/* * Copyright (c) 2009, 2010 Nicira Networks. * Copyright (c) 2010 Jean Tourrilhes - HP-Labs. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "ofproto.h" #include #include #include #include #include #include #include #include "byte-order.h" #include "classifier.h" #include "coverage.h" #include "discovery.h" #include "dpif.h" #include "dynamic-string.h" #include "fail-open.h" #include "hash.h" #include "hmap.h" #include "in-band.h" #include "mac-learning.h" #include "netdev.h" #include "netflow.h" #include "netlink.h" #include "nx-match.h" #include "odp-util.h" #include "ofp-print.h" #include "ofp-util.h" #include "ofproto-sflow.h" #include "ofpbuf.h" #include "openflow/nicira-ext.h" #include "openflow/openflow.h" #include "openvswitch/datapath-protocol.h" #include "packets.h" #include "pinsched.h" #include "pktbuf.h" #include "poll-loop.h" #include "rconn.h" #include "shash.h" #include "status.h" #include "stream-ssl.h" #include "svec.h" #include "tag.h" #include "timeval.h" #include "unixctl.h" #include "vconn.h" #include "vlog.h" VLOG_DEFINE_THIS_MODULE(ofproto); COVERAGE_DEFINE(facet_changed_rule); COVERAGE_DEFINE(facet_revalidate); COVERAGE_DEFINE(odp_overflow); COVERAGE_DEFINE(ofproto_agg_request); COVERAGE_DEFINE(ofproto_costly_flags); COVERAGE_DEFINE(ofproto_ctlr_action); COVERAGE_DEFINE(ofproto_del_rule); COVERAGE_DEFINE(ofproto_error); COVERAGE_DEFINE(ofproto_expiration); COVERAGE_DEFINE(ofproto_expired); COVERAGE_DEFINE(ofproto_flows_req); COVERAGE_DEFINE(ofproto_flush); COVERAGE_DEFINE(ofproto_invalidated); COVERAGE_DEFINE(ofproto_no_packet_in); COVERAGE_DEFINE(ofproto_ofconn_stuck); COVERAGE_DEFINE(ofproto_ofp2odp); COVERAGE_DEFINE(ofproto_packet_in); COVERAGE_DEFINE(ofproto_packet_out); COVERAGE_DEFINE(ofproto_queue_req); COVERAGE_DEFINE(ofproto_recv_openflow); COVERAGE_DEFINE(ofproto_reinit_ports); COVERAGE_DEFINE(ofproto_unexpected_rule); COVERAGE_DEFINE(ofproto_uninstallable); COVERAGE_DEFINE(ofproto_update_port); #include "sflow_api.h" struct rule; struct ofport { struct hmap_node hmap_node; /* In struct ofproto's "ports" hmap. */ struct netdev *netdev; struct ofp_phy_port opp; /* In host byte order. */ uint16_t odp_port; }; static void ofport_free(struct ofport *); static void hton_ofp_phy_port(struct ofp_phy_port *); struct action_xlate_ctx { /* action_xlate_ctx_init() initializes these members. */ /* The ofproto. */ struct ofproto *ofproto; /* Flow to which the OpenFlow actions apply. xlate_actions() will modify * this flow when actions change header fields. */ struct flow flow; /* The packet corresponding to 'flow', or a null pointer if we are * revalidating without a packet to refer to. */ const struct ofpbuf *packet; /* If nonnull, called just before executing a resubmit action. * * This is normally null so the client has to set it manually after * calling action_xlate_ctx_init(). */ void (*resubmit_hook)(struct action_xlate_ctx *, const struct rule *); /* xlate_actions() initializes and uses these members. The client might want * to look at them after it returns. */ struct ofpbuf *odp_actions; /* Datapath actions. */ tag_type tags; /* Tags associated with OFPP_NORMAL actions. */ bool may_set_up_flow; /* True ordinarily; false if the actions must * be reassessed for every packet. */ uint16_t nf_output_iface; /* Output interface index for NetFlow. */ /* xlate_actions() initializes and uses these members, but the client has no * reason to look at them. */ int recurse; /* Recursion level, via xlate_table_action. */ int last_pop_priority; /* Offset in 'odp_actions' just past most * recently added ODPAT_SET_PRIORITY. */ }; static void action_xlate_ctx_init(struct action_xlate_ctx *, struct ofproto *, const struct flow *, const struct ofpbuf *); static struct ofpbuf *xlate_actions(struct action_xlate_ctx *, const union ofp_action *in, size_t n_in); /* An OpenFlow flow. */ struct rule { long long int used; /* Time last used; time created if not used. */ long long int created; /* Creation time. */ /* These statistics: * * - Do include packets and bytes from facets that have been deleted or * whose own statistics have been folded into the rule. * * - Do include packets and bytes sent "by hand" that were accounted to * the rule without any facet being involved (this is a rare corner * case in rule_execute()). * * - Do not include packet or bytes that can be obtained from any facet's * packet_count or byte_count member or that can be obtained from the * datapath by, e.g., dpif_flow_get() for any facet. */ uint64_t packet_count; /* Number of packets received. */ uint64_t byte_count; /* Number of bytes received. */ ovs_be64 flow_cookie; /* Controller-issued identifier. */ struct cls_rule cr; /* In owning ofproto's classifier. */ uint16_t idle_timeout; /* In seconds from time of last use. */ uint16_t hard_timeout; /* In seconds from time of creation. */ bool send_flow_removed; /* Send a flow removed message? */ int n_actions; /* Number of elements in actions[]. */ union ofp_action *actions; /* OpenFlow actions. */ struct list facets; /* List of "struct facet"s. */ }; static struct rule *rule_from_cls_rule(const struct cls_rule *); static bool rule_is_hidden(const struct rule *); static struct rule *rule_create(const struct cls_rule *, const union ofp_action *, size_t n_actions, uint16_t idle_timeout, uint16_t hard_timeout, ovs_be64 flow_cookie, bool send_flow_removed); static void rule_destroy(struct ofproto *, struct rule *); static void rule_free(struct rule *); static struct rule *rule_lookup(struct ofproto *, const struct flow *); static void rule_insert(struct ofproto *, struct rule *); static void rule_remove(struct ofproto *, struct rule *); static void rule_send_removed(struct ofproto *, struct rule *, uint8_t reason); /* An exact-match instantiation of an OpenFlow flow. */ struct facet { long long int used; /* Time last used; time created if not used. */ /* These statistics: * * - Do include packets and bytes sent "by hand", e.g. with * dpif_execute(). * * - Do include packets and bytes that were obtained from the datapath * when a flow was deleted (e.g. dpif_flow_del()) or when its * statistics were reset (e.g. dpif_flow_put() with ODPPF_ZERO_STATS). * * - Do not include any packets or bytes that can currently be obtained * from the datapath by, e.g., dpif_flow_get(). */ uint64_t packet_count; /* Number of packets received. */ uint64_t byte_count; /* Number of bytes received. */ /* Number of bytes passed to account_cb. This may include bytes that can * currently obtained from the datapath (thus, it can be greater than * byte_count). */ uint64_t accounted_bytes; struct hmap_node hmap_node; /* In owning ofproto's 'facets' hmap. */ struct list list_node; /* In owning rule's 'facets' list. */ struct rule *rule; /* Owning rule. */ struct flow flow; /* Exact-match flow. */ bool installed; /* Installed in datapath? */ bool may_install; /* True ordinarily; false if actions must * be reassessed for every packet. */ size_t actions_len; /* Number of bytes in actions[]. */ struct nlattr *actions; /* Datapath actions. */ tag_type tags; /* Tags (set only by hooks). */ struct netflow_flow nf_flow; /* Per-flow NetFlow tracking data. */ }; static struct facet *facet_create(struct ofproto *, struct rule *, const struct flow *, const struct ofpbuf *packet); static void facet_remove(struct ofproto *, struct facet *); static void facet_free(struct facet *); static struct facet *facet_lookup_valid(struct ofproto *, const struct flow *); static bool facet_revalidate(struct ofproto *, struct facet *); static void facet_install(struct ofproto *, struct facet *, bool zero_stats); static void facet_uninstall(struct ofproto *, struct facet *); static void facet_flush_stats(struct ofproto *, struct facet *); static void facet_make_actions(struct ofproto *, struct facet *, const struct ofpbuf *packet); static void facet_update_stats(struct ofproto *, struct facet *, const struct odp_flow_stats *); /* ofproto supports two kinds of OpenFlow connections: * * - "Primary" connections to ordinary OpenFlow controllers. ofproto * maintains persistent connections to these controllers and by default * sends them asynchronous messages such as packet-ins. * * - "Service" connections, e.g. from ovs-ofctl. When these connections * drop, it is the other side's responsibility to reconnect them if * necessary. ofproto does not send them asynchronous messages by default. * * Currently, active (tcp, ssl, unix) connections are always "primary" * connections and passive (ptcp, pssl, punix) connections are always "service" * connections. There is no inherent reason for this, but it reflects the * common case. */ enum ofconn_type { OFCONN_PRIMARY, /* An ordinary OpenFlow controller. */ OFCONN_SERVICE /* A service connection, e.g. "ovs-ofctl". */ }; /* A listener for incoming OpenFlow "service" connections. */ struct ofservice { struct hmap_node node; /* In struct ofproto's "services" hmap. */ struct pvconn *pvconn; /* OpenFlow connection listener. */ /* These are not used by ofservice directly. They are settings for * accepted "struct ofconn"s from the pvconn. */ int probe_interval; /* Max idle time before probing, in seconds. */ int rate_limit; /* Max packet-in rate in packets per second. */ int burst_limit; /* Limit on accumulating packet credits. */ }; static struct ofservice *ofservice_lookup(struct ofproto *, const char *target); static int ofservice_create(struct ofproto *, const struct ofproto_controller *); static void ofservice_reconfigure(struct ofservice *, const struct ofproto_controller *); static void ofservice_destroy(struct ofproto *, struct ofservice *); /* An OpenFlow connection. */ struct ofconn { struct ofproto *ofproto; /* The ofproto that owns this connection. */ struct list node; /* In struct ofproto's "all_conns" list. */ struct rconn *rconn; /* OpenFlow connection. */ enum ofconn_type type; /* Type. */ enum nx_flow_format flow_format; /* Currently selected flow format. */ /* OFPT_PACKET_IN related data. */ struct rconn_packet_counter *packet_in_counter; /* # queued on 'rconn'. */ struct pinsched *schedulers[2]; /* Indexed by reason code; see below. */ struct pktbuf *pktbuf; /* OpenFlow packet buffers. */ int miss_send_len; /* Bytes to send of buffered packets. */ /* Number of OpenFlow messages queued on 'rconn' as replies to OpenFlow * requests, and the maximum number before we stop reading OpenFlow * requests. */ #define OFCONN_REPLY_MAX 100 struct rconn_packet_counter *reply_counter; /* type == OFCONN_PRIMARY only. */ enum nx_role role; /* Role. */ struct hmap_node hmap_node; /* In struct ofproto's "controllers" map. */ struct discovery *discovery; /* Controller discovery object, if enabled. */ struct status_category *ss; /* Switch status category. */ enum ofproto_band band; /* In-band or out-of-band? */ }; /* We use OFPR_NO_MATCH and OFPR_ACTION as indexes into struct ofconn's * "schedulers" array. Their values are 0 and 1, and their meanings and values * coincide with _ODPL_MISS_NR and _ODPL_ACTION_NR, so this is convenient. In * case anything ever changes, check their values here. */ #define N_SCHEDULERS 2 BUILD_ASSERT_DECL(OFPR_NO_MATCH == 0); BUILD_ASSERT_DECL(OFPR_NO_MATCH == _ODPL_MISS_NR); BUILD_ASSERT_DECL(OFPR_ACTION == 1); BUILD_ASSERT_DECL(OFPR_ACTION == _ODPL_ACTION_NR); static struct ofconn *ofconn_create(struct ofproto *, struct rconn *, enum ofconn_type); static void ofconn_destroy(struct ofconn *); static void ofconn_run(struct ofconn *); static void ofconn_wait(struct ofconn *); static bool ofconn_receives_async_msgs(const struct ofconn *); static char *ofconn_make_name(const struct ofproto *, const char *target); static void ofconn_set_rate_limit(struct ofconn *, int rate, int burst); static void queue_tx(struct ofpbuf *msg, const struct ofconn *ofconn, struct rconn_packet_counter *counter); static void send_packet_in(struct ofproto *, struct ofpbuf *odp_msg); static void do_send_packet_in(struct ofpbuf *odp_msg, void *ofconn); struct ofproto { /* Settings. */ uint64_t datapath_id; /* Datapath ID. */ uint64_t fallback_dpid; /* Datapath ID if no better choice found. */ char *mfr_desc; /* Manufacturer. */ char *hw_desc; /* Hardware. */ char *sw_desc; /* Software version. */ char *serial_desc; /* Serial number. */ char *dp_desc; /* Datapath description. */ /* Datapath. */ struct dpif *dpif; struct netdev_monitor *netdev_monitor; struct hmap ports; /* Contains "struct ofport"s. */ struct shash port_by_name; uint32_t max_ports; /* Configuration. */ struct switch_status *switch_status; struct fail_open *fail_open; struct netflow *netflow; struct ofproto_sflow *sflow; /* In-band control. */ struct in_band *in_band; long long int next_in_band_update; struct sockaddr_in *extra_in_band_remotes; size_t n_extra_remotes; int in_band_queue; /* Flow table. */ struct classifier cls; long long int next_expiration; /* Facets. */ struct hmap facets; bool need_revalidate; struct tag_set revalidate_set; /* OpenFlow connections. */ struct hmap controllers; /* Controller "struct ofconn"s. */ struct list all_conns; /* Contains "struct ofconn"s. */ enum ofproto_fail_mode fail_mode; /* OpenFlow listeners. */ struct hmap services; /* Contains "struct ofservice"s. */ struct pvconn **snoops; size_t n_snoops; /* Hooks for ovs-vswitchd. */ const struct ofhooks *ofhooks; void *aux; /* Used by default ofhooks. */ struct mac_learning *ml; }; /* Map from dpif name to struct ofproto, for use by unixctl commands. */ static struct shash all_ofprotos = SHASH_INITIALIZER(&all_ofprotos); static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); static const struct ofhooks default_ofhooks; static uint64_t pick_datapath_id(const struct ofproto *); static uint64_t pick_fallback_dpid(void); static int ofproto_expire(struct ofproto *); static void handle_odp_msg(struct ofproto *, struct ofpbuf *); static void handle_openflow(struct ofconn *, struct ofpbuf *); static struct ofport *get_port(const struct ofproto *, uint16_t odp_port); static void update_port(struct ofproto *, const char *devname); static int init_ports(struct ofproto *); static void reinit_ports(struct ofproto *); static void ofproto_unixctl_init(void); int ofproto_create(const char *datapath, const char *datapath_type, const struct ofhooks *ofhooks, void *aux, struct ofproto **ofprotop) { struct odp_stats stats; struct ofproto *p; struct dpif *dpif; int error; *ofprotop = NULL; ofproto_unixctl_init(); /* Connect to datapath and start listening for messages. */ error = dpif_open(datapath, datapath_type, &dpif); if (error) { VLOG_ERR("failed to open datapath %s: %s", datapath, strerror(error)); return error; } error = dpif_get_dp_stats(dpif, &stats); if (error) { VLOG_ERR("failed to obtain stats for datapath %s: %s", datapath, strerror(error)); dpif_close(dpif); return error; } error = dpif_recv_set_mask(dpif, ODPL_MISS | ODPL_ACTION | ODPL_SFLOW); if (error) { VLOG_ERR("failed to listen on datapath %s: %s", datapath, strerror(error)); dpif_close(dpif); return error; } dpif_flow_flush(dpif); dpif_recv_purge(dpif); /* Initialize settings. */ p = xzalloc(sizeof *p); p->fallback_dpid = pick_fallback_dpid(); p->datapath_id = p->fallback_dpid; p->mfr_desc = xstrdup(DEFAULT_MFR_DESC); p->hw_desc = xstrdup(DEFAULT_HW_DESC); p->sw_desc = xstrdup(DEFAULT_SW_DESC); p->serial_desc = xstrdup(DEFAULT_SERIAL_DESC); p->dp_desc = xstrdup(DEFAULT_DP_DESC); /* Initialize datapath. */ p->dpif = dpif; p->netdev_monitor = netdev_monitor_create(); hmap_init(&p->ports); shash_init(&p->port_by_name); p->max_ports = stats.max_ports; /* Initialize submodules. */ p->switch_status = switch_status_create(p); p->fail_open = NULL; p->netflow = NULL; p->sflow = NULL; /* Initialize in-band control. */ p->in_band = NULL; p->in_band_queue = -1; /* Initialize flow table. */ classifier_init(&p->cls); p->next_expiration = time_msec() + 1000; /* Initialize facet table. */ hmap_init(&p->facets); p->need_revalidate = false; tag_set_init(&p->revalidate_set); /* Initialize OpenFlow connections. */ list_init(&p->all_conns); hmap_init(&p->controllers); hmap_init(&p->services); p->snoops = NULL; p->n_snoops = 0; /* Initialize hooks. */ if (ofhooks) { p->ofhooks = ofhooks; p->aux = aux; p->ml = NULL; } else { p->ofhooks = &default_ofhooks; p->aux = p; p->ml = mac_learning_create(); } /* Pick final datapath ID. */ p->datapath_id = pick_datapath_id(p); VLOG_INFO("using datapath ID %016"PRIx64, p->datapath_id); shash_add_once(&all_ofprotos, dpif_name(p->dpif), p); *ofprotop = p; return 0; } void ofproto_set_datapath_id(struct ofproto *p, uint64_t datapath_id) { uint64_t old_dpid = p->datapath_id; p->datapath_id = datapath_id ? datapath_id : pick_datapath_id(p); if (p->datapath_id != old_dpid) { VLOG_INFO("datapath ID changed to %016"PRIx64, p->datapath_id); /* Force all active connections to reconnect, since there is no way to * notify a controller that the datapath ID has changed. */ ofproto_reconnect_controllers(p); } } static bool is_discovery_controller(const struct ofproto_controller *c) { return !strcmp(c->target, "discover"); } static bool is_in_band_controller(const struct ofproto_controller *c) { return is_discovery_controller(c) || c->band == OFPROTO_IN_BAND; } /* Creates a new controller in 'ofproto'. Some of the settings are initially * drawn from 'c', but update_controller() needs to be called later to finish * the new ofconn's configuration. */ static void add_controller(struct ofproto *ofproto, const struct ofproto_controller *c) { struct discovery *discovery; struct ofconn *ofconn; if (is_discovery_controller(c)) { int error = discovery_create(c->accept_re, c->update_resolv_conf, ofproto->dpif, ofproto->switch_status, &discovery); if (error) { return; } } else { discovery = NULL; } ofconn = ofconn_create(ofproto, rconn_create(5, 8), OFCONN_PRIMARY); ofconn->pktbuf = pktbuf_create(); ofconn->miss_send_len = OFP_DEFAULT_MISS_SEND_LEN; if (discovery) { ofconn->discovery = discovery; } else { char *name = ofconn_make_name(ofproto, c->target); rconn_connect(ofconn->rconn, c->target, name); free(name); } hmap_insert(&ofproto->controllers, &ofconn->hmap_node, hash_string(c->target, 0)); } /* Reconfigures 'ofconn' to match 'c'. This function cannot update an ofconn's * target or turn discovery on or off (these are done by creating new ofconns * and deleting old ones), but it can update the rest of an ofconn's * settings. */ static void update_controller(struct ofconn *ofconn, const struct ofproto_controller *c) { int probe_interval; ofconn->band = (is_in_band_controller(c) ? OFPROTO_IN_BAND : OFPROTO_OUT_OF_BAND); rconn_set_max_backoff(ofconn->rconn, c->max_backoff); probe_interval = c->probe_interval ? MAX(c->probe_interval, 5) : 0; rconn_set_probe_interval(ofconn->rconn, probe_interval); if (ofconn->discovery) { discovery_set_update_resolv_conf(ofconn->discovery, c->update_resolv_conf); discovery_set_accept_controller_re(ofconn->discovery, c->accept_re); } ofconn_set_rate_limit(ofconn, c->rate_limit, c->burst_limit); } static const char * ofconn_get_target(const struct ofconn *ofconn) { return ofconn->discovery ? "discover" : rconn_get_target(ofconn->rconn); } static struct ofconn * find_controller_by_target(struct ofproto *ofproto, const char *target) { struct ofconn *ofconn; HMAP_FOR_EACH_WITH_HASH (ofconn, hmap_node, hash_string(target, 0), &ofproto->controllers) { if (!strcmp(ofconn_get_target(ofconn), target)) { return ofconn; } } return NULL; } static void update_in_band_remotes(struct ofproto *ofproto) { const struct ofconn *ofconn; struct sockaddr_in *addrs; size_t max_addrs, n_addrs; bool discovery; size_t i; /* Allocate enough memory for as many remotes as we could possibly have. */ max_addrs = ofproto->n_extra_remotes + hmap_count(&ofproto->controllers); addrs = xmalloc(max_addrs * sizeof *addrs); n_addrs = 0; /* Add all the remotes. */ discovery = false; HMAP_FOR_EACH (ofconn, hmap_node, &ofproto->controllers) { struct sockaddr_in *sin = &addrs[n_addrs]; if (ofconn->band == OFPROTO_OUT_OF_BAND) { continue; } sin->sin_addr.s_addr = rconn_get_remote_ip(ofconn->rconn); if (sin->sin_addr.s_addr) { sin->sin_port = rconn_get_remote_port(ofconn->rconn); n_addrs++; } if (ofconn->discovery) { discovery = true; } } for (i = 0; i < ofproto->n_extra_remotes; i++) { addrs[n_addrs++] = ofproto->extra_in_band_remotes[i]; } /* Create or update or destroy in-band. * * Ordinarily we only enable in-band if there's at least one remote * address, but discovery needs the in-band rules for DHCP to be installed * even before we know any remote addresses. */ if (n_addrs || discovery) { if (!ofproto->in_band) { in_band_create(ofproto, ofproto->dpif, ofproto->switch_status, &ofproto->in_band); } if (ofproto->in_band) { in_band_set_remotes(ofproto->in_band, addrs, n_addrs); } in_band_set_queue(ofproto->in_band, ofproto->in_band_queue); ofproto->next_in_band_update = time_msec() + 1000; } else { in_band_destroy(ofproto->in_band); ofproto->in_band = NULL; } /* Clean up. */ free(addrs); } static void update_fail_open(struct ofproto *p) { struct ofconn *ofconn; if (!hmap_is_empty(&p->controllers) && p->fail_mode == OFPROTO_FAIL_STANDALONE) { struct rconn **rconns; size_t n; if (!p->fail_open) { p->fail_open = fail_open_create(p, p->switch_status); } n = 0; rconns = xmalloc(hmap_count(&p->controllers) * sizeof *rconns); HMAP_FOR_EACH (ofconn, hmap_node, &p->controllers) { rconns[n++] = ofconn->rconn; } fail_open_set_controllers(p->fail_open, rconns, n); /* p->fail_open takes ownership of 'rconns'. */ } else { fail_open_destroy(p->fail_open); p->fail_open = NULL; } } void ofproto_set_controllers(struct ofproto *p, const struct ofproto_controller *controllers, size_t n_controllers) { struct shash new_controllers; struct ofconn *ofconn, *next_ofconn; struct ofservice *ofservice, *next_ofservice; bool ss_exists; size_t i; /* Create newly configured controllers and services. * Create a name to ofproto_controller mapping in 'new_controllers'. */ shash_init(&new_controllers); for (i = 0; i < n_controllers; i++) { const struct ofproto_controller *c = &controllers[i]; if (!vconn_verify_name(c->target) || !strcmp(c->target, "discover")) { if (!find_controller_by_target(p, c->target)) { add_controller(p, c); } } else if (!pvconn_verify_name(c->target)) { if (!ofservice_lookup(p, c->target) && ofservice_create(p, c)) { continue; } } else { VLOG_WARN_RL(&rl, "%s: unsupported controller \"%s\"", dpif_name(p->dpif), c->target); continue; } shash_add_once(&new_controllers, c->target, &controllers[i]); } /* Delete controllers that are no longer configured. * Update configuration of all now-existing controllers. */ ss_exists = false; HMAP_FOR_EACH_SAFE (ofconn, next_ofconn, hmap_node, &p->controllers) { struct ofproto_controller *c; c = shash_find_data(&new_controllers, ofconn_get_target(ofconn)); if (!c) { ofconn_destroy(ofconn); } else { update_controller(ofconn, c); if (ofconn->ss) { ss_exists = true; } } } /* Delete services that are no longer configured. * Update configuration of all now-existing services. */ HMAP_FOR_EACH_SAFE (ofservice, next_ofservice, node, &p->services) { struct ofproto_controller *c; c = shash_find_data(&new_controllers, pvconn_get_name(ofservice->pvconn)); if (!c) { ofservice_destroy(p, ofservice); } else { ofservice_reconfigure(ofservice, c); } } shash_destroy(&new_controllers); update_in_band_remotes(p); update_fail_open(p); if (!hmap_is_empty(&p->controllers) && !ss_exists) { ofconn = CONTAINER_OF(hmap_first(&p->controllers), struct ofconn, hmap_node); ofconn->ss = switch_status_register(p->switch_status, "remote", rconn_status_cb, ofconn->rconn); } } void ofproto_set_fail_mode(struct ofproto *p, enum ofproto_fail_mode fail_mode) { p->fail_mode = fail_mode; update_fail_open(p); } /* Drops the connections between 'ofproto' and all of its controllers, forcing * them to reconnect. */ void ofproto_reconnect_controllers(struct ofproto *ofproto) { struct ofconn *ofconn; LIST_FOR_EACH (ofconn, node, &ofproto->all_conns) { rconn_reconnect(ofconn->rconn); } } static bool any_extras_changed(const struct ofproto *ofproto, const struct sockaddr_in *extras, size_t n) { size_t i; if (n != ofproto->n_extra_remotes) { return true; } for (i = 0; i < n; i++) { const struct sockaddr_in *old = &ofproto->extra_in_band_remotes[i]; const struct sockaddr_in *new = &extras[i]; if (old->sin_addr.s_addr != new->sin_addr.s_addr || old->sin_port != new->sin_port) { return true; } } return false; } /* Sets the 'n' TCP port addresses in 'extras' as ones to which 'ofproto''s * in-band control should guarantee access, in the same way that in-band * control guarantees access to OpenFlow controllers. */ void ofproto_set_extra_in_band_remotes(struct ofproto *ofproto, const struct sockaddr_in *extras, size_t n) { if (!any_extras_changed(ofproto, extras, n)) { return; } free(ofproto->extra_in_band_remotes); ofproto->n_extra_remotes = n; ofproto->extra_in_band_remotes = xmemdup(extras, n * sizeof *extras); update_in_band_remotes(ofproto); } /* Sets the OpenFlow queue used by flows set up by in-band control on * 'ofproto' to 'queue_id'. If 'queue_id' is negative, then in-band control * flows will use the default queue. */ void ofproto_set_in_band_queue(struct ofproto *ofproto, int queue_id) { if (queue_id != ofproto->in_band_queue) { ofproto->in_band_queue = queue_id; update_in_band_remotes(ofproto); } } void ofproto_set_desc(struct ofproto *p, const char *mfr_desc, const char *hw_desc, const char *sw_desc, const char *serial_desc, const char *dp_desc) { struct ofp_desc_stats *ods; if (mfr_desc) { if (strlen(mfr_desc) >= sizeof ods->mfr_desc) { VLOG_WARN("truncating mfr_desc, must be less than %zu characters", sizeof ods->mfr_desc); } free(p->mfr_desc); p->mfr_desc = xstrdup(mfr_desc); } if (hw_desc) { if (strlen(hw_desc) >= sizeof ods->hw_desc) { VLOG_WARN("truncating hw_desc, must be less than %zu characters", sizeof ods->hw_desc); } free(p->hw_desc); p->hw_desc = xstrdup(hw_desc); } if (sw_desc) { if (strlen(sw_desc) >= sizeof ods->sw_desc) { VLOG_WARN("truncating sw_desc, must be less than %zu characters", sizeof ods->sw_desc); } free(p->sw_desc); p->sw_desc = xstrdup(sw_desc); } if (serial_desc) { if (strlen(serial_desc) >= sizeof ods->serial_num) { VLOG_WARN("truncating serial_desc, must be less than %zu " "characters", sizeof ods->serial_num); } free(p->serial_desc); p->serial_desc = xstrdup(serial_desc); } if (dp_desc) { if (strlen(dp_desc) >= sizeof ods->dp_desc) { VLOG_WARN("truncating dp_desc, must be less than %zu characters", sizeof ods->dp_desc); } free(p->dp_desc); p->dp_desc = xstrdup(dp_desc); } } static int set_pvconns(struct pvconn ***pvconnsp, size_t *n_pvconnsp, const struct svec *svec) { struct pvconn **pvconns = *pvconnsp; size_t n_pvconns = *n_pvconnsp; int retval = 0; size_t i; for (i = 0; i < n_pvconns; i++) { pvconn_close(pvconns[i]); } free(pvconns); pvconns = xmalloc(svec->n * sizeof *pvconns); n_pvconns = 0; for (i = 0; i < svec->n; i++) { const char *name = svec->names[i]; struct pvconn *pvconn; int error; error = pvconn_open(name, &pvconn); if (!error) { pvconns[n_pvconns++] = pvconn; } else { VLOG_ERR("failed to listen on %s: %s", name, strerror(error)); if (!retval) { retval = error; } } } *pvconnsp = pvconns; *n_pvconnsp = n_pvconns; return retval; } int ofproto_set_snoops(struct ofproto *ofproto, const struct svec *snoops) { return set_pvconns(&ofproto->snoops, &ofproto->n_snoops, snoops); } int ofproto_set_netflow(struct ofproto *ofproto, const struct netflow_options *nf_options) { if (nf_options && nf_options->collectors.n) { if (!ofproto->netflow) { ofproto->netflow = netflow_create(); } return netflow_set_options(ofproto->netflow, nf_options); } else { netflow_destroy(ofproto->netflow); ofproto->netflow = NULL; return 0; } } void ofproto_set_sflow(struct ofproto *ofproto, const struct ofproto_sflow_options *oso) { struct ofproto_sflow *os = ofproto->sflow; if (oso) { if (!os) { struct ofport *ofport; os = ofproto->sflow = ofproto_sflow_create(ofproto->dpif); HMAP_FOR_EACH (ofport, hmap_node, &ofproto->ports) { ofproto_sflow_add_port(os, ofport->odp_port, netdev_get_name(ofport->netdev)); } } ofproto_sflow_set_options(os, oso); } else { ofproto_sflow_destroy(os); ofproto->sflow = NULL; } } uint64_t ofproto_get_datapath_id(const struct ofproto *ofproto) { return ofproto->datapath_id; } bool ofproto_has_primary_controller(const struct ofproto *ofproto) { return !hmap_is_empty(&ofproto->controllers); } enum ofproto_fail_mode ofproto_get_fail_mode(const struct ofproto *p) { return p->fail_mode; } void ofproto_get_snoops(const struct ofproto *ofproto, struct svec *snoops) { size_t i; for (i = 0; i < ofproto->n_snoops; i++) { svec_add(snoops, pvconn_get_name(ofproto->snoops[i])); } } void ofproto_destroy(struct ofproto *p) { struct ofservice *ofservice, *next_ofservice; struct ofconn *ofconn, *next_ofconn; struct ofport *ofport, *next_ofport; size_t i; if (!p) { return; } shash_find_and_delete(&all_ofprotos, dpif_name(p->dpif)); /* Destroy fail-open and in-band early, since they touch the classifier. */ fail_open_destroy(p->fail_open); p->fail_open = NULL; in_band_destroy(p->in_band); p->in_band = NULL; free(p->extra_in_band_remotes); ofproto_flush_flows(p); classifier_destroy(&p->cls); hmap_destroy(&p->facets); LIST_FOR_EACH_SAFE (ofconn, next_ofconn, node, &p->all_conns) { ofconn_destroy(ofconn); } hmap_destroy(&p->controllers); dpif_close(p->dpif); netdev_monitor_destroy(p->netdev_monitor); HMAP_FOR_EACH_SAFE (ofport, next_ofport, hmap_node, &p->ports) { hmap_remove(&p->ports, &ofport->hmap_node); ofport_free(ofport); } shash_destroy(&p->port_by_name); switch_status_destroy(p->switch_status); netflow_destroy(p->netflow); ofproto_sflow_destroy(p->sflow); HMAP_FOR_EACH_SAFE (ofservice, next_ofservice, node, &p->services) { ofservice_destroy(p, ofservice); } hmap_destroy(&p->services); for (i = 0; i < p->n_snoops; i++) { pvconn_close(p->snoops[i]); } free(p->snoops); mac_learning_destroy(p->ml); free(p->mfr_desc); free(p->hw_desc); free(p->sw_desc); free(p->serial_desc); free(p->dp_desc); hmap_destroy(&p->ports); free(p); } int ofproto_run(struct ofproto *p) { int error = ofproto_run1(p); if (!error) { error = ofproto_run2(p, false); } return error; } static void process_port_change(struct ofproto *ofproto, int error, char *devname) { if (error == ENOBUFS) { reinit_ports(ofproto); } else if (!error) { update_port(ofproto, devname); free(devname); } } /* Returns a "preference level" for snooping 'ofconn'. A higher return value * means that 'ofconn' is more interesting for monitoring than a lower return * value. */ static int snoop_preference(const struct ofconn *ofconn) { switch (ofconn->role) { case NX_ROLE_MASTER: return 3; case NX_ROLE_OTHER: return 2; case NX_ROLE_SLAVE: return 1; default: /* Shouldn't happen. */ return 0; } } /* One of ofproto's "snoop" pvconns has accepted a new connection on 'vconn'. * Connects this vconn to a controller. */ static void add_snooper(struct ofproto *ofproto, struct vconn *vconn) { struct ofconn *ofconn, *best; /* Pick a controller for monitoring. */ best = NULL; LIST_FOR_EACH (ofconn, node, &ofproto->all_conns) { if (ofconn->type == OFCONN_PRIMARY && (!best || snoop_preference(ofconn) > snoop_preference(best))) { best = ofconn; } } if (best) { rconn_add_monitor(best->rconn, vconn); } else { VLOG_INFO_RL(&rl, "no controller connection to snoop"); vconn_close(vconn); } } int ofproto_run1(struct ofproto *p) { struct ofconn *ofconn, *next_ofconn; struct ofservice *ofservice; char *devname; int error; int i; if (shash_is_empty(&p->port_by_name)) { init_ports(p); } for (i = 0; i < 50; i++) { struct ofpbuf *buf; error = dpif_recv(p->dpif, &buf); if (error) { if (error == ENODEV) { /* Someone destroyed the datapath behind our back. The caller * better destroy us and give up, because we're just going to * spin from here on out. */ static struct vlog_rate_limit rl2 = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_ERR_RL(&rl2, "%s: datapath was destroyed externally", dpif_name(p->dpif)); return ENODEV; } break; } handle_odp_msg(p, buf); } while ((error = dpif_port_poll(p->dpif, &devname)) != EAGAIN) { process_port_change(p, error, devname); } while ((error = netdev_monitor_poll(p->netdev_monitor, &devname)) != EAGAIN) { process_port_change(p, error, devname); } if (p->in_band) { if (time_msec() >= p->next_in_band_update) { update_in_band_remotes(p); } in_band_run(p->in_band); } LIST_FOR_EACH_SAFE (ofconn, next_ofconn, node, &p->all_conns) { ofconn_run(ofconn); } /* Fail-open maintenance. Do this after processing the ofconns since * fail-open checks the status of the controller rconn. */ if (p->fail_open) { fail_open_run(p->fail_open); } HMAP_FOR_EACH (ofservice, node, &p->services) { struct vconn *vconn; int retval; retval = pvconn_accept(ofservice->pvconn, OFP_VERSION, &vconn); if (!retval) { struct rconn *rconn; char *name; rconn = rconn_create(ofservice->probe_interval, 0); name = ofconn_make_name(p, vconn_get_name(vconn)); rconn_connect_unreliably(rconn, vconn, name); free(name); ofconn = ofconn_create(p, rconn, OFCONN_SERVICE); ofconn_set_rate_limit(ofconn, ofservice->rate_limit, ofservice->burst_limit); } else if (retval != EAGAIN) { VLOG_WARN_RL(&rl, "accept failed (%s)", strerror(retval)); } } for (i = 0; i < p->n_snoops; i++) { struct vconn *vconn; int retval; retval = pvconn_accept(p->snoops[i], OFP_VERSION, &vconn); if (!retval) { add_snooper(p, vconn); } else if (retval != EAGAIN) { VLOG_WARN_RL(&rl, "accept failed (%s)", strerror(retval)); } } if (time_msec() >= p->next_expiration) { int delay = ofproto_expire(p); p->next_expiration = time_msec() + delay; COVERAGE_INC(ofproto_expiration); } if (p->netflow) { netflow_run(p->netflow); } if (p->sflow) { ofproto_sflow_run(p->sflow); } return 0; } int ofproto_run2(struct ofproto *p, bool revalidate_all) { /* Figure out what we need to revalidate now, if anything. */ struct tag_set revalidate_set = p->revalidate_set; if (p->need_revalidate) { revalidate_all = true; } /* Clear the revalidation flags. */ tag_set_init(&p->revalidate_set); p->need_revalidate = false; /* Now revalidate if there's anything to do. */ if (revalidate_all || !tag_set_is_empty(&revalidate_set)) { struct facet *facet, *next; HMAP_FOR_EACH_SAFE (facet, next, hmap_node, &p->facets) { if (revalidate_all || tag_set_intersects(&revalidate_set, facet->tags)) { facet_revalidate(p, facet); } } } return 0; } void ofproto_wait(struct ofproto *p) { struct ofservice *ofservice; struct ofconn *ofconn; size_t i; dpif_recv_wait(p->dpif); dpif_port_poll_wait(p->dpif); netdev_monitor_poll_wait(p->netdev_monitor); LIST_FOR_EACH (ofconn, node, &p->all_conns) { ofconn_wait(ofconn); } if (p->in_band) { poll_timer_wait_until(p->next_in_band_update); in_band_wait(p->in_band); } if (p->fail_open) { fail_open_wait(p->fail_open); } if (p->sflow) { ofproto_sflow_wait(p->sflow); } if (!tag_set_is_empty(&p->revalidate_set)) { poll_immediate_wake(); } if (p->need_revalidate) { /* Shouldn't happen, but if it does just go around again. */ VLOG_DBG_RL(&rl, "need revalidate in ofproto_wait_cb()"); poll_immediate_wake(); } else if (p->next_expiration != LLONG_MAX) { poll_timer_wait_until(p->next_expiration); } HMAP_FOR_EACH (ofservice, node, &p->services) { pvconn_wait(ofservice->pvconn); } for (i = 0; i < p->n_snoops; i++) { pvconn_wait(p->snoops[i]); } } void ofproto_revalidate(struct ofproto *ofproto, tag_type tag) { tag_set_add(&ofproto->revalidate_set, tag); } struct tag_set * ofproto_get_revalidate_set(struct ofproto *ofproto) { return &ofproto->revalidate_set; } bool ofproto_is_alive(const struct ofproto *p) { return !hmap_is_empty(&p->controllers); } /* Deletes port number 'odp_port' from the datapath for 'ofproto'. * * This is almost the same as calling dpif_port_del() directly on the * datapath, but it also makes 'ofproto' close its open netdev for the port * (if any). This makes it possible to create a new netdev of a different * type under the same name, which otherwise the netdev library would refuse * to do because of the conflict. (The netdev would eventually get closed on * the next trip through ofproto_run(), but this interface is more direct.) * * Returns 0 if successful, otherwise a positive errno. */ int ofproto_port_del(struct ofproto *ofproto, uint16_t odp_port) { struct ofport *ofport = get_port(ofproto, odp_port); const char *name = ofport ? ofport->opp.name : ""; int error; error = dpif_port_del(ofproto->dpif, odp_port); if (error) { VLOG_ERR("%s: failed to remove port %"PRIu16" (%s) interface (%s)", dpif_name(ofproto->dpif), odp_port, name, strerror(error)); } else if (ofport) { /* 'name' is ofport->opp.name and update_port() is going to destroy * 'ofport'. Just in case update_port() refers to 'name' after it * destroys 'ofport', make a copy of it around the update_port() * call. */ char *devname = xstrdup(name); update_port(ofproto, devname); free(devname); } return error; } /* Checks if 'ofproto' thinks 'odp_port' should be included in floods. Returns * true if 'odp_port' exists and should be included, false otherwise. */ bool ofproto_port_is_floodable(struct ofproto *ofproto, uint16_t odp_port) { struct ofport *ofport = get_port(ofproto, odp_port); return ofport && !(ofport->opp.config & OFPPC_NO_FLOOD); } int ofproto_send_packet(struct ofproto *p, const struct flow *flow, const union ofp_action *actions, size_t n_actions, const struct ofpbuf *packet) { struct action_xlate_ctx ctx; struct ofpbuf *odp_actions; action_xlate_ctx_init(&ctx, p, flow, packet); odp_actions = xlate_actions(&ctx, actions, n_actions); /* XXX Should we translate the dpif_execute() errno value into an OpenFlow * error code? */ dpif_execute(p->dpif, odp_actions->data, odp_actions->size, packet); ofpbuf_delete(odp_actions); return 0; } /* Adds a flow to the OpenFlow flow table in 'p' that matches 'cls_rule' and * performs the 'n_actions' actions in 'actions'. The new flow will not * timeout. * * If cls_rule->priority is in the range of priorities supported by OpenFlow * (0...65535, inclusive) then the flow will be visible to OpenFlow * controllers; otherwise, it will be hidden. * * The caller retains ownership of 'cls_rule' and 'actions'. */ void ofproto_add_flow(struct ofproto *p, const struct cls_rule *cls_rule, const union ofp_action *actions, size_t n_actions) { struct rule *rule; rule = rule_create(cls_rule, actions, n_actions, 0, 0, 0, false); rule_insert(p, rule); } void ofproto_delete_flow(struct ofproto *ofproto, const struct cls_rule *target) { struct rule *rule; rule = rule_from_cls_rule(classifier_find_rule_exactly(&ofproto->cls, target)); if (rule) { rule_remove(ofproto, rule); } } void ofproto_flush_flows(struct ofproto *ofproto) { struct facet *facet, *next_facet; struct rule *rule, *next_rule; struct cls_cursor cursor; COVERAGE_INC(ofproto_flush); HMAP_FOR_EACH_SAFE (facet, next_facet, hmap_node, &ofproto->facets) { /* Mark the facet as not installed so that facet_remove() doesn't * bother trying to uninstall it. There is no point in uninstalling it * individually since we are about to blow away all the facets with * dpif_flow_flush(). */ facet->installed = false; facet_remove(ofproto, facet); } cls_cursor_init(&cursor, &ofproto->cls, NULL); CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, cr, &cursor) { rule_remove(ofproto, rule); } dpif_flow_flush(ofproto->dpif); if (ofproto->in_band) { in_band_flushed(ofproto->in_band); } if (ofproto->fail_open) { fail_open_flushed(ofproto->fail_open); } } static void reinit_ports(struct ofproto *p) { struct svec devnames; struct ofport *ofport; struct odp_port *odp_ports; size_t n_odp_ports; size_t i; COVERAGE_INC(ofproto_reinit_ports); svec_init(&devnames); HMAP_FOR_EACH (ofport, hmap_node, &p->ports) { svec_add (&devnames, ofport->opp.name); } dpif_port_list(p->dpif, &odp_ports, &n_odp_ports); for (i = 0; i < n_odp_ports; i++) { svec_add (&devnames, odp_ports[i].devname); } free(odp_ports); svec_sort_unique(&devnames); for (i = 0; i < devnames.n; i++) { update_port(p, devnames.names[i]); } svec_destroy(&devnames); } static struct ofport * make_ofport(const struct odp_port *odp_port) { struct netdev_options netdev_options; enum netdev_flags flags; struct ofport *ofport; struct netdev *netdev; int error; memset(&netdev_options, 0, sizeof netdev_options); netdev_options.name = odp_port->devname; netdev_options.type = odp_port->type; netdev_options.ethertype = NETDEV_ETH_TYPE_NONE; error = netdev_open(&netdev_options, &netdev); if (error) { VLOG_WARN_RL(&rl, "ignoring port %s (%"PRIu16") because netdev %s " "cannot be opened (%s)", odp_port->devname, odp_port->port, odp_port->devname, strerror(error)); return NULL; } ofport = xmalloc(sizeof *ofport); ofport->netdev = netdev; ofport->odp_port = odp_port->port; ofport->opp.port_no = odp_port_to_ofp_port(odp_port->port); netdev_get_etheraddr(netdev, ofport->opp.hw_addr); memcpy(ofport->opp.name, odp_port->devname, MIN(sizeof ofport->opp.name, sizeof odp_port->devname)); ofport->opp.name[sizeof ofport->opp.name - 1] = '\0'; netdev_get_flags(netdev, &flags); ofport->opp.config = flags & NETDEV_UP ? 0 : OFPPC_PORT_DOWN; ofport->opp.state = netdev_get_carrier(netdev) ? 0 : OFPPS_LINK_DOWN; netdev_get_features(netdev, &ofport->opp.curr, &ofport->opp.advertised, &ofport->opp.supported, &ofport->opp.peer); return ofport; } static bool ofport_conflicts(const struct ofproto *p, const struct odp_port *odp_port) { if (get_port(p, odp_port->port)) { VLOG_WARN_RL(&rl, "ignoring duplicate port %"PRIu16" in datapath", odp_port->port); return true; } else if (shash_find(&p->port_by_name, odp_port->devname)) { VLOG_WARN_RL(&rl, "ignoring duplicate device %s in datapath", odp_port->devname); return true; } else { return false; } } static int ofport_equal(const struct ofport *a_, const struct ofport *b_) { const struct ofp_phy_port *a = &a_->opp; const struct ofp_phy_port *b = &b_->opp; BUILD_ASSERT_DECL(sizeof *a == 48); /* Detect ofp_phy_port changes. */ return (a->port_no == b->port_no && !memcmp(a->hw_addr, b->hw_addr, sizeof a->hw_addr) && !strcmp(a->name, b->name) && a->state == b->state && a->config == b->config && a->curr == b->curr && a->advertised == b->advertised && a->supported == b->supported && a->peer == b->peer); } static void send_port_status(struct ofproto *p, const struct ofport *ofport, uint8_t reason) { /* XXX Should limit the number of queued port status change messages. */ struct ofconn *ofconn; LIST_FOR_EACH (ofconn, node, &p->all_conns) { struct ofp_port_status *ops; struct ofpbuf *b; /* Primary controllers, even slaves, should always get port status updates. Otherwise obey ofconn_receives_async_msgs(). */ if (ofconn->type != OFCONN_PRIMARY && !ofconn_receives_async_msgs(ofconn)) { continue; } ops = make_openflow_xid(sizeof *ops, OFPT_PORT_STATUS, 0, &b); ops->reason = reason; ops->desc = ofport->opp; hton_ofp_phy_port(&ops->desc); queue_tx(b, ofconn, NULL); } } static void ofport_install(struct ofproto *p, struct ofport *ofport) { const char *netdev_name = ofport->opp.name; netdev_monitor_add(p->netdev_monitor, ofport->netdev); hmap_insert(&p->ports, &ofport->hmap_node, hash_int(ofport->odp_port, 0)); shash_add(&p->port_by_name, netdev_name, ofport); if (p->sflow) { ofproto_sflow_add_port(p->sflow, ofport->odp_port, netdev_name); } } static void ofport_remove(struct ofproto *p, struct ofport *ofport) { netdev_monitor_remove(p->netdev_monitor, ofport->netdev); hmap_remove(&p->ports, &ofport->hmap_node); shash_delete(&p->port_by_name, shash_find(&p->port_by_name, ofport->opp.name)); if (p->sflow) { ofproto_sflow_del_port(p->sflow, ofport->odp_port); } } static void ofport_free(struct ofport *ofport) { if (ofport) { netdev_close(ofport->netdev); free(ofport); } } static struct ofport * get_port(const struct ofproto *ofproto, uint16_t odp_port) { struct ofport *port; HMAP_FOR_EACH_IN_BUCKET (port, hmap_node, hash_int(odp_port, 0), &ofproto->ports) { if (port->odp_port == odp_port) { return port; } } return NULL; } static void update_port(struct ofproto *p, const char *devname) { struct odp_port odp_port; struct ofport *old_ofport; struct ofport *new_ofport; int error; COVERAGE_INC(ofproto_update_port); /* Query the datapath for port information. */ error = dpif_port_query_by_name(p->dpif, devname, &odp_port); /* Find the old ofport. */ old_ofport = shash_find_data(&p->port_by_name, devname); if (!error) { if (!old_ofport) { /* There's no port named 'devname' but there might be a port with * the same port number. This could happen if a port is deleted * and then a new one added in its place very quickly, or if a port * is renamed. In the former case we want to send an OFPPR_DELETE * and an OFPPR_ADD, and in the latter case we want to send a * single OFPPR_MODIFY. We can distinguish the cases by comparing * the old port's ifindex against the new port, or perhaps less * reliably but more portably by comparing the old port's MAC * against the new port's MAC. However, this code isn't that smart * and always sends an OFPPR_MODIFY (XXX). */ old_ofport = get_port(p, odp_port.port); } } else if (error != ENOENT && error != ENODEV) { VLOG_WARN_RL(&rl, "dpif_port_query_by_name returned unexpected error " "%s", strerror(error)); return; } /* Create a new ofport. */ new_ofport = !error ? make_ofport(&odp_port) : NULL; /* Eliminate a few pathological cases. */ if (!old_ofport && !new_ofport) { return; } else if (old_ofport && new_ofport) { /* Most of the 'config' bits are OpenFlow soft state, but * OFPPC_PORT_DOWN is maintained by the kernel. So transfer the * OpenFlow bits from old_ofport. (make_ofport() only sets * OFPPC_PORT_DOWN and leaves the other bits 0.) */ new_ofport->opp.config |= old_ofport->opp.config & ~OFPPC_PORT_DOWN; if (ofport_equal(old_ofport, new_ofport)) { /* False alarm--no change. */ ofport_free(new_ofport); return; } } /* Now deal with the normal cases. */ if (old_ofport) { ofport_remove(p, old_ofport); } if (new_ofport) { ofport_install(p, new_ofport); } send_port_status(p, new_ofport ? new_ofport : old_ofport, (!old_ofport ? OFPPR_ADD : !new_ofport ? OFPPR_DELETE : OFPPR_MODIFY)); ofport_free(old_ofport); } static int init_ports(struct ofproto *p) { struct odp_port *ports; size_t n_ports; size_t i; int error; error = dpif_port_list(p->dpif, &ports, &n_ports); if (error) { return error; } for (i = 0; i < n_ports; i++) { const struct odp_port *odp_port = &ports[i]; if (!ofport_conflicts(p, odp_port)) { struct ofport *ofport = make_ofport(odp_port); if (ofport) { ofport_install(p, ofport); } } } free(ports); return 0; } static struct ofconn * ofconn_create(struct ofproto *p, struct rconn *rconn, enum ofconn_type type) { struct ofconn *ofconn = xzalloc(sizeof *ofconn); ofconn->ofproto = p; list_push_back(&p->all_conns, &ofconn->node); ofconn->rconn = rconn; ofconn->type = type; ofconn->flow_format = NXFF_OPENFLOW10; ofconn->role = NX_ROLE_OTHER; ofconn->packet_in_counter = rconn_packet_counter_create (); ofconn->pktbuf = NULL; ofconn->miss_send_len = 0; ofconn->reply_counter = rconn_packet_counter_create (); return ofconn; } static void ofconn_destroy(struct ofconn *ofconn) { if (ofconn->type == OFCONN_PRIMARY) { hmap_remove(&ofconn->ofproto->controllers, &ofconn->hmap_node); } discovery_destroy(ofconn->discovery); list_remove(&ofconn->node); switch_status_unregister(ofconn->ss); rconn_destroy(ofconn->rconn); rconn_packet_counter_destroy(ofconn->packet_in_counter); rconn_packet_counter_destroy(ofconn->reply_counter); pktbuf_destroy(ofconn->pktbuf); free(ofconn); } static void ofconn_run(struct ofconn *ofconn) { struct ofproto *p = ofconn->ofproto; int iteration; size_t i; if (ofconn->discovery) { char *controller_name; if (rconn_is_connectivity_questionable(ofconn->rconn)) { discovery_question_connectivity(ofconn->discovery); } if (discovery_run(ofconn->discovery, &controller_name)) { if (controller_name) { char *ofconn_name = ofconn_make_name(p, controller_name); rconn_connect(ofconn->rconn, controller_name, ofconn_name); free(ofconn_name); } else { rconn_disconnect(ofconn->rconn); } } } for (i = 0; i < N_SCHEDULERS; i++) { pinsched_run(ofconn->schedulers[i], do_send_packet_in, ofconn); } rconn_run(ofconn->rconn); if (rconn_packet_counter_read (ofconn->reply_counter) < OFCONN_REPLY_MAX) { /* Limit the number of iterations to prevent other tasks from * starving. */ for (iteration = 0; iteration < 50; iteration++) { struct ofpbuf *of_msg = rconn_recv(ofconn->rconn); if (!of_msg) { break; } if (p->fail_open) { fail_open_maybe_recover(p->fail_open); } handle_openflow(ofconn, of_msg); ofpbuf_delete(of_msg); } } if (!ofconn->discovery && !rconn_is_alive(ofconn->rconn)) { ofconn_destroy(ofconn); } } static void ofconn_wait(struct ofconn *ofconn) { int i; if (ofconn->discovery) { discovery_wait(ofconn->discovery); } for (i = 0; i < N_SCHEDULERS; i++) { pinsched_wait(ofconn->schedulers[i]); } rconn_run_wait(ofconn->rconn); if (rconn_packet_counter_read (ofconn->reply_counter) < OFCONN_REPLY_MAX) { rconn_recv_wait(ofconn->rconn); } else { COVERAGE_INC(ofproto_ofconn_stuck); } } /* Returns true if 'ofconn' should receive asynchronous messages. */ static bool ofconn_receives_async_msgs(const struct ofconn *ofconn) { if (ofconn->type == OFCONN_PRIMARY) { /* Primary controllers always get asynchronous messages unless they * have configured themselves as "slaves". */ return ofconn->role != NX_ROLE_SLAVE; } else { /* Service connections don't get asynchronous messages unless they have * explicitly asked for them by setting a nonzero miss send length. */ return ofconn->miss_send_len > 0; } } /* Returns a human-readable name for an OpenFlow connection between 'ofproto' * and 'target', suitable for use in log messages for identifying the * connection. * * The name is dynamically allocated. The caller should free it (with free()) * when it is no longer needed. */ static char * ofconn_make_name(const struct ofproto *ofproto, const char *target) { return xasprintf("%s<->%s", dpif_base_name(ofproto->dpif), target); } static void ofconn_set_rate_limit(struct ofconn *ofconn, int rate, int burst) { int i; for (i = 0; i < N_SCHEDULERS; i++) { struct pinsched **s = &ofconn->schedulers[i]; if (rate > 0) { if (!*s) { *s = pinsched_create(rate, burst, ofconn->ofproto->switch_status); } else { pinsched_set_limits(*s, rate, burst); } } else { pinsched_destroy(*s); *s = NULL; } } } static void ofservice_reconfigure(struct ofservice *ofservice, const struct ofproto_controller *c) { ofservice->probe_interval = c->probe_interval; ofservice->rate_limit = c->rate_limit; ofservice->burst_limit = c->burst_limit; } /* Creates a new ofservice in 'ofproto'. Returns 0 if successful, otherwise a * positive errno value. */ static int ofservice_create(struct ofproto *ofproto, const struct ofproto_controller *c) { struct ofservice *ofservice; struct pvconn *pvconn; int error; error = pvconn_open(c->target, &pvconn); if (error) { return error; } ofservice = xzalloc(sizeof *ofservice); hmap_insert(&ofproto->services, &ofservice->node, hash_string(c->target, 0)); ofservice->pvconn = pvconn; ofservice_reconfigure(ofservice, c); return 0; } static void ofservice_destroy(struct ofproto *ofproto, struct ofservice *ofservice) { hmap_remove(&ofproto->services, &ofservice->node); pvconn_close(ofservice->pvconn); free(ofservice); } /* Finds and returns the ofservice within 'ofproto' that has the given * 'target', or a null pointer if none exists. */ static struct ofservice * ofservice_lookup(struct ofproto *ofproto, const char *target) { struct ofservice *ofservice; HMAP_FOR_EACH_WITH_HASH (ofservice, node, hash_string(target, 0), &ofproto->services) { if (!strcmp(pvconn_get_name(ofservice->pvconn), target)) { return ofservice; } } return NULL; } /* Returns true if 'rule' should be hidden from the controller. * * Rules with priority higher than UINT16_MAX are set up by ofproto itself * (e.g. by in-band control) and are intentionally hidden from the * controller. */ static bool rule_is_hidden(const struct rule *rule) { return rule->cr.priority > UINT16_MAX; } /* Creates and returns a new rule initialized as specified. * * The caller is responsible for inserting the rule into the classifier (with * rule_insert()). */ static struct rule * rule_create(const struct cls_rule *cls_rule, const union ofp_action *actions, size_t n_actions, uint16_t idle_timeout, uint16_t hard_timeout, ovs_be64 flow_cookie, bool send_flow_removed) { struct rule *rule = xzalloc(sizeof *rule); rule->cr = *cls_rule; rule->idle_timeout = idle_timeout; rule->hard_timeout = hard_timeout; rule->flow_cookie = flow_cookie; rule->used = rule->created = time_msec(); rule->send_flow_removed = send_flow_removed; list_init(&rule->facets); if (n_actions > 0) { rule->n_actions = n_actions; rule->actions = xmemdup(actions, n_actions * sizeof *actions); } return rule; } static struct rule * rule_from_cls_rule(const struct cls_rule *cls_rule) { return cls_rule ? CONTAINER_OF(cls_rule, struct rule, cr) : NULL; } static void rule_free(struct rule *rule) { free(rule->actions); free(rule); } /* Destroys 'rule' and iterates through all of its facets and revalidates them, * destroying any that no longer has a rule (which is probably all of them). * * The caller must have already removed 'rule' from the classifier. */ static void rule_destroy(struct ofproto *ofproto, struct rule *rule) { struct facet *facet, *next_facet; LIST_FOR_EACH_SAFE (facet, next_facet, list_node, &rule->facets) { facet_revalidate(ofproto, facet); } rule_free(rule); } /* Returns true if 'rule' has an OpenFlow OFPAT_OUTPUT or OFPAT_ENQUEUE action * that outputs to 'out_port' (output to OFPP_FLOOD and OFPP_ALL doesn't * count). */ static bool rule_has_out_port(const struct rule *rule, ovs_be16 out_port) { const union ofp_action *oa; struct actions_iterator i; if (out_port == htons(OFPP_NONE)) { return true; } for (oa = actions_first(&i, rule->actions, rule->n_actions); oa; oa = actions_next(&i)) { if (action_outputs_to_port(oa, out_port)) { return true; } } return false; } /* Executes, within 'ofproto', the 'n_actions' actions in 'actions' on * 'packet', which arrived on 'in_port'. * * Takes ownership of 'packet'. */ static bool execute_odp_actions(struct ofproto *ofproto, uint16_t in_port, const struct nlattr *odp_actions, size_t actions_len, struct ofpbuf *packet) { if (actions_len == NLA_ALIGN(NLA_HDRLEN + sizeof(uint64_t)) && odp_actions->nla_type == ODPAT_CONTROLLER) { /* As an optimization, avoid a round-trip from userspace to kernel to * userspace. This also avoids possibly filling up kernel packet * buffers along the way. */ struct odp_msg *msg; msg = ofpbuf_push_uninit(packet, sizeof *msg); msg->type = _ODPL_ACTION_NR; msg->length = sizeof(struct odp_msg) + packet->size; msg->port = in_port; msg->arg = nl_attr_get_u64(odp_actions); send_packet_in(ofproto, packet); return true; } else { int error; error = dpif_execute(ofproto->dpif, odp_actions, actions_len, packet); ofpbuf_delete(packet); return !error; } } /* Executes the actions indicated by 'facet' on 'packet' and credits 'facet''s * statistics appropriately. 'packet' must have at least sizeof(struct * ofp_packet_in) bytes of headroom. * * For correct results, 'packet' must actually be in 'facet''s flow; that is, * applying flow_extract() to 'packet' would yield the same flow as * 'facet->flow'. * * 'facet' must have accurately composed ODP actions; that is, it must not be * in need of revalidation. * * Takes ownership of 'packet'. */ static void facet_execute(struct ofproto *ofproto, struct facet *facet, struct ofpbuf *packet) { struct odp_flow_stats stats; assert(ofpbuf_headroom(packet) >= sizeof(struct ofp_packet_in)); flow_extract_stats(&facet->flow, packet, &stats); if (execute_odp_actions(ofproto, facet->flow.in_port, facet->actions, facet->actions_len, packet)) { facet_update_stats(ofproto, facet, &stats); facet->used = time_msec(); netflow_flow_update_time(ofproto->netflow, &facet->nf_flow, facet->used); } } /* Executes the actions indicated by 'rule' on 'packet' and credits 'rule''s * statistics (or the statistics for one of its facets) appropriately. * 'packet' must have at least sizeof(struct ofp_packet_in) bytes of headroom. * * 'packet' doesn't necessarily have to match 'rule'. 'rule' will be credited * with statistics for 'packet' either way. * * Takes ownership of 'packet'. */ static void rule_execute(struct ofproto *ofproto, struct rule *rule, uint16_t in_port, struct ofpbuf *packet) { struct action_xlate_ctx ctx; struct ofpbuf *odp_actions; struct facet *facet; struct flow flow; size_t size; assert(ofpbuf_headroom(packet) >= sizeof(struct ofp_packet_in)); flow_extract(packet, 0, in_port, &flow); /* First look for a related facet. If we find one, account it to that. */ facet = facet_lookup_valid(ofproto, &flow); if (facet && facet->rule == rule) { facet_execute(ofproto, facet, packet); return; } /* Otherwise, if 'rule' is in fact the correct rule for 'packet', then * create a new facet for it and use that. */ if (rule_lookup(ofproto, &flow) == rule) { facet = facet_create(ofproto, rule, &flow, packet); facet_execute(ofproto, facet, packet); facet_install(ofproto, facet, true); return; } /* We can't account anything to a facet. If we were to try, then that * facet would have a non-matching rule, busting our invariants. */ action_xlate_ctx_init(&ctx, ofproto, &flow, packet); odp_actions = xlate_actions(&ctx, rule->actions, rule->n_actions); size = packet->size; if (execute_odp_actions(ofproto, in_port, odp_actions->data, odp_actions->size, packet)) { rule->used = time_msec(); rule->packet_count++; rule->byte_count += size; } ofpbuf_delete(odp_actions); } /* Inserts 'rule' into 'p''s flow table. */ static void rule_insert(struct ofproto *p, struct rule *rule) { struct rule *displaced_rule; displaced_rule = rule_from_cls_rule(classifier_insert(&p->cls, &rule->cr)); if (displaced_rule) { rule_destroy(p, displaced_rule); } p->need_revalidate = true; } /* Creates and returns a new facet within 'ofproto' owned by 'rule', given a * 'flow' and an example 'packet' within that flow. * * The caller must already have determined that no facet with an identical * 'flow' exists in 'ofproto' and that 'flow' is the best match for 'rule' in * 'ofproto''s classifier table. */ static struct facet * facet_create(struct ofproto *ofproto, struct rule *rule, const struct flow *flow, const struct ofpbuf *packet) { struct facet *facet; facet = xzalloc(sizeof *facet); facet->used = time_msec(); hmap_insert(&ofproto->facets, &facet->hmap_node, flow_hash(flow, 0)); list_push_back(&rule->facets, &facet->list_node); facet->rule = rule; facet->flow = *flow; netflow_flow_init(&facet->nf_flow); netflow_flow_update_time(ofproto->netflow, &facet->nf_flow, facet->used); facet_make_actions(ofproto, facet, packet); return facet; } static void facet_free(struct facet *facet) { free(facet->actions); free(facet); } /* Remove 'rule' from 'ofproto' and free up the associated memory: * * - Removes 'rule' from the classifier. * * - If 'rule' has facets, revalidates them (and possibly uninstalls and * destroys them), via rule_destroy(). */ static void rule_remove(struct ofproto *ofproto, struct rule *rule) { COVERAGE_INC(ofproto_del_rule); ofproto->need_revalidate = true; classifier_remove(&ofproto->cls, &rule->cr); rule_destroy(ofproto, rule); } /* Remove 'facet' from 'ofproto' and free up the associated memory: * * - If 'facet' was installed in the datapath, uninstalls it and updates its * rule's statistics, via facet_uninstall(). * * - Removes 'facet' from its rule and from ofproto->facets. */ static void facet_remove(struct ofproto *ofproto, struct facet *facet) { facet_uninstall(ofproto, facet); facet_flush_stats(ofproto, facet); hmap_remove(&ofproto->facets, &facet->hmap_node); list_remove(&facet->list_node); facet_free(facet); } /* Composes the ODP actions for 'facet' based on its rule's actions. */ static void facet_make_actions(struct ofproto *p, struct facet *facet, const struct ofpbuf *packet) { const struct rule *rule = facet->rule; struct ofpbuf *odp_actions; struct action_xlate_ctx ctx; action_xlate_ctx_init(&ctx, p, &facet->flow, packet); odp_actions = xlate_actions(&ctx, rule->actions, rule->n_actions); facet->tags = ctx.tags; facet->may_install = ctx.may_set_up_flow; facet->nf_flow.output_iface = ctx.nf_output_iface; if (facet->actions_len != odp_actions->size || memcmp(facet->actions, odp_actions->data, odp_actions->size)) { free(facet->actions); facet->actions_len = odp_actions->size; facet->actions = xmemdup(odp_actions->data, odp_actions->size); } ofpbuf_delete(odp_actions); } static int facet_put__(struct ofproto *ofproto, struct facet *facet, int flags, struct odp_flow_put *put) { memset(&put->flow.stats, 0, sizeof put->flow.stats); odp_flow_key_from_flow(&put->flow.key, &facet->flow); put->flow.actions = facet->actions; put->flow.actions_len = facet->actions_len; put->flow.flags = 0; put->flags = flags; return dpif_flow_put(ofproto->dpif, put); } /* If 'facet' is installable, inserts or re-inserts it into 'p''s datapath. If * 'zero_stats' is true, clears any existing statistics from the datapath for * 'facet'. */ static void facet_install(struct ofproto *p, struct facet *facet, bool zero_stats) { if (facet->may_install) { struct odp_flow_put put; int flags; flags = ODPPF_CREATE | ODPPF_MODIFY; if (zero_stats) { flags |= ODPPF_ZERO_STATS; } if (!facet_put__(p, facet, flags, &put)) { facet->installed = true; } } } /* Ensures that the bytes in 'facet', plus 'extra_bytes', have been passed up * to the accounting hook function in the ofhooks structure. */ static void facet_account(struct ofproto *ofproto, struct facet *facet, uint64_t extra_bytes) { uint64_t total_bytes = facet->byte_count + extra_bytes; if (ofproto->ofhooks->account_flow_cb && total_bytes > facet->accounted_bytes) { ofproto->ofhooks->account_flow_cb( &facet->flow, facet->tags, facet->actions, facet->actions_len, total_bytes - facet->accounted_bytes, ofproto->aux); facet->accounted_bytes = total_bytes; } } /* If 'rule' is installed in the datapath, uninstalls it. */ static void facet_uninstall(struct ofproto *p, struct facet *facet) { if (facet->installed) { struct odp_flow odp_flow; odp_flow_key_from_flow(&odp_flow.key, &facet->flow); odp_flow.actions = NULL; odp_flow.actions_len = 0; odp_flow.flags = 0; if (!dpif_flow_del(p->dpif, &odp_flow)) { facet_update_stats(p, facet, &odp_flow.stats); } facet->installed = false; } } /* Returns true if the only action for 'facet' is to send to the controller. * (We don't report NetFlow expiration messages for such facets because they * are just part of the control logic for the network, not real traffic). */ static bool facet_is_controller_flow(struct facet *facet) { return (facet && facet->rule->n_actions == 1 && action_outputs_to_port(&facet->rule->actions[0], htons(OFPP_CONTROLLER))); } /* Folds all of 'facet''s statistics into its rule. Also updates the * accounting ofhook and emits a NetFlow expiration if appropriate. */ static void facet_flush_stats(struct ofproto *ofproto, struct facet *facet) { facet_account(ofproto, facet, 0); if (ofproto->netflow && !facet_is_controller_flow(facet)) { struct ofexpired expired; expired.flow = facet->flow; expired.packet_count = facet->packet_count; expired.byte_count = facet->byte_count; expired.used = facet->used; netflow_expire(ofproto->netflow, &facet->nf_flow, &expired); } facet->rule->packet_count += facet->packet_count; facet->rule->byte_count += facet->byte_count; /* Reset counters to prevent double counting if 'facet' ever gets * reinstalled. */ facet->packet_count = 0; facet->byte_count = 0; facet->accounted_bytes = 0; netflow_flow_clear(&facet->nf_flow); } /* Searches 'ofproto''s table of facets for one exactly equal to 'flow'. * Returns it if found, otherwise a null pointer. * * The returned facet might need revalidation; use facet_lookup_valid() * instead if that is important. */ static struct facet * facet_find(struct ofproto *ofproto, const struct flow *flow) { struct facet *facet; HMAP_FOR_EACH_WITH_HASH (facet, hmap_node, flow_hash(flow, 0), &ofproto->facets) { if (flow_equal(flow, &facet->flow)) { return facet; } } return NULL; } /* Searches 'ofproto''s table of facets for one exactly equal to 'flow'. * Returns it if found, otherwise a null pointer. * * The returned facet is guaranteed to be valid. */ static struct facet * facet_lookup_valid(struct ofproto *ofproto, const struct flow *flow) { struct facet *facet = facet_find(ofproto, flow); /* The facet we found might not be valid, since we could be in need of * revalidation. If it is not valid, don't return it. */ if (facet && ofproto->need_revalidate && !facet_revalidate(ofproto, facet)) { COVERAGE_INC(ofproto_invalidated); return NULL; } return facet; } /* Re-searches 'ofproto''s classifier for a rule matching 'facet': * * - If the rule found is different from 'facet''s current rule, moves * 'facet' to the new rule and recompiles its actions. * * - If the rule found is the same as 'facet''s current rule, leaves 'facet' * where it is and recompiles its actions anyway. * * - If there is none, destroys 'facet'. * * Returns true if 'facet' still exists, false if it has been destroyed. */ static bool facet_revalidate(struct ofproto *ofproto, struct facet *facet) { struct action_xlate_ctx ctx; struct ofpbuf *odp_actions; struct rule *new_rule; bool actions_changed; COVERAGE_INC(facet_revalidate); /* Determine the new rule. */ new_rule = rule_lookup(ofproto, &facet->flow); if (!new_rule) { /* No new rule, so delete the facet. */ facet_remove(ofproto, facet); return false; } /* Calculate new ODP actions. * * We do not modify any 'facet' state yet, because we might need to, e.g., * emit a NetFlow expiration and, if so, we need to have the old state * around to properly compose it. */ action_xlate_ctx_init(&ctx, ofproto, &facet->flow, NULL); odp_actions = xlate_actions(&ctx, new_rule->actions, new_rule->n_actions); actions_changed = (facet->actions_len != odp_actions->size || memcmp(facet->actions, odp_actions->data, facet->actions_len)); /* If the ODP actions changed or the installability changed, then we need * to talk to the datapath. */ if (actions_changed || facet->may_install != facet->installed) { if (facet->may_install) { struct odp_flow_put put; memset(&put.flow.stats, 0, sizeof put.flow.stats); odp_flow_key_from_flow(&put.flow.key, &facet->flow); put.flow.actions = odp_actions->data; put.flow.actions_len = odp_actions->size; put.flow.flags = 0; put.flags = ODPPF_CREATE | ODPPF_MODIFY | ODPPF_ZERO_STATS; dpif_flow_put(ofproto->dpif, &put); facet_update_stats(ofproto, facet, &put.flow.stats); } else { facet_uninstall(ofproto, facet); } /* The datapath flow is gone or has zeroed stats, so push stats out of * 'facet' into 'rule'. */ facet_flush_stats(ofproto, facet); } ofpbuf_delete(odp_actions); /* Update 'facet' now that we've taken care of all the old state. */ facet->tags = ctx.tags; facet->nf_flow.output_iface = ctx.nf_output_iface; facet->may_install = ctx.may_set_up_flow; if (actions_changed) { free(facet->actions); facet->actions_len = odp_actions->size; facet->actions = xmemdup(odp_actions->data, odp_actions->size); } if (facet->rule != new_rule) { COVERAGE_INC(facet_changed_rule); list_remove(&facet->list_node); list_push_back(&new_rule->facets, &facet->list_node); facet->rule = new_rule; facet->used = new_rule->created; } return true; } static void queue_tx(struct ofpbuf *msg, const struct ofconn *ofconn, struct rconn_packet_counter *counter) { update_openflow_length(msg); if (rconn_send(ofconn->rconn, msg, counter)) { ofpbuf_delete(msg); } } static void send_error_oh(const struct ofconn *ofconn, const struct ofp_header *oh, int error) { struct ofpbuf *buf = make_ofp_error_msg(error, oh); if (buf) { COVERAGE_INC(ofproto_error); queue_tx(buf, ofconn, ofconn->reply_counter); } } static void hton_ofp_phy_port(struct ofp_phy_port *opp) { opp->port_no = htons(opp->port_no); opp->config = htonl(opp->config); opp->state = htonl(opp->state); opp->curr = htonl(opp->curr); opp->advertised = htonl(opp->advertised); opp->supported = htonl(opp->supported); opp->peer = htonl(opp->peer); } static int handle_echo_request(struct ofconn *ofconn, const struct ofp_header *oh) { queue_tx(make_echo_reply(oh), ofconn, ofconn->reply_counter); return 0; } static int handle_features_request(struct ofconn *ofconn, const struct ofp_header *oh) { struct ofp_switch_features *osf; struct ofpbuf *buf; struct ofport *port; osf = make_openflow_xid(sizeof *osf, OFPT_FEATURES_REPLY, oh->xid, &buf); osf->datapath_id = htonll(ofconn->ofproto->datapath_id); osf->n_buffers = htonl(pktbuf_capacity()); osf->n_tables = 2; osf->capabilities = htonl(OFPC_FLOW_STATS | OFPC_TABLE_STATS | OFPC_PORT_STATS | OFPC_ARP_MATCH_IP); osf->actions = htonl((1u << OFPAT_OUTPUT) | (1u << OFPAT_SET_VLAN_VID) | (1u << OFPAT_SET_VLAN_PCP) | (1u << OFPAT_STRIP_VLAN) | (1u << OFPAT_SET_DL_SRC) | (1u << OFPAT_SET_DL_DST) | (1u << OFPAT_SET_NW_SRC) | (1u << OFPAT_SET_NW_DST) | (1u << OFPAT_SET_NW_TOS) | (1u << OFPAT_SET_TP_SRC) | (1u << OFPAT_SET_TP_DST) | (1u << OFPAT_ENQUEUE)); HMAP_FOR_EACH (port, hmap_node, &ofconn->ofproto->ports) { hton_ofp_phy_port(ofpbuf_put(buf, &port->opp, sizeof port->opp)); } queue_tx(buf, ofconn, ofconn->reply_counter); return 0; } static int handle_get_config_request(struct ofconn *ofconn, const struct ofp_header *oh) { struct ofpbuf *buf; struct ofp_switch_config *osc; uint16_t flags; bool drop_frags; /* Figure out flags. */ dpif_get_drop_frags(ofconn->ofproto->dpif, &drop_frags); flags = drop_frags ? OFPC_FRAG_DROP : OFPC_FRAG_NORMAL; /* Send reply. */ osc = make_openflow_xid(sizeof *osc, OFPT_GET_CONFIG_REPLY, oh->xid, &buf); osc->flags = htons(flags); osc->miss_send_len = htons(ofconn->miss_send_len); queue_tx(buf, ofconn, ofconn->reply_counter); return 0; } static int handle_set_config(struct ofconn *ofconn, const struct ofp_switch_config *osc) { uint16_t flags = ntohs(osc->flags); if (ofconn->type == OFCONN_PRIMARY && ofconn->role != NX_ROLE_SLAVE) { switch (flags & OFPC_FRAG_MASK) { case OFPC_FRAG_NORMAL: dpif_set_drop_frags(ofconn->ofproto->dpif, false); break; case OFPC_FRAG_DROP: dpif_set_drop_frags(ofconn->ofproto->dpif, true); break; default: VLOG_WARN_RL(&rl, "requested bad fragment mode (flags=%"PRIx16")", osc->flags); break; } } ofconn->miss_send_len = ntohs(osc->miss_send_len); return 0; } /* Maximum depth of flow table recursion (due to NXAST_RESUBMIT actions) in a * flow translation. */ #define MAX_RESUBMIT_RECURSION 8 static void do_xlate_actions(const union ofp_action *in, size_t n_in, struct action_xlate_ctx *ctx); static void add_output_action(struct action_xlate_ctx *ctx, uint16_t port) { const struct ofport *ofport = get_port(ctx->ofproto, port); if (ofport) { if (ofport->opp.config & OFPPC_NO_FWD) { /* Forwarding disabled on port. */ return; } } else { /* * We don't have an ofport record for this port, but it doesn't hurt to * allow forwarding to it anyhow. Maybe such a port will appear later * and we're pre-populating the flow table. */ } nl_msg_put_u32(ctx->odp_actions, ODPAT_OUTPUT, port); ctx->nf_output_iface = port; } static struct rule * rule_lookup(struct ofproto *ofproto, const struct flow *flow) { return rule_from_cls_rule(classifier_lookup(&ofproto->cls, flow)); } static void xlate_table_action(struct action_xlate_ctx *ctx, uint16_t in_port) { if (ctx->recurse < MAX_RESUBMIT_RECURSION) { uint16_t old_in_port; struct rule *rule; /* Look up a flow with 'in_port' as the input port. Then restore the * original input port (otherwise OFPP_NORMAL and OFPP_IN_PORT will * have surprising behavior). */ old_in_port = ctx->flow.in_port; ctx->flow.in_port = in_port; rule = rule_lookup(ctx->ofproto, &ctx->flow); ctx->flow.in_port = old_in_port; if (ctx->resubmit_hook) { ctx->resubmit_hook(ctx, rule); } if (rule) { ctx->recurse++; do_xlate_actions(rule->actions, rule->n_actions, ctx); ctx->recurse--; } } else { struct vlog_rate_limit recurse_rl = VLOG_RATE_LIMIT_INIT(1, 1); VLOG_ERR_RL(&recurse_rl, "NXAST_RESUBMIT recursed over %d times", MAX_RESUBMIT_RECURSION); } } static void flood_packets(struct ofproto *ofproto, uint16_t odp_in_port, uint32_t mask, uint16_t *nf_output_iface, struct ofpbuf *odp_actions) { struct ofport *ofport; HMAP_FOR_EACH (ofport, hmap_node, &ofproto->ports) { uint16_t odp_port = ofport->odp_port; if (odp_port != odp_in_port && !(ofport->opp.config & mask)) { nl_msg_put_u32(odp_actions, ODPAT_OUTPUT, odp_port); } } *nf_output_iface = NF_OUT_FLOOD; } static void xlate_output_action__(struct action_xlate_ctx *ctx, uint16_t port, uint16_t max_len) { uint16_t odp_port; uint16_t prev_nf_output_iface = ctx->nf_output_iface; ctx->nf_output_iface = NF_OUT_DROP; switch (port) { case OFPP_IN_PORT: add_output_action(ctx, ctx->flow.in_port); break; case OFPP_TABLE: xlate_table_action(ctx, ctx->flow.in_port); break; case OFPP_NORMAL: if (!ctx->ofproto->ofhooks->normal_cb(&ctx->flow, ctx->packet, ctx->odp_actions, &ctx->tags, &ctx->nf_output_iface, ctx->ofproto->aux)) { COVERAGE_INC(ofproto_uninstallable); ctx->may_set_up_flow = false; } break; case OFPP_FLOOD: flood_packets(ctx->ofproto, ctx->flow.in_port, OFPPC_NO_FLOOD, &ctx->nf_output_iface, ctx->odp_actions); break; case OFPP_ALL: flood_packets(ctx->ofproto, ctx->flow.in_port, 0, &ctx->nf_output_iface, ctx->odp_actions); break; case OFPP_CONTROLLER: nl_msg_put_u64(ctx->odp_actions, ODPAT_CONTROLLER, max_len); break; case OFPP_LOCAL: add_output_action(ctx, ODPP_LOCAL); break; default: odp_port = ofp_port_to_odp_port(port); if (odp_port != ctx->flow.in_port) { add_output_action(ctx, odp_port); } break; } if (prev_nf_output_iface == NF_OUT_FLOOD) { ctx->nf_output_iface = NF_OUT_FLOOD; } else if (ctx->nf_output_iface == NF_OUT_DROP) { ctx->nf_output_iface = prev_nf_output_iface; } else if (prev_nf_output_iface != NF_OUT_DROP && ctx->nf_output_iface != NF_OUT_FLOOD) { ctx->nf_output_iface = NF_OUT_MULTI; } } static void xlate_output_action(struct action_xlate_ctx *ctx, const struct ofp_action_output *oao) { xlate_output_action__(ctx, ntohs(oao->port), ntohs(oao->max_len)); } /* If the final ODP action in 'ctx' is "pop priority", drop it, as an * optimization, because we're going to add another action that sets the * priority immediately after, or because there are no actions following the * pop. */ static void remove_pop_action(struct action_xlate_ctx *ctx) { if (ctx->odp_actions->size == ctx->last_pop_priority) { ctx->odp_actions->size -= NLA_ALIGN(NLA_HDRLEN); ctx->last_pop_priority = -1; } } static void add_pop_action(struct action_xlate_ctx *ctx) { if (ctx->odp_actions->size != ctx->last_pop_priority) { nl_msg_put_flag(ctx->odp_actions, ODPAT_POP_PRIORITY); ctx->last_pop_priority = ctx->odp_actions->size; } } static void xlate_enqueue_action(struct action_xlate_ctx *ctx, const struct ofp_action_enqueue *oae) { uint16_t ofp_port, odp_port; uint32_t priority; int error; error = dpif_queue_to_priority(ctx->ofproto->dpif, ntohl(oae->queue_id), &priority); if (error) { /* Fall back to ordinary output action. */ xlate_output_action__(ctx, ntohs(oae->port), 0); return; } /* Figure out ODP output port. */ ofp_port = ntohs(oae->port); if (ofp_port != OFPP_IN_PORT) { odp_port = ofp_port_to_odp_port(ofp_port); } else { odp_port = ctx->flow.in_port; } /* Add ODP actions. */ remove_pop_action(ctx); nl_msg_put_u32(ctx->odp_actions, ODPAT_SET_PRIORITY, priority); add_output_action(ctx, odp_port); add_pop_action(ctx); /* Update NetFlow output port. */ if (ctx->nf_output_iface == NF_OUT_DROP) { ctx->nf_output_iface = odp_port; } else if (ctx->nf_output_iface != NF_OUT_FLOOD) { ctx->nf_output_iface = NF_OUT_MULTI; } } static void xlate_set_queue_action(struct action_xlate_ctx *ctx, const struct nx_action_set_queue *nasq) { uint32_t priority; int error; error = dpif_queue_to_priority(ctx->ofproto->dpif, ntohl(nasq->queue_id), &priority); if (error) { /* Couldn't translate queue to a priority, so ignore. A warning * has already been logged. */ return; } remove_pop_action(ctx); nl_msg_put_u32(ctx->odp_actions, ODPAT_SET_PRIORITY, priority); } static void xlate_set_dl_tci(struct action_xlate_ctx *ctx) { ovs_be16 tci = ctx->flow.vlan_tci; if (!(tci & htons(VLAN_CFI))) { nl_msg_put_flag(ctx->odp_actions, ODPAT_STRIP_VLAN); } else { nl_msg_put_be16(ctx->odp_actions, ODPAT_SET_DL_TCI, tci & ~htons(VLAN_CFI)); } } static void xlate_reg_move_action(struct action_xlate_ctx *ctx, const struct nx_action_reg_move *narm) { ovs_be16 old_tci = ctx->flow.vlan_tci; nxm_execute_reg_move(narm, &ctx->flow); if (ctx->flow.vlan_tci != old_tci) { xlate_set_dl_tci(ctx); } } static void xlate_nicira_action(struct action_xlate_ctx *ctx, const struct nx_action_header *nah) { const struct nx_action_resubmit *nar; const struct nx_action_set_tunnel *nast; const struct nx_action_set_queue *nasq; enum nx_action_subtype subtype = ntohs(nah->subtype); ovs_be64 tun_id; assert(nah->vendor == htonl(NX_VENDOR_ID)); switch (subtype) { case NXAST_RESUBMIT: nar = (const struct nx_action_resubmit *) nah; xlate_table_action(ctx, ofp_port_to_odp_port(ntohs(nar->in_port))); break; case NXAST_SET_TUNNEL: nast = (const struct nx_action_set_tunnel *) nah; tun_id = htonll(ntohl(nast->tun_id)); nl_msg_put_be64(ctx->odp_actions, ODPAT_SET_TUNNEL, tun_id); ctx->flow.tun_id = tun_id; break; case NXAST_DROP_SPOOFED_ARP: if (ctx->flow.dl_type == htons(ETH_TYPE_ARP)) { nl_msg_put_flag(ctx->odp_actions, ODPAT_DROP_SPOOFED_ARP); } break; case NXAST_SET_QUEUE: nasq = (const struct nx_action_set_queue *) nah; xlate_set_queue_action(ctx, nasq); break; case NXAST_POP_QUEUE: add_pop_action(ctx); break; case NXAST_REG_MOVE: xlate_reg_move_action(ctx, (const struct nx_action_reg_move *) nah); break; case NXAST_REG_LOAD: nxm_execute_reg_load((const struct nx_action_reg_load *) nah, &ctx->flow); case NXAST_NOTE: /* Nothing to do. */ break; case NXAST_SET_TUNNEL64: tun_id = ((const struct nx_action_set_tunnel64 *) nah)->tun_id; nl_msg_put_be64(ctx->odp_actions, ODPAT_SET_TUNNEL, tun_id); ctx->flow.tun_id = tun_id; break; /* If you add a new action here that modifies flow data, don't forget to * update the flow key in ctx->flow at the same time. */ case NXAST_SNAT__OBSOLETE: default: VLOG_DBG_RL(&rl, "unknown Nicira action type %d", (int) subtype); break; } } static void do_xlate_actions(const union ofp_action *in, size_t n_in, struct action_xlate_ctx *ctx) { struct actions_iterator iter; const union ofp_action *ia; const struct ofport *port; port = get_port(ctx->ofproto, ctx->flow.in_port); if (port && port->opp.config & (OFPPC_NO_RECV | OFPPC_NO_RECV_STP) && port->opp.config & (eth_addr_equals(ctx->flow.dl_dst, eth_addr_stp) ? OFPPC_NO_RECV_STP : OFPPC_NO_RECV)) { /* Drop this flow. */ return; } for (ia = actions_first(&iter, in, n_in); ia; ia = actions_next(&iter)) { enum ofp_action_type type = ntohs(ia->type); const struct ofp_action_dl_addr *oada; switch (type) { case OFPAT_OUTPUT: xlate_output_action(ctx, &ia->output); break; case OFPAT_SET_VLAN_VID: ctx->flow.vlan_tci &= ~htons(VLAN_VID_MASK); ctx->flow.vlan_tci |= ia->vlan_vid.vlan_vid | htons(VLAN_CFI); xlate_set_dl_tci(ctx); break; case OFPAT_SET_VLAN_PCP: ctx->flow.vlan_tci &= ~htons(VLAN_PCP_MASK); ctx->flow.vlan_tci |= htons( (ia->vlan_pcp.vlan_pcp << VLAN_PCP_SHIFT) | VLAN_CFI); xlate_set_dl_tci(ctx); break; case OFPAT_STRIP_VLAN: ctx->flow.vlan_tci = htons(0); xlate_set_dl_tci(ctx); break; case OFPAT_SET_DL_SRC: oada = ((struct ofp_action_dl_addr *) ia); nl_msg_put_unspec(ctx->odp_actions, ODPAT_SET_DL_SRC, oada->dl_addr, ETH_ADDR_LEN); memcpy(ctx->flow.dl_src, oada->dl_addr, ETH_ADDR_LEN); break; case OFPAT_SET_DL_DST: oada = ((struct ofp_action_dl_addr *) ia); nl_msg_put_unspec(ctx->odp_actions, ODPAT_SET_DL_DST, oada->dl_addr, ETH_ADDR_LEN); memcpy(ctx->flow.dl_dst, oada->dl_addr, ETH_ADDR_LEN); break; case OFPAT_SET_NW_SRC: nl_msg_put_be32(ctx->odp_actions, ODPAT_SET_NW_SRC, ia->nw_addr.nw_addr); ctx->flow.nw_src = ia->nw_addr.nw_addr; break; case OFPAT_SET_NW_DST: nl_msg_put_be32(ctx->odp_actions, ODPAT_SET_NW_DST, ia->nw_addr.nw_addr); ctx->flow.nw_dst = ia->nw_addr.nw_addr; break; case OFPAT_SET_NW_TOS: nl_msg_put_u8(ctx->odp_actions, ODPAT_SET_NW_TOS, ia->nw_tos.nw_tos); ctx->flow.nw_tos = ia->nw_tos.nw_tos; break; case OFPAT_SET_TP_SRC: nl_msg_put_be16(ctx->odp_actions, ODPAT_SET_TP_SRC, ia->tp_port.tp_port); ctx->flow.tp_src = ia->tp_port.tp_port; break; case OFPAT_SET_TP_DST: nl_msg_put_be16(ctx->odp_actions, ODPAT_SET_TP_DST, ia->tp_port.tp_port); ctx->flow.tp_dst = ia->tp_port.tp_port; break; case OFPAT_VENDOR: xlate_nicira_action(ctx, (const struct nx_action_header *) ia); break; case OFPAT_ENQUEUE: xlate_enqueue_action(ctx, (const struct ofp_action_enqueue *) ia); break; default: VLOG_DBG_RL(&rl, "unknown action type %d", (int) type); break; } } } static void action_xlate_ctx_init(struct action_xlate_ctx *ctx, struct ofproto *ofproto, const struct flow *flow, const struct ofpbuf *packet) { ctx->ofproto = ofproto; ctx->flow = *flow; ctx->packet = packet; ctx->resubmit_hook = NULL; } static struct ofpbuf * xlate_actions(struct action_xlate_ctx *ctx, const union ofp_action *in, size_t n_in) { COVERAGE_INC(ofproto_ofp2odp); ctx->odp_actions = ofpbuf_new(512); ctx->tags = 0; ctx->may_set_up_flow = true; ctx->nf_output_iface = NF_OUT_DROP; ctx->recurse = 0; ctx->last_pop_priority = -1; do_xlate_actions(in, n_in, ctx); remove_pop_action(ctx); /* Check with in-band control to see if we're allowed to set up this * flow. */ if (!in_band_rule_check(ctx->ofproto->in_band, &ctx->flow, ctx->odp_actions->data, ctx->odp_actions->size)) { ctx->may_set_up_flow = false; } return ctx->odp_actions; } /* Checks whether 'ofconn' is a slave controller. If so, returns an OpenFlow * error message code (composed with ofp_mkerr()) for the caller to propagate * upward. Otherwise, returns 0. * * The log message mentions 'msg_type'. */ static int reject_slave_controller(struct ofconn *ofconn, const const char *msg_type) { if (ofconn->type == OFCONN_PRIMARY && ofconn->role == NX_ROLE_SLAVE) { static struct vlog_rate_limit perm_rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_WARN_RL(&perm_rl, "rejecting %s message from slave controller", msg_type); return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_EPERM); } else { return 0; } } static int handle_packet_out(struct ofconn *ofconn, const struct ofp_header *oh) { struct ofproto *p = ofconn->ofproto; struct ofp_packet_out *opo; struct ofpbuf payload, *buffer; union ofp_action *ofp_actions; struct action_xlate_ctx ctx; struct ofpbuf *odp_actions; struct ofpbuf request; struct flow flow; size_t n_ofp_actions; uint16_t in_port; int error; COVERAGE_INC(ofproto_packet_out); error = reject_slave_controller(ofconn, "OFPT_PACKET_OUT"); if (error) { return error; } /* Get ofp_packet_out. */ ofpbuf_use_const(&request, oh, ntohs(oh->length)); opo = ofpbuf_pull(&request, offsetof(struct ofp_packet_out, actions)); /* Get actions. */ error = ofputil_pull_actions(&request, ntohs(opo->actions_len), &ofp_actions, &n_ofp_actions); if (error) { return error; } /* Get payload. */ if (opo->buffer_id != htonl(UINT32_MAX)) { error = pktbuf_retrieve(ofconn->pktbuf, ntohl(opo->buffer_id), &buffer, &in_port); if (error || !buffer) { return error; } payload = *buffer; } else { payload = request; buffer = NULL; } /* Extract flow, check actions. */ flow_extract(&payload, 0, ofp_port_to_odp_port(ntohs(opo->in_port)), &flow); error = validate_actions(ofp_actions, n_ofp_actions, &flow, p->max_ports); if (error) { goto exit; } /* Send. */ action_xlate_ctx_init(&ctx, p, &flow, &payload); odp_actions = xlate_actions(&ctx, ofp_actions, n_ofp_actions); dpif_execute(p->dpif, odp_actions->data, odp_actions->size, &payload); ofpbuf_delete(odp_actions); exit: ofpbuf_delete(buffer); return 0; } static void update_port_config(struct ofproto *p, struct ofport *port, uint32_t config, uint32_t mask) { mask &= config ^ port->opp.config; if (mask & OFPPC_PORT_DOWN) { if (config & OFPPC_PORT_DOWN) { netdev_turn_flags_off(port->netdev, NETDEV_UP, true); } else { netdev_turn_flags_on(port->netdev, NETDEV_UP, true); } } #define REVALIDATE_BITS (OFPPC_NO_RECV | OFPPC_NO_RECV_STP | \ OFPPC_NO_FWD | OFPPC_NO_FLOOD) if (mask & REVALIDATE_BITS) { COVERAGE_INC(ofproto_costly_flags); port->opp.config ^= mask & REVALIDATE_BITS; p->need_revalidate = true; } #undef REVALIDATE_BITS if (mask & OFPPC_NO_PACKET_IN) { port->opp.config ^= OFPPC_NO_PACKET_IN; } } static int handle_port_mod(struct ofconn *ofconn, const struct ofp_header *oh) { struct ofproto *p = ofconn->ofproto; const struct ofp_port_mod *opm = (const struct ofp_port_mod *) oh; struct ofport *port; int error; error = reject_slave_controller(ofconn, "OFPT_PORT_MOD"); if (error) { return error; } port = get_port(p, ofp_port_to_odp_port(ntohs(opm->port_no))); if (!port) { return ofp_mkerr(OFPET_PORT_MOD_FAILED, OFPPMFC_BAD_PORT); } else if (memcmp(port->opp.hw_addr, opm->hw_addr, OFP_ETH_ALEN)) { return ofp_mkerr(OFPET_PORT_MOD_FAILED, OFPPMFC_BAD_HW_ADDR); } else { update_port_config(p, port, ntohl(opm->config), ntohl(opm->mask)); if (opm->advertise) { netdev_set_advertisements(port->netdev, ntohl(opm->advertise)); } } return 0; } static struct ofpbuf * make_ofp_stats_reply(ovs_be32 xid, ovs_be16 type, size_t body_len) { struct ofp_stats_reply *osr; struct ofpbuf *msg; msg = ofpbuf_new(MIN(sizeof *osr + body_len, UINT16_MAX)); osr = put_openflow_xid(sizeof *osr, OFPT_STATS_REPLY, xid, msg); osr->type = type; osr->flags = htons(0); return msg; } static struct ofpbuf * start_ofp_stats_reply(const struct ofp_header *request, size_t body_len) { const struct ofp_stats_request *osr = (const struct ofp_stats_request *) request; return make_ofp_stats_reply(osr->header.xid, osr->type, body_len); } static void * append_ofp_stats_reply(size_t nbytes, struct ofconn *ofconn, struct ofpbuf **msgp) { struct ofpbuf *msg = *msgp; assert(nbytes <= UINT16_MAX - sizeof(struct ofp_stats_reply)); if (nbytes + msg->size > UINT16_MAX) { struct ofp_stats_reply *reply = msg->data; reply->flags = htons(OFPSF_REPLY_MORE); *msgp = make_ofp_stats_reply(reply->header.xid, reply->type, nbytes); queue_tx(msg, ofconn, ofconn->reply_counter); } return ofpbuf_put_uninit(*msgp, nbytes); } static struct ofpbuf * make_nxstats_reply(ovs_be32 xid, ovs_be32 subtype, size_t body_len) { struct nicira_stats_msg *nsm; struct ofpbuf *msg; msg = ofpbuf_new(MIN(sizeof *nsm + body_len, UINT16_MAX)); nsm = put_openflow_xid(sizeof *nsm, OFPT_STATS_REPLY, xid, msg); nsm->type = htons(OFPST_VENDOR); nsm->flags = htons(0); nsm->vendor = htonl(NX_VENDOR_ID); nsm->subtype = htonl(subtype); return msg; } static struct ofpbuf * start_nxstats_reply(const struct nicira_stats_msg *request, size_t body_len) { return make_nxstats_reply(request->header.xid, request->subtype, body_len); } static void append_nxstats_reply(size_t nbytes, struct ofconn *ofconn, struct ofpbuf **msgp) { struct ofpbuf *msg = *msgp; assert(nbytes <= UINT16_MAX - sizeof(struct nicira_stats_msg)); if (nbytes + msg->size > UINT16_MAX) { struct nicira_stats_msg *reply = msg->data; reply->flags = htons(OFPSF_REPLY_MORE); *msgp = make_nxstats_reply(reply->header.xid, reply->subtype, nbytes); queue_tx(msg, ofconn, ofconn->reply_counter); } ofpbuf_prealloc_tailroom(*msgp, nbytes); } static int handle_desc_stats_request(struct ofconn *ofconn, const struct ofp_header *request) { struct ofproto *p = ofconn->ofproto; struct ofp_desc_stats *ods; struct ofpbuf *msg; msg = start_ofp_stats_reply(request, sizeof *ods); ods = append_ofp_stats_reply(sizeof *ods, ofconn, &msg); memset(ods, 0, sizeof *ods); ovs_strlcpy(ods->mfr_desc, p->mfr_desc, sizeof ods->mfr_desc); ovs_strlcpy(ods->hw_desc, p->hw_desc, sizeof ods->hw_desc); ovs_strlcpy(ods->sw_desc, p->sw_desc, sizeof ods->sw_desc); ovs_strlcpy(ods->serial_num, p->serial_desc, sizeof ods->serial_num); ovs_strlcpy(ods->dp_desc, p->dp_desc, sizeof ods->dp_desc); queue_tx(msg, ofconn, ofconn->reply_counter); return 0; } static int handle_table_stats_request(struct ofconn *ofconn, const struct ofp_header *request) { struct ofproto *p = ofconn->ofproto; struct ofp_table_stats *ots; struct ofpbuf *msg; msg = start_ofp_stats_reply(request, sizeof *ots * 2); /* Classifier table. */ ots = append_ofp_stats_reply(sizeof *ots, ofconn, &msg); memset(ots, 0, sizeof *ots); strcpy(ots->name, "classifier"); ots->wildcards = (ofconn->flow_format == NXFF_OPENFLOW10 ? htonl(OFPFW_ALL) : htonl(OVSFW_ALL)); ots->max_entries = htonl(1024 * 1024); /* An arbitrary big number. */ ots->active_count = htonl(classifier_count(&p->cls)); ots->lookup_count = htonll(0); /* XXX */ ots->matched_count = htonll(0); /* XXX */ queue_tx(msg, ofconn, ofconn->reply_counter); return 0; } static void append_port_stat(struct ofport *port, struct ofconn *ofconn, struct ofpbuf **msgp) { struct netdev_stats stats; struct ofp_port_stats *ops; /* Intentionally ignore return value, since errors will set * 'stats' to all-1s, which is correct for OpenFlow, and * netdev_get_stats() will log errors. */ netdev_get_stats(port->netdev, &stats); ops = append_ofp_stats_reply(sizeof *ops, ofconn, msgp); ops->port_no = htons(port->opp.port_no); memset(ops->pad, 0, sizeof ops->pad); ops->rx_packets = htonll(stats.rx_packets); ops->tx_packets = htonll(stats.tx_packets); ops->rx_bytes = htonll(stats.rx_bytes); ops->tx_bytes = htonll(stats.tx_bytes); ops->rx_dropped = htonll(stats.rx_dropped); ops->tx_dropped = htonll(stats.tx_dropped); ops->rx_errors = htonll(stats.rx_errors); ops->tx_errors = htonll(stats.tx_errors); ops->rx_frame_err = htonll(stats.rx_frame_errors); ops->rx_over_err = htonll(stats.rx_over_errors); ops->rx_crc_err = htonll(stats.rx_crc_errors); ops->collisions = htonll(stats.collisions); } static int handle_port_stats_request(struct ofconn *ofconn, const struct ofp_header *oh) { struct ofproto *p = ofconn->ofproto; const struct ofp_port_stats_request *psr = ofputil_stats_body(oh); struct ofp_port_stats *ops; struct ofpbuf *msg; struct ofport *port; msg = start_ofp_stats_reply(oh, sizeof *ops * 16); if (psr->port_no != htons(OFPP_NONE)) { port = get_port(p, ofp_port_to_odp_port(ntohs(psr->port_no))); if (port) { append_port_stat(port, ofconn, &msg); } } else { HMAP_FOR_EACH (port, hmap_node, &p->ports) { append_port_stat(port, ofconn, &msg); } } queue_tx(msg, ofconn, ofconn->reply_counter); return 0; } /* Obtains statistic counters for 'rule' within 'p' and stores them into * '*packet_countp' and '*byte_countp'. The returned statistics include * statistics for all of 'rule''s facets. */ static void query_stats(struct ofproto *p, struct rule *rule, uint64_t *packet_countp, uint64_t *byte_countp) { uint64_t packet_count, byte_count; struct facet *facet; struct odp_flow *odp_flows; size_t n_odp_flows; /* Start from historical data for 'rule' itself that are no longer tracked * by the datapath. This counts, for example, facets that have expired. */ packet_count = rule->packet_count; byte_count = rule->byte_count; /* Prepare to ask the datapath for statistics on all of the rule's facets. * * Also, add any statistics that are not tracked by the datapath for each * facet. This includes, for example, statistics for packets that were * executed "by hand" by ofproto via dpif_execute() but must be accounted * to a rule. */ odp_flows = xzalloc(list_size(&rule->facets) * sizeof *odp_flows); n_odp_flows = 0; LIST_FOR_EACH (facet, list_node, &rule->facets) { struct odp_flow *odp_flow = &odp_flows[n_odp_flows++]; odp_flow_key_from_flow(&odp_flow->key, &facet->flow); packet_count += facet->packet_count; byte_count += facet->byte_count; } /* Fetch up-to-date statistics from the datapath and add them in. */ if (!dpif_flow_get_multiple(p->dpif, odp_flows, n_odp_flows)) { size_t i; for (i = 0; i < n_odp_flows; i++) { struct odp_flow *odp_flow = &odp_flows[i]; packet_count += odp_flow->stats.n_packets; byte_count += odp_flow->stats.n_bytes; } } free(odp_flows); /* Return the stats to the caller. */ *packet_countp = packet_count; *byte_countp = byte_count; } static void calc_flow_duration(long long int start, ovs_be32 *sec, ovs_be32 *nsec) { long long int msecs = time_msec() - start; *sec = htonl(msecs / 1000); *nsec = htonl((msecs % 1000) * (1000 * 1000)); } static void put_ofp_flow_stats(struct ofconn *ofconn, struct rule *rule, ovs_be16 out_port, struct ofpbuf **replyp) { struct ofp_flow_stats *ofs; uint64_t packet_count, byte_count; size_t act_len, len; if (rule_is_hidden(rule) || !rule_has_out_port(rule, out_port)) { return; } act_len = sizeof *rule->actions * rule->n_actions; len = offsetof(struct ofp_flow_stats, actions) + act_len; query_stats(ofconn->ofproto, rule, &packet_count, &byte_count); ofs = append_ofp_stats_reply(len, ofconn, replyp); ofs->length = htons(len); ofs->table_id = 0; ofs->pad = 0; ofputil_cls_rule_to_match(&rule->cr, ofconn->flow_format, &ofs->match, rule->flow_cookie, &ofs->cookie); calc_flow_duration(rule->created, &ofs->duration_sec, &ofs->duration_nsec); ofs->priority = htons(rule->cr.priority); ofs->idle_timeout = htons(rule->idle_timeout); ofs->hard_timeout = htons(rule->hard_timeout); memset(ofs->pad2, 0, sizeof ofs->pad2); ofs->packet_count = htonll(packet_count); ofs->byte_count = htonll(byte_count); if (rule->n_actions > 0) { memcpy(ofs->actions, rule->actions, act_len); } } static bool is_valid_table(uint8_t table_id) { return table_id == 0 || table_id == 0xff; } static int handle_flow_stats_request(struct ofconn *ofconn, const struct ofp_header *oh) { const struct ofp_flow_stats_request *fsr = ofputil_stats_body(oh); struct ofpbuf *reply; COVERAGE_INC(ofproto_flows_req); reply = start_ofp_stats_reply(oh, 1024); if (is_valid_table(fsr->table_id)) { struct cls_cursor cursor; struct cls_rule target; struct rule *rule; ofputil_cls_rule_from_match(&fsr->match, 0, NXFF_OPENFLOW10, 0, &target); cls_cursor_init(&cursor, &ofconn->ofproto->cls, &target); CLS_CURSOR_FOR_EACH (rule, cr, &cursor) { put_ofp_flow_stats(ofconn, rule, fsr->out_port, &reply); } } queue_tx(reply, ofconn, ofconn->reply_counter); return 0; } static void put_nx_flow_stats(struct ofconn *ofconn, struct rule *rule, ovs_be16 out_port, struct ofpbuf **replyp) { struct nx_flow_stats *nfs; uint64_t packet_count, byte_count; size_t act_len, start_len; struct ofpbuf *reply; if (rule_is_hidden(rule) || !rule_has_out_port(rule, out_port)) { return; } query_stats(ofconn->ofproto, rule, &packet_count, &byte_count); act_len = sizeof *rule->actions * rule->n_actions; start_len = (*replyp)->size; append_nxstats_reply(sizeof *nfs + NXM_MAX_LEN + act_len, ofconn, replyp); reply = *replyp; nfs = ofpbuf_put_uninit(reply, sizeof *nfs); nfs->table_id = 0; nfs->pad = 0; calc_flow_duration(rule->created, &nfs->duration_sec, &nfs->duration_nsec); nfs->cookie = rule->flow_cookie; nfs->priority = htons(rule->cr.priority); nfs->idle_timeout = htons(rule->idle_timeout); nfs->hard_timeout = htons(rule->hard_timeout); nfs->match_len = htons(nx_put_match(reply, &rule->cr)); memset(nfs->pad2, 0, sizeof nfs->pad2); nfs->packet_count = htonll(packet_count); nfs->byte_count = htonll(byte_count); if (rule->n_actions > 0) { ofpbuf_put(reply, rule->actions, act_len); } nfs->length = htons(reply->size - start_len); } static int handle_nxst_flow(struct ofconn *ofconn, const struct ofp_header *oh) { struct nx_flow_stats_request *nfsr; struct cls_rule target; struct ofpbuf *reply; struct ofpbuf b; int error; ofpbuf_use_const(&b, oh, ntohs(oh->length)); /* Dissect the message. */ nfsr = ofpbuf_pull(&b, sizeof *nfsr); error = nx_pull_match(&b, ntohs(nfsr->match_len), 0, &target); if (error) { return error; } if (b.size) { return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN); } COVERAGE_INC(ofproto_flows_req); reply = start_nxstats_reply(&nfsr->nsm, 1024); if (is_valid_table(nfsr->table_id)) { struct cls_cursor cursor; struct rule *rule; cls_cursor_init(&cursor, &ofconn->ofproto->cls, &target); CLS_CURSOR_FOR_EACH (rule, cr, &cursor) { put_nx_flow_stats(ofconn, rule, nfsr->out_port, &reply); } } queue_tx(reply, ofconn, ofconn->reply_counter); return 0; } static void flow_stats_ds(struct ofproto *ofproto, struct rule *rule, struct ds *results) { uint64_t packet_count, byte_count; size_t act_len = sizeof *rule->actions * rule->n_actions; query_stats(ofproto, rule, &packet_count, &byte_count); ds_put_format(results, "duration=%llds, ", (time_msec() - rule->created) / 1000); ds_put_format(results, "priority=%u, ", rule->cr.priority); ds_put_format(results, "n_packets=%"PRIu64", ", packet_count); ds_put_format(results, "n_bytes=%"PRIu64", ", byte_count); cls_rule_format(&rule->cr, results); if (act_len > 0) { ofp_print_actions(results, &rule->actions->header, act_len); } else { ds_put_cstr(results, "drop"); } ds_put_cstr(results, "\n"); } /* Adds a pretty-printed description of all flows to 'results', including * those marked hidden by secchan (e.g., by in-band control). */ void ofproto_get_all_flows(struct ofproto *p, struct ds *results) { struct cls_cursor cursor; struct rule *rule; cls_cursor_init(&cursor, &p->cls, NULL); CLS_CURSOR_FOR_EACH (rule, cr, &cursor) { flow_stats_ds(p, rule, results); } } static void query_aggregate_stats(struct ofproto *ofproto, struct cls_rule *target, ovs_be16 out_port, uint8_t table_id, struct ofp_aggregate_stats_reply *oasr) { uint64_t total_packets = 0; uint64_t total_bytes = 0; int n_flows = 0; COVERAGE_INC(ofproto_agg_request); if (is_valid_table(table_id)) { struct cls_cursor cursor; struct rule *rule; cls_cursor_init(&cursor, &ofproto->cls, target); CLS_CURSOR_FOR_EACH (rule, cr, &cursor) { if (!rule_is_hidden(rule) && rule_has_out_port(rule, out_port)) { uint64_t packet_count; uint64_t byte_count; query_stats(ofproto, rule, &packet_count, &byte_count); total_packets += packet_count; total_bytes += byte_count; n_flows++; } } } oasr->flow_count = htonl(n_flows); oasr->packet_count = htonll(total_packets); oasr->byte_count = htonll(total_bytes); memset(oasr->pad, 0, sizeof oasr->pad); } static int handle_aggregate_stats_request(struct ofconn *ofconn, const struct ofp_header *oh) { const struct ofp_aggregate_stats_request *request = ofputil_stats_body(oh); struct ofp_aggregate_stats_reply *reply; struct cls_rule target; struct ofpbuf *msg; ofputil_cls_rule_from_match(&request->match, 0, NXFF_OPENFLOW10, 0, &target); msg = start_ofp_stats_reply(oh, sizeof *reply); reply = append_ofp_stats_reply(sizeof *reply, ofconn, &msg); query_aggregate_stats(ofconn->ofproto, &target, request->out_port, request->table_id, reply); queue_tx(msg, ofconn, ofconn->reply_counter); return 0; } static int handle_nxst_aggregate(struct ofconn *ofconn, const struct ofp_header *oh) { struct nx_aggregate_stats_request *request; struct ofp_aggregate_stats_reply *reply; struct cls_rule target; struct ofpbuf b; struct ofpbuf *buf; int error; ofpbuf_use_const(&b, oh, ntohs(oh->length)); /* Dissect the message. */ request = ofpbuf_pull(&b, sizeof *request); error = nx_pull_match(&b, ntohs(request->match_len), 0, &target); if (error) { return error; } if (b.size) { return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN); } /* Reply. */ COVERAGE_INC(ofproto_flows_req); buf = start_nxstats_reply(&request->nsm, sizeof *reply); reply = ofpbuf_put_uninit(buf, sizeof *reply); query_aggregate_stats(ofconn->ofproto, &target, request->out_port, request->table_id, reply); queue_tx(buf, ofconn, ofconn->reply_counter); return 0; } struct queue_stats_cbdata { struct ofconn *ofconn; struct ofport *ofport; struct ofpbuf *msg; }; static void put_queue_stats(struct queue_stats_cbdata *cbdata, uint32_t queue_id, const struct netdev_queue_stats *stats) { struct ofp_queue_stats *reply; reply = append_ofp_stats_reply(sizeof *reply, cbdata->ofconn, &cbdata->msg); reply->port_no = htons(cbdata->ofport->opp.port_no); memset(reply->pad, 0, sizeof reply->pad); reply->queue_id = htonl(queue_id); reply->tx_bytes = htonll(stats->tx_bytes); reply->tx_packets = htonll(stats->tx_packets); reply->tx_errors = htonll(stats->tx_errors); } static void handle_queue_stats_dump_cb(uint32_t queue_id, struct netdev_queue_stats *stats, void *cbdata_) { struct queue_stats_cbdata *cbdata = cbdata_; put_queue_stats(cbdata, queue_id, stats); } static void handle_queue_stats_for_port(struct ofport *port, uint32_t queue_id, struct queue_stats_cbdata *cbdata) { cbdata->ofport = port; if (queue_id == OFPQ_ALL) { netdev_dump_queue_stats(port->netdev, handle_queue_stats_dump_cb, cbdata); } else { struct netdev_queue_stats stats; if (!netdev_get_queue_stats(port->netdev, queue_id, &stats)) { put_queue_stats(cbdata, queue_id, &stats); } } } static int handle_queue_stats_request(struct ofconn *ofconn, const struct ofp_header *oh) { struct ofproto *ofproto = ofconn->ofproto; const struct ofp_queue_stats_request *qsr; struct queue_stats_cbdata cbdata; struct ofport *port; unsigned int port_no; uint32_t queue_id; qsr = ofputil_stats_body(oh); if (!qsr) { return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN); } COVERAGE_INC(ofproto_queue_req); cbdata.ofconn = ofconn; cbdata.msg = start_ofp_stats_reply(oh, 128); port_no = ntohs(qsr->port_no); queue_id = ntohl(qsr->queue_id); if (port_no == OFPP_ALL) { HMAP_FOR_EACH (port, hmap_node, &ofproto->ports) { handle_queue_stats_for_port(port, queue_id, &cbdata); } } else if (port_no < ofproto->max_ports) { port = get_port(ofproto, ofp_port_to_odp_port(port_no)); if (port) { handle_queue_stats_for_port(port, queue_id, &cbdata); } } else { ofpbuf_delete(cbdata.msg); return ofp_mkerr(OFPET_QUEUE_OP_FAILED, OFPQOFC_BAD_PORT); } queue_tx(cbdata.msg, ofconn, ofconn->reply_counter); return 0; } static long long int msec_from_nsec(uint64_t sec, uint32_t nsec) { return !sec ? 0 : sec * 1000 + nsec / 1000000; } static void facet_update_time(struct ofproto *ofproto, struct facet *facet, const struct odp_flow_stats *stats) { long long int used = msec_from_nsec(stats->used_sec, stats->used_nsec); if (used > facet->used) { facet->used = used; if (used > facet->rule->used) { facet->rule->used = used; } netflow_flow_update_time(ofproto->netflow, &facet->nf_flow, used); } } /* Folds the statistics from 'stats' into the counters in 'facet'. * * Because of the meaning of a facet's counters, it only makes sense to do this * if 'stats' are not tracked in the datapath, that is, if 'stats' represents a * packet that was sent by hand or if it represents statistics that have been * cleared out of the datapath. */ static void facet_update_stats(struct ofproto *ofproto, struct facet *facet, const struct odp_flow_stats *stats) { if (stats->n_packets) { facet_update_time(ofproto, facet, stats); facet->packet_count += stats->n_packets; facet->byte_count += stats->n_bytes; netflow_flow_update_flags(&facet->nf_flow, stats->tcp_flags); } } /* Implements OFPFC_ADD and the cases for OFPFC_MODIFY and OFPFC_MODIFY_STRICT * in which no matching flow already exists in the flow table. * * Adds the flow specified by 'ofm', which is followed by 'n_actions' * ofp_actions, to ofconn->ofproto's flow table. Returns 0 on success or an * OpenFlow error code as encoded by ofp_mkerr() on failure. * * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id, * if any. */ static int add_flow(struct ofconn *ofconn, struct flow_mod *fm) { struct ofproto *p = ofconn->ofproto; struct ofpbuf *packet; struct rule *rule; uint16_t in_port; int error; if (fm->flags & OFPFF_CHECK_OVERLAP && classifier_rule_overlaps(&p->cls, &fm->cr)) { return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_OVERLAP); } error = 0; if (fm->buffer_id != UINT32_MAX) { error = pktbuf_retrieve(ofconn->pktbuf, fm->buffer_id, &packet, &in_port); } else { packet = NULL; in_port = UINT16_MAX; } rule = rule_create(&fm->cr, fm->actions, fm->n_actions, fm->idle_timeout, fm->hard_timeout, fm->cookie, fm->flags & OFPFF_SEND_FLOW_REM); rule_insert(p, rule); if (packet) { rule_execute(p, rule, in_port, packet); } return error; } static struct rule * find_flow_strict(struct ofproto *p, const struct flow_mod *fm) { return rule_from_cls_rule(classifier_find_rule_exactly(&p->cls, &fm->cr)); } static int send_buffered_packet(struct ofconn *ofconn, struct rule *rule, uint32_t buffer_id) { struct ofpbuf *packet; uint16_t in_port; int error; if (buffer_id == UINT32_MAX) { return 0; } error = pktbuf_retrieve(ofconn->pktbuf, buffer_id, &packet, &in_port); if (error) { return error; } rule_execute(ofconn->ofproto, rule, in_port, packet); return 0; } /* OFPFC_MODIFY and OFPFC_MODIFY_STRICT. */ struct modify_flows_cbdata { struct ofproto *ofproto; const struct flow_mod *fm; struct rule *match; }; static int modify_flow(struct ofproto *, const struct flow_mod *, struct rule *); /* Implements OFPFC_MODIFY. Returns 0 on success or an OpenFlow error code as * encoded by ofp_mkerr() on failure. * * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id, * if any. */ static int modify_flows_loose(struct ofconn *ofconn, struct flow_mod *fm) { struct ofproto *p = ofconn->ofproto; struct rule *match = NULL; struct cls_cursor cursor; struct rule *rule; cls_cursor_init(&cursor, &p->cls, &fm->cr); CLS_CURSOR_FOR_EACH (rule, cr, &cursor) { if (!rule_is_hidden(rule)) { match = rule; modify_flow(p, fm, rule); } } if (match) { /* This credits the packet to whichever flow happened to match last. * That's weird. Maybe we should do a lookup for the flow that * actually matches the packet? Who knows. */ send_buffered_packet(ofconn, match, fm->buffer_id); return 0; } else { return add_flow(ofconn, fm); } } /* Implements OFPFC_MODIFY_STRICT. Returns 0 on success or an OpenFlow error * code as encoded by ofp_mkerr() on failure. * * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id, * if any. */ static int modify_flow_strict(struct ofconn *ofconn, struct flow_mod *fm) { struct ofproto *p = ofconn->ofproto; struct rule *rule = find_flow_strict(p, fm); if (rule && !rule_is_hidden(rule)) { modify_flow(p, fm, rule); return send_buffered_packet(ofconn, rule, fm->buffer_id); } else { return add_flow(ofconn, fm); } } /* Implements core of OFPFC_MODIFY and OFPFC_MODIFY_STRICT where 'rule' has * been identified as a flow in 'p''s flow table to be modified, by changing * the rule's actions to match those in 'ofm' (which is followed by 'n_actions' * ofp_action[] structures). */ static int modify_flow(struct ofproto *p, const struct flow_mod *fm, struct rule *rule) { size_t actions_len = fm->n_actions * sizeof *rule->actions; rule->flow_cookie = fm->cookie; /* If the actions are the same, do nothing. */ if (fm->n_actions == rule->n_actions && (!fm->n_actions || !memcmp(fm->actions, rule->actions, actions_len))) { return 0; } /* Replace actions. */ free(rule->actions); rule->actions = fm->n_actions ? xmemdup(fm->actions, actions_len) : NULL; rule->n_actions = fm->n_actions; p->need_revalidate = true; return 0; } /* OFPFC_DELETE implementation. */ static void delete_flow(struct ofproto *, struct rule *, ovs_be16 out_port); /* Implements OFPFC_DELETE. */ static void delete_flows_loose(struct ofproto *p, const struct flow_mod *fm) { struct rule *rule, *next_rule; struct cls_cursor cursor; cls_cursor_init(&cursor, &p->cls, &fm->cr); CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, cr, &cursor) { delete_flow(p, rule, htons(fm->out_port)); } } /* Implements OFPFC_DELETE_STRICT. */ static void delete_flow_strict(struct ofproto *p, struct flow_mod *fm) { struct rule *rule = find_flow_strict(p, fm); if (rule) { delete_flow(p, rule, htons(fm->out_port)); } } /* Implements core of OFPFC_DELETE and OFPFC_DELETE_STRICT where 'rule' has * been identified as a flow to delete from 'p''s flow table, by deleting the * flow and sending out a OFPT_FLOW_REMOVED message to any interested * controller. * * Will not delete 'rule' if it is hidden. Will delete 'rule' only if * 'out_port' is htons(OFPP_NONE) or if 'rule' actually outputs to the * specified 'out_port'. */ static void delete_flow(struct ofproto *p, struct rule *rule, ovs_be16 out_port) { if (rule_is_hidden(rule)) { return; } if (out_port != htons(OFPP_NONE) && !rule_has_out_port(rule, out_port)) { return; } rule_send_removed(p, rule, OFPRR_DELETE); rule_remove(p, rule); } static int handle_flow_mod(struct ofconn *ofconn, const struct ofp_header *oh) { struct ofproto *p = ofconn->ofproto; struct flow_mod fm; int error; error = reject_slave_controller(ofconn, "flow_mod"); if (error) { return error; } error = ofputil_decode_flow_mod(&fm, oh, ofconn->flow_format); if (error) { return error; } /* We do not support the emergency flow cache. It will hopefully get * dropped from OpenFlow in the near future. */ if (fm.flags & OFPFF_EMERG) { /* There isn't a good fit for an error code, so just state that the * flow table is full. */ return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_ALL_TABLES_FULL); } error = validate_actions(fm.actions, fm.n_actions, &fm.cr.flow, p->max_ports); if (error) { return error; } switch (fm.command) { case OFPFC_ADD: return add_flow(ofconn, &fm); case OFPFC_MODIFY: return modify_flows_loose(ofconn, &fm); case OFPFC_MODIFY_STRICT: return modify_flow_strict(ofconn, &fm); case OFPFC_DELETE: delete_flows_loose(p, &fm); return 0; case OFPFC_DELETE_STRICT: delete_flow_strict(p, &fm); return 0; default: return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_BAD_COMMAND); } } static int handle_tun_id_from_cookie(struct ofconn *ofconn, const struct ofp_header *oh) { const struct nxt_tun_id_cookie *msg = (const struct nxt_tun_id_cookie *) oh; ofconn->flow_format = msg->set ? NXFF_TUN_ID_FROM_COOKIE : NXFF_OPENFLOW10; return 0; } static int handle_role_request(struct ofconn *ofconn, const struct ofp_header *oh) { struct nx_role_request *nrr = (struct nx_role_request *) oh; struct nx_role_request *reply; struct ofpbuf *buf; uint32_t role; if (ofconn->type != OFCONN_PRIMARY) { VLOG_WARN_RL(&rl, "ignoring role request on non-controller " "connection"); return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_EPERM); } role = ntohl(nrr->role); if (role != NX_ROLE_OTHER && role != NX_ROLE_MASTER && role != NX_ROLE_SLAVE) { VLOG_WARN_RL(&rl, "received request for unknown role %"PRIu32, role); /* There's no good error code for this. */ return ofp_mkerr(OFPET_BAD_REQUEST, -1); } if (role == NX_ROLE_MASTER) { struct ofconn *other; HMAP_FOR_EACH (other, hmap_node, &ofconn->ofproto->controllers) { if (other->role == NX_ROLE_MASTER) { other->role = NX_ROLE_SLAVE; } } } ofconn->role = role; reply = make_nxmsg_xid(sizeof *reply, NXT_ROLE_REPLY, oh->xid, &buf); reply->role = htonl(role); queue_tx(buf, ofconn, ofconn->reply_counter); return 0; } static int handle_nxt_set_flow_format(struct ofconn *ofconn, const struct ofp_header *oh) { const struct nxt_set_flow_format *msg = (const struct nxt_set_flow_format *) oh; uint32_t format; format = ntohl(msg->format); if (format == NXFF_OPENFLOW10 || format == NXFF_TUN_ID_FROM_COOKIE || format == NXFF_NXM) { ofconn->flow_format = format; return 0; } else { return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_EPERM); } } static int handle_barrier_request(struct ofconn *ofconn, const struct ofp_header *oh) { struct ofp_header *ob; struct ofpbuf *buf; /* Currently, everything executes synchronously, so we can just * immediately send the barrier reply. */ ob = make_openflow_xid(sizeof *ob, OFPT_BARRIER_REPLY, oh->xid, &buf); queue_tx(buf, ofconn, ofconn->reply_counter); return 0; } static int handle_openflow__(struct ofconn *ofconn, const struct ofpbuf *msg) { const struct ofp_header *oh = msg->data; const struct ofputil_msg_type *type; int error; error = ofputil_decode_msg_type(oh, &type); if (error) { return error; } switch (ofputil_msg_type_code(type)) { /* OpenFlow requests. */ case OFPUTIL_OFPT_ECHO_REQUEST: return handle_echo_request(ofconn, oh); case OFPUTIL_OFPT_FEATURES_REQUEST: return handle_features_request(ofconn, oh); case OFPUTIL_OFPT_GET_CONFIG_REQUEST: return handle_get_config_request(ofconn, oh); case OFPUTIL_OFPT_SET_CONFIG: return handle_set_config(ofconn, msg->data); case OFPUTIL_OFPT_PACKET_OUT: return handle_packet_out(ofconn, oh); case OFPUTIL_OFPT_PORT_MOD: return handle_port_mod(ofconn, oh); case OFPUTIL_OFPT_FLOW_MOD: return handle_flow_mod(ofconn, oh); case OFPUTIL_OFPT_BARRIER_REQUEST: return handle_barrier_request(ofconn, oh); /* OpenFlow replies. */ case OFPUTIL_OFPT_ECHO_REPLY: return 0; /* Nicira extension requests. */ case OFPUTIL_NXT_STATUS_REQUEST: return switch_status_handle_request( ofconn->ofproto->switch_status, ofconn->rconn, oh); case OFPUTIL_NXT_TUN_ID_FROM_COOKIE: return handle_tun_id_from_cookie(ofconn, oh); case OFPUTIL_NXT_ROLE_REQUEST: return handle_role_request(ofconn, oh); case OFPUTIL_NXT_SET_FLOW_FORMAT: return handle_nxt_set_flow_format(ofconn, oh); case OFPUTIL_NXT_FLOW_MOD: return handle_flow_mod(ofconn, oh); /* OpenFlow statistics requests. */ case OFPUTIL_OFPST_DESC_REQUEST: return handle_desc_stats_request(ofconn, oh); case OFPUTIL_OFPST_FLOW_REQUEST: return handle_flow_stats_request(ofconn, oh); case OFPUTIL_OFPST_AGGREGATE_REQUEST: return handle_aggregate_stats_request(ofconn, oh); case OFPUTIL_OFPST_TABLE_REQUEST: return handle_table_stats_request(ofconn, oh); case OFPUTIL_OFPST_PORT_REQUEST: return handle_port_stats_request(ofconn, oh); case OFPUTIL_OFPST_QUEUE_REQUEST: return handle_queue_stats_request(ofconn, oh); /* Nicira extension statistics requests. */ case OFPUTIL_NXST_FLOW_REQUEST: return handle_nxst_flow(ofconn, oh); case OFPUTIL_NXST_AGGREGATE_REQUEST: return handle_nxst_aggregate(ofconn, oh); case OFPUTIL_INVALID: case OFPUTIL_OFPT_HELLO: case OFPUTIL_OFPT_ERROR: case OFPUTIL_OFPT_FEATURES_REPLY: case OFPUTIL_OFPT_GET_CONFIG_REPLY: case OFPUTIL_OFPT_PACKET_IN: case OFPUTIL_OFPT_FLOW_REMOVED: case OFPUTIL_OFPT_PORT_STATUS: case OFPUTIL_OFPT_BARRIER_REPLY: case OFPUTIL_OFPT_QUEUE_GET_CONFIG_REQUEST: case OFPUTIL_OFPT_QUEUE_GET_CONFIG_REPLY: case OFPUTIL_OFPST_DESC_REPLY: case OFPUTIL_OFPST_FLOW_REPLY: case OFPUTIL_OFPST_QUEUE_REPLY: case OFPUTIL_OFPST_PORT_REPLY: case OFPUTIL_OFPST_TABLE_REPLY: case OFPUTIL_OFPST_AGGREGATE_REPLY: case OFPUTIL_NXT_STATUS_REPLY: case OFPUTIL_NXT_ROLE_REPLY: case OFPUTIL_NXT_FLOW_REMOVED: case OFPUTIL_NXST_FLOW_REPLY: case OFPUTIL_NXST_AGGREGATE_REPLY: default: if (VLOG_IS_WARN_ENABLED()) { char *s = ofp_to_string(oh, ntohs(oh->length), 2); VLOG_DBG_RL(&rl, "OpenFlow message ignored: %s", s); free(s); } if (oh->type == OFPT_STATS_REQUEST || oh->type == OFPT_STATS_REPLY) { return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_STAT); } else { return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_TYPE); } } } static void handle_openflow(struct ofconn *ofconn, struct ofpbuf *ofp_msg) { int error = handle_openflow__(ofconn, ofp_msg); if (error) { send_error_oh(ofconn, ofp_msg->data, error); } COVERAGE_INC(ofproto_recv_openflow); } static void handle_odp_miss_msg(struct ofproto *p, struct ofpbuf *packet) { struct odp_msg *msg = packet->data; struct ofpbuf payload; struct facet *facet; struct flow flow; ofpbuf_use_const(&payload, msg + 1, msg->length - sizeof *msg); flow_extract(&payload, msg->arg, msg->port, &flow); packet->l2 = payload.l2; packet->l3 = payload.l3; packet->l4 = payload.l4; packet->l7 = payload.l7; /* Check with in-band control to see if this packet should be sent * to the local port regardless of the flow table. */ if (in_band_msg_in_hook(p->in_band, &flow, &payload)) { struct ofpbuf odp_actions; ofpbuf_init(&odp_actions, 32); nl_msg_put_u32(&odp_actions, ODPAT_OUTPUT, ODPP_LOCAL); dpif_execute(p->dpif, odp_actions.data, odp_actions.size, &payload); ofpbuf_uninit(&odp_actions); } facet = facet_lookup_valid(p, &flow); if (!facet) { struct rule *rule = rule_lookup(p, &flow); if (!rule) { /* Don't send a packet-in if OFPPC_NO_PACKET_IN asserted. */ struct ofport *port = get_port(p, msg->port); if (port) { if (port->opp.config & OFPPC_NO_PACKET_IN) { COVERAGE_INC(ofproto_no_packet_in); /* XXX install 'drop' flow entry */ ofpbuf_delete(packet); return; } } else { VLOG_WARN_RL(&rl, "packet-in on unknown port %"PRIu16, msg->port); } COVERAGE_INC(ofproto_packet_in); send_packet_in(p, packet); return; } facet = facet_create(p, rule, &flow, packet); } else if (!facet->may_install) { /* The facet is not installable, that is, we need to process every * packet, so process the current packet's actions into 'facet'. */ facet_make_actions(p, facet, packet); } if (facet->rule->cr.priority == FAIL_OPEN_PRIORITY) { /* * Extra-special case for fail-open mode. * * We are in fail-open mode and the packet matched the fail-open rule, * but we are connected to a controller too. We should send the packet * up to the controller in the hope that it will try to set up a flow * and thereby allow us to exit fail-open. * * See the top-level comment in fail-open.c for more information. */ send_packet_in(p, ofpbuf_clone_with_headroom(packet, DPIF_RECV_MSG_PADDING)); } ofpbuf_pull(packet, sizeof *msg); facet_execute(p, facet, packet); facet_install(p, facet, false); } static void handle_odp_msg(struct ofproto *p, struct ofpbuf *packet) { struct odp_msg *msg = packet->data; switch (msg->type) { case _ODPL_ACTION_NR: COVERAGE_INC(ofproto_ctlr_action); send_packet_in(p, packet); break; case _ODPL_SFLOW_NR: if (p->sflow) { ofproto_sflow_received(p->sflow, msg); } ofpbuf_delete(packet); break; case _ODPL_MISS_NR: handle_odp_miss_msg(p, packet); break; default: VLOG_WARN_RL(&rl, "received ODP message of unexpected type %"PRIu32, msg->type); break; } } /* Flow expiration. */ static int ofproto_dp_max_idle(const struct ofproto *); static void ofproto_update_used(struct ofproto *); static void rule_expire(struct ofproto *, struct rule *); static void ofproto_expire_facets(struct ofproto *, int dp_max_idle); /* This function is called periodically by ofproto_run(). Its job is to * collect updates for the flows that have been installed into the datapath, * most importantly when they last were used, and then use that information to * expire flows that have not been used recently. * * Returns the number of milliseconds after which it should be called again. */ static int ofproto_expire(struct ofproto *ofproto) { struct rule *rule, *next_rule; struct cls_cursor cursor; int dp_max_idle; /* Update 'used' for each flow in the datapath. */ ofproto_update_used(ofproto); /* Expire facets that have been idle too long. */ dp_max_idle = ofproto_dp_max_idle(ofproto); ofproto_expire_facets(ofproto, dp_max_idle); /* Expire OpenFlow flows whose idle_timeout or hard_timeout has passed. */ cls_cursor_init(&cursor, &ofproto->cls, NULL); CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, cr, &cursor) { rule_expire(ofproto, rule); } /* Let the hook know that we're at a stable point: all outstanding data * in existing flows has been accounted to the account_cb. Thus, the * hook can now reasonably do operations that depend on having accurate * flow volume accounting (currently, that's just bond rebalancing). */ if (ofproto->ofhooks->account_checkpoint_cb) { ofproto->ofhooks->account_checkpoint_cb(ofproto->aux); } return MIN(dp_max_idle, 1000); } /* Update 'used' member of installed facets. */ static void ofproto_update_used(struct ofproto *p) { struct odp_flow *flows; size_t n_flows; size_t i; int error; error = dpif_flow_list_all(p->dpif, &flows, &n_flows); if (error) { return; } for (i = 0; i < n_flows; i++) { struct odp_flow *f = &flows[i]; struct facet *facet; struct flow flow; odp_flow_key_to_flow(&f->key, &flow); facet = facet_find(p, &flow); if (facet && facet->installed) { facet_update_time(p, facet, &f->stats); facet_account(p, facet, f->stats.n_bytes); } else { /* There's a flow in the datapath that we know nothing about. * Delete it. */ COVERAGE_INC(ofproto_unexpected_rule); dpif_flow_del(p->dpif, f); } } free(flows); } /* Calculates and returns the number of milliseconds of idle time after which * facets should expire from the datapath and we should fold their statistics * into their parent rules in userspace. */ static int ofproto_dp_max_idle(const struct ofproto *ofproto) { /* * Idle time histogram. * * Most of the time a switch has a relatively small number of facets. When * this is the case we might as well keep statistics for all of them in * userspace and to cache them in the kernel datapath for performance as * well. * * As the number of facets increases, the memory required to maintain * statistics about them in userspace and in the kernel becomes * significant. However, with a large number of facets it is likely that * only a few of them are "heavy hitters" that consume a large amount of * bandwidth. At this point, only heavy hitters are worth caching in the * kernel and maintaining in userspaces; other facets we can discard. * * The technique used to compute the idle time is to build a histogram with * N_BUCKETS buckets whose width is BUCKET_WIDTH msecs each. Each facet * that is installed in the kernel gets dropped in the appropriate bucket. * After the histogram has been built, we compute the cutoff so that only * the most-recently-used 1% of facets (but at least 1000 flows) are kept * cached. At least the most-recently-used bucket of facets is kept, so * actually an arbitrary number of facets can be kept in any given * expiration run (though the next run will delete most of those unless * they receive additional data). * * This requires a second pass through the facets, in addition to the pass * made by ofproto_update_used(), because the former function never looks * at uninstallable facets. */ enum { BUCKET_WIDTH = ROUND_UP(100, TIME_UPDATE_INTERVAL) }; enum { N_BUCKETS = 5000 / BUCKET_WIDTH }; int buckets[N_BUCKETS] = { 0 }; struct facet *facet; int total, bucket; long long int now; int i; total = hmap_count(&ofproto->facets); if (total <= 1000) { return N_BUCKETS * BUCKET_WIDTH; } /* Build histogram. */ now = time_msec(); HMAP_FOR_EACH (facet, hmap_node, &ofproto->facets) { long long int idle = now - facet->used; int bucket = (idle <= 0 ? 0 : idle >= BUCKET_WIDTH * N_BUCKETS ? N_BUCKETS - 1 : (unsigned int) idle / BUCKET_WIDTH); buckets[bucket]++; } /* Find the first bucket whose flows should be expired. */ for (bucket = 0; bucket < N_BUCKETS; bucket++) { if (buckets[bucket]) { int subtotal = 0; do { subtotal += buckets[bucket++]; } while (bucket < N_BUCKETS && subtotal < MAX(1000, total / 100)); break; } } if (VLOG_IS_DBG_ENABLED()) { struct ds s; ds_init(&s); ds_put_cstr(&s, "keep"); for (i = 0; i < N_BUCKETS; i++) { if (i == bucket) { ds_put_cstr(&s, ", drop"); } if (buckets[i]) { ds_put_format(&s, " %d:%d", i * BUCKET_WIDTH, buckets[i]); } } VLOG_INFO("%s: %s (msec:count)", dpif_name(ofproto->dpif), ds_cstr(&s)); ds_destroy(&s); } return bucket * BUCKET_WIDTH; } static void facet_active_timeout(struct ofproto *ofproto, struct facet *facet) { if (ofproto->netflow && !facet_is_controller_flow(facet) && netflow_active_timeout_expired(ofproto->netflow, &facet->nf_flow)) { struct ofexpired expired; struct odp_flow odp_flow; /* Get updated flow stats. * * XXX We could avoid this call entirely if (1) ofproto_update_used() * updated TCP flags and (2) the dpif_flow_list_all() in * ofproto_update_used() zeroed TCP flags. */ memset(&odp_flow, 0, sizeof odp_flow); if (facet->installed) { odp_flow_key_from_flow(&odp_flow.key, &facet->flow); odp_flow.flags = ODPFF_ZERO_TCP_FLAGS; dpif_flow_get(ofproto->dpif, &odp_flow); if (odp_flow.stats.n_packets) { facet_update_time(ofproto, facet, &odp_flow.stats); netflow_flow_update_flags(&facet->nf_flow, odp_flow.stats.tcp_flags); } } expired.flow = facet->flow; expired.packet_count = facet->packet_count + odp_flow.stats.n_packets; expired.byte_count = facet->byte_count + odp_flow.stats.n_bytes; expired.used = facet->used; netflow_expire(ofproto->netflow, &facet->nf_flow, &expired); } } static void ofproto_expire_facets(struct ofproto *ofproto, int dp_max_idle) { long long int cutoff = time_msec() - dp_max_idle; struct facet *facet, *next_facet; HMAP_FOR_EACH_SAFE (facet, next_facet, hmap_node, &ofproto->facets) { facet_active_timeout(ofproto, facet); if (facet->used < cutoff) { facet_remove(ofproto, facet); } } } /* If 'rule' is an OpenFlow rule, that has expired according to OpenFlow rules, * then delete it entirely. */ static void rule_expire(struct ofproto *ofproto, struct rule *rule) { struct facet *facet, *next_facet; long long int now; uint8_t reason; /* Has 'rule' expired? */ now = time_msec(); if (rule->hard_timeout && now > rule->created + rule->hard_timeout * 1000) { reason = OFPRR_HARD_TIMEOUT; } else if (rule->idle_timeout && list_is_empty(&rule->facets) && now >rule->used + rule->idle_timeout * 1000) { reason = OFPRR_IDLE_TIMEOUT; } else { return; } COVERAGE_INC(ofproto_expired); /* Update stats. (This is a no-op if the rule expired due to an idle * timeout, because that only happens when the rule has no facets left.) */ LIST_FOR_EACH_SAFE (facet, next_facet, list_node, &rule->facets) { facet_remove(ofproto, facet); } /* Get rid of the rule. */ if (!rule_is_hidden(rule)) { rule_send_removed(ofproto, rule, reason); } rule_remove(ofproto, rule); } static struct ofpbuf * compose_ofp_flow_removed(struct ofconn *ofconn, const struct rule *rule, uint8_t reason) { struct ofp_flow_removed *ofr; struct ofpbuf *buf; ofr = make_openflow(sizeof *ofr, OFPT_FLOW_REMOVED, &buf); ofputil_cls_rule_to_match(&rule->cr, ofconn->flow_format, &ofr->match, rule->flow_cookie, &ofr->cookie); ofr->priority = htons(rule->cr.priority); ofr->reason = reason; calc_flow_duration(rule->created, &ofr->duration_sec, &ofr->duration_nsec); ofr->idle_timeout = htons(rule->idle_timeout); ofr->packet_count = htonll(rule->packet_count); ofr->byte_count = htonll(rule->byte_count); return buf; } static struct ofpbuf * compose_nx_flow_removed(const struct rule *rule, uint8_t reason) { struct nx_flow_removed *nfr; struct ofpbuf *buf; int match_len; nfr = make_nxmsg(sizeof *nfr, NXT_FLOW_REMOVED, &buf); match_len = nx_put_match(buf, &rule->cr); nfr->cookie = rule->flow_cookie; nfr->priority = htons(rule->cr.priority); nfr->reason = reason; calc_flow_duration(rule->created, &nfr->duration_sec, &nfr->duration_nsec); nfr->idle_timeout = htons(rule->idle_timeout); nfr->match_len = htons(match_len); nfr->packet_count = htonll(rule->packet_count); nfr->byte_count = htonll(rule->byte_count); return buf; } static void rule_send_removed(struct ofproto *p, struct rule *rule, uint8_t reason) { struct ofconn *ofconn; if (!rule->send_flow_removed) { return; } LIST_FOR_EACH (ofconn, node, &p->all_conns) { struct ofpbuf *msg; if (!rconn_is_connected(ofconn->rconn) || !ofconn_receives_async_msgs(ofconn)) { continue; } msg = (ofconn->flow_format == NXFF_NXM ? compose_nx_flow_removed(rule, reason) : compose_ofp_flow_removed(ofconn, rule, reason)); /* Account flow expirations under ofconn->reply_counter, the counter * for replies to OpenFlow requests. That works because preventing * OpenFlow requests from being processed also prevents new flows from * being added (and expiring). (It also prevents processing OpenFlow * requests that would not add new flows, so it is imperfect.) */ queue_tx(msg, ofconn, ofconn->reply_counter); } } /* pinsched callback for sending 'packet' on 'ofconn'. */ static void do_send_packet_in(struct ofpbuf *packet, void *ofconn_) { struct ofconn *ofconn = ofconn_; rconn_send_with_limit(ofconn->rconn, packet, ofconn->packet_in_counter, 100); } /* Takes 'packet', which has been converted with do_convert_to_packet_in(), and * finalizes its content for sending on 'ofconn', and passes it to 'ofconn''s * packet scheduler for sending. * * 'max_len' specifies the maximum number of bytes of the packet to send on * 'ofconn' (INT_MAX specifies no limit). * * If 'clone' is true, the caller retains ownership of 'packet'. Otherwise, * ownership is transferred to this function. */ static void schedule_packet_in(struct ofconn *ofconn, struct ofpbuf *packet, int max_len, bool clone) { struct ofproto *ofproto = ofconn->ofproto; struct ofp_packet_in *opi = packet->data; uint16_t in_port = ofp_port_to_odp_port(ntohs(opi->in_port)); int send_len, trim_size; uint32_t buffer_id; /* Get buffer. */ if (opi->reason == OFPR_ACTION) { buffer_id = UINT32_MAX; } else if (ofproto->fail_open && fail_open_is_active(ofproto->fail_open)) { buffer_id = pktbuf_get_null(); } else if (!ofconn->pktbuf) { buffer_id = UINT32_MAX; } else { struct ofpbuf payload; ofpbuf_use_const(&payload, opi->data, packet->size - offsetof(struct ofp_packet_in, data)); buffer_id = pktbuf_save(ofconn->pktbuf, &payload, in_port); } /* Figure out how much of the packet to send. */ send_len = ntohs(opi->total_len); if (buffer_id != UINT32_MAX) { send_len = MIN(send_len, ofconn->miss_send_len); } send_len = MIN(send_len, max_len); /* Adjust packet length and clone if necessary. */ trim_size = offsetof(struct ofp_packet_in, data) + send_len; if (clone) { packet = ofpbuf_clone_data(packet->data, trim_size); opi = packet->data; } else { packet->size = trim_size; } /* Update packet headers. */ opi->buffer_id = htonl(buffer_id); update_openflow_length(packet); /* Hand over to packet scheduler. It might immediately call into * do_send_packet_in() or it might buffer it for a while (until a later * call to pinsched_run()). */ pinsched_send(ofconn->schedulers[opi->reason], in_port, packet, do_send_packet_in, ofconn); } /* Replace struct odp_msg header in 'packet' by equivalent struct * ofp_packet_in. The odp_msg must have sufficient headroom to do so (e.g. as * returned by dpif_recv()). * * The conversion is not complete: the caller still needs to trim any unneeded * payload off the end of the buffer, set the length in the OpenFlow header, * and set buffer_id. Those require us to know the controller settings and so * must be done on a per-controller basis. * * Returns the maximum number of bytes of the packet that should be sent to * the controller (INT_MAX if no limit). */ static int do_convert_to_packet_in(struct ofpbuf *packet) { struct odp_msg *msg = packet->data; struct ofp_packet_in *opi; uint8_t reason; uint16_t total_len; uint16_t in_port; int max_len; /* Extract relevant header fields */ if (msg->type == _ODPL_ACTION_NR) { reason = OFPR_ACTION; max_len = msg->arg; } else { reason = OFPR_NO_MATCH; max_len = INT_MAX; } total_len = msg->length - sizeof *msg; in_port = odp_port_to_ofp_port(msg->port); /* Repurpose packet buffer by overwriting header. */ ofpbuf_pull(packet, sizeof(struct odp_msg)); opi = ofpbuf_push_zeros(packet, offsetof(struct ofp_packet_in, data)); opi->header.version = OFP_VERSION; opi->header.type = OFPT_PACKET_IN; opi->total_len = htons(total_len); opi->in_port = htons(in_port); opi->reason = reason; return max_len; } /* Given 'packet' containing an odp_msg of type _ODPL_ACTION_NR or * _ODPL_MISS_NR, sends an OFPT_PACKET_IN message to each OpenFlow controller * as necessary according to their individual configurations. * * 'packet' must have sufficient headroom to convert it into a struct * ofp_packet_in (e.g. as returned by dpif_recv()). * * Takes ownership of 'packet'. */ static void send_packet_in(struct ofproto *ofproto, struct ofpbuf *packet) { struct ofconn *ofconn, *prev; int max_len; max_len = do_convert_to_packet_in(packet); prev = NULL; LIST_FOR_EACH (ofconn, node, &ofproto->all_conns) { if (ofconn_receives_async_msgs(ofconn)) { if (prev) { schedule_packet_in(prev, packet, max_len, true); } prev = ofconn; } } if (prev) { schedule_packet_in(prev, packet, max_len, false); } else { ofpbuf_delete(packet); } } static uint64_t pick_datapath_id(const struct ofproto *ofproto) { const struct ofport *port; port = get_port(ofproto, ODPP_LOCAL); if (port) { uint8_t ea[ETH_ADDR_LEN]; int error; error = netdev_get_etheraddr(port->netdev, ea); if (!error) { return eth_addr_to_uint64(ea); } VLOG_WARN("could not get MAC address for %s (%s)", netdev_get_name(port->netdev), strerror(error)); } return ofproto->fallback_dpid; } static uint64_t pick_fallback_dpid(void) { uint8_t ea[ETH_ADDR_LEN]; eth_addr_nicira_random(ea); return eth_addr_to_uint64(ea); } static void ofproto_unixctl_list(struct unixctl_conn *conn, const char *arg OVS_UNUSED, void *aux OVS_UNUSED) { const struct shash_node *node; struct ds results; ds_init(&results); SHASH_FOR_EACH (node, &all_ofprotos) { ds_put_format(&results, "%s\n", node->name); } unixctl_command_reply(conn, 200, ds_cstr(&results)); ds_destroy(&results); } struct ofproto_trace { struct action_xlate_ctx ctx; struct flow flow; struct ds *result; }; static void trace_format_rule(struct ds *result, int level, const struct rule *rule) { ds_put_char_multiple(result, '\t', level); if (!rule) { ds_put_cstr(result, "No match\n"); return; } ds_put_format(result, "Rule: cookie=%#"PRIx64" ", ntohll(rule->flow_cookie)); cls_rule_format(&rule->cr, result); ds_put_char(result, '\n'); ds_put_char_multiple(result, '\t', level); ds_put_cstr(result, "OpenFlow "); ofp_print_actions(result, (const struct ofp_action_header *) rule->actions, rule->n_actions * sizeof *rule->actions); ds_put_char(result, '\n'); } static void trace_format_flow(struct ds *result, int level, const char *title, struct ofproto_trace *trace) { ds_put_char_multiple(result, '\t', level); ds_put_format(result, "%s: ", title); if (flow_equal(&trace->ctx.flow, &trace->flow)) { ds_put_cstr(result, "unchanged"); } else { flow_format(result, &trace->ctx.flow); trace->flow = trace->ctx.flow; } ds_put_char(result, '\n'); } static void trace_resubmit(struct action_xlate_ctx *ctx, const struct rule *rule) { struct ofproto_trace *trace = CONTAINER_OF(ctx, struct ofproto_trace, ctx); struct ds *result = trace->result; ds_put_char(result, '\n'); trace_format_flow(result, ctx->recurse + 1, "Resubmitted flow", trace); trace_format_rule(result, ctx->recurse + 1, rule); } static void ofproto_unixctl_trace(struct unixctl_conn *conn, const char *args_, void *aux OVS_UNUSED) { char *dpname, *in_port_s, *tun_id_s, *packet_s; char *args = xstrdup(args_); char *save_ptr = NULL; struct ofproto *ofproto; struct ofpbuf packet; struct rule *rule; struct ds result; struct flow flow; uint16_t in_port; ovs_be32 tun_id; char *s; ofpbuf_init(&packet, strlen(args) / 2); ds_init(&result); dpname = strtok_r(args, " ", &save_ptr); tun_id_s = strtok_r(NULL, " ", &save_ptr); in_port_s = strtok_r(NULL, " ", &save_ptr); packet_s = strtok_r(NULL, "", &save_ptr); /* Get entire rest of line. */ if (!dpname || !in_port_s || !packet_s) { unixctl_command_reply(conn, 501, "Bad command syntax"); goto exit; } ofproto = shash_find_data(&all_ofprotos, dpname); if (!ofproto) { unixctl_command_reply(conn, 501, "Unknown ofproto (use ofproto/list " "for help)"); goto exit; } tun_id = ntohl(strtoul(tun_id_s, NULL, 10)); in_port = ofp_port_to_odp_port(atoi(in_port_s)); packet_s = ofpbuf_put_hex(&packet, packet_s, NULL); packet_s += strspn(packet_s, " "); if (*packet_s != '\0') { unixctl_command_reply(conn, 501, "Trailing garbage in command"); goto exit; } if (packet.size < ETH_HEADER_LEN) { unixctl_command_reply(conn, 501, "Packet data too short for Ethernet"); goto exit; } ds_put_cstr(&result, "Packet: "); s = ofp_packet_to_string(packet.data, packet.size, packet.size); ds_put_cstr(&result, s); free(s); flow_extract(&packet, tun_id, in_port, &flow); ds_put_cstr(&result, "Flow: "); flow_format(&result, &flow); ds_put_char(&result, '\n'); rule = rule_lookup(ofproto, &flow); trace_format_rule(&result, 0, rule); if (rule) { struct ofproto_trace trace; struct ofpbuf *odp_actions; trace.result = &result; trace.flow = flow; action_xlate_ctx_init(&trace.ctx, ofproto, &flow, &packet); trace.ctx.resubmit_hook = trace_resubmit; odp_actions = xlate_actions(&trace.ctx, rule->actions, rule->n_actions); ds_put_char(&result, '\n'); trace_format_flow(&result, 0, "Final flow", &trace); ds_put_cstr(&result, "Datapath actions: "); format_odp_actions(&result, odp_actions->data, odp_actions->size); ofpbuf_delete(odp_actions); } unixctl_command_reply(conn, 200, ds_cstr(&result)); exit: ds_destroy(&result); ofpbuf_uninit(&packet); free(args); } static void ofproto_unixctl_init(void) { static bool registered; if (registered) { return; } registered = true; unixctl_command_register("ofproto/list", ofproto_unixctl_list, NULL); unixctl_command_register("ofproto/trace", ofproto_unixctl_trace, NULL); } static bool default_normal_ofhook_cb(const struct flow *flow, const struct ofpbuf *packet, struct ofpbuf *odp_actions, tag_type *tags, uint16_t *nf_output_iface, void *ofproto_) { struct ofproto *ofproto = ofproto_; int out_port; /* Drop frames for reserved multicast addresses. */ if (eth_addr_is_reserved(flow->dl_dst)) { return true; } /* Learn source MAC (but don't try to learn from revalidation). */ if (packet != NULL) { tag_type rev_tag = mac_learning_learn(ofproto->ml, flow->dl_src, 0, flow->in_port, GRAT_ARP_LOCK_NONE); if (rev_tag) { /* The log messages here could actually be useful in debugging, * so keep the rate limit relatively high. */ static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(30, 300); VLOG_DBG_RL(&rl, "learned that "ETH_ADDR_FMT" is on port %"PRIu16, ETH_ADDR_ARGS(flow->dl_src), flow->in_port); ofproto_revalidate(ofproto, rev_tag); } } /* Determine output port. */ out_port = mac_learning_lookup_tag(ofproto->ml, flow->dl_dst, 0, tags, NULL); if (out_port < 0) { flood_packets(ofproto, flow->in_port, OFPPC_NO_FLOOD, nf_output_iface, odp_actions); } else if (out_port != flow->in_port) { nl_msg_put_u32(odp_actions, ODPAT_OUTPUT, out_port); *nf_output_iface = out_port; } else { /* Drop. */ } return true; } static const struct ofhooks default_ofhooks = { default_normal_ofhook_cb, NULL, NULL };