(a)->ethertype); break; case OFPACT_SET_MPLS_TTL: if (execute_set_mpls_ttl_action(ctx, ofpact_get_SET_MPLS_TTL(a)->ttl)) { goto out; } break; case OFPACT_DEC_MPLS_TTL: if (execute_dec_mpls_ttl_action(ctx)) { goto out; } break; case OFPACT_DEC_TTL: if (compose_dec_ttl(ctx, ofpact_get_DEC_TTL(a))) { goto out; } break; case OFPACT_NOTE: /* Nothing to do. */ break; case OFPACT_MULTIPATH: multipath_execute(ofpact_get_MULTIPATH(a), &ctx->flow); break; case OFPACT_BUNDLE: ctx->ofproto->has_bundle_action = true; xlate_bundle_action(ctx, ofpact_get_BUNDLE(a)); break; case OFPACT_OUTPUT_REG: xlate_output_reg_action(ctx, ofpact_get_OUTPUT_REG(a)); break; case OFPACT_LEARN: ctx->has_learn = true; if (ctx->may_learn) { xlate_learn_action(ctx, ofpact_get_LEARN(a)); } break; case OFPACT_EXIT: ctx->exit = true; break; case OFPACT_FIN_TIMEOUT: ctx->has_fin_timeout = true; xlate_fin_timeout(ctx, ofpact_get_FIN_TIMEOUT(a)); break; case OFPACT_CLEAR_ACTIONS: /* XXX * Nothing to do because writa-actions is not supported for now. * When writa-actions is supported, clear-actions also must * be supported at the same time. */ break; case OFPACT_WRITE_METADATA: metadata = ofpact_get_WRITE_METADATA(a); ctx->flow.metadata &= ~metadata->mask; ctx->flow.metadata |= metadata->metadata & metadata->mask; break; case OFPACT_GOTO_TABLE: { /* It is assumed that goto-table is the last action. */ struct ofpact_goto_table *ogt = ofpact_get_GOTO_TABLE(a); struct rule_dpif *rule; ovs_assert(ctx->table_id < ogt->table_id); ctx->table_id = ogt->table_id; /* Look up a flow from the new table. */ rule = rule_dpif_lookup__(ctx->ofproto, &ctx->flow, ctx->table_id); tag_the_flow(ctx, rule); rule = ctx_rule_hooks(ctx, rule, true); if (rule) { if (ctx->rule) { ctx->rule->up.evictable = was_evictable; } ctx->rule = rule; was_evictable = rule->up.evictable; rule->up.evictable = false; /* Tail recursion removal. */ ofpacts = rule->up.ofpacts; ofpacts_len = rule->up.ofpacts_len; goto do_xlate_actions_again; } break; } } } out: if (ctx->rule) { ctx->rule->up.evictable = was_evictable; } } static void action_xlate_ctx_init(struct action_xlate_ctx *ctx, struct ofproto_dpif *ofproto, const struct flow *flow, const struct initial_vals *initial_vals, struct rule_dpif *rule, uint8_t tcp_flags, const struct ofpbuf *packet) { ovs_be64 initial_tun_id = flow->tunnel.tun_id; /* Flow initialization rules: * - 'base_flow' must match the kernel's view of the packet at the * time that action processing starts. 'flow' represents any * transformations we wish to make through actions. * - By default 'base_flow' and 'flow' are the same since the input * packet matches the output before any actions are applied. * - When using VLAN splinters, 'base_flow''s VLAN is set to the value * of the received packet as seen by the kernel. If we later output * to another device without any modifications this will cause us to * insert a new tag since the original one was stripped off by the * VLAN device. * - Tunnel 'flow' is largely cleared when transitioning between * the input and output stages since it does not make sense to output * a packet with the exact headers that it was received with (i.e. * the destination IP is us). The one exception is the tun_id, which * is preserved to allow use in later resubmit lookups and loads into * registers. * - Tunnel 'base_flow' is completely cleared since that is what the * kernel does. If we wish to maintain the original values an action * needs to be generated. */ ctx->ofproto = ofproto; ctx->flow = *flow; memset(&ctx->flow.tunnel, 0, sizeof ctx->flow.tunnel); ctx->base_flow = ctx->flow; ctx->base_flow.vlan_tci = initial_vals->vlan_tci; ctx->base_flow.tunnel.ip_tos = initial_vals->tunnel_ip_tos; ctx->flow.tunnel.tun_id = initial_tun_id; ctx->rule = rule; ctx->packet = packet; ctx->may_learn = packet != NULL; ctx->tcp_flags = tcp_flags; ctx->resubmit_hook = NULL; ctx->report_hook = NULL; ctx->resubmit_stats = NULL; } /* Translates the 'ofpacts_len' bytes of "struct ofpacts" starting at 'ofpacts' * into datapath actions in 'odp_actions', using 'ctx'. */ static void xlate_actions(struct action_xlate_ctx *ctx, const struct ofpact *ofpacts, size_t ofpacts_len, struct ofpbuf *odp_actions) { /* Normally false. Set to true if we ever hit MAX_RESUBMIT_RECURSION, so * that in the future we always keep a copy of the original flow for * tracing purposes. */ static bool hit_resubmit_limit; enum slow_path_reason special; struct ofport_dpif *in_port; struct flow orig_flow; COVERAGE_INC(ofproto_dpif_xlate); ofpbuf_clear(odp_actions); ofpbuf_reserve(odp_actions, NL_A_U32_SIZE); ctx->odp_actions = odp_actions; ctx->tags = 0; ctx->slow = 0; ctx->has_learn = false; ctx->has_normal = false; ctx->has_fin_timeout = false; ctx->nf_output_iface = NF_OUT_DROP; ctx->mirrors = 0; ctx->recurse = 0; ctx->max_resubmit_trigger = false; ctx->orig_skb_priority = ctx->flow.skb_priority; ctx->table_id = 0; ctx->exit = false; ofpbuf_use_stub(&ctx->stack, ctx->init_stack, sizeof ctx->init_stack); if (ctx->ofproto->has_mirrors || hit_resubmit_limit) { /* Do this conditionally because the copy is expensive enough that it * shows up in profiles. */ orig_flow = ctx->flow; } if (ctx->flow.nw_frag & FLOW_NW_FRAG_ANY) { switch (ctx->ofproto->up.frag_handling) { case OFPC_FRAG_NORMAL: /* We must pretend that transport ports are unavailable. */ ctx->flow.tp_src = ctx->base_flow.tp_src = htons(0); ctx->flow.tp_dst = ctx->base_flow.tp_dst = htons(0); break; case OFPC_FRAG_DROP: return; case OFPC_FRAG_REASM: NOT_REACHED(); case OFPC_FRAG_NX_MATCH: /* Nothing to do. */ break; case OFPC_INVALID_TTL_TO_CONTROLLER: NOT_REACHED(); } } in_port = get_ofp_port(ctx->ofproto, ctx->flow.in_port); special = process_special(ctx->ofproto, &ctx->flow, in_port, ctx->packet); if (special) { ctx->slow |= special; } else { static struct vlog_rate_limit trace_rl = VLOG_RATE_LIMIT_INIT(1, 1); struct initial_vals initial_vals; uint32_t local_odp_port; initial_vals.vlan_tci = ctx->base_flow.vlan_tci; initial_vals.tunnel_ip_tos = ctx->base_flow.tunnel.ip_tos; add_sflow_action(ctx); if (tunnel_ecn_ok(ctx) && (!in_port || may_receive(in_port, ctx))) { do_xlate_actions(ofpacts, ofpacts_len, ctx); /* We've let OFPP_NORMAL and the learning action look at the * packet, so drop it now if forwarding is disabled. */ if (in_port && !stp_forward_in_state(in_port->stp_state)) { ofpbuf_clear(ctx->odp_actions); add_sflow_action(ctx); } } if (ctx->max_resubmit_trigger && !ctx->resubmit_hook) { if (!hit_resubmit_limit) { /* We didn't record the original flow. Make sure we do from * now on. */ hit_resubmit_limit = true; } else if (!VLOG_DROP_ERR(&trace_rl)) { struct ds ds = DS_EMPTY_INITIALIZER; ofproto_trace(ctx->ofproto, &orig_flow, ctx->packet, &initial_vals, &ds); VLOG_ERR("Trace triggered by excessive resubmit " "recursion:\n%s", ds_cstr(&ds)); ds_destroy(&ds); } } local_odp_port = ofp_port_to_odp_port(ctx->ofproto, OFPP_LOCAL); if (!connmgr_may_set_up_flow(ctx->ofproto->up.connmgr, &ctx->flow, local_odp_port, ctx->odp_actions->data, ctx->odp_actions->size)) { ctx->slow |= SLOW_IN_BAND; if (ctx->packet && connmgr_msg_in_hook(ctx->ofproto->up.connmgr, &ctx->flow, ctx->packet)) { compose_output_action(ctx, OFPP_LOCAL); } } if (ctx->ofproto->has_mirrors) { add_mirror_actions(ctx, &orig_flow); } fix_sflow_action(ctx); } ofpbuf_uninit(&ctx->stack); } /* Translates the 'ofpacts_len' bytes of "struct ofpact"s starting at 'ofpacts' * into datapath actions, using 'ctx', and discards the datapath actions. */ static void xlate_actions_for_side_effects(struct action_xlate_ctx *ctx, const struct ofpact *ofpacts, size_t ofpacts_len) { uint64_t odp_actions_stub[1024 / 8]; struct ofpbuf odp_actions; ofpbuf_use_stub(&odp_actions, odp_actions_stub, sizeof odp_actions_stub); xlate_actions(ctx, ofpacts, ofpacts_len, &odp_actions); ofpbuf_uninit(&odp_actions); } static void xlate_report(struct action_xlate_ctx *ctx, const char *s) { if (ctx->report_hook) { ctx->report_hook(ctx, s); } } /* OFPP_NORMAL implementation. */ static struct ofport_dpif *ofbundle_get_a_port(const struct ofbundle *); /* Given 'vid', the VID obtained from the 802.1Q header that was received as * part of a packet (specify 0 if there was no 802.1Q header), and 'in_bundle', * the bundle on which the packet was received, returns the VLAN to which the * packet belongs. * * Both 'vid' and the return value are in the range 0...4095. */ static uint16_t input_vid_to_vlan(const struct ofbundle *in_bundle, uint16_t vid) { switch (in_bundle->vlan_mode) { case PORT_VLAN_ACCESS: return in_bundle->vlan; break; case PORT_VLAN_TRUNK: return vid; case PORT_VLAN_NATIVE_UNTAGGED: case PORT_VLAN_NATIVE_TAGGED: return vid ? vid : in_bundle->vlan; default: NOT_REACHED(); } } /* Checks whether a packet with the given 'vid' may ingress on 'in_bundle'. * If so, returns true. Otherwise, returns false and, if 'warn' is true, logs * a warning. * * 'vid' should be the VID obtained from the 802.1Q header that was received as * part of a packet (specify 0 if there was no 802.1Q header), in the range * 0...4095. */ static bool input_vid_is_valid(uint16_t vid, struct ofbundle *in_bundle, bool warn) { /* Allow any VID on the OFPP_NONE port. */ if (in_bundle == &ofpp_none_bundle) { return true; } switch (in_bundle->vlan_mode) { case PORT_VLAN_ACCESS: if (vid) { if (warn) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_WARN_RL(&rl, "bridge %s: dropping VLAN %"PRIu16" tagged " "packet received on port %s configured as VLAN " "%"PRIu16" access port", in_bundle->ofproto->up.name, vid, in_bundle->name, in_bundle->vlan); } return false; } return true; case PORT_VLAN_NATIVE_UNTAGGED: case PORT_VLAN_NATIVE_TAGGED: if (!vid) { /* Port must always carry its native VLAN. */ return true; } /* Fall through. */ case PORT_VLAN_TRUNK: if (!ofbundle_includes_vlan(in_bundle, vid)) { if (warn) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_WARN_RL(&rl, "bridge %s: dropping VLAN %"PRIu16" packet " "received on port %s not configured for trunking " "VLAN %"PRIu16, in_bundle->ofproto->up.name, vid, in_bundle->name, vid); } return false; } return true; default: NOT_REACHED(); } } /* Given 'vlan', the VLAN that a packet belongs to, and * 'out_bundle', a bundle on which the packet is to be output, returns the VID * that should be included in the 802.1Q header. (If the return value is 0, * then the 802.1Q header should only be included in the packet if there is a * nonzero PCP.) * * Both 'vlan' and the return value are in the range 0...4095. */ static uint16_t output_vlan_to_vid(const struct ofbundle *out_bundle, uint16_t vlan) { switch (out_bundle->vlan_mode) { case PORT_VLAN_ACCESS: return 0; case PORT_VLAN_TRUNK: case PORT_VLAN_NATIVE_TAGGED: return vlan; case PORT_VLAN_NATIVE_UNTAGGED: return vlan == out_bundle->vlan ? 0 : vlan; default: NOT_REACHED(); } } static void output_normal(struct action_xlate_ctx *ctx, const struct ofbundle *out_bundle, uint16_t vlan) { struct ofport_dpif *port; uint16_t vid; ovs_be16 tci, old_tci; vid = output_vlan_to_vid(out_bundle, vlan); if (!out_bundle->bond) { port = ofbundle_get_a_port(out_bundle); } else { port = bond_choose_output_slave(out_bundle->bond, &ctx->flow, vid, &ctx->tags); if (!port) { /* No slaves enabled, so drop packet. */ return; } } old_tci = ctx->flow.vlan_tci; tci = htons(vid); if (tci || out_bundle->use_priority_tags) { tci |= ctx->flow.vlan_tci & htons(VLAN_PCP_MASK); if (tci) { tci |= htons(VLAN_CFI); } } ctx->flow.vlan_tci = tci; compose_output_action(ctx, port->up.ofp_port); ctx->flow.vlan_tci = old_tci; } static int mirror_mask_ffs(mirror_mask_t mask) { BUILD_ASSERT_DECL(sizeof(unsigned int) >= sizeof(mask)); return ffs(mask); } static bool ofbundle_trunks_vlan(const struct ofbundle *bundle, uint16_t vlan) { return (bundle->vlan_mode != PORT_VLAN_ACCESS && (!bundle->trunks || bitmap_is_set(bundle->trunks, vlan))); } static bool ofbundle_includes_vlan(const struct ofbundle *bundle, uint16_t vlan) { return vlan == bundle->vlan || ofbundle_trunks_vlan(bundle, vlan); } /* Returns an arbitrary interface within 'bundle'. */ static struct ofport_dpif * ofbundle_get_a_port(const struct ofbundle *bundle) { return CONTAINER_OF(list_front(&bundle->ports), struct ofport_dpif, bundle_node); } static bool vlan_is_mirrored(const struct ofmirror *m, int vlan) { return !m->vlans || bitmap_is_set(m->vlans, vlan); } static void add_mirror_actions(struct action_xlate_ctx *ctx, const struct flow *orig_flow) { struct ofproto_dpif *ofproto = ctx->ofproto; mirror_mask_t mirrors; struct ofbundle *in_bundle; uint16_t vlan; uint16_t vid; const struct nlattr *a; size_t left; in_bundle = lookup_input_bundle(ctx->ofproto, orig_flow->in_port, ctx->packet != NULL, NULL); if (!in_bundle) { return; } mirrors = in_bundle->src_mirrors; /* Drop frames on bundles reserved for mirroring. */ if (in_bundle->mirror_out) { if (ctx->packet != NULL) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_WARN_RL(&rl, "bridge %s: dropping packet received on port " "%s, which is reserved exclusively for mirroring", ctx->ofproto->up.name, in_bundle->name); } return; } /* Check VLAN. */ vid = vlan_tci_to_vid(orig_flow->vlan_tci); if (!input_vid_is_valid(vid, in_bundle, ctx->packet != NULL)) { return; } vlan = input_vid_to_vlan(in_bundle, vid); /* Look at the output ports to check for destination selections. */ NL_ATTR_FOR_EACH (a, left, ctx->odp_actions->data, ctx->odp_actions->size) { enum ovs_action_attr type = nl_attr_type(a); struct ofport_dpif *ofport; if (type != OVS_ACTION_ATTR_OUTPUT) { continue; } ofport = get_odp_port(ofproto, nl_attr_get_u32(a)); if (ofport && ofport->bundle) { mirrors |= ofport->bundle->dst_mirrors; } } if (!mirrors) { return; } /* Restore the original packet before adding the mirror actions. */ ctx->flow = *orig_flow; while (mirrors) { struct ofmirror *m; m = ofproto->mirrors[mirror_mask_ffs(mirrors) - 1]; if (!vlan_is_mirrored(m, vlan)) { mirrors = zero_rightmost_1bit(mirrors); continue; } mirrors &= ~m->dup_mirrors; ctx->mirrors |= m->dup_mirrors; if (m->out) { output_normal(ctx, m->out, vlan); } else if (vlan != m->out_vlan && !eth_addr_is_reserved(orig_flow->dl_dst)) { struct ofbundle *bundle; HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) { if (ofbundle_includes_vlan(bundle, m->out_vlan) && !bundle->mirror_out) { output_normal(ctx, bundle, m->out_vlan); } } } } } static void update_mirror_stats(struct ofproto_dpif *ofproto, mirror_mask_t mirrors, uint64_t packets, uint64_t bytes) { if (!mirrors) { return; } for (; mirrors; mirrors = zero_rightmost_1bit(mirrors)) { struct ofmirror *m; m = ofproto->mirrors[mirror_mask_ffs(mirrors) - 1]; if (!m) { /* In normal circumstances 'm' will not be NULL. However, * if mirrors are reconfigured, we can temporarily get out * of sync in facet_revalidate(). We could "correct" the * mirror list before reaching here, but doing that would * not properly account the traffic stats we've currently * accumulated for previous mirror configuration. */ continue; } m->packet_count += packets; m->byte_count += bytes; } } /* A VM broadcasts a gratuitous ARP to indicate that it has resumed after * migration. Older Citrix-patched Linux DomU used gratuitous ARP replies to * indicate this; newer upstream kernels use gratuitous ARP requests. */ static bool is_gratuitous_arp(const struct flow *flow) { return (flow->dl_type == htons(ETH_TYPE_ARP) && eth_addr_is_broadcast(flow->dl_dst) && (flow->nw_proto == ARP_OP_REPLY || (flow->nw_proto == ARP_OP_REQUEST && flow->nw_src == flow->nw_dst))); } static void update_learning_table(struct ofproto_dpif *ofproto, const struct flow *flow, int vlan, struct ofbundle *in_bundle) { struct mac_entry *mac; /* Don't learn the OFPP_NONE port. */ if (in_bundle == &ofpp_none_bundle) { return; } if (!mac_learning_may_learn(ofproto->ml, flow->dl_src, vlan)) { return; } mac = mac_learning_insert(ofproto->ml, flow->dl_src, vlan); if (is_gratuitous_arp(flow)) { /* We don't want to learn from gratuitous ARP packets that are * reflected back over bond slaves so we lock the learning table. */ if (!in_bundle->bond) { mac_entry_set_grat_arp_lock(mac); } else if (mac_entry_is_grat_arp_locked(mac)) { return; } } if (mac_entry_is_new(mac) || mac->port.p != in_bundle) { /* The log messages here could actually be useful in debugging, * so keep the rate limit relatively high. */ static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(30, 300); VLOG_DBG_RL(&rl, "bridge %s: learned that "ETH_ADDR_FMT" is " "on port %s in VLAN %d", ofproto->up.name, ETH_ADDR_ARGS(flow->dl_src), in_bundle->name, vlan); mac->port.p = in_bundle; tag_set_add(&ofproto->backer->revalidate_set, mac_learning_changed(ofproto->ml, mac)); } } static struct ofbundle * lookup_input_bundle(const struct ofproto_dpif *ofproto, uint16_t in_port, bool warn, struct ofport_dpif **in_ofportp) { struct ofport_dpif *ofport; /* Find the port and bundle for the received packet. */ ofport = get_ofp_port(ofproto, in_port); if (in_ofportp) { *in_ofportp = ofport; } if (ofport && ofport->bundle) { return ofport->bundle; } /* Special-case OFPP_NONE, which a controller may use as the ingress * port for traffic that it is sourcing. */ if (in_port == OFPP_NONE) { return &ofpp_none_bundle; } /* Odd. A few possible reasons here: * * - We deleted a port but there are still a few packets queued up * from it. * * - Someone externally added a port (e.g. "ovs-dpctl add-if") that * we don't know about. * * - The ofproto client didn't configure the port as part of a bundle. * This is particularly likely to happen if a packet was received on the * port after it was created, but before the client had a chance to * configure its bundle. */ if (warn) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_WARN_RL(&rl, "bridge %s: received packet on unknown " "port %"PRIu16, ofproto->up.name, in_port); } return NULL; } /* Determines whether packets in 'flow' within 'ofproto' should be forwarded or * dropped. Returns true if they may be forwarded, false if they should be * dropped. * * 'in_port' must be the ofport_dpif that corresponds to flow->in_port. * 'in_port' must be part of a bundle (e.g. in_port->bundle must be nonnull). * * 'vlan' must be the VLAN that corresponds to flow->vlan_tci on 'in_port', as * returned by input_vid_to_vlan(). It must be a valid VLAN for 'in_port', as * checked by input_vid_is_valid(). * * May also add tags to '*tags', although the current implementation only does * so in one special case. */ static bool is_admissible(struct action_xlate_ctx *ctx, struct ofport_dpif *in_port, uint16_t vlan) { struct ofproto_dpif *ofproto = ctx->ofproto; struct flow *flow = &ctx->flow; struct ofbundle *in_bundle = in_port->bundle; /* Drop frames for reserved multicast addresses * only if forward_bpdu option is absent. */ if (!ofproto->up.forward_bpdu && eth_addr_is_reserved(flow->dl_dst)) { xlate_report(ctx, "packet has reserved destination MAC, dropping"); return false; } if (in_bundle->bond) { struct mac_entry *mac; switch (bond_check_admissibility(in_bundle->bond, in_port, flow->dl_dst, &ctx->tags)) { case BV_ACCEPT: break; case BV_DROP: xlate_report(ctx, "bonding refused admissibility, dropping"); return false; case BV_DROP_IF_MOVED: mac = mac_learning_lookup(ofproto->ml, flow->dl_src, vlan, NULL); if (mac && mac->port.p != in_bundle && (!is_gratuitous_arp(flow) || mac_entry_is_grat_arp_locked(mac))) { xlate_report(ctx, "SLB bond thinks this packet looped back, " "dropping"); return false; } break; } } return true; } static void xlate_normal(struct action_xlate_ctx *ctx) { struct ofport_dpif *in_port; struct ofbundle *in_bundle; struct mac_entry *mac; uint16_t vlan; uint16_t vid; ctx->has_normal = true; in_bundle = lookup_input_bundle(ctx->ofproto, ctx->flow.in_port, ctx->packet != NULL, &in_port); if (!in_bundle) { xlate_report(ctx, "no input bundle, dropping"); return; } /* Drop malformed frames. */ if (ctx->flow.dl_type == htons(ETH_TYPE_VLAN) && !(ctx->flow.vlan_tci & htons(VLAN_CFI))) { if (ctx->packet != NULL) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_WARN_RL(&rl, "bridge %s: dropping packet with partial " "VLAN tag received on port %s", ctx->ofproto->up.name, in_bundle->name); } xlate_report(ctx, "partial VLAN tag, dropping"); return; } /* Drop frames on bundles reserved for mirroring. */ if (in_bundle->mirror_out) { if (ctx->packet != NULL) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_WARN_RL(&rl, "bridge %s: dropping packet received on port " "%s, which is reserved exclusively for mirroring", ctx->ofproto->up.name, in_bundle->name); } xlate_report(ctx, "input port is mirror output port, dropping"); return; } /* Check VLAN. */ vid = vlan_tci_to_vid(ctx->flow.vlan_tci); if (!input_vid_is_valid(vid, in_bundle, ctx->packet != NULL)) { xlate_report(ctx, "disallowed VLAN VID for this input port, dropping"); return; } vlan = input_vid_to_vlan(in_bundle, vid); /* Check other admissibility requirements. */ if (in_port && !is_admissible(ctx, in_port, vlan)) { return; } /* Learn source MAC. */ if (ctx->may_learn) { update_learning_table(ctx->ofproto, &ctx->flow, vlan, in_bundle); } /* Determine output bundle. */ mac = mac_learning_lookup(ctx->ofproto->ml, ctx->flow.dl_dst, vlan, &ctx->tags); if (mac) { if (mac->port.p != in_bundle) { xlate_report(ctx, "forwarding to learned port"); output_normal(ctx, mac->port.p, vlan); } else { xlate_report(ctx, "learned port is input port, dropping"); } } else { struct ofbundle *bundle; xlate_report(ctx, "no learned MAC for destination, flooding"); HMAP_FOR_EACH (bundle, hmap_node, &ctx->ofproto->bundles) { if (bundle != in_bundle && ofbundle_includes_vlan(bundle, vlan) && bundle->floodable && !bundle->mirror_out) { output_normal(ctx, bundle, vlan); } } ctx->nf_output_iface = NF_OUT_FLOOD; } } /* Optimized flow revalidation. * * It's a difficult problem, in general, to tell which facets need to have * their actions recalculated whenever the OpenFlow flow table changes. We * don't try to solve that general problem: for most kinds of OpenFlow flow * table changes, we recalculate the actions for every facet. This is * relatively expensive, but it's good enough if the OpenFlow flow table * doesn't change very often. * * However, we can expect one particular kind of OpenFlow flow table change to * happen frequently: changes caused by MAC learning. To avoid wasting a lot * of CPU on revalidating every facet whenever MAC learning modifies the flow * table, we add a special case that applies to flow tables in which every rule * has the same form (that is, the same wildcards), except that the table is * also allowed to have a single "catch-all" flow that matches all packets. We * optimize this case by tagging all of the facets that resubmit into the table * and invalidating the same tag whenever a flow changes in that table. The * end result is that we revalidate just the facets that need it (and sometimes * a few more, but not all of the facets or even all of the facets that * resubmit to the table modified by MAC learning). */ /* Calculates the tag to use for 'flow' and mask 'mask' when it is inserted * into an OpenFlow table with the given 'basis'. */ static tag_type rule_calculate_tag(const struct flow *flow, const struct minimask *mask, uint32_t secret) { if (minimask_is_catchall(mask)) { return 0; } else { uint32_t hash = flow_hash_in_minimask(flow, mask, secret); return tag_create_deterministic(hash); } } /* Following a change to OpenFlow table 'table_id' in 'ofproto', update the * taggability of that table. * * This function must be called after *each* change to a flow table. If you * skip calling it on some changes then the pointer comparisons at the end can * be invalid if you get unlucky. For example, if a flow removal causes a * cls_table to be destroyed and then a flow insertion causes a cls_table with * different wildcards to be created with the same address, then this function * will incorrectly skip revalidation. */ static void table_update_taggable(struct ofproto_dpif *ofproto, uint8_t table_id) { struct table_dpif *table = &ofproto->tables[table_id]; const struct oftable *oftable = &ofproto->up.tables[table_id]; struct cls_table *catchall, *other; struct cls_table *t; catchall = other = NULL; switch (hmap_count(&oftable->cls.tables)) { case 0: /* We could tag this OpenFlow table but it would make the logic a * little harder and it's a corner case that doesn't seem worth it * yet. */ break; case 1: case 2: HMAP_FOR_EACH (t, hmap_node, &oftable->cls.tables) { if (cls_table_is_catchall(t)) { catchall = t; } else if (!other) { other = t; } else { /* Indicate that we can't tag this by setting both tables to * NULL. (We know that 'catchall' is already NULL.) */ other = NULL; } } break; default: /* Can't tag this table. */ break; } if (table->catchall_table != catchall || table->other_table != other) { table->catchall_table = catchall; table->other_table = other; ofproto->backer->need_revalidate = REV_FLOW_TABLE; } } /* Given 'rule' that has changed in some way (either it is a rule being * inserted, a rule being deleted, or a rule whose actions are being * modified), marks facets for revalidation to ensure that packets will be * forwarded correctly according to the new state of the flow table. * * This function must be called after *each* change to a flow table. See * the comment on table_update_taggable() for more information. */ static void rule_invalidate(const struct rule_dpif *rule) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto); table_update_taggable(ofproto, rule->up.table_id); if (!ofproto->backer->need_revalidate) { struct table_dpif *table = &ofproto->tables[rule->up.table_id]; if (table->other_table && rule->tag) { tag_set_add(&ofproto->backer->revalidate_set, rule->tag); } else { ofproto->backer->need_revalidate = REV_FLOW_TABLE; } } } static bool set_frag_handling(struct ofproto *ofproto_, enum ofp_config_flags frag_handling) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); if (frag_handling != OFPC_FRAG_REASM) { ofproto->backer->need_revalidate = REV_RECONFIGURE; return true; } else { return false; } } static enum ofperr packet_out(struct ofproto *ofproto_, struct ofpbuf *packet, const struct flow *flow, const struct ofpact *ofpacts, size_t ofpacts_len) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); struct initial_vals initial_vals; struct odputil_keybuf keybuf; struct dpif_flow_stats stats; struct ofpbuf key; struct action_xlate_ctx ctx; uint64_t odp_actions_stub[1024 / 8]; struct ofpbuf odp_actions; ofpbuf_use_stack(&key, &keybuf, sizeof keybuf); odp_flow_key_from_flow(&key, flow, ofp_port_to_odp_port(ofproto, flow->in_port)); dpif_flow_stats_extract(flow, packet, time_msec(), &stats); initial_vals.vlan_tci = flow->vlan_tci; initial_vals.tunnel_ip_tos = 0; action_xlate_ctx_init(&ctx, ofproto, flow, &initial_vals, NULL, packet_get_tcp_flags(packet, flow), packet); ctx.resubmit_stats = &stats; ofpbuf_use_stub(&odp_actions, odp_actions_stub, sizeof odp_actions_stub); xlate_actions(&ctx, ofpacts, ofpacts_len, &odp_actions); dpif_execute(ofproto->backer->dpif, key.data, key.size, odp_actions.data, odp_actions.size, packet); ofpbuf_uninit(&odp_actions); return 0; } /* NetFlow. */ static int set_netflow(struct ofproto *ofproto_, const struct netflow_options *netflow_options) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); if (netflow_options) { if (!ofproto->netflow) { ofproto->netflow = netflow_create(); } return netflow_set_options(ofproto->netflow, netflow_options); } else { netflow_destroy(ofproto->netflow); ofproto->netflow = NULL; return 0; } } static void get_netflow_ids(const struct ofproto *ofproto_, uint8_t *engine_type, uint8_t *engine_id) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_); dpif_get_netflow_ids(ofproto->backer->dpif, engine_type, engine_id); } static void send_active_timeout(struct ofproto_dpif *ofproto, struct facet *facet) { if (!facet_is_controller_flow(facet) && netflow_active_timeout_expired(ofproto->netflow, &facet->nf_flow)) { struct subfacet *subfacet; struct ofexpired expired; LIST_FOR_EACH (subfacet, list_node, &facet->subfacets) { if (subfacet->path == SF_FAST_PATH) { struct dpif_flow_stats stats; subfacet_reinstall(subfacet, &stats); subfacet_update_stats(subfacet, &stats); } } expired.flow = facet->flow; expired.packet_count = facet->packet_count; expired.byte_count = facet->byte_count; expired.used = facet->used; netflow_expire(ofproto->netflow, &facet->nf_flow, &expired); } } static void send_netflow_active_timeouts(struct ofproto_dpif *ofproto) { struct facet *facet; HMAP_FOR_EACH (facet, hmap_node, &ofproto->facets) { send_active_timeout(ofproto, facet); } } static struct ofproto_dpif * ofproto_dpif_lookup(const char *name) { struct ofproto_dpif *ofproto; HMAP_FOR_EACH_WITH_HASH (ofproto, all_ofproto_dpifs_node, hash_string(name, 0), &all_ofproto_dpifs) { if (!strcmp(ofproto->up.name, name)) { return ofproto; } } return NULL; } static void ofproto_unixctl_fdb_flush(struct unixctl_conn *conn, int argc, const char *argv[], void *aux OVS_UNUSED) { struct ofproto_dpif *ofproto; if (argc > 1) { ofproto = ofproto_dpif_lookup(argv[1]); if (!ofproto) { unixctl_command_reply_error(conn, "no such bridge"); return; } mac_learning_flush(ofproto->ml, &ofproto->backer->revalidate_set); } else { HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) { mac_learning_flush(ofproto->ml, &ofproto->backer->revalidate_set); } } unixctl_command_reply(conn, "table successfully flushed"); } static void ofproto_unixctl_fdb_show(struct unixctl_conn *conn, int argc OVS_UNUSED, const char *argv[], void *aux OVS_UNUSED) { struct ds ds = DS_EMPTY_INITIALIZER; const struct ofproto_dpif *ofproto; const struct mac_entry *e; ofproto = ofproto_dpif_lookup(argv[1]); if (!ofproto) { unixctl_command_reply_error(conn, "no such bridge"); return; } ds_put_cstr(&ds, " port VLAN MAC Age\n"); LIST_FOR_EACH (e, lru_node, &ofproto->ml->lrus) { struct ofbundle *bundle = e->port.p; ds_put_format(&ds, "%5d %4d "ETH_ADDR_FMT" %3d\n", ofbundle_get_a_port(bundle)->odp_port, e->vlan, ETH_ADDR_ARGS(e->mac), mac_entry_age(ofproto->ml, e)); } unixctl_command_reply(conn, ds_cstr(&ds)); ds_destroy(&ds); } struct trace_ctx { struct action_xlate_ctx ctx; struct flow flow; struct ds *result; }; static void trace_format_rule(struct ds *result, uint8_t table_id, int level, const struct rule_dpif *rule) { ds_put_char_multiple(result, '\t', level); if (!rule) { ds_put_cstr(result, "No match\n"); return; } ds_put_format(result, "Rule: table=%"PRIu8" cookie=%#"PRIx64" ", table_id, ntohll(rule->up.flow_cookie)); cls_rule_format(&rule->up.cr, result); ds_put_char(result, '\n'); ds_put_char_multiple(result, '\t', level); ds_put_cstr(result, "OpenFlow "); ofpacts_format(rule->up.ofpacts, rule->up.ofpacts_len, result); ds_put_char(result, '\n'); } static void trace_format_flow(struct ds *result, int level, const char *title, struct trace_ctx *trace) { ds_put_char_multiple(result, '\t', level); ds_put_format(result, "%s: ", title); if (flow_equal(&trace->ctx.flow, &trace->flow)) { ds_put_cstr(result, "unchanged"); } else { flow_format(result, &trace->ctx.flow); trace->flow = trace->ctx.flow; } ds_put_char(result, '\n'); } static void trace_format_regs(struct ds *result, int level, const char *title, struct trace_ctx *trace) { size_t i; ds_put_char_multiple(result, '\t', level); ds_put_format(result, "%s:", title); for (i = 0; i < FLOW_N_REGS; i++) { ds_put_format(result, " reg%zu=0x%"PRIx32, i, trace->flow.regs[i]); } ds_put_char(result, '\n'); } static void trace_format_odp(struct ds *result, int level, const char *title, struct trace_ctx *trace) { struct ofpbuf *odp_actions = trace->ctx.odp_actions; ds_put_char_multiple(result, '\t', level); ds_put_format(result, "%s: ", title); format_odp_actions(result, odp_actions->data, odp_actions->size); ds_put_char(result, '\n'); } static void trace_resubmit(struct action_xlate_ctx *ctx, struct rule_dpif *rule) { struct trace_ctx *trace = CONTAINER_OF(ctx, struct trace_ctx, ctx); struct ds *result = trace->result; ds_put_char(result, '\n'); trace_format_flow(result, ctx->recurse + 1, "Resubmitted flow", trace); trace_format_regs(result, ctx->recurse + 1, "Resubmitted regs", trace); trace_format_odp(result, ctx->recurse + 1, "Resubmitted odp", trace); trace_format_rule(result, ctx->table_id, ctx->recurse + 1, rule); } static void trace_report(struct action_xlate_ctx *ctx, const char *s) { struct trace_ctx *trace = CONTAINER_OF(ctx, struct trace_ctx, ctx); struct ds *result = trace->result; ds_put_char_multiple(result, '\t', ctx->recurse); ds_put_cstr(result, s); ds_put_char(result, '\n'); } static void ofproto_unixctl_trace(struct unixctl_conn *conn, int argc, const char *argv[], void *aux OVS_UNUSED) { const char *dpname = argv[1]; struct ofproto_dpif *ofproto; struct ofpbuf odp_key; struct ofpbuf *packet; struct initial_vals initial_vals; struct ds result; struct flow flow; char *s; packet = NULL; ofpbuf_init(&odp_key, 0); ds_init(&result); ofproto = ofproto_dpif_lookup(dpname); if (!ofproto) { unixctl_command_reply_error(conn, "Unknown ofproto (use ofproto/list " "for help)"); goto exit; } if (argc == 3 || (argc == 4 && !strcmp(argv[3], "-generate"))) { /* ofproto/trace dpname flow [-generate] */ const char *flow_s = argv[2]; const char *generate_s = argv[3]; /* Allow 'flow_s' to be either a datapath flow or an OpenFlow-like * flow. We guess which type it is based on whether 'flow_s' contains * an '(', since a datapath flow always contains '(') but an * OpenFlow-like flow should not (in fact it's allowed but I believe * that's not documented anywhere). * * An alternative would be to try to parse 'flow_s' both ways, but then * it would be tricky giving a sensible error message. After all, do * you just say "syntax error" or do you present both error messages? * Both choices seem lousy. */ if (strchr(flow_s, '(')) { int error; /* Convert string to datapath key. */ ofpbuf_init(&odp_key, 0); error = odp_flow_key_from_string(flow_s, NULL, &odp_key); if (error) { unixctl_command_reply_error(conn, "Bad flow syntax"); goto exit; } /* The user might have specified the wrong ofproto but within the * same backer. That's OK, ofproto_receive() can find the right * one for us. */ if (ofproto_receive(ofproto->backer, NULL, odp_key.data, odp_key.size, &flow, NULL, &ofproto, NULL, &initial_vals)) { unixctl_command_reply_error(conn, "Invalid flow"); goto exit; } ds_put_format(&result, "Bridge: %s\n", ofproto->up.name); } else { char *error_s; error_s = parse_ofp_exact_flow(&flow, argv[2]); if (error_s) { unixctl_command_reply_error(conn, error_s); free(error_s); goto exit; } initial_vals.vlan_tci = flow.vlan_tci; initial_vals.tunnel_ip_tos = flow.tunnel.ip_tos; } /* Generate a packet, if requested. */ if (generate_s) { packet = ofpbuf_new(0); flow_compose(packet, &flow); } } else if (argc == 7) { /* ofproto/trace dpname priority tun_id in_port mark packet */ const char *priority_s = argv[2]; const char *tun_id_s = argv[3]; const char *in_port_s = argv[4]; const char *mark_s = argv[5]; const char *packet_s = argv[6]; uint32_t in_port = atoi(in_port_s); ovs_be64 tun_id = htonll(strtoull(tun_id_s, NULL, 0)); uint32_t priority = atoi(priority_s); uint32_t mark = atoi(mark_s); const char *msg; msg = eth_from_hex(packet_s, &packet); if (msg) { unixctl_command_reply_error(conn, msg); goto exit; } ds_put_cstr(&result, "Packet: "); s = ofp_packet_to_string(packet->data, packet->size); ds_put_cstr(&result, s); free(s); flow_extract(packet, priority, mark, NULL, in_port, &flow); flow.tunnel.tun_id = tun_id; initial_vals.vlan_tci = flow.vlan_tci; initial_vals.tunnel_ip_tos = flow.tunnel.ip_tos; } else { unixctl_command_reply_error(conn, "Bad command syntax"); goto exit; } ofproto_trace(ofproto, &flow, packet, &initial_vals, &result); unixctl_command_reply(conn, ds_cstr(&result)); exit: ds_destroy(&result); ofpbuf_delete(packet); ofpbuf_uninit(&odp_key); } static void ofproto_trace(struct ofproto_dpif *ofproto, const struct flow *flow, const struct ofpbuf *packet, const struct initial_vals *initial_vals, struct ds *ds) { struct rule_dpif *rule; ds_put_cstr(ds, "Flow: "); flow_format(ds, flow); ds_put_char(ds, '\n'); rule = rule_dpif_lookup(ofproto, flow); trace_format_rule(ds, 0, 0, rule); if (rule == ofproto->miss_rule) { ds_put_cstr(ds, "\nNo match, flow generates \"packet in\"s.\n"); } else if (rule == ofproto->no_packet_in_rule) { ds_put_cstr(ds, "\nNo match, packets dropped because " "OFPPC_NO_PACKET_IN is set on in_port.\n"); } if (rule) { uint64_t odp_actions_stub[1024 / 8]; struct ofpbuf odp_actions; struct trace_ctx trace; uint8_t tcp_flags; tcp_flags = packet ? packet_get_tcp_flags(packet, flow) : 0; trace.result = ds; trace.flow = *flow; ofpbuf_use_stub(&odp_actions, odp_actions_stub, sizeof odp_actions_stub); action_xlate_ctx_init(&trace.ctx, ofproto, flow, initial_vals, rule, tcp_flags, packet); trace.ctx.resubmit_hook = trace_resubmit; trace.ctx.report_hook = trace_report; xlate_actions(&trace.ctx, rule->up.ofpacts, rule->up.ofpacts_len, &odp_actions); ds_put_char(ds, '\n'); trace_format_flow(ds, 0, "Final flow", &trace); ds_put_cstr(ds, "Datapath actions: "); format_odp_actions(ds, odp_actions.data, odp_actions.size); ofpbuf_uninit(&odp_actions); if (trace.ctx.slow) { enum slow_path_reason slow; ds_put_cstr(ds, "\nThis flow is handled by the userspace " "slow path because it:"); for (slow = trace.ctx.slow; slow; ) { enum slow_path_reason bit = rightmost_1bit(slow); switch (bit) { case SLOW_CFM: ds_put_cstr(ds, "\n\t- Consists of CFM packets."); break; case SLOW_LACP: ds_put_cstr(ds, "\n\t- Consists of LACP packets."); break; case SLOW_STP: ds_put_cstr(ds, "\n\t- Consists of STP packets."); break; case SLOW_IN_BAND: ds_put_cstr(ds, "\n\t- Needs in-band special case " "processing."); if (!packet) { ds_put_cstr(ds, "\n\t (The datapath actions are " "incomplete--for complete actions, " "please supply a packet.)"); } break; case SLOW_CONTROLLER: ds_put_cstr(ds, "\n\t- Sends \"packet-in\" messages " "to the OpenFlow controller."); break; case SLOW_MATCH: ds_put_cstr(ds, "\n\t- Needs more specific matching " "than the datapath supports."); break; } slow &= ~bit; } if (slow & ~SLOW_MATCH) { ds_put_cstr(ds, "\nThe datapath actions above do not reflect " "the special slow-path processing."); } } } } static void ofproto_dpif_clog(struct unixctl_conn *conn OVS_UNUSED, int argc OVS_UNUSED, const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED) { clogged = true; unixctl_command_reply(conn, NULL); } static void ofproto_dpif_unclog(struct unixctl_conn *conn OVS_UNUSED, int argc OVS_UNUSED, const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED) { clogged = false; unixctl_command_reply(conn, NULL); } /* Runs a self-check of flow translations in 'ofproto'. Appends a message to * 'reply' describing the results. */ static void ofproto_dpif_self_check__(struct ofproto_dpif *ofproto, struct ds *reply) { struct facet *facet; int errors; errors = 0; HMAP_FOR_EACH (facet, hmap_node, &ofproto->facets) { if (!facet_check_consistency(facet)) { errors++; } } if (errors) { ofproto->backer->need_revalidate = REV_INCONSISTENCY; } if (errors) { ds_put_format(reply, "%s: self-check failed (%d errors)\n", ofproto->up.name, errors); } else { ds_put_format(reply, "%s: self-check passed\n", ofproto->up.name); } } static void ofproto_dpif_self_check(struct unixctl_conn *conn, int argc, const char *argv[], void *aux OVS_UNUSED) { struct ds reply = DS_EMPTY_INITIALIZER; struct ofproto_dpif *ofproto; if (argc > 1) { ofproto = ofproto_dpif_lookup(argv[1]); if (!ofproto) { unixctl_command_reply_error(conn, "Unknown ofproto (use " "ofproto/list for help)"); return; } ofproto_dpif_self_check__(ofproto, &reply); } else { HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) { ofproto_dpif_self_check__(ofproto, &reply); } } unixctl_command_reply(conn, ds_cstr(&reply)); ds_destroy(&reply); } /* Store the current ofprotos in 'ofproto_shash'. Returns a sorted list * of the 'ofproto_shash' nodes. It is the responsibility of the caller * to destroy 'ofproto_shash' and free the returned value. */ static const struct shash_node ** get_ofprotos(struct shash *ofproto_shash) { const struct ofproto_dpif *ofproto; HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_node, &all_ofproto_dpifs) { char *name = xasprintf("%s@%s", ofproto->up.type, ofproto->up.name); shash_add_nocopy(ofproto_shash, name, ofproto); } return shash_sort(ofproto_shash); } static void ofproto_unixctl_dpif_dump_dps(struct unixctl_conn *conn, int argc OVS_UNUSED, const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED) { struct ds ds = DS_EMPTY_INITIALIZER; struct shash ofproto_shash; const struct shash_node **sorted_ofprotos; int i; shash_init(&ofproto_shash); sorted_ofprotos = get_ofprotos(&ofproto_shash); for (i = 0; i < shash_count(&ofproto_shash); i++) { const struct shash_node *node = sorted_ofprotos[i]; ds_put_format(&ds, "%s\n", node->name); } shash_destroy(&ofproto_shash); free(sorted_ofprotos); unixctl_command_reply(conn, ds_cstr(&ds)); ds_destroy(&ds); } static void show_dp_format(const struct ofproto_dpif *ofproto, struct ds *ds) { const struct shash_node **ports; int i; struct avg_subfacet_rates lifetime; unsigned long long int minutes; const int min_ms = 60 * 1000; /* milliseconds in one minute. */ minutes = (time_msec() - ofproto->created) / min_ms; if (minutes > 0) { lifetime.add_rate = (double)ofproto->total_subfacet_add_count / minutes; lifetime.del_rate = (double)ofproto->total_subfacet_del_count / minutes; }else { lifetime.add_rate = 0.0; lifetime.del_rate = 0.0; } ds_put_format(ds, "%s (%s):\n", ofproto->up.name, dpif_name(ofproto->backer->dpif)); ds_put_format(ds, "\tlookups: hit:%"PRIu64" missed:%"PRIu64"\n", ofproto->n_hit, ofproto->n_missed); ds_put_format(ds, "\tflows: cur: %zu, avg: %5.3f, max: %d," " life span: %llu(ms)\n", hmap_count(&ofproto->subfacets), avg_subfacet_count(ofproto), ofproto->max_n_subfacet, avg_subfacet_life_span(ofproto)); if (minutes >= 60) { show_dp_rates(ds, "\t\thourly avg:", &ofproto->hourly); } if (minutes >= 60 * 24) { show_dp_rates(ds, "\t\tdaily avg:", &ofproto->daily); } show_dp_rates(ds, "\t\toverall avg:", &lifetime); ports = shash_sort(&ofproto->up.port_by_name); for (i = 0; i < shash_count(&ofproto->up.port_by_name); i++) { const struct shash_node *node = ports[i]; struct ofport *ofport = node->data; const char *name = netdev_get_name(ofport->netdev); const char *type = netdev_get_type(ofport->netdev); uint32_t odp_port; ds_put_format(ds, "\t%s %u/", name, ofport->ofp_port); odp_port = ofp_port_to_odp_port(ofproto, ofport->ofp_port); if (odp_port != OVSP_NONE) { ds_put_format(ds, "%"PRIu32":", odp_port); } else { ds_put_cstr(ds, "none:"); } if (strcmp(type, "system")) { struct netdev *netdev; int error; ds_put_format(ds, " (%s", type); error = netdev_open(name, type, &netdev); if (!error) { struct smap config; smap_init(&config); error = netdev_get_config(netdev, &config); if (!error) { const struct smap_node **nodes; size_t i; nodes = smap_sort(&config); for (i = 0; i < smap_count(&config); i++) { const struct smap_node *node = nodes[i]; ds_put_format(ds, "%c %s=%s", i ? ',' : ':', node->key, node->value); } free(nodes); } smap_destroy(&config); netdev_close(netdev); } ds_put_char(ds, ')'); } ds_put_char(ds, '\n'); } free(ports); } static void ofproto_unixctl_dpif_show(struct unixctl_conn *conn, int argc, const char *argv[], void *aux OVS_UNUSED) { struct ds ds = DS_EMPTY_INITIALIZER; const struct ofproto_dpif *ofproto; if (argc > 1) { int i; for (i = 1; i < argc; i++) { ofproto = ofproto_dpif_lookup(argv[i]); if (!ofproto) { ds_put_format(&ds, "Unknown bridge %s (use dpif/dump-dps " "for help)", argv[i]); unixctl_command_reply_error(conn, ds_cstr(&ds)); return; } show_dp_format(ofproto, &ds); } } else { struct shash ofproto_shash; const struct shash_node **sorted_ofprotos; int i; shash_init(&ofproto_shash); sorted_ofprotos = get_ofprotos(&ofproto_shash); for (i = 0; i < shash_count(&ofproto_shash); i++) { const struct shash_node *node = sorted_ofprotos[i]; show_dp_format(node->data, &ds); } shash_destroy(&ofproto_shash); free(sorted_ofprotos); } unixctl_command_reply(conn, ds_cstr(&ds)); ds_destroy(&ds); } static void ofproto_unixctl_dpif_dump_flows(struct unixctl_conn *conn, int argc OVS_UNUSED, const char *argv[], void *aux OVS_UNUSED) { struct ds ds = DS_EMPTY_INITIALIZER; const struct ofproto_dpif *ofproto; struct subfacet *subfacet; ofproto = ofproto_dpif_lookup(argv[1]); if (!ofproto) { unixctl_command_reply_error(conn, "no such bridge"); return; } update_stats(ofproto->backer); HMAP_FOR_EACH (subfacet, hmap_node, &ofproto->subfacets) { odp_flow_key_format(subfacet->key, subfacet->key_len, &ds); ds_put_format(&ds, ", packets:%"PRIu64", bytes:%"PRIu64", used:", subfacet->dp_packet_count, subfacet->dp_byte_count); if (subfacet->used) { ds_put_format(&ds, "%.3fs", (time_msec() - subfacet->used) / 1000.0); } else { ds_put_format(&ds, "never"); } if (subfacet->facet->tcp_flags) { ds_put_cstr(&ds, ", flags:"); packet_format_tcp_flags(&ds, subfacet->facet->tcp_flags); } ds_put_cstr(&ds, ", actions:"); if (subfacet->slow) { uint64_t slow_path_stub[128 / 8]; const struct nlattr *actions; size_t actions_len; compose_slow_path(ofproto, &subfacet->facet->flow, subfacet->slow, slow_path_stub, sizeof slow_path_stub, &actions, &actions_len); format_odp_actions(&ds, actions, actions_len); } else { format_odp_actions(&ds, subfacet->actions, subfacet->actions_len); } ds_put_char(&ds, '\n'); } unixctl_command_reply(conn, ds_cstr(&ds)); ds_destroy(&ds); } static void ofproto_unixctl_dpif_del_flows(struct unixctl_conn *conn, int argc OVS_UNUSED, const char *argv[], void *aux OVS_UNUSED) { struct ds ds = DS_EMPTY_INITIALIZER; struct ofproto_dpif *ofproto; ofproto = ofproto_dpif_lookup(argv[1]); if (!ofproto) { unixctl_command_reply_error(conn, "no such bridge"); return; } flush(&ofproto->up); unixctl_command_reply(conn, ds_cstr(&ds)); ds_destroy(&ds); } static void ofproto_dpif_unixctl_init(void) { static bool registered; if (registered) { return; } registered = true; unixctl_command_register( "ofproto/trace", "bridge {priority tun_id in_port mark packet | odp_flow [-generate]}", 2, 6, ofproto_unixctl_trace, NULL); unixctl_command_register("fdb/flush", "[bridge]", 0, 1, ofproto_unixctl_fdb_flush, NULL); unixctl_command_register("fdb/show", "bridge", 1, 1, ofproto_unixctl_fdb_show, NULL); unixctl_command_register("ofproto/clog", "", 0, 0, ofproto_dpif_clog, NULL); unixctl_command_register("ofproto/unclog", "", 0, 0, ofproto_dpif_unclog, NULL); unixctl_command_register("ofproto/self-check", "[bridge]", 0, 1, ofproto_dpif_self_check, NULL); unixctl_command_register("dpif/dump-dps", "", 0, 0, ofproto_unixctl_dpif_dump_dps, NULL); unixctl_command_register("dpif/show", "[bridge]", 0, INT_MAX, ofproto_unixctl_dpif_show, NULL); unixctl_command_register("dpif/dump-flows", "bridge", 1, 1, ofproto_unixctl_dpif_dump_flows, NULL); unixctl_command_register("dpif/del-flows", "bridge", 1, 1, ofproto_unixctl_dpif_del_flows, NULL); } /* Linux VLAN device support (e.g. "eth0.10" for VLAN 10.) * * This is deprecated. It is only for compatibility with broken device drivers * in old versions of Linux that do not properly support VLANs when VLAN * devices are not used. When broken device drivers are no longer in * widespread use, we will delete these interfaces. */ static int set_realdev(struct ofport *ofport_, uint16_t realdev_ofp_port, int vid) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport_->ofproto); struct ofport_dpif *ofport = ofport_dpif_cast(ofport_); if (realdev_ofp_port == ofport->realdev_ofp_port && vid == ofport->vlandev_vid) { return 0; } ofproto->backer->need_revalidate = REV_RECONFIGURE; if (ofport->realdev_ofp_port) { vsp_remove(ofport); } if (realdev_ofp_port && ofport->bundle) { /* vlandevs are enslaved to their realdevs, so they are not allowed to * themselves be part of a bundle. */ bundle_set(ofport->up.ofproto, ofport->bundle, NULL); } ofport->realdev_ofp_port = realdev_ofp_port; ofport->vlandev_vid = vid; if (realdev_ofp_port) { vsp_add(ofport, realdev_ofp_port, vid); } return 0; } static uint32_t hash_realdev_vid(uint16_t realdev_ofp_port, int vid) { return hash_2words(realdev_ofp_port, vid); } /* Returns the ODP port number of the Linux VLAN device that corresponds to * 'vlan_tci' on the network device with port number 'realdev_odp_port' in * 'ofproto'. For example, given 'realdev_odp_port' of eth0 and 'vlan_tci' 9, * it would return the port number of eth0.9. * * Unless VLAN splinters are enabled for port 'realdev_odp_port', this * function just returns its 'realdev_odp_port' argument. */ static uint32_t vsp_realdev_to_vlandev(const struct ofproto_dpif *ofproto, uint32_t realdev_odp_port, ovs_be16 vlan_tci) { if (!hmap_is_empty(&ofproto->realdev_vid_map)) { uint16_t realdev_ofp_port; int vid = vlan_tci_to_vid(vlan_tci); const struct vlan_splinter *vsp; realdev_ofp_port = odp_port_to_ofp_port(ofproto, realdev_odp_port); HMAP_FOR_EACH_WITH_HASH (vsp, realdev_vid_node, hash_realdev_vid(realdev_ofp_port, vid), &ofproto->realdev_vid_map) { if (vsp->realdev_ofp_port == realdev_ofp_port && vsp->vid == vid) { return ofp_port_to_odp_port(ofproto, vsp->vlandev_ofp_port); } } } return realdev_odp_port; } static struct vlan_splinter * vlandev_find(const struct ofproto_dpif *ofproto, uint16_t vlandev_ofp_port) { struct vlan_splinter *vsp; HMAP_FOR_EACH_WITH_HASH (vsp, vlandev_node, hash_int(vlandev_ofp_port, 0), &ofproto->vlandev_map) { if (vsp->vlandev_ofp_port == vlandev_ofp_port) { return vsp; } } return NULL; } /* Returns the OpenFlow port number of the "real" device underlying the Linux * VLAN device with OpenFlow port number 'vlandev_ofp_port' and stores the * VLAN VID of the Linux VLAN device in '*vid'. For example, given * 'vlandev_ofp_port' of eth0.9, it would return the OpenFlow port number of * eth0 and store 9 in '*vid'. * * Returns 0 and does not modify '*vid' if 'vlandev_ofp_port' is not a Linux * VLAN device. Unless VLAN splinters are enabled, this is what this function * always does.*/ static uint16_t vsp_vlandev_to_realdev(const struct ofproto_dpif *ofproto, uint16_t vlandev_ofp_port, int *vid) { if (!hmap_is_empty(&ofproto->vlandev_map)) { const struct vlan_splinter *vsp; vsp = vlandev_find(ofproto, vlandev_ofp_port); if (vsp) { if (vid) { *vid = vsp->vid; } return vsp->realdev_ofp_port; } } return 0; } /* Given 'flow', a flow representing a packet received on 'ofproto', checks * whether 'flow->in_port' represents a Linux VLAN device. If so, changes * 'flow->in_port' to the "real" device backing the VLAN device, sets * 'flow->vlan_tci' to the VLAN VID, and returns true. Otherwise (which is * always the case unless VLAN splinters are enabled), returns false without * making any changes. */ static bool vsp_adjust_flow(const struct ofproto_dpif *ofproto, struct flow *flow) { uint16_t realdev; int vid; realdev = vsp_vlandev_to_realdev(ofproto, flow->in_port, &vid); if (!realdev) { return false; } /* Cause the flow to be processed as if it came in on the real device with * the VLAN device's VLAN ID. */ flow->in_port = realdev; flow->vlan_tci = htons((vid & VLAN_VID_MASK) | VLAN_CFI); return true; } static void vsp_remove(struct ofport_dpif *port) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto); struct vlan_splinter *vsp; vsp = vlandev_find(ofproto, port->up.ofp_port); if (vsp) { hmap_remove(&ofproto->vlandev_map, &vsp->vlandev_node); hmap_remove(&ofproto->realdev_vid_map, &vsp->realdev_vid_node); free(vsp); port->realdev_ofp_port = 0; } else { VLOG_ERR("missing vlan device record"); } } static void vsp_add(struct ofport_dpif *port, uint16_t realdev_ofp_port, int vid) { struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto); if (!vsp_vlandev_to_realdev(ofproto, port->up.ofp_port, NULL) && (vsp_realdev_to_vlandev(ofproto, realdev_ofp_port, htons(vid)) == realdev_ofp_port)) { struct vlan_splinter *vsp; vsp = xmalloc(sizeof *vsp); hmap_insert(&ofproto->vlandev_map, &vsp->vlandev_node, hash_int(port->up.ofp_port, 0)); hmap_insert(&ofproto->realdev_vid_map, &vsp->realdev_vid_node, hash_realdev_vid(realdev_ofp_port, vid)); vsp->realdev_ofp_port = realdev_ofp_port; vsp->vlandev_ofp_port = port->up.ofp_port; vsp->vid = vid; port->realdev_ofp_port = realdev_ofp_port; } else { VLOG_ERR("duplicate vlan device record"); } } static uint32_t ofp_port_to_odp_port(const struct ofproto_dpif *ofproto, uint16_t ofp_port) { const struct ofport_dpif *ofport = get_ofp_port(ofproto, ofp_port); return ofport ? ofport->odp_port : OVSP_NONE; } static struct ofport_dpif * odp_port_to_ofport(const struct dpif_backer *backer, uint32_t odp_port) { struct ofport_dpif *port; HMAP_FOR_EACH_IN_BUCKET (port, odp_port_node, hash_int(odp_port, 0), &backer->odp_to_ofport_map) { if (port->odp_port == odp_port) { return port; } } return NULL; } static uint16_t odp_port_to_ofp_port(const struct ofproto_dpif *ofproto, uint32_t odp_port) { struct ofport_dpif *port; port = odp_port_to_ofport(ofproto->backer, odp_port); if (port && &ofproto->up == port->up.ofproto) { return port->up.ofp_port; } else { return OFPP_NONE; } } static unsigned long long int avg_subfacet_life_span(const struct ofproto_dpif *ofproto) { unsigned long long int dc; unsigned long long int avg; dc = ofproto->total_subfacet_del_count + ofproto->subfacet_del_count; avg = dc ? ofproto->total_subfacet_life_span / dc : 0; return avg; } static double avg_subfacet_count(const struct ofproto_dpif *ofproto) { double avg_c = 0.0; if (ofproto->n_update_stats) { avg_c = (double)ofproto->total_subfacet_count / ofproto->n_update_stats; } return avg_c; } static void show_dp_rates(struct ds *ds, const char *heading, const struct avg_subfacet_rates *rates) { ds_put_format(ds, "%s add rate: %5.3f/min, del rate: %5.3f/min\n", heading, rates->add_rate, rates->del_rate); } static void update_max_subfacet_count(struct ofproto_dpif *ofproto) { ofproto->max_n_subfacet = MAX(ofproto->max_n_subfacet, hmap_count(&ofproto->subfacets)); } /* Compute exponentially weighted moving average, adding 'new' as the newest, * most heavily weighted element. 'base' designates the rate of decay: after * 'base' further updates, 'new''s weight in the EWMA decays to about 1/e * (about .37). */ static void exp_mavg(double *avg, int base, double new) { *avg = (*avg * (base - 1) + new) / base; } static void update_moving_averages(struct ofproto_dpif *ofproto) { const int min_ms = 60 * 1000; /* milliseconds in one minute. */ /* Update hourly averages on the minute boundaries. */ if (time_msec() - ofproto->last_minute >= min_ms) { exp_mavg(&ofproto->hourly.add_rate, 60, ofproto->subfacet_add_count); exp_mavg(&ofproto->hourly.del_rate, 60, ofproto->subfacet_del_count); /* Update daily averages on the hour boundaries. */ if ((ofproto->last_minute - ofproto->created) / min_ms % 60 == 59) { exp_mavg(&ofproto->daily.add_rate, 24, ofproto->hourly.add_rate); exp_mavg(&ofproto->daily.del_rate, 24, ofproto->hourly.del_rate); } ofproto->total_subfacet_add_count += ofproto->subfacet_add_count; ofproto->total_subfacet_del_count += ofproto->subfacet_del_count; ofproto->subfacet_add_count = 0; ofproto->subfacet_del_count = 0; ofproto->last_minute += min_ms; } } static void dpif_stats_update_hit_count(struct ofproto_dpif *ofproto, uint64_t delta) { ofproto->n_hit += delta; } const struct ofproto_class ofproto_dpif_class = { init, enumerate_types, enumerate_names, del, port_open_type, type_run, type_run_fast, type_wait, alloc, construct, destruct, dealloc, run, run_fast, wait, get_memory_usage, flush, get_features, get_tables, port_alloc, port_construct, port_destruct, port_dealloc, port_modified, port_reconfigured, port_query_by_name, port_add, port_del, port_get_stats, port_dump_start, port_dump_next, port_dump_done, port_poll, port_poll_wait, port_is_lacp_current, NULL, /* rule_choose_table */ rule_alloc, rule_construct, rule_destruct, rule_dealloc, rule_get_stats, rule_execute, rule_modify_actions, set_frag_handling, packet_out, set_netflow, get_netflow_ids, set_sflow, set_cfm, get_cfm_status, set_stp, get_stp_status, set_stp_port, get_stp_port_status, set_queues, bundle_set, bundle_remove, mirror_set, mirror_get_stats, set_flood_vlans, is_mirror_output_bundle, forward_bpdu_changed, set_mac_table_config, set_realdev, };