/* * Copyright (c) 2009 Nicira Networks. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "ofproto.h" #include #include #include #include #include #include #include "classifier.h" #include "coverage.h" #include "discovery.h" #include "dpif.h" #include "executer.h" #include "fail-open.h" #include "in-band.h" #include "mac-learning.h" #include "netdev.h" #include "netflow.h" #include "odp-util.h" #include "ofp-print.h" #include "ofpbuf.h" #include "openflow/nicira-ext.h" #include "openflow/openflow.h" #include "openflow/openflow-mgmt.h" #include "openvswitch/datapath-protocol.h" #include "packets.h" #include "pinsched.h" #include "pktbuf.h" #include "poll-loop.h" #include "port-array.h" #include "rconn.h" #include "shash.h" #include "status.h" #include "stp.h" #include "svec.h" #include "tag.h" #include "timeval.h" #include "vconn.h" #include "vconn-ssl.h" #include "xtoxll.h" #define THIS_MODULE VLM_ofproto #include "vlog.h" enum { DP_GROUP_FLOOD = 0, DP_GROUP_ALL = 1 }; enum { TABLEID_HASH = 0, TABLEID_CLASSIFIER = 1 }; struct ofport { struct netdev *netdev; struct ofp_phy_port opp; /* In host byte order. */ }; static void ofport_free(struct ofport *); static void hton_ofp_phy_port(struct ofp_phy_port *); static int xlate_actions(const union ofp_action *in, size_t n_in, const flow_t *flow, struct ofproto *ofproto, const struct ofpbuf *packet, struct odp_actions *out, tag_type *tags, bool *may_setup_flow); struct rule { struct cls_rule cr; uint16_t idle_timeout; /* In seconds from time of last use. */ uint16_t hard_timeout; /* In seconds from time of creation. */ long long int used; /* Last-used time (0 if never used). */ long long int created; /* Creation time. */ uint64_t packet_count; /* Number of packets received. */ uint64_t byte_count; /* Number of bytes received. */ uint64_t accounted_bytes; /* Number of bytes passed to account_cb. */ uint8_t tcp_flags; /* Bitwise-OR of all TCP flags seen. */ uint8_t ip_tos; /* Last-seen IP type-of-service. */ tag_type tags; /* Tags (set only by hooks). */ /* If 'super' is non-NULL, this rule is a subrule, that is, it is an * exact-match rule (having cr.wc.wildcards of 0) generated from the * wildcard rule 'super'. In this case, 'list' is an element of the * super-rule's list. * * If 'super' is NULL, this rule is a super-rule, and 'list' is the head of * a list of subrules. A super-rule with no wildcards (where * cr.wc.wildcards is 0) will never have any subrules. */ struct rule *super; struct list list; /* OpenFlow actions. * * A subrule has no actions (it uses the super-rule's actions). */ int n_actions; union ofp_action *actions; /* Datapath actions. * * A super-rule with wildcard fields never has ODP actions (since the * datapath only supports exact-match flows). */ bool installed; /* Installed in datapath? */ bool may_install; /* True ordinarily; false if actions must * be reassessed for every packet. */ int n_odp_actions; union odp_action *odp_actions; }; static inline bool rule_is_hidden(const struct rule *rule) { /* Subrules are merely an implementation detail, so hide them from the * controller. */ if (rule->super != NULL) { return true; } /* Rules with priority higher than UINT16_MAX are set up by ofproto itself * (e.g. by in-band control) and are intentionally hidden from the * controller. */ if (rule->cr.priority > UINT16_MAX) { return true; } return false; } static struct rule *rule_create(struct rule *super, const union ofp_action *, size_t n_actions, uint16_t idle_timeout, uint16_t hard_timeout); static void rule_free(struct rule *); static void rule_destroy(struct ofproto *, struct rule *); static struct rule *rule_from_cls_rule(const struct cls_rule *); static void rule_insert(struct ofproto *, struct rule *, struct ofpbuf *packet, uint16_t in_port); static void rule_remove(struct ofproto *, struct rule *); static bool rule_make_actions(struct ofproto *, struct rule *, const struct ofpbuf *packet); static void rule_install(struct ofproto *, struct rule *, struct rule *displaced_rule); static void rule_uninstall(struct ofproto *, struct rule *); static void rule_post_uninstall(struct ofproto *, struct rule *); struct ofconn { struct list node; struct rconn *rconn; struct pktbuf *pktbuf; bool send_flow_exp; int miss_send_len; struct rconn_packet_counter *packet_in_counter; /* Number of OpenFlow messages queued as replies to OpenFlow requests, and * the maximum number before we stop reading OpenFlow requests. */ #define OFCONN_REPLY_MAX 100 struct rconn_packet_counter *reply_counter; }; static struct ofconn *ofconn_create(struct ofproto *, struct rconn *); static void ofconn_destroy(struct ofconn *, struct ofproto *); static void ofconn_run(struct ofconn *, struct ofproto *); static void ofconn_wait(struct ofconn *); static void queue_tx(struct ofpbuf *msg, const struct ofconn *ofconn, struct rconn_packet_counter *counter); struct ofproto { /* Settings. */ uint64_t datapath_id; /* Datapath ID. */ uint64_t fallback_dpid; /* Datapath ID if no better choice found. */ uint64_t mgmt_id; /* Management channel identifier. */ char *manufacturer; /* Manufacturer. */ char *hardware; /* Hardware. */ char *software; /* Software version. */ char *serial; /* Serial number. */ /* Datapath. */ struct dpif *dpif; struct netdev_monitor *netdev_monitor; struct port_array ports; /* Index is ODP port nr; ofport->opp.port_no is * OFP port nr. */ struct shash port_by_name; uint32_t max_ports; /* Configuration. */ struct switch_status *switch_status; struct status_category *ss_cat; struct in_band *in_band; struct discovery *discovery; struct fail_open *fail_open; struct pinsched *miss_sched, *action_sched; struct executer *executer; struct netflow *netflow; /* Flow table. */ struct classifier cls; bool need_revalidate; long long int next_expiration; struct tag_set revalidate_set; /* OpenFlow connections. */ struct list all_conns; struct ofconn *controller; struct pvconn **listeners; size_t n_listeners; struct pvconn **snoops; size_t n_snoops; /* Hooks for ovs-vswitchd. */ const struct ofhooks *ofhooks; void *aux; /* Used by default ofhooks. */ struct mac_learning *ml; }; static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); static const struct ofhooks default_ofhooks; static uint64_t pick_datapath_id(struct dpif *, uint64_t fallback_dpid); static uint64_t pick_fallback_dpid(void); static void send_packet_in_miss(struct ofpbuf *, void *ofproto); static void send_packet_in_action(struct ofpbuf *, void *ofproto); static void update_used(struct ofproto *); static void update_stats(struct rule *, const struct odp_flow_stats *); static void expire_rule(struct cls_rule *, void *ofproto); static bool revalidate_rule(struct ofproto *p, struct rule *rule); static void revalidate_cb(struct cls_rule *rule_, void *p_); static void handle_odp_msg(struct ofproto *, struct ofpbuf *); static void handle_openflow(struct ofconn *, struct ofproto *, struct ofpbuf *); static void refresh_port_group(struct ofproto *, unsigned int group); static void update_port(struct ofproto *, const char *devname); static int init_ports(struct ofproto *); static void reinit_ports(struct ofproto *); int ofproto_create(const char *datapath, const struct ofhooks *ofhooks, void *aux, struct ofproto **ofprotop) { struct netdev_monitor *netdev_monitor; struct odp_stats stats; struct ofproto *p; struct dpif *dpif; int error; *ofprotop = NULL; /* Connect to datapath and start listening for messages. */ error = dpif_open(datapath, &dpif); if (error) { VLOG_ERR("failed to open datapath %s: %s", datapath, strerror(error)); return error; } error = dpif_get_dp_stats(dpif, &stats); if (error) { VLOG_ERR("failed to obtain stats for datapath %s: %s", datapath, strerror(error)); dpif_close(dpif); return error; } error = dpif_recv_set_mask(dpif, ODPL_MISS | ODPL_ACTION); if (error) { VLOG_ERR("failed to listen on datapath %s: %s", datapath, strerror(error)); dpif_close(dpif); return error; } dpif_flow_flush(dpif); dpif_recv_purge(dpif); /* Arrange to monitor datapath ports for status changes. */ error = netdev_monitor_create(&netdev_monitor); if (error) { VLOG_ERR("failed to starting monitoring datapath %s: %s", datapath, strerror(error)); dpif_close(dpif); return error; } /* Initialize settings. */ p = xcalloc(1, sizeof *p); p->fallback_dpid = pick_fallback_dpid(); p->datapath_id = pick_datapath_id(dpif, p->fallback_dpid); VLOG_INFO("using datapath ID %012"PRIx64, p->datapath_id); p->manufacturer = xstrdup("Nicira Networks, Inc."); p->hardware = xstrdup("Reference Implementation"); p->software = xstrdup(VERSION BUILDNR); p->serial = xstrdup("None"); /* Initialize datapath. */ p->dpif = dpif; p->netdev_monitor = netdev_monitor; port_array_init(&p->ports); shash_init(&p->port_by_name); p->max_ports = stats.max_ports; /* Initialize submodules. */ p->switch_status = switch_status_create(p); p->in_band = NULL; p->discovery = NULL; p->fail_open = NULL; p->miss_sched = p->action_sched = NULL; p->executer = NULL; p->netflow = NULL; /* Initialize flow table. */ classifier_init(&p->cls); p->need_revalidate = false; p->next_expiration = time_msec() + 1000; tag_set_init(&p->revalidate_set); /* Initialize OpenFlow connections. */ list_init(&p->all_conns); p->controller = ofconn_create(p, rconn_create(15, 15)); p->controller->pktbuf = pktbuf_create(); p->controller->miss_send_len = OFP_DEFAULT_MISS_SEND_LEN; p->listeners = NULL; p->n_listeners = 0; p->snoops = NULL; p->n_snoops = 0; /* Initialize hooks. */ if (ofhooks) { p->ofhooks = ofhooks; p->aux = aux; p->ml = NULL; } else { p->ofhooks = &default_ofhooks; p->aux = p; p->ml = mac_learning_create(); } /* Register switch status category. */ p->ss_cat = switch_status_register(p->switch_status, "remote", rconn_status_cb, p->controller->rconn); /* Almost done... */ error = init_ports(p); if (error) { ofproto_destroy(p); return error; } *ofprotop = p; return 0; } void ofproto_set_datapath_id(struct ofproto *p, uint64_t datapath_id) { uint64_t old_dpid = p->datapath_id; p->datapath_id = (datapath_id ? datapath_id : pick_datapath_id(p->dpif, p->fallback_dpid)); if (p->datapath_id != old_dpid) { VLOG_INFO("datapath ID changed to %012"PRIx64, p->datapath_id); rconn_reconnect(p->controller->rconn); } } void ofproto_set_mgmt_id(struct ofproto *p, uint64_t mgmt_id) { p->mgmt_id = mgmt_id; } void ofproto_set_probe_interval(struct ofproto *p, int probe_interval) { probe_interval = probe_interval ? MAX(probe_interval, 5) : 0; rconn_set_probe_interval(p->controller->rconn, probe_interval); if (p->fail_open) { int trigger_duration = probe_interval ? probe_interval * 3 : 15; fail_open_set_trigger_duration(p->fail_open, trigger_duration); } } void ofproto_set_max_backoff(struct ofproto *p, int max_backoff) { rconn_set_max_backoff(p->controller->rconn, max_backoff); } void ofproto_set_desc(struct ofproto *p, const char *manufacturer, const char *hardware, const char *software, const char *serial) { if (manufacturer) { free(p->manufacturer); p->manufacturer = xstrdup(manufacturer); } if (hardware) { free(p->hardware); p->hardware = xstrdup(hardware); } if (software) { free(p->software); p->software = xstrdup(software); } if (serial) { free(p->serial); p->serial = xstrdup(serial); } } int ofproto_set_in_band(struct ofproto *p, bool in_band) { if (in_band != (p->in_band != NULL)) { if (in_band) { return in_band_create(p, p->dpif, p->switch_status, p->controller->rconn, &p->in_band); } else { ofproto_set_discovery(p, false, NULL, true); in_band_destroy(p->in_band); p->in_band = NULL; } rconn_reconnect(p->controller->rconn); } return 0; } int ofproto_set_discovery(struct ofproto *p, bool discovery, const char *re, bool update_resolv_conf) { if (discovery != (p->discovery != NULL)) { if (discovery) { int error = ofproto_set_in_band(p, true); if (error) { return error; } error = discovery_create(re, update_resolv_conf, p->dpif, p->switch_status, &p->discovery); if (error) { return error; } } else { discovery_destroy(p->discovery); p->discovery = NULL; } rconn_disconnect(p->controller->rconn); } else if (discovery) { discovery_set_update_resolv_conf(p->discovery, update_resolv_conf); return discovery_set_accept_controller_re(p->discovery, re); } return 0; } int ofproto_set_controller(struct ofproto *ofproto, const char *controller) { if (ofproto->discovery) { return EINVAL; } else if (controller) { if (strcmp(rconn_get_name(ofproto->controller->rconn), controller)) { return rconn_connect(ofproto->controller->rconn, controller); } else { return 0; } } else { rconn_disconnect(ofproto->controller->rconn); return 0; } } static int set_pvconns(struct pvconn ***pvconnsp, size_t *n_pvconnsp, const struct svec *svec) { struct pvconn **pvconns = *pvconnsp; size_t n_pvconns = *n_pvconnsp; int retval = 0; size_t i; for (i = 0; i < n_pvconns; i++) { pvconn_close(pvconns[i]); } free(pvconns); pvconns = xmalloc(svec->n * sizeof *pvconns); n_pvconns = 0; for (i = 0; i < svec->n; i++) { const char *name = svec->names[i]; struct pvconn *pvconn; int error; error = pvconn_open(name, &pvconn); if (!error) { pvconns[n_pvconns++] = pvconn; } else { VLOG_ERR("failed to listen on %s: %s", name, strerror(error)); if (!retval) { retval = error; } } } *pvconnsp = pvconns; *n_pvconnsp = n_pvconns; return retval; } int ofproto_set_listeners(struct ofproto *ofproto, const struct svec *listeners) { return set_pvconns(&ofproto->listeners, &ofproto->n_listeners, listeners); } int ofproto_set_snoops(struct ofproto *ofproto, const struct svec *snoops) { return set_pvconns(&ofproto->snoops, &ofproto->n_snoops, snoops); } int ofproto_set_netflow(struct ofproto *ofproto, const struct svec *collectors, uint8_t engine_type, uint8_t engine_id, bool add_id_to_iface) { if (collectors && collectors->n) { if (!ofproto->netflow) { ofproto->netflow = netflow_create(); } netflow_set_engine(ofproto->netflow, engine_type, engine_id, add_id_to_iface); return netflow_set_collectors(ofproto->netflow, collectors); } else { netflow_destroy(ofproto->netflow); ofproto->netflow = NULL; return 0; } } void ofproto_set_failure(struct ofproto *ofproto, bool fail_open) { if (fail_open) { struct rconn *rconn = ofproto->controller->rconn; int trigger_duration = rconn_get_probe_interval(rconn) * 3; if (!ofproto->fail_open) { ofproto->fail_open = fail_open_create(ofproto, trigger_duration, ofproto->switch_status, rconn); } else { fail_open_set_trigger_duration(ofproto->fail_open, trigger_duration); } } else { fail_open_destroy(ofproto->fail_open); ofproto->fail_open = NULL; } } void ofproto_set_rate_limit(struct ofproto *ofproto, int rate_limit, int burst_limit) { if (rate_limit > 0) { if (!ofproto->miss_sched) { ofproto->miss_sched = pinsched_create(rate_limit, burst_limit, ofproto->switch_status); ofproto->action_sched = pinsched_create(rate_limit, burst_limit, NULL); } else { pinsched_set_limits(ofproto->miss_sched, rate_limit, burst_limit); pinsched_set_limits(ofproto->action_sched, rate_limit, burst_limit); } } else { pinsched_destroy(ofproto->miss_sched); ofproto->miss_sched = NULL; pinsched_destroy(ofproto->action_sched); ofproto->action_sched = NULL; } } int ofproto_set_stp(struct ofproto *ofproto UNUSED, bool enable_stp) { /* XXX */ if (enable_stp) { VLOG_WARN("STP is not yet implemented"); return EINVAL; } else { return 0; } } int ofproto_set_remote_execution(struct ofproto *ofproto, const char *command_acl, const char *command_dir) { if (command_acl) { if (!ofproto->executer) { return executer_create(command_acl, command_dir, &ofproto->executer); } else { executer_set_acl(ofproto->executer, command_acl, command_dir); } } else { executer_destroy(ofproto->executer); ofproto->executer = NULL; } return 0; } uint64_t ofproto_get_datapath_id(const struct ofproto *ofproto) { return ofproto->datapath_id; } int ofproto_get_probe_interval(const struct ofproto *ofproto) { return rconn_get_probe_interval(ofproto->controller->rconn); } int ofproto_get_max_backoff(const struct ofproto *ofproto) { return rconn_get_max_backoff(ofproto->controller->rconn); } bool ofproto_get_in_band(const struct ofproto *ofproto) { return ofproto->in_band != NULL; } bool ofproto_get_discovery(const struct ofproto *ofproto) { return ofproto->discovery != NULL; } const char * ofproto_get_controller(const struct ofproto *ofproto) { return rconn_get_name(ofproto->controller->rconn); } void ofproto_get_listeners(const struct ofproto *ofproto, struct svec *listeners) { size_t i; for (i = 0; i < ofproto->n_listeners; i++) { svec_add(listeners, pvconn_get_name(ofproto->listeners[i])); } } void ofproto_get_snoops(const struct ofproto *ofproto, struct svec *snoops) { size_t i; for (i = 0; i < ofproto->n_snoops; i++) { svec_add(snoops, pvconn_get_name(ofproto->snoops[i])); } } void ofproto_destroy(struct ofproto *p) { struct ofconn *ofconn, *next_ofconn; struct ofport *ofport; unsigned int port_no; size_t i; if (!p) { return; } ofproto_flush_flows(p); classifier_destroy(&p->cls); LIST_FOR_EACH_SAFE (ofconn, next_ofconn, struct ofconn, node, &p->all_conns) { ofconn_destroy(ofconn, p); } dpif_close(p->dpif); netdev_monitor_destroy(p->netdev_monitor); PORT_ARRAY_FOR_EACH (ofport, &p->ports, port_no) { ofport_free(ofport); } shash_destroy(&p->port_by_name); switch_status_destroy(p->switch_status); in_band_destroy(p->in_band); discovery_destroy(p->discovery); fail_open_destroy(p->fail_open); pinsched_destroy(p->miss_sched); pinsched_destroy(p->action_sched); executer_destroy(p->executer); netflow_destroy(p->netflow); switch_status_unregister(p->ss_cat); for (i = 0; i < p->n_listeners; i++) { pvconn_close(p->listeners[i]); } free(p->listeners); for (i = 0; i < p->n_snoops; i++) { pvconn_close(p->snoops[i]); } free(p->snoops); mac_learning_destroy(p->ml); free(p); } int ofproto_run(struct ofproto *p) { int error = ofproto_run1(p); if (!error) { error = ofproto_run2(p, false); } return error; } static void process_port_change(struct ofproto *ofproto, int error, char *devname) { if (error == ENOBUFS) { reinit_ports(ofproto); } else if (!error) { update_port(ofproto, devname); free(devname); } } int ofproto_run1(struct ofproto *p) { struct ofconn *ofconn, *next_ofconn; char *devname; int error; int i; for (i = 0; i < 50; i++) { struct ofpbuf *buf; int error; error = dpif_recv(p->dpif, &buf); if (error) { if (error == ENODEV) { /* Someone destroyed the datapath behind our back. The caller * better destroy us and give up, because we're just going to * spin from here on out. */ static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_ERR_RL(&rl, "%s: datapath was destroyed externally", dpif_name(p->dpif)); return ENODEV; } break; } handle_odp_msg(p, buf); } while ((error = dpif_port_poll(p->dpif, &devname)) != EAGAIN) { process_port_change(p, error, devname); } while ((error = netdev_monitor_poll(p->netdev_monitor, &devname)) != EAGAIN) { process_port_change(p, error, devname); } if (p->in_band) { in_band_run(p->in_band); } if (p->discovery) { char *controller_name; if (rconn_is_connectivity_questionable(p->controller->rconn)) { discovery_question_connectivity(p->discovery); } if (discovery_run(p->discovery, &controller_name)) { if (controller_name) { rconn_connect(p->controller->rconn, controller_name); } else { rconn_disconnect(p->controller->rconn); } } } if (p->fail_open) { fail_open_run(p->fail_open); } pinsched_run(p->miss_sched, send_packet_in_miss, p); pinsched_run(p->action_sched, send_packet_in_action, p); if (p->executer) { executer_run(p->executer); } LIST_FOR_EACH_SAFE (ofconn, next_ofconn, struct ofconn, node, &p->all_conns) { ofconn_run(ofconn, p); } for (i = 0; i < p->n_listeners; i++) { struct vconn *vconn; int retval; retval = pvconn_accept(p->listeners[i], OFP_VERSION, &vconn); if (!retval) { ofconn_create(p, rconn_new_from_vconn("passive", vconn)); } else if (retval != EAGAIN) { VLOG_WARN_RL(&rl, "accept failed (%s)", strerror(retval)); } } for (i = 0; i < p->n_snoops; i++) { struct vconn *vconn; int retval; retval = pvconn_accept(p->snoops[i], OFP_VERSION, &vconn); if (!retval) { rconn_add_monitor(p->controller->rconn, vconn); } else if (retval != EAGAIN) { VLOG_WARN_RL(&rl, "accept failed (%s)", strerror(retval)); } } if (time_msec() >= p->next_expiration) { COVERAGE_INC(ofproto_expiration); p->next_expiration = time_msec() + 1000; update_used(p); classifier_for_each(&p->cls, CLS_INC_ALL, expire_rule, p); /* Let the hook know that we're at a stable point: all outstanding data * in existing flows has been accounted to the account_cb. Thus, the * hook can now reasonably do operations that depend on having accurate * flow volume accounting (currently, that's just bond rebalancing). */ if (p->ofhooks->account_checkpoint_cb) { p->ofhooks->account_checkpoint_cb(p->aux); } } if (p->netflow) { netflow_run(p->netflow); } return 0; } struct revalidate_cbdata { struct ofproto *ofproto; bool revalidate_all; /* Revalidate all exact-match rules? */ bool revalidate_subrules; /* Revalidate all exact-match subrules? */ struct tag_set revalidate_set; /* Set of tags to revalidate. */ }; int ofproto_run2(struct ofproto *p, bool revalidate_all) { if (p->need_revalidate || revalidate_all || !tag_set_is_empty(&p->revalidate_set)) { struct revalidate_cbdata cbdata; cbdata.ofproto = p; cbdata.revalidate_all = revalidate_all; cbdata.revalidate_subrules = p->need_revalidate; cbdata.revalidate_set = p->revalidate_set; tag_set_init(&p->revalidate_set); COVERAGE_INC(ofproto_revalidate); classifier_for_each(&p->cls, CLS_INC_EXACT, revalidate_cb, &cbdata); p->need_revalidate = false; } return 0; } void ofproto_wait(struct ofproto *p) { struct ofconn *ofconn; size_t i; dpif_recv_wait(p->dpif); dpif_port_poll_wait(p->dpif); netdev_monitor_poll_wait(p->netdev_monitor); LIST_FOR_EACH (ofconn, struct ofconn, node, &p->all_conns) { ofconn_wait(ofconn); } if (p->in_band) { in_band_wait(p->in_band); } if (p->discovery) { discovery_wait(p->discovery); } if (p->fail_open) { fail_open_wait(p->fail_open); } pinsched_wait(p->miss_sched); pinsched_wait(p->action_sched); if (p->executer) { executer_wait(p->executer); } if (!tag_set_is_empty(&p->revalidate_set)) { poll_immediate_wake(); } if (p->need_revalidate) { /* Shouldn't happen, but if it does just go around again. */ VLOG_DBG_RL(&rl, "need revalidate in ofproto_wait_cb()"); poll_immediate_wake(); } else if (p->next_expiration != LLONG_MAX) { poll_timer_wait(p->next_expiration - time_msec()); } for (i = 0; i < p->n_listeners; i++) { pvconn_wait(p->listeners[i]); } for (i = 0; i < p->n_snoops; i++) { pvconn_wait(p->snoops[i]); } } void ofproto_revalidate(struct ofproto *ofproto, tag_type tag) { tag_set_add(&ofproto->revalidate_set, tag); } struct tag_set * ofproto_get_revalidate_set(struct ofproto *ofproto) { return &ofproto->revalidate_set; } bool ofproto_is_alive(const struct ofproto *p) { return p->discovery || rconn_is_alive(p->controller->rconn); } int ofproto_send_packet(struct ofproto *p, const flow_t *flow, const union ofp_action *actions, size_t n_actions, const struct ofpbuf *packet) { struct odp_actions odp_actions; int error; error = xlate_actions(actions, n_actions, flow, p, packet, &odp_actions, NULL, NULL); if (error) { return error; } /* XXX Should we translate the dpif_execute() errno value into an OpenFlow * error code? */ dpif_execute(p->dpif, flow->in_port, odp_actions.actions, odp_actions.n_actions, packet); return 0; } void ofproto_add_flow(struct ofproto *p, const flow_t *flow, uint32_t wildcards, unsigned int priority, const union ofp_action *actions, size_t n_actions, int idle_timeout) { struct rule *rule; rule = rule_create(NULL, actions, n_actions, idle_timeout >= 0 ? idle_timeout : 5 /* XXX */, 0); cls_rule_from_flow(&rule->cr, flow, wildcards, priority); rule_insert(p, rule, NULL, 0); } void ofproto_delete_flow(struct ofproto *ofproto, const flow_t *flow, uint32_t wildcards, unsigned int priority) { struct rule *rule; rule = rule_from_cls_rule(classifier_find_rule_exactly(&ofproto->cls, flow, wildcards, priority)); if (rule) { rule_remove(ofproto, rule); } } static void destroy_rule(struct cls_rule *rule_, void *ofproto_) { struct rule *rule = rule_from_cls_rule(rule_); struct ofproto *ofproto = ofproto_; /* Mark the flow as not installed, even though it might really be * installed, so that rule_remove() doesn't bother trying to uninstall it. * There is no point in uninstalling it individually since we are about to * blow away all the flows with dpif_flow_flush(). */ rule->installed = false; rule_remove(ofproto, rule); } void ofproto_flush_flows(struct ofproto *ofproto) { COVERAGE_INC(ofproto_flush); classifier_for_each(&ofproto->cls, CLS_INC_ALL, destroy_rule, ofproto); dpif_flow_flush(ofproto->dpif); if (ofproto->in_band) { in_band_flushed(ofproto->in_band); } if (ofproto->fail_open) { fail_open_flushed(ofproto->fail_open); } } static void reinit_ports(struct ofproto *p) { struct svec devnames; struct ofport *ofport; unsigned int port_no; struct odp_port *odp_ports; size_t n_odp_ports; size_t i; svec_init(&devnames); PORT_ARRAY_FOR_EACH (ofport, &p->ports, port_no) { svec_add (&devnames, (char *) ofport->opp.name); } dpif_port_list(p->dpif, &odp_ports, &n_odp_ports); for (i = 0; i < n_odp_ports; i++) { svec_add (&devnames, odp_ports[i].devname); } free(odp_ports); svec_sort_unique(&devnames); for (i = 0; i < devnames.n; i++) { update_port(p, devnames.names[i]); } svec_destroy(&devnames); } static void refresh_port_group(struct ofproto *p, unsigned int group) { uint16_t *ports; size_t n_ports; struct ofport *port; unsigned int port_no; assert(group == DP_GROUP_ALL || group == DP_GROUP_FLOOD); ports = xmalloc(port_array_count(&p->ports) * sizeof *ports); n_ports = 0; PORT_ARRAY_FOR_EACH (port, &p->ports, port_no) { if (group == DP_GROUP_ALL || !(port->opp.config & OFPPC_NO_FLOOD)) { ports[n_ports++] = port_no; } } dpif_port_group_set(p->dpif, group, ports, n_ports); free(ports); } static void refresh_port_groups(struct ofproto *p) { refresh_port_group(p, DP_GROUP_FLOOD); refresh_port_group(p, DP_GROUP_ALL); } static struct ofport * make_ofport(const struct odp_port *odp_port) { enum netdev_flags flags; struct ofport *ofport; struct netdev *netdev; bool carrier; int error; error = netdev_open(odp_port->devname, NETDEV_ETH_TYPE_NONE, &netdev); if (error) { VLOG_WARN_RL(&rl, "ignoring port %s (%"PRIu16") because netdev %s " "cannot be opened (%s)", odp_port->devname, odp_port->port, odp_port->devname, strerror(error)); return NULL; } ofport = xmalloc(sizeof *ofport); ofport->netdev = netdev; ofport->opp.port_no = odp_port_to_ofp_port(odp_port->port); memcpy(ofport->opp.hw_addr, netdev_get_etheraddr(netdev), ETH_ALEN); memcpy(ofport->opp.name, odp_port->devname, MIN(sizeof ofport->opp.name, sizeof odp_port->devname)); ofport->opp.name[sizeof ofport->opp.name - 1] = '\0'; netdev_get_flags(netdev, &flags); ofport->opp.config = flags & NETDEV_UP ? 0 : OFPPC_PORT_DOWN; netdev_get_carrier(netdev, &carrier); ofport->opp.state = carrier ? 0 : OFPPS_LINK_DOWN; netdev_get_features(netdev, &ofport->opp.curr, &ofport->opp.advertised, &ofport->opp.supported, &ofport->opp.peer); return ofport; } static bool ofport_conflicts(const struct ofproto *p, const struct odp_port *odp_port) { if (port_array_get(&p->ports, odp_port->port)) { VLOG_WARN_RL(&rl, "ignoring duplicate port %"PRIu16" in datapath", odp_port->port); return true; } else if (shash_find(&p->port_by_name, odp_port->devname)) { VLOG_WARN_RL(&rl, "ignoring duplicate device %s in datapath", odp_port->devname); return true; } else { return false; } } static int ofport_equal(const struct ofport *a_, const struct ofport *b_) { const struct ofp_phy_port *a = &a_->opp; const struct ofp_phy_port *b = &b_->opp; BUILD_ASSERT_DECL(sizeof *a == 48); /* Detect ofp_phy_port changes. */ return (a->port_no == b->port_no && !memcmp(a->hw_addr, b->hw_addr, sizeof a->hw_addr) && !strcmp((char *) a->name, (char *) b->name) && a->state == b->state && a->config == b->config && a->curr == b->curr && a->advertised == b->advertised && a->supported == b->supported && a->peer == b->peer); } static void send_port_status(struct ofproto *p, const struct ofport *ofport, uint8_t reason) { /* XXX Should limit the number of queued port status change messages. */ struct ofconn *ofconn; LIST_FOR_EACH (ofconn, struct ofconn, node, &p->all_conns) { struct ofp_port_status *ops; struct ofpbuf *b; ops = make_openflow_xid(sizeof *ops, OFPT_PORT_STATUS, 0, &b); ops->reason = reason; ops->desc = ofport->opp; hton_ofp_phy_port(&ops->desc); queue_tx(b, ofconn, NULL); } if (p->ofhooks->port_changed_cb) { p->ofhooks->port_changed_cb(reason, &ofport->opp, p->aux); } } static void ofport_install(struct ofproto *p, struct ofport *ofport) { netdev_monitor_add(p->netdev_monitor, ofport->netdev); port_array_set(&p->ports, ofp_port_to_odp_port(ofport->opp.port_no), ofport); shash_add(&p->port_by_name, (char *) ofport->opp.name, ofport); } static void ofport_remove(struct ofproto *p, struct ofport *ofport) { netdev_monitor_remove(p->netdev_monitor, ofport->netdev); port_array_set(&p->ports, ofp_port_to_odp_port(ofport->opp.port_no), NULL); shash_delete(&p->port_by_name, shash_find(&p->port_by_name, (char *) ofport->opp.name)); } static void ofport_free(struct ofport *ofport) { if (ofport) { netdev_close(ofport->netdev); free(ofport); } } static void update_port(struct ofproto *p, const char *devname) { struct odp_port odp_port; struct ofport *ofport; int error; COVERAGE_INC(ofproto_update_port); ofport = shash_find_data(&p->port_by_name, devname); error = dpif_port_query_by_name(p->dpif, devname, &odp_port); if (!error) { if (!ofport) { /* New port. */ if (!ofport_conflicts(p, &odp_port)) { ofport = make_ofport(&odp_port); if (ofport) { ofport_install(p, ofport); send_port_status(p, ofport, OFPPR_ADD); } } } else { /* Modified port. */ struct ofport *new_ofport = make_ofport(&odp_port); if (!new_ofport) { return; } new_ofport->opp.config &= OFPPC_PORT_DOWN; new_ofport->opp.config |= ofport->opp.config & ~OFPPC_PORT_DOWN; if (ofport_equal(ofport, new_ofport)) { /* False alarm--no change. */ ofport_free(new_ofport); } else { ofport_remove(p, ofport); ofport_install(p, new_ofport); ofport_free(ofport); send_port_status(p, new_ofport, OFPPR_MODIFY); } } } else if (error == ENOENT || error == ENODEV) { /* Deleted port. */ if (ofport) { send_port_status(p, ofport, OFPPR_DELETE); ofport_remove(p, ofport); ofport_free(ofport); } } else { VLOG_WARN_RL(&rl, "dpif_port_query_by_name returned unexpected error " "%s", strerror(error)); return; } refresh_port_groups(p); } static int init_ports(struct ofproto *p) { struct odp_port *ports; size_t n_ports; size_t i; int error; error = dpif_port_list(p->dpif, &ports, &n_ports); if (error) { return error; } for (i = 0; i < n_ports; i++) { const struct odp_port *odp_port = &ports[i]; if (!ofport_conflicts(p, odp_port)) { struct ofport *ofport = make_ofport(odp_port); if (ofport) { ofport_install(p, ofport); } } } free(ports); refresh_port_groups(p); return 0; } static struct ofconn * ofconn_create(struct ofproto *p, struct rconn *rconn) { struct ofconn *ofconn = xmalloc(sizeof *ofconn); list_push_back(&p->all_conns, &ofconn->node); ofconn->rconn = rconn; ofconn->pktbuf = NULL; ofconn->send_flow_exp = false; ofconn->miss_send_len = 0; ofconn->packet_in_counter = rconn_packet_counter_create (); ofconn->reply_counter = rconn_packet_counter_create (); return ofconn; } static void ofconn_destroy(struct ofconn *ofconn, struct ofproto *p) { if (p->executer) { executer_rconn_closing(p->executer, ofconn->rconn); } list_remove(&ofconn->node); rconn_destroy(ofconn->rconn); rconn_packet_counter_destroy(ofconn->packet_in_counter); rconn_packet_counter_destroy(ofconn->reply_counter); pktbuf_destroy(ofconn->pktbuf); free(ofconn); } static void ofconn_run(struct ofconn *ofconn, struct ofproto *p) { int iteration; rconn_run(ofconn->rconn); if (rconn_packet_counter_read (ofconn->reply_counter) < OFCONN_REPLY_MAX) { /* Limit the number of iterations to prevent other tasks from * starving. */ for (iteration = 0; iteration < 50; iteration++) { struct ofpbuf *of_msg = rconn_recv(ofconn->rconn); if (!of_msg) { break; } handle_openflow(ofconn, p, of_msg); ofpbuf_delete(of_msg); } } if (ofconn != p->controller && !rconn_is_alive(ofconn->rconn)) { ofconn_destroy(ofconn, p); } } static void ofconn_wait(struct ofconn *ofconn) { rconn_run_wait(ofconn->rconn); if (rconn_packet_counter_read (ofconn->reply_counter) < OFCONN_REPLY_MAX) { rconn_recv_wait(ofconn->rconn); } else { COVERAGE_INC(ofproto_ofconn_stuck); } } /* Caller is responsible for initializing the 'cr' member of the returned * rule. */ static struct rule * rule_create(struct rule *super, const union ofp_action *actions, size_t n_actions, uint16_t idle_timeout, uint16_t hard_timeout) { struct rule *rule = xcalloc(1, sizeof *rule); rule->idle_timeout = idle_timeout; rule->hard_timeout = hard_timeout; rule->used = rule->created = time_msec(); rule->super = super; if (super) { list_push_back(&super->list, &rule->list); } else { list_init(&rule->list); } rule->n_actions = n_actions; rule->actions = xmemdup(actions, n_actions * sizeof *actions); return rule; } static struct rule * rule_from_cls_rule(const struct cls_rule *cls_rule) { return cls_rule ? CONTAINER_OF(cls_rule, struct rule, cr) : NULL; } static void rule_free(struct rule *rule) { free(rule->actions); free(rule->odp_actions); free(rule); } /* Destroys 'rule'. If 'rule' is a subrule, also removes it from its * super-rule's list of subrules. If 'rule' is a super-rule, also iterates * through all of its subrules and revalidates them, destroying any that no * longer has a super-rule (which is probably all of them). * * Before calling this function, the caller must make have removed 'rule' from * the classifier. If 'rule' is an exact-match rule, the caller is also * responsible for ensuring that it has been uninstalled from the datapath. */ static void rule_destroy(struct ofproto *ofproto, struct rule *rule) { if (!rule->super) { struct rule *subrule, *next; LIST_FOR_EACH_SAFE (subrule, next, struct rule, list, &rule->list) { revalidate_rule(ofproto, subrule); } } else { list_remove(&rule->list); } rule_free(rule); } static bool rule_has_out_port(const struct rule *rule, uint16_t out_port) { const union ofp_action *oa; struct actions_iterator i; if (out_port == htons(OFPP_NONE)) { return true; } for (oa = actions_first(&i, rule->actions, rule->n_actions); oa; oa = actions_next(&i)) { if (oa->type == htons(OFPAT_OUTPUT) && oa->output.port == out_port) { return true; } } return false; } /* Executes the actions indicated by 'rule' on 'packet', which is in flow * 'flow' and is considered to have arrived on ODP port 'in_port'. * * The flow that 'packet' actually contains does not need to actually match * 'rule'; the actions in 'rule' will be applied to it either way. Likewise, * the packet and byte counters for 'rule' will be credited for the packet sent * out whether or not the packet actually matches 'rule'. * * If 'rule' is an exact-match rule and 'flow' actually equals the rule's flow, * the caller must already have accurately composed ODP actions for it given * 'packet' using rule_make_actions(). If 'rule' is a wildcard rule, or if * 'rule' is an exact-match rule but 'flow' is not the rule's flow, then this * function will compose a set of ODP actions based on 'rule''s OpenFlow * actions and apply them to 'packet'. */ static void rule_execute(struct ofproto *ofproto, struct rule *rule, struct ofpbuf *packet, const flow_t *flow) { const union odp_action *actions; size_t n_actions; struct odp_actions a; /* Grab or compose the ODP actions. * * The special case for an exact-match 'rule' where 'flow' is not the * rule's flow is important to avoid, e.g., sending a packet out its input * port simply because the ODP actions were composed for the wrong * scenario. */ if (rule->cr.wc.wildcards || !flow_equal(flow, &rule->cr.flow)) { struct rule *super = rule->super ? rule->super : rule; if (xlate_actions(super->actions, super->n_actions, flow, ofproto, packet, &a, NULL, 0)) { return; } actions = a.actions; n_actions = a.n_actions; } else { actions = rule->odp_actions; n_actions = rule->n_odp_actions; } /* Execute the ODP actions. */ if (!dpif_execute(ofproto->dpif, flow->in_port, actions, n_actions, packet)) { struct odp_flow_stats stats; flow_extract_stats(flow, packet, &stats); update_stats(rule, &stats); rule->used = time_msec(); } } static void rule_insert(struct ofproto *p, struct rule *rule, struct ofpbuf *packet, uint16_t in_port) { struct rule *displaced_rule; /* Insert the rule in the classifier. */ displaced_rule = rule_from_cls_rule(classifier_insert(&p->cls, &rule->cr)); if (!rule->cr.wc.wildcards) { rule_make_actions(p, rule, packet); } /* Send the packet and credit it to the rule. */ if (packet) { flow_t flow; flow_extract(packet, in_port, &flow); rule_execute(p, rule, packet, &flow); } /* Install the rule in the datapath only after sending the packet, to * avoid packet reordering. */ if (rule->cr.wc.wildcards) { COVERAGE_INC(ofproto_add_wc_flow); p->need_revalidate = true; } else { rule_install(p, rule, displaced_rule); } /* Free the rule that was displaced, if any. */ if (displaced_rule) { rule_destroy(p, displaced_rule); } } static struct rule * rule_create_subrule(struct ofproto *ofproto, struct rule *rule, const flow_t *flow) { struct rule *subrule = rule_create(rule, NULL, 0, rule->idle_timeout, rule->hard_timeout); COVERAGE_INC(ofproto_subrule_create); cls_rule_from_flow(&subrule->cr, flow, 0, (rule->cr.priority <= UINT16_MAX ? UINT16_MAX : rule->cr.priority)); classifier_insert_exact(&ofproto->cls, &subrule->cr); return subrule; } static void rule_remove(struct ofproto *ofproto, struct rule *rule) { if (rule->cr.wc.wildcards) { COVERAGE_INC(ofproto_del_wc_flow); ofproto->need_revalidate = true; } else { rule_uninstall(ofproto, rule); } classifier_remove(&ofproto->cls, &rule->cr); rule_destroy(ofproto, rule); } /* Returns true if the actions changed, false otherwise. */ static bool rule_make_actions(struct ofproto *p, struct rule *rule, const struct ofpbuf *packet) { const struct rule *super; struct odp_actions a; size_t actions_len; assert(!rule->cr.wc.wildcards); super = rule->super ? rule->super : rule; rule->tags = 0; xlate_actions(super->actions, super->n_actions, &rule->cr.flow, p, packet, &a, &rule->tags, &rule->may_install); actions_len = a.n_actions * sizeof *a.actions; if (rule->n_odp_actions != a.n_actions || memcmp(rule->odp_actions, a.actions, actions_len)) { COVERAGE_INC(ofproto_odp_unchanged); free(rule->odp_actions); rule->n_odp_actions = a.n_actions; rule->odp_actions = xmemdup(a.actions, actions_len); return true; } else { return false; } } static int do_put_flow(struct ofproto *ofproto, struct rule *rule, int flags, struct odp_flow_put *put) { memset(&put->flow.stats, 0, sizeof put->flow.stats); put->flow.key = rule->cr.flow; put->flow.actions = rule->odp_actions; put->flow.n_actions = rule->n_odp_actions; put->flags = flags; return dpif_flow_put(ofproto->dpif, put); } static void rule_install(struct ofproto *p, struct rule *rule, struct rule *displaced_rule) { assert(!rule->cr.wc.wildcards); if (rule->may_install) { struct odp_flow_put put; if (!do_put_flow(p, rule, ODPPF_CREATE | ODPPF_MODIFY | ODPPF_ZERO_STATS, &put)) { rule->installed = true; if (displaced_rule) { update_stats(rule, &put.flow.stats); rule_post_uninstall(p, displaced_rule); } } } else if (displaced_rule) { rule_uninstall(p, displaced_rule); } } static void rule_reinstall(struct ofproto *ofproto, struct rule *rule) { if (rule->installed) { struct odp_flow_put put; COVERAGE_INC(ofproto_dp_missed); do_put_flow(ofproto, rule, ODPPF_CREATE | ODPPF_MODIFY, &put); } else { rule_install(ofproto, rule, NULL); } } static void rule_update_actions(struct ofproto *ofproto, struct rule *rule) { bool actions_changed = rule_make_actions(ofproto, rule, NULL); if (rule->may_install) { if (rule->installed) { if (actions_changed) { /* XXX should really do rule_post_uninstall() for the *old* set * of actions, and distinguish the old stats from the new. */ struct odp_flow_put put; do_put_flow(ofproto, rule, ODPPF_CREATE | ODPPF_MODIFY, &put); } } else { rule_install(ofproto, rule, NULL); } } else { rule_uninstall(ofproto, rule); } } static void rule_account(struct ofproto *ofproto, struct rule *rule, uint64_t extra_bytes) { uint64_t total_bytes = rule->byte_count + extra_bytes; if (ofproto->ofhooks->account_flow_cb && total_bytes > rule->accounted_bytes) { ofproto->ofhooks->account_flow_cb( &rule->cr.flow, rule->odp_actions, rule->n_odp_actions, total_bytes - rule->accounted_bytes, ofproto->aux); rule->accounted_bytes = total_bytes; } } static void rule_uninstall(struct ofproto *p, struct rule *rule) { assert(!rule->cr.wc.wildcards); if (rule->installed) { struct odp_flow odp_flow; odp_flow.key = rule->cr.flow; odp_flow.actions = NULL; odp_flow.n_actions = 0; if (!dpif_flow_del(p->dpif, &odp_flow)) { update_stats(rule, &odp_flow.stats); } rule->installed = false; rule_post_uninstall(p, rule); } } static void rule_post_uninstall(struct ofproto *ofproto, struct rule *rule) { struct rule *super = rule->super; rule_account(ofproto, rule, 0); if (ofproto->netflow) { struct ofexpired expired; expired.flow = rule->cr.flow; expired.packet_count = rule->packet_count; expired.byte_count = rule->byte_count; expired.used = rule->used; expired.created = rule->created; expired.tcp_flags = rule->tcp_flags; expired.ip_tos = rule->ip_tos; netflow_expire(ofproto->netflow, &expired); } if (super) { super->packet_count += rule->packet_count; super->byte_count += rule->byte_count; super->tcp_flags |= rule->tcp_flags; if (rule->packet_count) { super->ip_tos = rule->ip_tos; } } /* Reset counters to prevent double counting if the rule ever gets * reinstalled. */ rule->packet_count = 0; rule->byte_count = 0; rule->accounted_bytes = 0; rule->tcp_flags = 0; rule->ip_tos = 0; } static void queue_tx(struct ofpbuf *msg, const struct ofconn *ofconn, struct rconn_packet_counter *counter) { update_openflow_length(msg); if (rconn_send(ofconn->rconn, msg, counter)) { ofpbuf_delete(msg); } } static void send_error(const struct ofconn *ofconn, const struct ofp_header *oh, int error, const void *data, size_t len) { struct ofpbuf *buf; struct ofp_error_msg *oem; if (!(error >> 16)) { VLOG_WARN_RL(&rl, "not sending bad error code %d to controller", error); return; } COVERAGE_INC(ofproto_error); oem = make_openflow_xid(len + sizeof *oem, OFPT_ERROR, oh ? oh->xid : 0, &buf); oem->type = htons((unsigned int) error >> 16); oem->code = htons(error & 0xffff); memcpy(oem->data, data, len); queue_tx(buf, ofconn, ofconn->reply_counter); } static void send_error_oh(const struct ofconn *ofconn, const struct ofp_header *oh, int error) { size_t oh_length = ntohs(oh->length); send_error(ofconn, oh, error, oh, MIN(oh_length, 64)); } static void hton_ofp_phy_port(struct ofp_phy_port *opp) { opp->port_no = htons(opp->port_no); opp->config = htonl(opp->config); opp->state = htonl(opp->state); opp->curr = htonl(opp->curr); opp->advertised = htonl(opp->advertised); opp->supported = htonl(opp->supported); opp->peer = htonl(opp->peer); } static int handle_echo_request(struct ofconn *ofconn, struct ofp_header *oh) { struct ofp_header *rq = oh; queue_tx(make_echo_reply(rq), ofconn, ofconn->reply_counter); return 0; } static int handle_features_request(struct ofproto *p, struct ofconn *ofconn, struct ofp_header *oh) { struct ofp_switch_features *osf; struct ofpbuf *buf; unsigned int port_no; struct ofport *port; osf = make_openflow_xid(sizeof *osf, OFPT_FEATURES_REPLY, oh->xid, &buf); osf->datapath_id = htonll(p->datapath_id); osf->n_buffers = htonl(pktbuf_capacity()); osf->n_tables = 2; osf->capabilities = htonl(OFPC_FLOW_STATS | OFPC_TABLE_STATS | OFPC_PORT_STATS | OFPC_MULTI_PHY_TX); osf->actions = htonl((1u << OFPAT_OUTPUT) | (1u << OFPAT_SET_VLAN_VID) | (1u << OFPAT_SET_VLAN_PCP) | (1u << OFPAT_STRIP_VLAN) | (1u << OFPAT_SET_DL_SRC) | (1u << OFPAT_SET_DL_DST) | (1u << OFPAT_SET_NW_SRC) | (1u << OFPAT_SET_NW_DST) | (1u << OFPAT_SET_TP_SRC) | (1u << OFPAT_SET_TP_DST)); PORT_ARRAY_FOR_EACH (port, &p->ports, port_no) { hton_ofp_phy_port(ofpbuf_put(buf, &port->opp, sizeof port->opp)); } queue_tx(buf, ofconn, ofconn->reply_counter); return 0; } static int handle_get_config_request(struct ofproto *p, struct ofconn *ofconn, struct ofp_header *oh) { struct ofpbuf *buf; struct ofp_switch_config *osc; uint16_t flags; bool drop_frags; /* Figure out flags. */ dpif_get_drop_frags(p->dpif, &drop_frags); flags = drop_frags ? OFPC_FRAG_DROP : OFPC_FRAG_NORMAL; if (ofconn->send_flow_exp) { flags |= OFPC_SEND_FLOW_EXP; } /* Send reply. */ osc = make_openflow_xid(sizeof *osc, OFPT_GET_CONFIG_REPLY, oh->xid, &buf); osc->flags = htons(flags); osc->miss_send_len = htons(ofconn->miss_send_len); queue_tx(buf, ofconn, ofconn->reply_counter); return 0; } static int handle_set_config(struct ofproto *p, struct ofconn *ofconn, struct ofp_switch_config *osc) { uint16_t flags; int error; error = check_ofp_message(&osc->header, OFPT_SET_CONFIG, sizeof *osc); if (error) { return error; } flags = ntohs(osc->flags); ofconn->send_flow_exp = (flags & OFPC_SEND_FLOW_EXP) != 0; if (ofconn == p->controller) { switch (flags & OFPC_FRAG_MASK) { case OFPC_FRAG_NORMAL: dpif_set_drop_frags(p->dpif, false); break; case OFPC_FRAG_DROP: dpif_set_drop_frags(p->dpif, true); break; default: VLOG_WARN_RL(&rl, "requested bad fragment mode (flags=%"PRIx16")", osc->flags); break; } } if ((ntohs(osc->miss_send_len) != 0) != (ofconn->miss_send_len != 0)) { if (ntohs(osc->miss_send_len) != 0) { ofconn->pktbuf = pktbuf_create(); } else { pktbuf_destroy(ofconn->pktbuf); } } ofconn->miss_send_len = ntohs(osc->miss_send_len); return 0; } static void add_output_group_action(struct odp_actions *actions, uint16_t group) { odp_actions_add(actions, ODPAT_OUTPUT_GROUP)->output_group.group = group; } static void add_controller_action(struct odp_actions *actions, const struct ofp_action_output *oao) { union odp_action *a = odp_actions_add(actions, ODPAT_CONTROLLER); a->controller.arg = oao->max_len ? ntohs(oao->max_len) : UINT32_MAX; } struct action_xlate_ctx { /* Input. */ const flow_t *flow; /* Flow to which these actions correspond. */ int recurse; /* Recursion level, via xlate_table_action. */ struct ofproto *ofproto; const struct ofpbuf *packet; /* The packet corresponding to 'flow', or a * null pointer if we are revalidating * without a packet to refer to. */ /* Output. */ struct odp_actions *out; /* Datapath actions. */ tag_type *tags; /* Tags associated with OFPP_NORMAL actions. */ bool may_setup_flow; /* True ordinarily; false if the actions must * be reassessed for every packet. */ }; static void do_xlate_actions(const union ofp_action *in, size_t n_in, struct action_xlate_ctx *ctx); static void add_output_action(struct action_xlate_ctx *ctx, uint16_t port) { const struct ofport *ofport = port_array_get(&ctx->ofproto->ports, port); if (!ofport || !(ofport->opp.config & OFPPC_NO_FWD)) { odp_actions_add(ctx->out, ODPAT_OUTPUT)->output.port = port; } } static struct rule * lookup_valid_rule(struct ofproto *ofproto, const flow_t *flow) { struct rule *rule; rule = rule_from_cls_rule(classifier_lookup(&ofproto->cls, flow)); /* The rule we found might not be valid, since we could be in need of * revalidation. If it is not valid, don't return it. */ if (rule && rule->super && ofproto->need_revalidate && !revalidate_rule(ofproto, rule)) { COVERAGE_INC(ofproto_invalidated); return NULL; } return rule; } static void xlate_table_action(struct action_xlate_ctx *ctx, uint16_t in_port) { if (!ctx->recurse) { struct rule *rule; flow_t flow; flow = *ctx->flow; flow.in_port = in_port; rule = lookup_valid_rule(ctx->ofproto, &flow); if (rule) { if (rule->super) { rule = rule->super; } ctx->recurse++; do_xlate_actions(rule->actions, rule->n_actions, ctx); ctx->recurse--; } } } static void xlate_output_action(struct action_xlate_ctx *ctx, const struct ofp_action_output *oao) { uint16_t odp_port; switch (ntohs(oao->port)) { case OFPP_IN_PORT: add_output_action(ctx, ctx->flow->in_port); break; case OFPP_TABLE: xlate_table_action(ctx, ctx->flow->in_port); break; case OFPP_NORMAL: if (!ctx->ofproto->ofhooks->normal_cb(ctx->flow, ctx->packet, ctx->out, ctx->tags, ctx->ofproto->aux)) { COVERAGE_INC(ofproto_uninstallable); ctx->may_setup_flow = false; } break; case OFPP_FLOOD: add_output_group_action(ctx->out, DP_GROUP_FLOOD); break; case OFPP_ALL: add_output_group_action(ctx->out, DP_GROUP_ALL); break; case OFPP_CONTROLLER: add_controller_action(ctx->out, oao); break; case OFPP_LOCAL: add_output_action(ctx, ODPP_LOCAL); break; default: odp_port = ofp_port_to_odp_port(ntohs(oao->port)); if (odp_port != ctx->flow->in_port) { add_output_action(ctx, odp_port); } break; } } static void xlate_nicira_action(struct action_xlate_ctx *ctx, const struct nx_action_header *nah) { const struct nx_action_resubmit *nar; int subtype = ntohs(nah->subtype); assert(nah->vendor == htonl(NX_VENDOR_ID)); switch (subtype) { case NXAST_RESUBMIT: nar = (const struct nx_action_resubmit *) nah; xlate_table_action(ctx, ofp_port_to_odp_port(ntohs(nar->in_port))); break; default: VLOG_DBG_RL(&rl, "unknown Nicira action type %"PRIu16, subtype); break; } } static void do_xlate_actions(const union ofp_action *in, size_t n_in, struct action_xlate_ctx *ctx) { struct actions_iterator iter; const union ofp_action *ia; const struct ofport *port; port = port_array_get(&ctx->ofproto->ports, ctx->flow->in_port); if (port && port->opp.config & (OFPPC_NO_RECV | OFPPC_NO_RECV_STP) && port->opp.config & (eth_addr_equals(ctx->flow->dl_dst, stp_eth_addr) ? OFPPC_NO_RECV_STP : OFPPC_NO_RECV)) { /* Drop this flow. */ return; } for (ia = actions_first(&iter, in, n_in); ia; ia = actions_next(&iter)) { uint16_t type = ntohs(ia->type); union odp_action *oa; switch (type) { case OFPAT_OUTPUT: xlate_output_action(ctx, &ia->output); break; case OFPAT_SET_VLAN_VID: oa = odp_actions_add(ctx->out, ODPAT_SET_VLAN_VID); oa->vlan_vid.vlan_vid = ia->vlan_vid.vlan_vid; break; case OFPAT_SET_VLAN_PCP: oa = odp_actions_add(ctx->out, ODPAT_SET_VLAN_PCP); oa->vlan_pcp.vlan_pcp = ia->vlan_pcp.vlan_pcp; break; case OFPAT_STRIP_VLAN: odp_actions_add(ctx->out, ODPAT_STRIP_VLAN); break; case OFPAT_SET_DL_SRC: oa = odp_actions_add(ctx->out, ODPAT_SET_DL_SRC); memcpy(oa->dl_addr.dl_addr, ((struct ofp_action_dl_addr *) ia)->dl_addr, ETH_ADDR_LEN); break; case OFPAT_SET_DL_DST: oa = odp_actions_add(ctx->out, ODPAT_SET_DL_DST); memcpy(oa->dl_addr.dl_addr, ((struct ofp_action_dl_addr *) ia)->dl_addr, ETH_ADDR_LEN); break; case OFPAT_SET_NW_SRC: oa = odp_actions_add(ctx->out, ODPAT_SET_NW_SRC); oa->nw_addr.nw_addr = ia->nw_addr.nw_addr; break; case OFPAT_SET_TP_SRC: oa = odp_actions_add(ctx->out, ODPAT_SET_TP_SRC); oa->tp_port.tp_port = ia->tp_port.tp_port; break; case OFPAT_VENDOR: xlate_nicira_action(ctx, (const struct nx_action_header *) ia); break; default: VLOG_DBG_RL(&rl, "unknown action type %"PRIu16, type); break; } } } static int xlate_actions(const union ofp_action *in, size_t n_in, const flow_t *flow, struct ofproto *ofproto, const struct ofpbuf *packet, struct odp_actions *out, tag_type *tags, bool *may_setup_flow) { tag_type no_tags = 0; struct action_xlate_ctx ctx; COVERAGE_INC(ofproto_ofp2odp); odp_actions_init(out); ctx.flow = flow; ctx.recurse = 0; ctx.ofproto = ofproto; ctx.packet = packet; ctx.out = out; ctx.tags = tags ? tags : &no_tags; ctx.may_setup_flow = true; do_xlate_actions(in, n_in, &ctx); if (may_setup_flow) { *may_setup_flow = ctx.may_setup_flow; } if (odp_actions_overflow(out)) { odp_actions_init(out); return ofp_mkerr(OFPET_BAD_ACTION, OFPBAC_TOO_MANY); } return 0; } static int handle_packet_out(struct ofproto *p, struct ofconn *ofconn, struct ofp_header *oh) { struct ofp_packet_out *opo; struct ofpbuf payload, *buffer; struct odp_actions actions; int n_actions; uint16_t in_port; flow_t flow; int error; error = check_ofp_packet_out(oh, &payload, &n_actions, p->max_ports); if (error) { return error; } opo = (struct ofp_packet_out *) oh; COVERAGE_INC(ofproto_packet_out); if (opo->buffer_id != htonl(UINT32_MAX)) { error = pktbuf_retrieve(ofconn->pktbuf, ntohl(opo->buffer_id), &buffer, &in_port); if (error) { return error; } payload = *buffer; } else { buffer = NULL; } flow_extract(&payload, ofp_port_to_odp_port(ntohs(opo->in_port)), &flow); error = xlate_actions((const union ofp_action *) opo->actions, n_actions, &flow, p, &payload, &actions, NULL, NULL); if (error) { return error; } dpif_execute(p->dpif, flow.in_port, actions.actions, actions.n_actions, &payload); ofpbuf_delete(buffer); return 0; } static void update_port_config(struct ofproto *p, struct ofport *port, uint32_t config, uint32_t mask) { mask &= config ^ port->opp.config; if (mask & OFPPC_PORT_DOWN) { if (config & OFPPC_PORT_DOWN) { netdev_turn_flags_off(port->netdev, NETDEV_UP, true); } else { netdev_turn_flags_on(port->netdev, NETDEV_UP, true); } } #define REVALIDATE_BITS (OFPPC_NO_RECV | OFPPC_NO_RECV_STP | OFPPC_NO_FWD) if (mask & REVALIDATE_BITS) { COVERAGE_INC(ofproto_costly_flags); port->opp.config ^= mask & REVALIDATE_BITS; p->need_revalidate = true; } #undef REVALIDATE_BITS if (mask & OFPPC_NO_FLOOD) { port->opp.config ^= OFPPC_NO_FLOOD; refresh_port_group(p, DP_GROUP_FLOOD); } if (mask & OFPPC_NO_PACKET_IN) { port->opp.config ^= OFPPC_NO_PACKET_IN; } } static int handle_port_mod(struct ofproto *p, struct ofp_header *oh) { const struct ofp_port_mod *opm; struct ofport *port; int error; error = check_ofp_message(oh, OFPT_PORT_MOD, sizeof *opm); if (error) { return error; } opm = (struct ofp_port_mod *) oh; port = port_array_get(&p->ports, ofp_port_to_odp_port(ntohs(opm->port_no))); if (!port) { return ofp_mkerr(OFPET_PORT_MOD_FAILED, OFPPMFC_BAD_PORT); } else if (memcmp(port->opp.hw_addr, opm->hw_addr, OFP_ETH_ALEN)) { return ofp_mkerr(OFPET_PORT_MOD_FAILED, OFPPMFC_BAD_HW_ADDR); } else { update_port_config(p, port, ntohl(opm->config), ntohl(opm->mask)); if (opm->advertise) { netdev_set_advertisements(port->netdev, ntohl(opm->advertise)); } } return 0; } static struct ofpbuf * make_stats_reply(uint32_t xid, uint16_t type, size_t body_len) { struct ofp_stats_reply *osr; struct ofpbuf *msg; msg = ofpbuf_new(MIN(sizeof *osr + body_len, UINT16_MAX)); osr = put_openflow_xid(sizeof *osr, OFPT_STATS_REPLY, xid, msg); osr->type = type; osr->flags = htons(0); return msg; } static struct ofpbuf * start_stats_reply(const struct ofp_stats_request *request, size_t body_len) { return make_stats_reply(request->header.xid, request->type, body_len); } static void * append_stats_reply(size_t nbytes, struct ofconn *ofconn, struct ofpbuf **msgp) { struct ofpbuf *msg = *msgp; assert(nbytes <= UINT16_MAX - sizeof(struct ofp_stats_reply)); if (nbytes + msg->size > UINT16_MAX) { struct ofp_stats_reply *reply = msg->data; reply->flags = htons(OFPSF_REPLY_MORE); *msgp = make_stats_reply(reply->header.xid, reply->type, nbytes); queue_tx(msg, ofconn, ofconn->reply_counter); } return ofpbuf_put_uninit(*msgp, nbytes); } static int handle_desc_stats_request(struct ofproto *p, struct ofconn *ofconn, struct ofp_stats_request *request) { struct ofp_desc_stats *ods; struct ofpbuf *msg; msg = start_stats_reply(request, sizeof *ods); ods = append_stats_reply(sizeof *ods, ofconn, &msg); strncpy(ods->mfr_desc, p->manufacturer, sizeof ods->mfr_desc); strncpy(ods->hw_desc, p->hardware, sizeof ods->hw_desc); strncpy(ods->sw_desc, p->software, sizeof ods->sw_desc); strncpy(ods->serial_num, p->serial, sizeof ods->serial_num); queue_tx(msg, ofconn, ofconn->reply_counter); return 0; } static void count_subrules(struct cls_rule *cls_rule, void *n_subrules_) { struct rule *rule = rule_from_cls_rule(cls_rule); int *n_subrules = n_subrules_; if (rule->super) { (*n_subrules)++; } } static int handle_table_stats_request(struct ofproto *p, struct ofconn *ofconn, struct ofp_stats_request *request) { struct ofp_table_stats *ots; struct ofpbuf *msg; struct odp_stats dpstats; int n_exact, n_subrules, n_wild; msg = start_stats_reply(request, sizeof *ots * 2); /* Count rules of various kinds. */ n_subrules = 0; classifier_for_each(&p->cls, CLS_INC_EXACT, count_subrules, &n_subrules); n_exact = classifier_count_exact(&p->cls) - n_subrules; n_wild = classifier_count(&p->cls) - classifier_count_exact(&p->cls); /* Hash table. */ dpif_get_dp_stats(p->dpif, &dpstats); ots = append_stats_reply(sizeof *ots, ofconn, &msg); memset(ots, 0, sizeof *ots); ots->table_id = TABLEID_HASH; strcpy(ots->name, "hash"); ots->wildcards = htonl(0); ots->max_entries = htonl(dpstats.max_capacity); ots->active_count = htonl(n_exact); ots->lookup_count = htonll(dpstats.n_frags + dpstats.n_hit + dpstats.n_missed); ots->matched_count = htonll(dpstats.n_hit); /* XXX */ /* Classifier table. */ ots = append_stats_reply(sizeof *ots, ofconn, &msg); memset(ots, 0, sizeof *ots); ots->table_id = TABLEID_CLASSIFIER; strcpy(ots->name, "classifier"); ots->wildcards = htonl(OFPFW_ALL); ots->max_entries = htonl(65536); ots->active_count = htonl(n_wild); ots->lookup_count = htonll(0); /* XXX */ ots->matched_count = htonll(0); /* XXX */ queue_tx(msg, ofconn, ofconn->reply_counter); return 0; } static int handle_port_stats_request(struct ofproto *p, struct ofconn *ofconn, struct ofp_stats_request *request) { struct ofp_port_stats *ops; struct ofpbuf *msg; struct ofport *port; unsigned int port_no; msg = start_stats_reply(request, sizeof *ops * 16); PORT_ARRAY_FOR_EACH (port, &p->ports, port_no) { struct netdev_stats stats; /* Intentionally ignore return value, since errors will set 'stats' to * all-1s, which is correct for OpenFlow, and netdev_get_stats() will * log errors. */ netdev_get_stats(port->netdev, &stats); ops = append_stats_reply(sizeof *ops, ofconn, &msg); ops->port_no = htons(odp_port_to_ofp_port(port_no)); memset(ops->pad, 0, sizeof ops->pad); ops->rx_packets = htonll(stats.rx_packets); ops->tx_packets = htonll(stats.tx_packets); ops->rx_bytes = htonll(stats.rx_bytes); ops->tx_bytes = htonll(stats.tx_bytes); ops->rx_dropped = htonll(stats.rx_dropped); ops->tx_dropped = htonll(stats.tx_dropped); ops->rx_errors = htonll(stats.rx_errors); ops->tx_errors = htonll(stats.tx_errors); ops->rx_frame_err = htonll(stats.rx_frame_errors); ops->rx_over_err = htonll(stats.rx_over_errors); ops->rx_crc_err = htonll(stats.rx_crc_errors); ops->collisions = htonll(stats.collisions); } queue_tx(msg, ofconn, ofconn->reply_counter); return 0; } struct flow_stats_cbdata { struct ofproto *ofproto; struct ofconn *ofconn; uint16_t out_port; struct ofpbuf *msg; }; static void query_stats(struct ofproto *p, struct rule *rule, uint64_t *packet_countp, uint64_t *byte_countp) { uint64_t packet_count, byte_count; struct rule *subrule; struct odp_flow *odp_flows; size_t n_odp_flows; n_odp_flows = rule->cr.wc.wildcards ? list_size(&rule->list) : 1; odp_flows = xcalloc(1, n_odp_flows * sizeof *odp_flows); if (rule->cr.wc.wildcards) { size_t i = 0; LIST_FOR_EACH (subrule, struct rule, list, &rule->list) { odp_flows[i++].key = subrule->cr.flow; } } else { odp_flows[0].key = rule->cr.flow; } packet_count = rule->packet_count; byte_count = rule->byte_count; if (!dpif_flow_get_multiple(p->dpif, odp_flows, n_odp_flows)) { size_t i; for (i = 0; i < n_odp_flows; i++) { struct odp_flow *odp_flow = &odp_flows[i]; packet_count += odp_flow->stats.n_packets; byte_count += odp_flow->stats.n_bytes; } } free(odp_flows); *packet_countp = packet_count; *byte_countp = byte_count; } static void flow_stats_cb(struct cls_rule *rule_, void *cbdata_) { struct rule *rule = rule_from_cls_rule(rule_); struct flow_stats_cbdata *cbdata = cbdata_; struct ofp_flow_stats *ofs; uint64_t packet_count, byte_count; size_t act_len, len; if (rule_is_hidden(rule) || !rule_has_out_port(rule, cbdata->out_port)) { return; } act_len = sizeof *rule->actions * rule->n_actions; len = offsetof(struct ofp_flow_stats, actions) + act_len; query_stats(cbdata->ofproto, rule, &packet_count, &byte_count); ofs = append_stats_reply(len, cbdata->ofconn, &cbdata->msg); ofs->length = htons(len); ofs->table_id = rule->cr.wc.wildcards ? TABLEID_CLASSIFIER : TABLEID_HASH; ofs->pad = 0; flow_to_match(&rule->cr.flow, rule->cr.wc.wildcards, &ofs->match); ofs->duration = htonl((time_msec() - rule->created) / 1000); ofs->priority = htons(rule->cr.priority); ofs->idle_timeout = htons(rule->idle_timeout); ofs->hard_timeout = htons(rule->hard_timeout); memset(ofs->pad2, 0, sizeof ofs->pad2); ofs->packet_count = htonll(packet_count); ofs->byte_count = htonll(byte_count); memcpy(ofs->actions, rule->actions, act_len); } static int table_id_to_include(uint8_t table_id) { return (table_id == TABLEID_HASH ? CLS_INC_EXACT : table_id == TABLEID_CLASSIFIER ? CLS_INC_WILD : table_id == 0xff ? CLS_INC_ALL : 0); } static int handle_flow_stats_request(struct ofproto *p, struct ofconn *ofconn, const struct ofp_stats_request *osr, size_t arg_size) { struct ofp_flow_stats_request *fsr; struct flow_stats_cbdata cbdata; struct cls_rule target; if (arg_size != sizeof *fsr) { return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LENGTH); } fsr = (struct ofp_flow_stats_request *) osr->body; COVERAGE_INC(ofproto_flows_req); cbdata.ofproto = p; cbdata.ofconn = ofconn; cbdata.out_port = fsr->out_port; cbdata.msg = start_stats_reply(osr, 1024); cls_rule_from_match(&target, &fsr->match, 0); classifier_for_each_match(&p->cls, &target, table_id_to_include(fsr->table_id), flow_stats_cb, &cbdata); queue_tx(cbdata.msg, ofconn, ofconn->reply_counter); return 0; } struct aggregate_stats_cbdata { struct ofproto *ofproto; uint16_t out_port; uint64_t packet_count; uint64_t byte_count; uint32_t n_flows; }; static void aggregate_stats_cb(struct cls_rule *rule_, void *cbdata_) { struct rule *rule = rule_from_cls_rule(rule_); struct aggregate_stats_cbdata *cbdata = cbdata_; uint64_t packet_count, byte_count; if (rule_is_hidden(rule) || !rule_has_out_port(rule, cbdata->out_port)) { return; } query_stats(cbdata->ofproto, rule, &packet_count, &byte_count); cbdata->packet_count += packet_count; cbdata->byte_count += byte_count; cbdata->n_flows++; } static int handle_aggregate_stats_request(struct ofproto *p, struct ofconn *ofconn, const struct ofp_stats_request *osr, size_t arg_size) { struct ofp_aggregate_stats_request *asr; struct ofp_aggregate_stats_reply *reply; struct aggregate_stats_cbdata cbdata; struct cls_rule target; struct ofpbuf *msg; if (arg_size != sizeof *asr) { return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LENGTH); } asr = (struct ofp_aggregate_stats_request *) osr->body; COVERAGE_INC(ofproto_agg_request); cbdata.ofproto = p; cbdata.out_port = asr->out_port; cbdata.packet_count = 0; cbdata.byte_count = 0; cbdata.n_flows = 0; cls_rule_from_match(&target, &asr->match, 0); classifier_for_each_match(&p->cls, &target, table_id_to_include(asr->table_id), aggregate_stats_cb, &cbdata); msg = start_stats_reply(osr, sizeof *reply); reply = append_stats_reply(sizeof *reply, ofconn, &msg); reply->flow_count = htonl(cbdata.n_flows); reply->packet_count = htonll(cbdata.packet_count); reply->byte_count = htonll(cbdata.byte_count); queue_tx(msg, ofconn, ofconn->reply_counter); return 0; } static int handle_stats_request(struct ofproto *p, struct ofconn *ofconn, struct ofp_header *oh) { struct ofp_stats_request *osr; size_t arg_size; int error; error = check_ofp_message_array(oh, OFPT_STATS_REQUEST, sizeof *osr, 1, &arg_size); if (error) { return error; } osr = (struct ofp_stats_request *) oh; switch (ntohs(osr->type)) { case OFPST_DESC: return handle_desc_stats_request(p, ofconn, osr); case OFPST_FLOW: return handle_flow_stats_request(p, ofconn, osr, arg_size); case OFPST_AGGREGATE: return handle_aggregate_stats_request(p, ofconn, osr, arg_size); case OFPST_TABLE: return handle_table_stats_request(p, ofconn, osr); case OFPST_PORT: return handle_port_stats_request(p, ofconn, osr); case OFPST_VENDOR: return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_VENDOR); default: return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_STAT); } } static long long int msec_from_nsec(uint64_t sec, uint32_t nsec) { return !sec ? 0 : sec * 1000 + nsec / 1000000; } static void update_time(struct rule *rule, const struct odp_flow_stats *stats) { long long int used = msec_from_nsec(stats->used_sec, stats->used_nsec); if (used > rule->used) { rule->used = used; } } static void update_stats(struct rule *rule, const struct odp_flow_stats *stats) { update_time(rule, stats); rule->packet_count += stats->n_packets; rule->byte_count += stats->n_bytes; rule->tcp_flags |= stats->tcp_flags; if (stats->n_packets) { rule->ip_tos = stats->ip_tos; } } static int add_flow(struct ofproto *p, struct ofconn *ofconn, struct ofp_flow_mod *ofm, size_t n_actions) { struct ofpbuf *packet; struct rule *rule; uint16_t in_port; int error; rule = rule_create(NULL, (const union ofp_action *) ofm->actions, n_actions, ntohs(ofm->idle_timeout), ntohs(ofm->hard_timeout)); cls_rule_from_match(&rule->cr, &ofm->match, ntohs(ofm->priority)); packet = NULL; error = 0; if (ofm->buffer_id != htonl(UINT32_MAX)) { error = pktbuf_retrieve(ofconn->pktbuf, ntohl(ofm->buffer_id), &packet, &in_port); } rule_insert(p, rule, packet, in_port); ofpbuf_delete(packet); return error; } static int modify_flow(struct ofproto *p, const struct ofp_flow_mod *ofm, size_t n_actions, uint16_t command, struct rule *rule) { if (rule_is_hidden(rule)) { return 0; } if (command == OFPFC_DELETE) { rule_remove(p, rule); } else { size_t actions_len = n_actions * sizeof *rule->actions; if (n_actions == rule->n_actions && !memcmp(ofm->actions, rule->actions, actions_len)) { return 0; } free(rule->actions); rule->actions = xmemdup(ofm->actions, actions_len); rule->n_actions = n_actions; if (rule->cr.wc.wildcards) { COVERAGE_INC(ofproto_mod_wc_flow); p->need_revalidate = true; } else { rule_update_actions(p, rule); } } return 0; } static int modify_flows_strict(struct ofproto *p, const struct ofp_flow_mod *ofm, size_t n_actions, uint16_t command) { struct rule *rule; uint32_t wildcards; flow_t flow; flow_from_match(&flow, &wildcards, &ofm->match); rule = rule_from_cls_rule(classifier_find_rule_exactly( &p->cls, &flow, wildcards, ntohs(ofm->priority))); if (rule) { if (command == OFPFC_DELETE && ofm->out_port != htons(OFPP_NONE) && !rule_has_out_port(rule, ofm->out_port)) { return 0; } modify_flow(p, ofm, n_actions, command, rule); } return 0; } struct modify_flows_cbdata { struct ofproto *ofproto; const struct ofp_flow_mod *ofm; uint16_t out_port; size_t n_actions; uint16_t command; }; static void modify_flows_cb(struct cls_rule *rule_, void *cbdata_) { struct rule *rule = rule_from_cls_rule(rule_); struct modify_flows_cbdata *cbdata = cbdata_; if (cbdata->out_port != htons(OFPP_NONE) && !rule_has_out_port(rule, cbdata->out_port)) { return; } modify_flow(cbdata->ofproto, cbdata->ofm, cbdata->n_actions, cbdata->command, rule); } static int modify_flows_loose(struct ofproto *p, const struct ofp_flow_mod *ofm, size_t n_actions, uint16_t command) { struct modify_flows_cbdata cbdata; struct cls_rule target; cbdata.ofproto = p; cbdata.ofm = ofm; cbdata.out_port = (command == OFPFC_DELETE ? ofm->out_port : htons(OFPP_NONE)); cbdata.n_actions = n_actions; cbdata.command = command; cls_rule_from_match(&target, &ofm->match, 0); classifier_for_each_match(&p->cls, &target, CLS_INC_ALL, modify_flows_cb, &cbdata); return 0; } static int handle_flow_mod(struct ofproto *p, struct ofconn *ofconn, struct ofp_flow_mod *ofm) { size_t n_actions; int error; error = check_ofp_message_array(&ofm->header, OFPT_FLOW_MOD, sizeof *ofm, sizeof *ofm->actions, &n_actions); if (error) { return error; } normalize_match(&ofm->match); if (!ofm->match.wildcards) { ofm->priority = htons(UINT16_MAX); } error = validate_actions((const union ofp_action *) ofm->actions, n_actions, p->max_ports); if (error) { return error; } switch (ntohs(ofm->command)) { case OFPFC_ADD: return add_flow(p, ofconn, ofm, n_actions); case OFPFC_MODIFY: return modify_flows_loose(p, ofm, n_actions, OFPFC_MODIFY); case OFPFC_MODIFY_STRICT: return modify_flows_strict(p, ofm, n_actions, OFPFC_MODIFY); case OFPFC_DELETE: return modify_flows_loose(p, ofm, n_actions, OFPFC_DELETE); case OFPFC_DELETE_STRICT: return modify_flows_strict(p, ofm, n_actions, OFPFC_DELETE); default: return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_BAD_COMMAND); } } static void send_capability_reply(struct ofproto *p, struct ofconn *ofconn, uint32_t xid) { struct ofmp_capability_reply *ocr; struct ofpbuf *b; char capabilities[] = "com.nicira.mgmt.manager=false\n"; ocr = make_openflow_xid(sizeof(*ocr), OFPT_VENDOR, xid, &b); ocr->header.header.vendor = htonl(NX_VENDOR_ID); ocr->header.header.subtype = htonl(NXT_MGMT); ocr->header.type = htons(OFMPT_CAPABILITY_REPLY); ocr->format = htonl(OFMPCOF_SIMPLE); ocr->mgmt_id = htonll(p->mgmt_id); ofpbuf_put(b, capabilities, strlen(capabilities)); queue_tx(b, ofconn, ofconn->reply_counter); } static int handle_ofmp(struct ofproto *p, struct ofconn *ofconn, struct ofmp_header *ofmph) { size_t msg_len = ntohs(ofmph->header.header.length); if (msg_len < sizeof(*ofmph)) { VLOG_WARN_RL(&rl, "dropping short managment message: %d\n", msg_len); return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LENGTH); } if (ofmph->type == htons(OFMPT_CAPABILITY_REQUEST)) { struct ofmp_capability_request *ofmpcr; if (msg_len < sizeof(struct ofmp_capability_request)) { VLOG_WARN_RL(&rl, "dropping short capability request: %d\n", msg_len); return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LENGTH); } ofmpcr = (struct ofmp_capability_request *)ofmph; if (ofmpcr->format != htonl(OFMPCAF_SIMPLE)) { /* xxx Find a better type than bad subtype */ return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_SUBTYPE); } send_capability_reply(p, ofconn, ofmph->header.header.xid); return 0; } else { return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_SUBTYPE); } } static int handle_vendor(struct ofproto *p, struct ofconn *ofconn, void *msg) { struct ofp_vendor_header *ovh = msg; struct nicira_header *nh; if (ntohs(ovh->header.length) < sizeof(struct ofp_vendor_header)) { return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LENGTH); } if (ovh->vendor != htonl(NX_VENDOR_ID)) { return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_VENDOR); } if (ntohs(ovh->header.length) < sizeof(struct nicira_header)) { return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LENGTH); } nh = msg; switch (ntohl(nh->subtype)) { case NXT_STATUS_REQUEST: return switch_status_handle_request(p->switch_status, ofconn->rconn, msg); case NXT_ACT_SET_CONFIG: return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_SUBTYPE); /* XXX */ case NXT_ACT_GET_CONFIG: return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_SUBTYPE); /* XXX */ case NXT_COMMAND_REQUEST: if (p->executer) { return executer_handle_request(p->executer, ofconn->rconn, msg); } break; case NXT_MGMT: return handle_ofmp(p, ofconn, msg); } return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_SUBTYPE); } static void handle_openflow(struct ofconn *ofconn, struct ofproto *p, struct ofpbuf *ofp_msg) { struct ofp_header *oh = ofp_msg->data; int error; COVERAGE_INC(ofproto_recv_openflow); switch (oh->type) { case OFPT_ECHO_REQUEST: error = handle_echo_request(ofconn, oh); break; case OFPT_ECHO_REPLY: error = 0; break; case OFPT_FEATURES_REQUEST: error = handle_features_request(p, ofconn, oh); break; case OFPT_GET_CONFIG_REQUEST: error = handle_get_config_request(p, ofconn, oh); break; case OFPT_SET_CONFIG: error = handle_set_config(p, ofconn, ofp_msg->data); break; case OFPT_PACKET_OUT: error = handle_packet_out(p, ofconn, ofp_msg->data); break; case OFPT_PORT_MOD: error = handle_port_mod(p, oh); break; case OFPT_FLOW_MOD: error = handle_flow_mod(p, ofconn, ofp_msg->data); break; case OFPT_STATS_REQUEST: error = handle_stats_request(p, ofconn, oh); break; case OFPT_VENDOR: error = handle_vendor(p, ofconn, ofp_msg->data); break; default: if (VLOG_IS_WARN_ENABLED()) { char *s = ofp_to_string(oh, ntohs(oh->length), 2); VLOG_DBG_RL(&rl, "OpenFlow message ignored: %s", s); free(s); } error = ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_TYPE); break; } if (error) { send_error_oh(ofconn, ofp_msg->data, error); } } static void handle_odp_msg(struct ofproto *p, struct ofpbuf *packet) { struct odp_msg *msg = packet->data; uint16_t in_port = odp_port_to_ofp_port(msg->port); struct rule *rule; struct ofpbuf payload; flow_t flow; /* Handle controller actions. */ if (msg->type == _ODPL_ACTION_NR) { COVERAGE_INC(ofproto_ctlr_action); pinsched_send(p->action_sched, in_port, packet, send_packet_in_action, p); return; } payload.data = msg + 1; payload.size = msg->length - sizeof *msg; flow_extract(&payload, msg->port, &flow); rule = lookup_valid_rule(p, &flow); if (!rule) { /* Don't send a packet-in if OFPPC_NO_PACKET_IN asserted. */ struct ofport *port = port_array_get(&p->ports, msg->port); if (port) { if (port->opp.config & OFPPC_NO_PACKET_IN) { COVERAGE_INC(ofproto_no_packet_in); /* XXX install 'drop' flow entry */ ofpbuf_delete(packet); return; } } else { VLOG_WARN_RL(&rl, "packet-in on unknown port %"PRIu16, msg->port); } COVERAGE_INC(ofproto_packet_in); pinsched_send(p->miss_sched, in_port, packet, send_packet_in_miss, p); return; } if (rule->cr.wc.wildcards) { rule = rule_create_subrule(p, rule, &flow); rule_make_actions(p, rule, packet); } else { if (!rule->may_install) { /* The rule is not installable, that is, we need to process every * packet, so process the current packet and set its actions into * 'subrule'. */ rule_make_actions(p, rule, packet); } else { /* XXX revalidate rule if it needs it */ } } rule_execute(p, rule, &payload, &flow); rule_reinstall(p, rule); ofpbuf_delete(packet); } static void revalidate_cb(struct cls_rule *sub_, void *cbdata_) { struct rule *sub = rule_from_cls_rule(sub_); struct revalidate_cbdata *cbdata = cbdata_; if (cbdata->revalidate_all || (cbdata->revalidate_subrules && sub->super) || (tag_set_intersects(&cbdata->revalidate_set, sub->tags))) { revalidate_rule(cbdata->ofproto, sub); } } static bool revalidate_rule(struct ofproto *p, struct rule *rule) { const flow_t *flow = &rule->cr.flow; COVERAGE_INC(ofproto_revalidate_rule); if (rule->super) { struct rule *super; super = rule_from_cls_rule(classifier_lookup_wild(&p->cls, flow)); if (!super) { rule_remove(p, rule); return false; } else if (super != rule->super) { COVERAGE_INC(ofproto_revalidate_moved); list_remove(&rule->list); list_push_back(&super->list, &rule->list); rule->super = super; rule->hard_timeout = super->hard_timeout; rule->idle_timeout = super->idle_timeout; rule->created = super->created; rule->used = 0; } } rule_update_actions(p, rule); return true; } static struct ofpbuf * compose_flow_exp(const struct rule *rule, long long int now, uint8_t reason) { struct ofp_flow_expired *ofe; struct ofpbuf *buf; ofe = make_openflow(sizeof *ofe, OFPT_FLOW_EXPIRED, &buf); flow_to_match(&rule->cr.flow, rule->cr.wc.wildcards, &ofe->match); ofe->priority = htons(rule->cr.priority); ofe->reason = reason; ofe->duration = (now - rule->created) / 1000; ofe->packet_count = rule->packet_count; ofe->byte_count = rule->byte_count; return buf; } static void send_flow_exp(struct ofproto *p, struct rule *rule, long long int now, uint8_t reason) { struct ofconn *ofconn; struct ofconn *prev; struct ofpbuf *buf; /* We limit the maximum number of queued flow expirations it by accounting * them under the counter for replies. That works because preventing * OpenFlow requests from being processed also prevents new flows from * being added (and expiring). (It also prevents processing OpenFlow * requests that would not add new flows, so it is imperfect.) */ prev = NULL; LIST_FOR_EACH (ofconn, struct ofconn, node, &p->all_conns) { if (ofconn->send_flow_exp && rconn_is_connected(ofconn->rconn)) { if (prev) { queue_tx(ofpbuf_clone(buf), prev, ofconn->reply_counter); } else { buf = compose_flow_exp(rule, now, reason); } prev = ofconn; } } if (prev) { queue_tx(buf, prev, ofconn->reply_counter); } } static void uninstall_idle_flow(struct ofproto *ofproto, struct rule *rule) { assert(rule->installed); assert(!rule->cr.wc.wildcards); if (rule->super) { rule_remove(ofproto, rule); } else { rule_uninstall(ofproto, rule); } } static void expire_rule(struct cls_rule *cls_rule, void *p_) { struct ofproto *p = p_; struct rule *rule = rule_from_cls_rule(cls_rule); long long int hard_expire, idle_expire, expire, now; hard_expire = (rule->hard_timeout ? rule->created + rule->hard_timeout * 1000 : LLONG_MAX); idle_expire = (rule->idle_timeout && (rule->super || list_is_empty(&rule->list)) ? rule->used + rule->idle_timeout * 1000 : LLONG_MAX); expire = MIN(hard_expire, idle_expire); if (expire == LLONG_MAX) { if (rule->installed && time_msec() >= rule->used + 5000) { uninstall_idle_flow(p, rule); } return; } now = time_msec(); if (now < expire) { if (rule->installed && now >= rule->used + 5000) { uninstall_idle_flow(p, rule); } return; } COVERAGE_INC(ofproto_expired); if (rule->cr.wc.wildcards) { /* Update stats. (This code will be a no-op if the rule expired * due to an idle timeout, because in that case the rule has no * subrules left.) */ struct rule *subrule, *next; LIST_FOR_EACH_SAFE (subrule, next, struct rule, list, &rule->list) { rule_remove(p, subrule); } } send_flow_exp(p, rule, now, (now >= hard_expire ? OFPER_HARD_TIMEOUT : OFPER_IDLE_TIMEOUT)); rule_remove(p, rule); } static void update_used(struct ofproto *p) { struct odp_flow *flows; size_t n_flows; size_t i; int error; error = dpif_flow_list_all(p->dpif, &flows, &n_flows); if (error) { return; } for (i = 0; i < n_flows; i++) { struct odp_flow *f = &flows[i]; struct rule *rule; rule = rule_from_cls_rule( classifier_find_rule_exactly(&p->cls, &f->key, 0, UINT16_MAX)); if (!rule || !rule->installed) { COVERAGE_INC(ofproto_unexpected_rule); dpif_flow_del(p->dpif, f); continue; } update_time(rule, &f->stats); rule_account(p, rule, f->stats.n_bytes); } free(flows); } static void do_send_packet_in(struct ofconn *ofconn, uint32_t buffer_id, const struct ofpbuf *packet, int send_len) { struct ofp_packet_in *opi; struct ofpbuf payload, *buf; struct odp_msg *msg; msg = packet->data; payload.data = msg + 1; payload.size = msg->length - sizeof *msg; send_len = MIN(send_len, payload.size); buf = ofpbuf_new(sizeof *opi + send_len); opi = put_openflow_xid(offsetof(struct ofp_packet_in, data), OFPT_PACKET_IN, 0, buf); opi->buffer_id = htonl(buffer_id); opi->total_len = htons(payload.size); opi->in_port = htons(odp_port_to_ofp_port(msg->port)); opi->reason = msg->type == _ODPL_ACTION_NR ? OFPR_ACTION : OFPR_NO_MATCH; ofpbuf_put(buf, payload.data, MIN(send_len, payload.size)); update_openflow_length(buf); rconn_send_with_limit(ofconn->rconn, buf, ofconn->packet_in_counter, 100); } static void send_packet_in_action(struct ofpbuf *packet, void *p_) { struct ofproto *p = p_; struct ofconn *ofconn; struct odp_msg *msg; msg = packet->data; LIST_FOR_EACH (ofconn, struct ofconn, node, &p->all_conns) { if (ofconn == p->controller || ofconn->miss_send_len) { do_send_packet_in(ofconn, UINT32_MAX, packet, msg->arg); } } ofpbuf_delete(packet); } static void send_packet_in_miss(struct ofpbuf *packet, void *p_) { struct ofproto *p = p_; struct ofconn *ofconn; struct ofpbuf payload; struct odp_msg *msg; msg = packet->data; payload.data = msg + 1; payload.size = msg->length - sizeof *msg; LIST_FOR_EACH (ofconn, struct ofconn, node, &p->all_conns) { if (ofconn->miss_send_len) { uint32_t buffer_id = pktbuf_save(ofconn->pktbuf, &payload, msg->port); int send_len = (buffer_id != UINT32_MAX ? ofconn->miss_send_len : UINT32_MAX); do_send_packet_in(ofconn, buffer_id, packet, send_len); } } ofpbuf_delete(packet); } static uint64_t pick_datapath_id(struct dpif *dpif, uint64_t fallback_dpid) { char local_name[IF_NAMESIZE]; uint8_t ea[ETH_ADDR_LEN]; int error; error = dpif_port_get_name(dpif, ODPP_LOCAL, local_name, sizeof local_name); if (!error) { error = netdev_nodev_get_etheraddr(local_name, ea); if (!error) { return eth_addr_to_uint64(ea); } VLOG_WARN("could not get MAC address for %s (%s)", local_name, strerror(error)); } return fallback_dpid; } static uint64_t pick_fallback_dpid(void) { uint8_t ea[ETH_ADDR_LEN]; eth_addr_random(ea); ea[0] = 0x00; /* Set Nicira OUI. */ ea[1] = 0x23; ea[2] = 0x20; return eth_addr_to_uint64(ea); } static bool default_normal_ofhook_cb(const flow_t *flow, const struct ofpbuf *packet, struct odp_actions *actions, tag_type *tags, void *ofproto_) { struct ofproto *ofproto = ofproto_; int out_port; /* Drop frames for reserved multicast addresses. */ if (eth_addr_is_reserved(flow->dl_dst)) { return true; } /* Learn source MAC (but don't try to learn from revalidation). */ if (packet != NULL) { tag_type rev_tag = mac_learning_learn(ofproto->ml, flow->dl_src, 0, flow->in_port); if (rev_tag) { /* The log messages here could actually be useful in debugging, * so keep the rate limit relatively high. */ static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(30, 300); VLOG_DBG_RL(&rl, "learned that "ETH_ADDR_FMT" is on port %"PRIu16, ETH_ADDR_ARGS(flow->dl_src), flow->in_port); ofproto_revalidate(ofproto, rev_tag); } } /* Determine output port. */ out_port = mac_learning_lookup_tag(ofproto->ml, flow->dl_dst, 0, tags); if (out_port < 0) { add_output_group_action(actions, DP_GROUP_FLOOD); } else if (out_port != flow->in_port) { odp_actions_add(actions, ODPAT_OUTPUT)->output.port = out_port; } else { /* Drop. */ } return true; } static const struct ofhooks default_ofhooks = { NULL, default_normal_ofhook_cb, NULL, NULL };