/* * Copyright (c) 2009, 2010 Nicira Networks. * Copyright (c) 2010 Jean Tourrilhes - HP-Labs. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "ofproto.h" #include #include #include #include #include #include #include #include "classifier.h" #include "coverage.h" #include "discovery.h" #include "dynamic-string.h" #include "fail-open.h" #include "hash.h" #include "hmap.h" #include "in-band.h" #include "mac-learning.h" #include "netdev.h" #include "netflow.h" #include "ofp-print.h" #include "ofp-util.h" #include "ofproto-sflow.h" #include "ofpbuf.h" #include "openflow/nicira-ext.h" #include "openflow/openflow.h" #include "openvswitch/xflow.h" #include "packets.h" #include "pinsched.h" #include "pktbuf.h" #include "poll-loop.h" #include "rconn.h" #include "shash.h" #include "status.h" #include "stream-ssl.h" #include "svec.h" #include "tag.h" #include "timeval.h" #include "unixctl.h" #include "vconn.h" #include "vlog.h" #include "wdp.h" #include "xfif.h" #include "xtoxll.h" VLOG_DEFINE_THIS_MODULE(ofproto) #include "sflow_api.h" struct ofproto_rule { uint64_t flow_cookie; /* Controller-issued identifier. (Kept in network-byte order.) */ bool send_flow_removed; /* Send a flow removed message? */ tag_type tags; /* Tags (set only by hooks). */ }; static struct ofproto_rule * ofproto_rule_cast(const struct wdp_rule *wdp_rule) { return wdp_rule->client_data; } static void ofproto_rule_init(struct wdp_rule *wdp_rule) { wdp_rule->client_data = xzalloc(sizeof(struct ofproto_rule)); } static inline bool rule_is_hidden(const struct wdp_rule *rule) { /* Rules with priority higher than UINT16_MAX are set up by ofproto itself * (e.g. by in-band control) and are intentionally hidden from the * controller. */ if (rule->cr.flow.priority > UINT16_MAX) { return true; } return false; } static int delete_flow(struct ofproto *, struct wdp_rule *, uint8_t reason); /* ofproto supports two kinds of OpenFlow connections: * * - "Primary" connections to ordinary OpenFlow controllers. ofproto * maintains persistent connections to these controllers and by default * sends them asynchronous messages such as packet-ins. * * - "Service" connections, e.g. from ovs-ofctl. When these connections * drop, it is the other side's responsibility to reconnect them if * necessary. ofproto does not send them asynchronous messages by default. * * Currently, active (tcp, ssl, unix) connections are always "primary" * connections and passive (ptcp, pssl, punix) connections are always "service" * connections. There is no inherent reason for this, but it reflects the * common case. */ enum ofconn_type { OFCONN_PRIMARY, /* An ordinary OpenFlow controller. */ OFCONN_SERVICE /* A service connection, e.g. "ovs-ofctl". */ }; /* A listener for incoming OpenFlow "service" connections. */ struct ofservice { struct hmap_node node; /* In struct ofproto's "services" hmap. */ struct pvconn *pvconn; /* OpenFlow connection listener. */ /* These are not used by ofservice directly. They are settings for * accepted "struct ofconn"s from the pvconn. */ int probe_interval; /* Max idle time before probing, in seconds. */ int rate_limit; /* Max packet-in rate in packets per second. */ int burst_limit; /* Limit on accumulating packet credits. */ }; static struct ofservice *ofservice_lookup(struct ofproto *, const char *target); static int ofservice_create(struct ofproto *, const struct ofproto_controller *); static void ofservice_reconfigure(struct ofservice *, const struct ofproto_controller *); static void ofservice_destroy(struct ofproto *, struct ofservice *); /* An OpenFlow connection. */ struct ofconn { struct ofproto *ofproto; /* The ofproto that owns this connection. */ struct list node; /* In struct ofproto's "all_conns" list. */ struct rconn *rconn; /* OpenFlow connection. */ enum ofconn_type type; /* Type. */ bool flow_mod_table_id; /* NXT_FLOW_MOD_TABLE_ID enabled? */ /* OFPT_PACKET_IN related data. */ struct rconn_packet_counter *packet_in_counter; /* # queued on 'rconn'. */ struct pinsched *schedulers[2]; /* Indexed by reason code; see below. */ struct pktbuf *pktbuf; /* OpenFlow packet buffers. */ int miss_send_len; /* Bytes to send of buffered packets. */ /* Number of OpenFlow messages queued on 'rconn' as replies to OpenFlow * requests, and the maximum number before we stop reading OpenFlow * requests. */ #define OFCONN_REPLY_MAX 100 struct rconn_packet_counter *reply_counter; /* type == OFCONN_PRIMARY only. */ enum nx_role role; /* Role. */ struct hmap_node hmap_node; /* In struct ofproto's "controllers" map. */ struct discovery *discovery; /* Controller discovery object, if enabled. */ struct status_category *ss; /* Switch status category. */ enum ofproto_band band; /* In-band or out-of-band? */ }; /* We use OFPR_NO_MATCH and OFPR_ACTION as indexes into struct ofconn's * "schedulers" array. Their values are 0 and 1, and their meanings and values * coincide with WDP_CHAN_MISS and WDP_CHAN_ACTION, so this is convenient. In * case anything ever changes, check their values here. */ #define N_SCHEDULERS 2 BUILD_ASSERT_DECL(OFPR_NO_MATCH == 0); BUILD_ASSERT_DECL(OFPR_NO_MATCH == WDP_CHAN_MISS); BUILD_ASSERT_DECL(OFPR_ACTION == 1); BUILD_ASSERT_DECL(OFPR_ACTION == WDP_CHAN_ACTION); static struct ofconn *ofconn_create(struct ofproto *, struct rconn *, enum ofconn_type); static void ofconn_destroy(struct ofconn *); static void ofconn_run(struct ofconn *, struct ofproto *); static void ofconn_wait(struct ofconn *); static bool ofconn_receives_async_msgs(const struct ofconn *); static char *ofconn_make_name(const struct ofproto *, const char *target); static void ofconn_set_rate_limit(struct ofconn *, int rate, int burst); static void queue_tx(struct ofpbuf *msg, const struct ofconn *ofconn, struct rconn_packet_counter *counter); static void send_packet_in(struct ofproto *, struct wdp_packet *); static void do_send_packet_in(struct wdp_packet *, void *ofconn); struct ofproto { /* Settings. */ uint64_t datapath_id; /* Datapath ID. */ uint64_t fallback_dpid; /* Datapath ID if no better choice found. */ char *mfr_desc; /* Manufacturer. */ char *hw_desc; /* Hardware. */ char *sw_desc; /* Software version. */ char *serial_desc; /* Serial number. */ char *dp_desc; /* Datapath description. */ /* Datapath. */ struct wdp *wdp; uint32_t max_ports; /* Configuration. */ struct switch_status *switch_status; struct fail_open *fail_open; struct netflow *netflow; struct ofproto_sflow *sflow; bool tun_id_from_cookie; /* NXT_TUN_ID_FROM_COOKIE enabled? */ /* In-band control. */ struct in_band *in_band; long long int next_in_band_update; struct sockaddr_in *extra_in_band_remotes; size_t n_extra_remotes; /* OpenFlow connections. */ struct hmap controllers; /* Controller "struct ofconn"s. */ struct list all_conns; /* Contains "struct ofconn"s. */ enum ofproto_fail_mode fail_mode; /* OpenFlow listeners. */ struct hmap services; /* Contains "struct ofservice"s. */ struct pvconn **snoops; size_t n_snoops; }; static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); static uint64_t pick_datapath_id(const struct ofproto *); static uint64_t pick_fallback_dpid(void); static void handle_wdp_packet(struct ofproto *, struct wdp_packet *); static void handle_openflow(struct ofconn *, struct ofproto *, struct ofpbuf *); int ofproto_create(const char *datapath, const char *datapath_type, const struct ofhooks *ofhooks, void *aux, struct ofproto **ofprotop) { struct wdp_stats stats; struct ofproto *p; struct wdp *wdp; int error; *ofprotop = NULL; /* Connect to datapath and start listening for messages. */ error = wdp_open(datapath, datapath_type, &wdp); if (error) { VLOG_ERR("failed to open datapath %s: %s", datapath, strerror(error)); return error; } error = wdp_get_wdp_stats(wdp, &stats); if (error) { VLOG_ERR("failed to obtain stats for datapath %s: %s", datapath, strerror(error)); wdp_close(wdp); return error; } error = wdp_recv_set_mask(wdp, ((1 << WDP_CHAN_MISS) | (1 << WDP_CHAN_ACTION) | (1 << WDP_CHAN_SFLOW))); if (error) { VLOG_ERR("failed to listen on datapath %s: %s", datapath, strerror(error)); wdp_close(wdp); return error; } wdp_flow_flush(wdp); wdp_recv_purge(wdp); wdp_set_ofhooks(wdp, ofhooks, aux); /* Initialize settings. */ p = xzalloc(sizeof *p); p->fallback_dpid = pick_fallback_dpid(); p->datapath_id = p->fallback_dpid; p->mfr_desc = xstrdup(DEFAULT_MFR_DESC); p->hw_desc = xstrdup(DEFAULT_HW_DESC); p->sw_desc = xstrdup(DEFAULT_SW_DESC); p->serial_desc = xstrdup(DEFAULT_SERIAL_DESC); p->dp_desc = xstrdup(DEFAULT_DP_DESC); /* Initialize datapath. */ p->wdp = wdp; p->max_ports = stats.max_ports; /* Initialize submodules. */ p->switch_status = switch_status_create(p); p->in_band = NULL; p->fail_open = NULL; p->netflow = NULL; p->sflow = NULL; /* Initialize OpenFlow connections. */ list_init(&p->all_conns); hmap_init(&p->controllers); hmap_init(&p->services); p->snoops = NULL; p->n_snoops = 0; /* Pick final datapath ID. */ p->datapath_id = pick_datapath_id(p); VLOG_INFO("using datapath ID %016"PRIx64, p->datapath_id); *ofprotop = p; return 0; } void ofproto_set_datapath_id(struct ofproto *p, uint64_t datapath_id) { uint64_t old_dpid = p->datapath_id; p->datapath_id = datapath_id ? datapath_id : pick_datapath_id(p); if (p->datapath_id != old_dpid) { VLOG_INFO("datapath ID changed to %016"PRIx64, p->datapath_id); /* Force all active connections to reconnect, since there is no way to * notify a controller that the datapath ID has changed. */ ofproto_reconnect_controllers(p); } } static bool is_discovery_controller(const struct ofproto_controller *c) { return !strcmp(c->target, "discover"); } static bool is_in_band_controller(const struct ofproto_controller *c) { return is_discovery_controller(c) || c->band == OFPROTO_IN_BAND; } /* Creates a new controller in 'ofproto'. Some of the settings are initially * drawn from 'c', but update_controller() needs to be called later to finish * the new ofconn's configuration. */ static void add_controller(struct ofproto *ofproto, const struct ofproto_controller *c) { struct discovery *discovery; struct ofconn *ofconn; if (is_discovery_controller(c)) { int error = discovery_create(c->accept_re, c->update_resolv_conf, ofproto->wdp, ofproto->switch_status, &discovery); if (error) { return; } } else { discovery = NULL; } ofconn = ofconn_create(ofproto, rconn_create(5, 8), OFCONN_PRIMARY); ofconn->pktbuf = pktbuf_create(); ofconn->miss_send_len = OFP_DEFAULT_MISS_SEND_LEN; if (discovery) { ofconn->discovery = discovery; } else { char *name = ofconn_make_name(ofproto, c->target); rconn_connect(ofconn->rconn, c->target, name); free(name); } hmap_insert(&ofproto->controllers, &ofconn->hmap_node, hash_string(c->target, 0)); } /* Reconfigures 'ofconn' to match 'c'. This function cannot update an ofconn's * target or turn discovery on or off (these are done by creating new ofconns * and deleting old ones), but it can update the rest of an ofconn's * settings. */ static void update_controller(struct ofconn *ofconn, const struct ofproto_controller *c) { int probe_interval; ofconn->band = (is_in_band_controller(c) ? OFPROTO_IN_BAND : OFPROTO_OUT_OF_BAND); rconn_set_max_backoff(ofconn->rconn, c->max_backoff); probe_interval = c->probe_interval ? MAX(c->probe_interval, 5) : 0; rconn_set_probe_interval(ofconn->rconn, probe_interval); if (ofconn->discovery) { discovery_set_update_resolv_conf(ofconn->discovery, c->update_resolv_conf); discovery_set_accept_controller_re(ofconn->discovery, c->accept_re); } ofconn_set_rate_limit(ofconn, c->rate_limit, c->burst_limit); } static const char * ofconn_get_target(const struct ofconn *ofconn) { return ofconn->discovery ? "discover" : rconn_get_target(ofconn->rconn); } static struct ofconn * find_controller_by_target(struct ofproto *ofproto, const char *target) { struct ofconn *ofconn; HMAP_FOR_EACH_WITH_HASH (ofconn, hmap_node, hash_string(target, 0), &ofproto->controllers) { if (!strcmp(ofconn_get_target(ofconn), target)) { return ofconn; } } return NULL; } static void update_in_band_remotes(struct ofproto *ofproto) { const struct ofconn *ofconn; struct sockaddr_in *addrs; size_t max_addrs, n_addrs; bool discovery; size_t i; /* Allocate enough memory for as many remotes as we could possibly have. */ max_addrs = ofproto->n_extra_remotes + hmap_count(&ofproto->controllers); addrs = xmalloc(max_addrs * sizeof *addrs); n_addrs = 0; /* Add all the remotes. */ discovery = false; HMAP_FOR_EACH (ofconn, hmap_node, &ofproto->controllers) { struct sockaddr_in *sin = &addrs[n_addrs]; if (ofconn->band == OFPROTO_OUT_OF_BAND) { continue; } sin->sin_addr.s_addr = rconn_get_remote_ip(ofconn->rconn); if (sin->sin_addr.s_addr) { sin->sin_port = rconn_get_remote_port(ofconn->rconn); n_addrs++; } if (ofconn->discovery) { discovery = true; } } for (i = 0; i < ofproto->n_extra_remotes; i++) { addrs[n_addrs++] = ofproto->extra_in_band_remotes[i]; } /* Create or update or destroy in-band. * * Ordinarily we only enable in-band if there's at least one remote * address, but discovery needs the in-band rules for DHCP to be installed * even before we know any remote addresses. */ if (n_addrs || discovery) { if (!ofproto->in_band) { in_band_create(ofproto, ofproto->wdp, ofproto->switch_status, &ofproto->in_band); } if (ofproto->in_band) { in_band_set_remotes(ofproto->in_band, addrs, n_addrs); } ofproto->next_in_band_update = time_msec() + 1000; } else { in_band_destroy(ofproto->in_band); ofproto->in_band = NULL; } /* Clean up. */ free(addrs); } static void update_fail_open(struct ofproto *p) { struct ofconn *ofconn; if (!hmap_is_empty(&p->controllers) && p->fail_mode == OFPROTO_FAIL_STANDALONE) { struct rconn **rconns; size_t n; if (!p->fail_open) { p->fail_open = fail_open_create(p, p->switch_status); } n = 0; rconns = xmalloc(hmap_count(&p->controllers) * sizeof *rconns); HMAP_FOR_EACH (ofconn, hmap_node, &p->controllers) { rconns[n++] = ofconn->rconn; } fail_open_set_controllers(p->fail_open, rconns, n); /* p->fail_open takes ownership of 'rconns'. */ } else { fail_open_destroy(p->fail_open); p->fail_open = NULL; } } void ofproto_set_controllers(struct ofproto *p, const struct ofproto_controller *controllers, size_t n_controllers) { struct shash new_controllers; struct ofconn *ofconn, *next_ofconn; struct ofservice *ofservice, *next_ofservice; bool ss_exists; size_t i; /* Create newly configured controllers and services. * Create a name to ofproto_controller mapping in 'new_controllers'. */ shash_init(&new_controllers); for (i = 0; i < n_controllers; i++) { const struct ofproto_controller *c = &controllers[i]; if (!vconn_verify_name(c->target) || !strcmp(c->target, "discover")) { if (!find_controller_by_target(p, c->target)) { add_controller(p, c); } } else if (!pvconn_verify_name(c->target)) { if (!ofservice_lookup(p, c->target) && ofservice_create(p, c)) { continue; } } else { VLOG_WARN_RL(&rl, "%s: unsupported controller \"%s\"", wdp_name(p->wdp), c->target); continue; } shash_add_once(&new_controllers, c->target, &controllers[i]); } /* Delete controllers that are no longer configured. * Update configuration of all now-existing controllers. */ ss_exists = false; HMAP_FOR_EACH_SAFE (ofconn, next_ofconn, hmap_node, &p->controllers) { struct ofproto_controller *c; c = shash_find_data(&new_controllers, ofconn_get_target(ofconn)); if (!c) { ofconn_destroy(ofconn); } else { update_controller(ofconn, c); if (ofconn->ss) { ss_exists = true; } } } /* Delete services that are no longer configured. * Update configuration of all now-existing services. */ HMAP_FOR_EACH_SAFE (ofservice, next_ofservice, node, &p->services) { struct ofproto_controller *c; c = shash_find_data(&new_controllers, pvconn_get_name(ofservice->pvconn)); if (!c) { ofservice_destroy(p, ofservice); } else { ofservice_reconfigure(ofservice, c); } } shash_destroy(&new_controllers); update_in_band_remotes(p); update_fail_open(p); if (!hmap_is_empty(&p->controllers) && !ss_exists) { ofconn = CONTAINER_OF(hmap_first(&p->controllers), struct ofconn, hmap_node); ofconn->ss = switch_status_register(p->switch_status, "remote", rconn_status_cb, ofconn->rconn); } } void ofproto_set_fail_mode(struct ofproto *p, enum ofproto_fail_mode fail_mode) { p->fail_mode = fail_mode; update_fail_open(p); } /* Drops the connections between 'ofproto' and all of its controllers, forcing * them to reconnect. */ void ofproto_reconnect_controllers(struct ofproto *ofproto) { struct ofconn *ofconn; LIST_FOR_EACH (ofconn, node, &ofproto->all_conns) { rconn_reconnect(ofconn->rconn); } } static bool any_extras_changed(const struct ofproto *ofproto, const struct sockaddr_in *extras, size_t n) { size_t i; if (n != ofproto->n_extra_remotes) { return true; } for (i = 0; i < n; i++) { const struct sockaddr_in *old = &ofproto->extra_in_band_remotes[i]; const struct sockaddr_in *new = &extras[i]; if (old->sin_addr.s_addr != new->sin_addr.s_addr || old->sin_port != new->sin_port) { return true; } } return false; } /* Sets the 'n' TCP port addresses in 'extras' as ones to which 'ofproto''s * in-band control should guarantee access, in the same way that in-band * control guarantees access to OpenFlow controllers. */ void ofproto_set_extra_in_band_remotes(struct ofproto *ofproto, const struct sockaddr_in *extras, size_t n) { if (!any_extras_changed(ofproto, extras, n)) { return; } free(ofproto->extra_in_band_remotes); ofproto->n_extra_remotes = n; ofproto->extra_in_band_remotes = xmemdup(extras, n * sizeof *extras); update_in_band_remotes(ofproto); } void ofproto_set_desc(struct ofproto *p, const char *mfr_desc, const char *hw_desc, const char *sw_desc, const char *serial_desc, const char *dp_desc) { struct ofp_desc_stats *ods; if (mfr_desc) { if (strlen(mfr_desc) >= sizeof ods->mfr_desc) { VLOG_WARN("truncating mfr_desc, must be less than %zu characters", sizeof ods->mfr_desc); } free(p->mfr_desc); p->mfr_desc = xstrdup(mfr_desc); } if (hw_desc) { if (strlen(hw_desc) >= sizeof ods->hw_desc) { VLOG_WARN("truncating hw_desc, must be less than %zu characters", sizeof ods->hw_desc); } free(p->hw_desc); p->hw_desc = xstrdup(hw_desc); } if (sw_desc) { if (strlen(sw_desc) >= sizeof ods->sw_desc) { VLOG_WARN("truncating sw_desc, must be less than %zu characters", sizeof ods->sw_desc); } free(p->sw_desc); p->sw_desc = xstrdup(sw_desc); } if (serial_desc) { if (strlen(serial_desc) >= sizeof ods->serial_num) { VLOG_WARN("truncating serial_desc, must be less than %zu " "characters", sizeof ods->serial_num); } free(p->serial_desc); p->serial_desc = xstrdup(serial_desc); } if (dp_desc) { if (strlen(dp_desc) >= sizeof ods->dp_desc) { VLOG_WARN("truncating dp_desc, must be less than %zu characters", sizeof ods->dp_desc); } free(p->dp_desc); p->dp_desc = xstrdup(dp_desc); } } static int set_pvconns(struct pvconn ***pvconnsp, size_t *n_pvconnsp, const struct svec *svec) { struct pvconn **pvconns = *pvconnsp; size_t n_pvconns = *n_pvconnsp; int retval = 0; size_t i; for (i = 0; i < n_pvconns; i++) { pvconn_close(pvconns[i]); } free(pvconns); pvconns = xmalloc(svec->n * sizeof *pvconns); n_pvconns = 0; for (i = 0; i < svec->n; i++) { const char *name = svec->names[i]; struct pvconn *pvconn; int error; error = pvconn_open(name, &pvconn); if (!error) { pvconns[n_pvconns++] = pvconn; } else { VLOG_ERR("failed to listen on %s: %s", name, strerror(error)); if (!retval) { retval = error; } } } *pvconnsp = pvconns; *n_pvconnsp = n_pvconns; return retval; } int ofproto_set_snoops(struct ofproto *ofproto, const struct svec *snoops) { return set_pvconns(&ofproto->snoops, &ofproto->n_snoops, snoops); } int ofproto_set_netflow(struct ofproto *ofproto, const struct netflow_options *nf_options) { if (nf_options && nf_options->collectors.n) { if (!ofproto->netflow) { ofproto->netflow = netflow_create(); } return netflow_set_options(ofproto->netflow, nf_options); } else { netflow_destroy(ofproto->netflow); ofproto->netflow = NULL; return 0; } } void ofproto_set_sflow(struct ofproto *ofproto, const struct ofproto_sflow_options *oso) { struct ofproto_sflow *os = ofproto->sflow; if (oso) { if (!os) { os = ofproto->sflow = ofproto_sflow_create(ofproto->wdp); /* XXX ofport */ } ofproto_sflow_set_options(os, oso); } else { ofproto_sflow_destroy(os); ofproto->sflow = NULL; } } uint64_t ofproto_get_datapath_id(const struct ofproto *ofproto) { return ofproto->datapath_id; } bool ofproto_has_primary_controller(const struct ofproto *ofproto) { return !hmap_is_empty(&ofproto->controllers); } enum ofproto_fail_mode ofproto_get_fail_mode(const struct ofproto *p) { return p->fail_mode; } void ofproto_get_snoops(const struct ofproto *ofproto, struct svec *snoops) { size_t i; for (i = 0; i < ofproto->n_snoops; i++) { svec_add(snoops, pvconn_get_name(ofproto->snoops[i])); } } void ofproto_destroy(struct ofproto *p) { struct ofservice *ofservice, *next_ofservice; struct ofconn *ofconn, *next_ofconn; size_t i; if (!p) { return; } /* Destroy fail-open and in-band early, since they touch the classifier. */ fail_open_destroy(p->fail_open); p->fail_open = NULL; in_band_destroy(p->in_band); p->in_band = NULL; free(p->extra_in_band_remotes); ofproto_flush_flows(p); LIST_FOR_EACH_SAFE (ofconn, next_ofconn, node, &p->all_conns) { ofconn_destroy(ofconn); } hmap_destroy(&p->controllers); wdp_close(p->wdp); switch_status_destroy(p->switch_status); netflow_destroy(p->netflow); ofproto_sflow_destroy(p->sflow); HMAP_FOR_EACH_SAFE (ofservice, next_ofservice, node, &p->services) { ofservice_destroy(p, ofservice); } hmap_destroy(&p->services); for (i = 0; i < p->n_snoops; i++) { pvconn_close(p->snoops[i]); } free(p->snoops); free(p->mfr_desc); free(p->hw_desc); free(p->sw_desc); free(p->serial_desc); free(p->dp_desc); free(p); } int ofproto_run(struct ofproto *p) { int error = ofproto_run1(p); if (!error) { error = ofproto_run2(p, false); } return error; } /* Returns a "preference level" for snooping 'ofconn'. A higher return value * means that 'ofconn' is more interesting for monitoring than a lower return * value. */ static int snoop_preference(const struct ofconn *ofconn) { switch (ofconn->role) { case NX_ROLE_MASTER: return 3; case NX_ROLE_OTHER: return 2; case NX_ROLE_SLAVE: return 1; default: /* Shouldn't happen. */ return 0; } } /* One of ofproto's "snoop" pvconns has accepted a new connection on 'vconn'. * Connects this vconn to a controller. */ static void add_snooper(struct ofproto *ofproto, struct vconn *vconn) { struct ofconn *ofconn, *best; /* Pick a controller for monitoring. */ best = NULL; LIST_FOR_EACH (ofconn, node, &ofproto->all_conns) { if (ofconn->type == OFCONN_PRIMARY && (!best || snoop_preference(ofconn) > snoop_preference(best))) { best = ofconn; } } if (best) { rconn_add_monitor(best->rconn, vconn); } else { VLOG_INFO_RL(&rl, "no controller connection to snoop"); vconn_close(vconn); } } static void ofproto_port_poll_cb(const struct ofp_phy_port *opp, uint8_t reason, void *ofproto_) { /* XXX Should limit the number of queued port status change messages. */ struct ofproto *ofproto = ofproto_; struct ofconn *ofconn; LIST_FOR_EACH (ofconn, node, &ofproto->all_conns) { struct ofp_port_status *ops; struct ofpbuf *b; if (!ofconn_receives_async_msgs(ofconn)) { continue; } ops = make_openflow_xid(sizeof *ops, OFPT_PORT_STATUS, 0, &b); ops->reason = reason; ops->desc = *opp; hton_ofp_phy_port(&ops->desc); queue_tx(b, ofconn, NULL); } } int ofproto_run1(struct ofproto *p) { struct ofconn *ofconn, *next_ofconn; struct ofservice *ofservice; int i; for (i = 0; i < 50; i++) { struct wdp_packet packet; int error; error = wdp_recv(p->wdp, &packet); if (error) { if (error == ENODEV) { /* Someone destroyed the datapath behind our back. The caller * better destroy us and give up, because we're just going to * spin from here on out. */ static struct vlog_rate_limit rl2 = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_ERR_RL(&rl2, "%s: datapath was destroyed externally", wdp_name(p->wdp)); return ENODEV; } break; } handle_wdp_packet(p, xmemdup(&packet, sizeof packet)); } wdp_port_poll(p->wdp, ofproto_port_poll_cb, p); if (p->in_band) { if (time_msec() >= p->next_in_band_update) { update_in_band_remotes(p); } in_band_run(p->in_band); } LIST_FOR_EACH_SAFE (ofconn, next_ofconn, node, &p->all_conns) { ofconn_run(ofconn, p); } /* Fail-open maintenance. Do this after processing the ofconns since * fail-open checks the status of the controller rconn. */ if (p->fail_open) { fail_open_run(p->fail_open); } HMAP_FOR_EACH (ofservice, node, &p->services) { struct vconn *vconn; int retval; retval = pvconn_accept(ofservice->pvconn, OFP_VERSION, &vconn); if (!retval) { struct rconn *rconn; char *name; rconn = rconn_create(ofservice->probe_interval, 0); name = ofconn_make_name(p, vconn_get_name(vconn)); rconn_connect_unreliably(rconn, vconn, name); free(name); ofconn = ofconn_create(p, rconn, OFCONN_SERVICE); ofconn_set_rate_limit(ofconn, ofservice->rate_limit, ofservice->burst_limit); } else if (retval != EAGAIN) { VLOG_WARN_RL(&rl, "accept failed (%s)", strerror(retval)); } } for (i = 0; i < p->n_snoops; i++) { struct vconn *vconn; int retval; retval = pvconn_accept(p->snoops[i], OFP_VERSION, &vconn); if (!retval) { add_snooper(p, vconn); } else if (retval != EAGAIN) { VLOG_WARN_RL(&rl, "accept failed (%s)", strerror(retval)); } } if (p->netflow) { netflow_run(p->netflow); } if (p->sflow) { ofproto_sflow_run(p->sflow); } return 0; } int ofproto_run2(struct ofproto *p OVS_UNUSED, bool revalidate_all OVS_UNUSED) { return 0; } void ofproto_wait(struct ofproto *p) { struct ofservice *ofservice; struct ofconn *ofconn; size_t i; wdp_recv_wait(p->wdp); wdp_port_poll_wait(p->wdp); LIST_FOR_EACH (ofconn, node, &p->all_conns) { ofconn_wait(ofconn); } if (p->in_band) { poll_timer_wait_until(p->next_in_band_update); in_band_wait(p->in_band); } if (p->fail_open) { fail_open_wait(p->fail_open); } if (p->sflow) { ofproto_sflow_wait(p->sflow); } HMAP_FOR_EACH (ofservice, node, &p->services) { pvconn_wait(ofservice->pvconn); } for (i = 0; i < p->n_snoops; i++) { pvconn_wait(p->snoops[i]); } } void ofproto_revalidate(struct ofproto *ofproto, tag_type tag) { wdp_revalidate(ofproto->wdp, tag); } void ofproto_revalidate_all(struct ofproto *ofproto) { wdp_revalidate_all(ofproto->wdp); } bool ofproto_is_alive(const struct ofproto *p) { return !hmap_is_empty(&p->controllers); } int ofproto_send_packet(struct ofproto *p, const flow_t *flow, const union ofp_action *actions, size_t n_actions, const struct ofpbuf *packet) { /* XXX Should we translate the wdp_execute() errno value into an OpenFlow * error code? */ wdp_execute(p->wdp, flow->in_port, actions, n_actions, packet); return 0; } /* Intended for used by ofproto clients and ofproto submodules to add flows to * the flow table. */ void ofproto_add_flow(struct ofproto *p, const flow_t *flow, const union ofp_action *actions, size_t n_actions, int idle_timeout) { struct wdp_flow_put put; struct wdp_rule *rule; put.flags = WDP_PUT_CREATE | WDP_PUT_MODIFY | WDP_PUT_ALL; put.flow = flow; put.actions = actions; put.n_actions = n_actions; put.idle_timeout = idle_timeout; put.hard_timeout = 0; put.ofp_table_id = 0xff; put.cookie = htonll(0); put.xid = htonl(0); if (!wdp_flow_put(p->wdp, &put, NULL, &rule)) { ofproto_rule_init(rule); } } /* Intended for used by ofproto clients and ofproto submodules to delete flows * that they earlier added to the flow table. */ void ofproto_delete_flow(struct ofproto *ofproto, const flow_t *flow) { struct wdp_rule *rule = wdp_flow_get(ofproto->wdp, flow, UINT_MAX); if (rule) { delete_flow(ofproto, rule, OFPRR_DELETE); } } void ofproto_flush_flows(struct ofproto *ofproto) { COVERAGE_INC(ofproto_flush); wdp_flow_flush(ofproto->wdp); if (ofproto->in_band) { in_band_flushed(ofproto->in_band); } if (ofproto->fail_open) { fail_open_flushed(ofproto->fail_open); } } static struct ofconn * ofconn_create(struct ofproto *p, struct rconn *rconn, enum ofconn_type type) { struct ofconn *ofconn = xzalloc(sizeof *ofconn); ofconn->ofproto = p; list_push_back(&p->all_conns, &ofconn->node); ofconn->rconn = rconn; ofconn->type = type; ofconn->role = NX_ROLE_OTHER; ofconn->packet_in_counter = rconn_packet_counter_create (); ofconn->pktbuf = NULL; ofconn->miss_send_len = 0; ofconn->reply_counter = rconn_packet_counter_create (); return ofconn; } static void ofconn_destroy(struct ofconn *ofconn) { if (ofconn->type == OFCONN_PRIMARY) { hmap_remove(&ofconn->ofproto->controllers, &ofconn->hmap_node); } discovery_destroy(ofconn->discovery); list_remove(&ofconn->node); switch_status_unregister(ofconn->ss); rconn_destroy(ofconn->rconn); rconn_packet_counter_destroy(ofconn->packet_in_counter); rconn_packet_counter_destroy(ofconn->reply_counter); pktbuf_destroy(ofconn->pktbuf); free(ofconn); } static void ofconn_run(struct ofconn *ofconn, struct ofproto *p) { int iteration; size_t i; if (ofconn->discovery) { char *controller_name; if (rconn_is_connectivity_questionable(ofconn->rconn)) { discovery_question_connectivity(ofconn->discovery); } if (discovery_run(ofconn->discovery, &controller_name)) { if (controller_name) { char *ofconn_name = ofconn_make_name(p, controller_name); rconn_connect(ofconn->rconn, controller_name, ofconn_name); free(ofconn_name); } else { rconn_disconnect(ofconn->rconn); } } } for (i = 0; i < N_SCHEDULERS; i++) { pinsched_run(ofconn->schedulers[i], do_send_packet_in, ofconn); } rconn_run(ofconn->rconn); if (rconn_packet_counter_read (ofconn->reply_counter) < OFCONN_REPLY_MAX) { /* Limit the number of iterations to prevent other tasks from * starving. */ for (iteration = 0; iteration < 50; iteration++) { struct ofpbuf *of_msg = rconn_recv(ofconn->rconn); if (!of_msg) { break; } if (p->fail_open) { fail_open_maybe_recover(p->fail_open); } handle_openflow(ofconn, p, of_msg); ofpbuf_delete(of_msg); } } if (!ofconn->discovery && !rconn_is_alive(ofconn->rconn)) { ofconn_destroy(ofconn); } } static void ofconn_wait(struct ofconn *ofconn) { int i; if (ofconn->discovery) { discovery_wait(ofconn->discovery); } for (i = 0; i < N_SCHEDULERS; i++) { pinsched_wait(ofconn->schedulers[i]); } rconn_run_wait(ofconn->rconn); if (rconn_packet_counter_read (ofconn->reply_counter) < OFCONN_REPLY_MAX) { rconn_recv_wait(ofconn->rconn); } else { COVERAGE_INC(ofproto_ofconn_stuck); } } /* Returns true if 'ofconn' should receive asynchronous messages. */ static bool ofconn_receives_async_msgs(const struct ofconn *ofconn) { if (ofconn->type == OFCONN_PRIMARY) { /* Primary controllers always get asynchronous messages unless they * have configured themselves as "slaves". */ return ofconn->role != NX_ROLE_SLAVE; } else { /* Service connections don't get asynchronous messages unless they have * explicitly asked for them by setting a nonzero miss send length. */ return ofconn->miss_send_len > 0; } } /* Returns a human-readable name for an OpenFlow connection between 'ofproto' * and 'target', suitable for use in log messages for identifying the * connection. * * The name is dynamically allocated. The caller should free it (with free()) * when it is no longer needed. */ static char * ofconn_make_name(const struct ofproto *ofproto, const char *target) { return xasprintf("%s<->%s", wdp_base_name(ofproto->wdp), target); } static void ofconn_set_rate_limit(struct ofconn *ofconn, int rate, int burst) { int i; for (i = 0; i < N_SCHEDULERS; i++) { struct pinsched **s = &ofconn->schedulers[i]; if (rate > 0) { if (!*s) { *s = pinsched_create(rate, burst, ofconn->ofproto->switch_status); } else { pinsched_set_limits(*s, rate, burst); } } else { pinsched_destroy(*s); *s = NULL; } } } static void ofservice_reconfigure(struct ofservice *ofservice, const struct ofproto_controller *c) { ofservice->probe_interval = c->probe_interval; ofservice->rate_limit = c->rate_limit; ofservice->burst_limit = c->burst_limit; } /* Creates a new ofservice in 'ofproto'. Returns 0 if successful, otherwise a * positive errno value. */ static int ofservice_create(struct ofproto *ofproto, const struct ofproto_controller *c) { struct ofservice *ofservice; struct pvconn *pvconn; int error; error = pvconn_open(c->target, &pvconn); if (error) { return error; } ofservice = xzalloc(sizeof *ofservice); hmap_insert(&ofproto->services, &ofservice->node, hash_string(c->target, 0)); ofservice->pvconn = pvconn; ofservice_reconfigure(ofservice, c); return 0; } static void ofservice_destroy(struct ofproto *ofproto, struct ofservice *ofservice) { hmap_remove(&ofproto->services, &ofservice->node); pvconn_close(ofservice->pvconn); free(ofservice); } /* Finds and returns the ofservice within 'ofproto' that has the given * 'target', or a null pointer if none exists. */ static struct ofservice * ofservice_lookup(struct ofproto *ofproto, const char *target) { struct ofservice *ofservice; HMAP_FOR_EACH_WITH_HASH (ofservice, node, hash_string(target, 0), &ofproto->services) { if (!strcmp(pvconn_get_name(ofservice->pvconn), target)) { return ofservice; } } return NULL; } static bool rule_has_out_port(const struct wdp_rule *rule, uint16_t out_port) { const union ofp_action *oa; struct actions_iterator i; if (out_port == htons(OFPP_NONE)) { return true; } for (oa = actions_first(&i, rule->actions, rule->n_actions); oa; oa = actions_next(&i)) { if (action_outputs_to_port(oa, out_port)) { return true; } } return false; } static void queue_tx(struct ofpbuf *msg, const struct ofconn *ofconn, struct rconn_packet_counter *counter) { update_openflow_length(msg); if (rconn_send(ofconn->rconn, msg, counter)) { ofpbuf_delete(msg); } } static void send_error_oh(const struct ofconn *ofconn, const struct ofp_header *oh, int error) { struct ofpbuf *buf = make_ofp_error_msg(error, oh); if (buf) { COVERAGE_INC(ofproto_error); queue_tx(buf, ofconn, ofconn->reply_counter); } } static int handle_echo_request(struct ofconn *ofconn, struct ofp_header *oh) { struct ofp_header *rq = oh; queue_tx(make_echo_reply(rq), ofconn, ofconn->reply_counter); return 0; } static int handle_features_request(struct ofproto *p, struct ofconn *ofconn, struct ofp_header *oh) { struct ofpbuf *features; int error; error = wdp_get_features(p->wdp, &features); if (!error) { struct ofp_switch_features *osf = features->data; update_openflow_length(features); osf->header.version = OFP_VERSION; osf->header.type = OFPT_FEATURES_REPLY; osf->header.xid = oh->xid; osf->datapath_id = htonll(p->datapath_id); osf->n_buffers = htonl(pktbuf_capacity()); memset(osf->pad, 0, sizeof osf->pad); /* Turn on capabilities implemented by ofproto. */ osf->capabilities |= htonl(OFPC_FLOW_STATS | OFPC_TABLE_STATS | OFPC_PORT_STATS); queue_tx(features, ofconn, ofconn->reply_counter); } return error; } static int handle_get_config_request(struct ofproto *p, struct ofconn *ofconn, struct ofp_header *oh) { struct ofpbuf *buf; struct ofp_switch_config *osc; uint16_t flags; bool drop_frags; /* Figure out flags. */ wdp_get_drop_frags(p->wdp, &drop_frags); flags = drop_frags ? OFPC_FRAG_DROP : OFPC_FRAG_NORMAL; /* Send reply. */ osc = make_openflow_xid(sizeof *osc, OFPT_GET_CONFIG_REPLY, oh->xid, &buf); osc->flags = htons(flags); osc->miss_send_len = htons(ofconn->miss_send_len); queue_tx(buf, ofconn, ofconn->reply_counter); return 0; } static int handle_set_config(struct ofproto *p, struct ofconn *ofconn, struct ofp_switch_config *osc) { uint16_t flags; int error; error = check_ofp_message(&osc->header, OFPT_SET_CONFIG, sizeof *osc); if (error) { return error; } flags = ntohs(osc->flags); if (ofconn->type == OFCONN_PRIMARY && ofconn->role != NX_ROLE_SLAVE) { switch (flags & OFPC_FRAG_MASK) { case OFPC_FRAG_NORMAL: wdp_set_drop_frags(p->wdp, false); break; case OFPC_FRAG_DROP: wdp_set_drop_frags(p->wdp, true); break; default: VLOG_WARN_RL(&rl, "requested bad fragment mode (flags=%"PRIx16")", osc->flags); break; } } ofconn->miss_send_len = ntohs(osc->miss_send_len); return 0; } /* Checks whether 'ofconn' is a slave controller. If so, returns an OpenFlow * error message code (composed with ofp_mkerr()) for the caller to propagate * upward. Otherwise, returns 0. * * 'oh' is used to make log messages more informative. */ static int reject_slave_controller(struct ofconn *ofconn, const struct ofp_header *oh) { if (ofconn->type == OFCONN_PRIMARY && ofconn->role == NX_ROLE_SLAVE) { static struct vlog_rate_limit perm_rl = VLOG_RATE_LIMIT_INIT(1, 5); char *type_name; type_name = ofp_message_type_to_string(oh->type); VLOG_WARN_RL(&perm_rl, "rejecting %s message from slave controller", type_name); free(type_name); return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_EPERM); } else { return 0; } } static int handle_packet_out(struct ofproto *p, struct ofconn *ofconn, struct ofp_header *oh) { struct ofp_packet_out *opo; struct ofpbuf payload, *buffer; struct ofp_action_header *actions; int n_actions; uint16_t in_port; flow_t flow; int error; error = reject_slave_controller(ofconn, oh); if (error) { return error; } error = check_ofp_packet_out(oh, &payload, &n_actions, p->max_ports); if (error) { return error; } opo = (struct ofp_packet_out *) oh; actions = opo->actions; COVERAGE_INC(ofproto_packet_out); if (opo->buffer_id != htonl(UINT32_MAX)) { error = pktbuf_retrieve(ofconn->pktbuf, ntohl(opo->buffer_id), &buffer, &in_port); if (error || !buffer) { return error; } payload = *buffer; } else { buffer = NULL; } flow_extract(&payload, 0, ntohs(opo->in_port), &flow); wdp_execute(p->wdp, flow.in_port, (const union ofp_action *) actions, n_actions, &payload); ofpbuf_delete(buffer); return 0; } static int handle_port_mod(struct ofproto *p, struct ofconn *ofconn, struct ofp_header *oh) { const struct ofp_port_mod *opm; struct wdp_port port; int error; error = reject_slave_controller(ofconn, oh); if (error) { return error; } error = check_ofp_message(oh, OFPT_PORT_MOD, sizeof *opm); if (error) { return error; } opm = (struct ofp_port_mod *) oh; if (wdp_port_query_by_number(p->wdp, ntohs(opm->port_no), &port)) { error = ofp_mkerr(OFPET_PORT_MOD_FAILED, OFPPMFC_BAD_PORT); } else if (memcmp(port.opp.hw_addr, opm->hw_addr, OFP_ETH_ALEN)) { error = ofp_mkerr(OFPET_PORT_MOD_FAILED, OFPPMFC_BAD_HW_ADDR); } else { uint32_t mask, new_config; mask = ntohl(opm->mask) & (OFPPC_PORT_DOWN | OFPPC_NO_STP | OFPPC_NO_RECV | OFPPC_NO_RECV_STP | OFPPC_NO_FLOOD | OFPPC_NO_FWD | OFPPC_NO_PACKET_IN); new_config = (port.opp.config & ~mask) | (ntohl(opm->config) & mask); if (new_config != port.opp.config) { error = wdp_port_set_config(p->wdp, ntohs(opm->port_no), new_config); } if (opm->advertise) { netdev_set_advertisements(port.netdev, ntohl(opm->advertise)); } } wdp_port_free(&port); return error; } static struct ofpbuf * make_stats_reply(uint32_t xid, uint16_t type, size_t body_len) { struct ofp_stats_reply *osr; struct ofpbuf *msg; msg = ofpbuf_new(MIN(sizeof *osr + body_len, UINT16_MAX)); osr = put_openflow_xid(sizeof *osr, OFPT_STATS_REPLY, xid, msg); osr->type = type; osr->flags = htons(0); return msg; } static struct ofpbuf * start_stats_reply(const struct ofp_stats_request *request, size_t body_len) { return make_stats_reply(request->header.xid, request->type, body_len); } static void * append_stats_reply(size_t nbytes, struct ofconn *ofconn, struct ofpbuf **msgp) { struct ofpbuf *msg = *msgp; assert(nbytes <= UINT16_MAX - sizeof(struct ofp_stats_reply)); if (nbytes + msg->size > UINT16_MAX) { struct ofp_stats_reply *reply = msg->data; reply->flags = htons(OFPSF_REPLY_MORE); *msgp = make_stats_reply(reply->header.xid, reply->type, nbytes); queue_tx(msg, ofconn, ofconn->reply_counter); } return ofpbuf_put_uninit(*msgp, nbytes); } static int handle_desc_stats_request(struct ofproto *p, struct ofconn *ofconn, struct ofp_stats_request *request) { struct ofp_desc_stats *ods; struct ofpbuf *msg; msg = start_stats_reply(request, sizeof *ods); ods = append_stats_reply(sizeof *ods, ofconn, &msg); memset(ods, 0, sizeof *ods); ovs_strlcpy(ods->mfr_desc, p->mfr_desc, sizeof ods->mfr_desc); ovs_strlcpy(ods->hw_desc, p->hw_desc, sizeof ods->hw_desc); ovs_strlcpy(ods->sw_desc, p->sw_desc, sizeof ods->sw_desc); ovs_strlcpy(ods->serial_num, p->serial_desc, sizeof ods->serial_num); ovs_strlcpy(ods->dp_desc, p->dp_desc, sizeof ods->dp_desc); queue_tx(msg, ofconn, ofconn->reply_counter); return 0; } static int handle_table_stats_request(struct ofproto *p, struct ofconn *ofconn, struct ofp_stats_request *request) { struct ofpbuf *msg; int error; msg = start_stats_reply(request, sizeof(struct ofp_table_stats) * 3); error = wdp_get_table_stats(p->wdp, msg); if (!error) { queue_tx(msg, ofconn, ofconn->reply_counter); } else { ofpbuf_delete(msg); } return error; } static void append_port_stat(struct wdp_port *port, struct ofconn *ofconn, struct ofpbuf **msgp) { struct netdev_stats stats; struct ofp_port_stats *ops; /* Intentionally ignore return value, since errors will set * 'stats' to all-1s, which is correct for OpenFlow, and * netdev_get_stats() will log errors. */ netdev_get_stats(port->netdev, &stats); ops = append_stats_reply(sizeof *ops, ofconn, msgp); ops->port_no = htons(port->opp.port_no); memset(ops->pad, 0, sizeof ops->pad); ops->rx_packets = htonll(stats.rx_packets); ops->tx_packets = htonll(stats.tx_packets); ops->rx_bytes = htonll(stats.rx_bytes); ops->tx_bytes = htonll(stats.tx_bytes); ops->rx_dropped = htonll(stats.rx_dropped); ops->tx_dropped = htonll(stats.tx_dropped); ops->rx_errors = htonll(stats.rx_errors); ops->tx_errors = htonll(stats.tx_errors); ops->rx_frame_err = htonll(stats.rx_frame_errors); ops->rx_over_err = htonll(stats.rx_over_errors); ops->rx_crc_err = htonll(stats.rx_crc_errors); ops->collisions = htonll(stats.collisions); } static int handle_port_stats_request(struct ofproto *p, struct ofconn *ofconn, struct ofp_stats_request *osr, size_t arg_size) { struct ofp_port_stats_request *psr; struct ofp_port_stats *ops; struct ofpbuf *msg; if (arg_size != sizeof *psr) { return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN); } psr = (struct ofp_port_stats_request *) osr->body; msg = start_stats_reply(osr, sizeof *ops * 16); if (psr->port_no != htons(OFPP_NONE)) { struct wdp_port port; if (!wdp_port_query_by_number(p->wdp, ntohs(psr->port_no), &port)) { append_port_stat(&port, ofconn, &msg); wdp_port_free(&port); } } else { struct wdp_port *ports; size_t n_ports; size_t i; wdp_port_list(p->wdp, &ports, &n_ports); for (i = 0; i < n_ports; i++) { append_port_stat(&ports[i], ofconn, &msg); } wdp_port_array_free(ports, n_ports); } queue_tx(msg, ofconn, ofconn->reply_counter); return 0; } struct flow_stats_cbdata { struct ofproto *ofproto; struct ofconn *ofconn; uint16_t out_port; struct ofpbuf *msg; }; /* Obtains statistic counters for 'rule' within 'p' and stores them into * '*packet_countp' and '*byte_countp'. If 'rule' is a wildcarded rule, the * returned statistic include statistics for all of 'rule''s subrules. */ static void query_stats(struct ofproto *p, struct wdp_rule *rule, uint64_t *packet_countp, uint64_t *byte_countp) { struct wdp_flow_stats stats; if (!wdp_flow_get_stats(p->wdp, rule, &stats)) { *packet_countp = stats.n_packets; *byte_countp = stats.n_bytes; } else { *packet_countp = 0; *byte_countp = 0; } } static int flow_stats_cb(struct wdp_rule *rule, void *cbdata_) { struct flow_stats_cbdata *cbdata = cbdata_; struct ofp_flow_stats *ofs; uint64_t packet_count, byte_count; size_t act_len, len; long long int tdiff = time_msec() - rule->created; uint32_t sec = tdiff / 1000; uint32_t msec = tdiff - (sec * 1000); if (rule_is_hidden(rule) || !rule_has_out_port(rule, cbdata->out_port)) { return 0; } act_len = sizeof *rule->actions * rule->n_actions; len = offsetof(struct ofp_flow_stats, actions) + act_len; query_stats(cbdata->ofproto, rule, &packet_count, &byte_count); ofs = append_stats_reply(len, cbdata->ofconn, &cbdata->msg); ofs->length = htons(len); ofs->table_id = rule->ofp_table_id; ofs->pad = 0; flow_to_match(&rule->cr.flow, cbdata->ofproto->tun_id_from_cookie, &ofs->match); ofs->duration_sec = htonl(sec); ofs->duration_nsec = htonl(msec * 1000000); ofs->cookie = ofproto_rule_cast(rule)->flow_cookie; ofs->priority = htons(rule->cr.flow.priority); ofs->idle_timeout = htons(rule->idle_timeout); ofs->hard_timeout = htons(rule->hard_timeout); memset(ofs->pad2, 0, sizeof ofs->pad2); ofs->packet_count = htonll(packet_count); ofs->byte_count = htonll(byte_count); memcpy(ofs->actions, rule->actions, act_len); return 0; } static unsigned int table_id_to_include(uint8_t table_id) { return (table_id == 0xff ? UINT_MAX : table_id < 32 ? 1u << table_id : 0); } static unsigned int flow_mod_table_id(const struct ofconn *ofconn, const struct ofp_flow_mod *ofm) { return ofconn->flow_mod_table_id ? ntohs(ofm->command) >> 8 : 0xff; } static int handle_flow_stats_request(struct ofproto *p, struct ofconn *ofconn, const struct ofp_stats_request *osr, size_t arg_size) { struct ofp_flow_stats_request *fsr; struct flow_stats_cbdata cbdata; flow_t target; if (arg_size != sizeof *fsr) { return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN); } fsr = (struct ofp_flow_stats_request *) osr->body; COVERAGE_INC(ofproto_flows_req); cbdata.ofproto = p; cbdata.ofconn = ofconn; cbdata.out_port = fsr->out_port; cbdata.msg = start_stats_reply(osr, 1024); flow_from_match(&fsr->match, 0, false, 0, &target); wdp_flow_for_each_match(p->wdp, &target, table_id_to_include(fsr->table_id), flow_stats_cb, &cbdata); queue_tx(cbdata.msg, ofconn, ofconn->reply_counter); return 0; } struct flow_stats_ds_cbdata { struct ofproto *ofproto; struct ds *results; }; static int flow_stats_ds_cb(struct wdp_rule *rule, void *cbdata_) { struct flow_stats_ds_cbdata *cbdata = cbdata_; struct ds *results = cbdata->results; struct ofp_match match; uint64_t packet_count, byte_count; size_t act_len = sizeof *rule->actions * rule->n_actions; query_stats(cbdata->ofproto, rule, &packet_count, &byte_count); flow_to_match(&rule->cr.flow, cbdata->ofproto->tun_id_from_cookie, &match); ds_put_format(results, "duration=%llds, ", (time_msec() - rule->created) / 1000); ds_put_format(results, "priority=%u, ", rule->cr.flow.priority); ds_put_format(results, "n_packets=%"PRIu64", ", packet_count); ds_put_format(results, "n_bytes=%"PRIu64", ", byte_count); ofp_print_match(results, &match, true); ofp_print_actions(results, &rule->actions->header, act_len); ds_put_cstr(results, "\n"); return 0; } /* Adds a pretty-printed description of all flows to 'results', including * those marked hidden by secchan (e.g., by in-band control). */ void ofproto_get_all_flows(struct ofproto *p, struct ds *results) { struct flow_stats_ds_cbdata cbdata; struct ofp_match match; flow_t target; memset(&match, 0, sizeof match); match.wildcards = htonl(OVSFW_ALL); cbdata.ofproto = p; cbdata.results = results; flow_from_match(&match, 0, false, 0, &target); wdp_flow_for_each_match(p->wdp, &target, UINT_MAX, flow_stats_ds_cb, &cbdata); } struct aggregate_stats_cbdata { struct ofproto *ofproto; uint16_t out_port; uint64_t packet_count; uint64_t byte_count; uint32_t n_flows; }; static int aggregate_stats_cb(struct wdp_rule *rule, void *cbdata_) { struct aggregate_stats_cbdata *cbdata = cbdata_; uint64_t packet_count, byte_count; if (rule_is_hidden(rule) || !rule_has_out_port(rule, cbdata->out_port)) { return 0; } query_stats(cbdata->ofproto, rule, &packet_count, &byte_count); cbdata->packet_count += packet_count; cbdata->byte_count += byte_count; cbdata->n_flows++; return 0; } static int handle_aggregate_stats_request(struct ofproto *p, struct ofconn *ofconn, const struct ofp_stats_request *osr, size_t arg_size) { struct ofp_aggregate_stats_request *asr; struct ofp_aggregate_stats_reply *reply; struct aggregate_stats_cbdata cbdata; struct ofpbuf *msg; flow_t target; if (arg_size != sizeof *asr) { return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN); } asr = (struct ofp_aggregate_stats_request *) osr->body; COVERAGE_INC(ofproto_agg_request); cbdata.ofproto = p; cbdata.out_port = asr->out_port; cbdata.packet_count = 0; cbdata.byte_count = 0; cbdata.n_flows = 0; flow_from_match(&asr->match, 0, false, 0, &target); wdp_flow_for_each_match(p->wdp, &target, table_id_to_include(asr->table_id), aggregate_stats_cb, &cbdata); msg = start_stats_reply(osr, sizeof *reply); reply = append_stats_reply(sizeof *reply, ofconn, &msg); reply->flow_count = htonl(cbdata.n_flows); reply->packet_count = htonll(cbdata.packet_count); reply->byte_count = htonll(cbdata.byte_count); queue_tx(msg, ofconn, ofconn->reply_counter); return 0; } struct queue_stats_cbdata { struct ofconn *ofconn; struct wdp_port *wdp_port; struct ofpbuf *msg; }; static void put_queue_stats(struct queue_stats_cbdata *cbdata, uint32_t queue_id, const struct netdev_queue_stats *stats) { struct ofp_queue_stats *reply; reply = append_stats_reply(sizeof *reply, cbdata->ofconn, &cbdata->msg); reply->port_no = htons(cbdata->wdp_port->opp.port_no); memset(reply->pad, 0, sizeof reply->pad); reply->queue_id = htonl(queue_id); reply->tx_bytes = htonll(stats->tx_bytes); reply->tx_packets = htonll(stats->tx_packets); reply->tx_errors = htonll(stats->tx_errors); } static void handle_queue_stats_dump_cb(uint32_t queue_id, struct netdev_queue_stats *stats, void *cbdata_) { struct queue_stats_cbdata *cbdata = cbdata_; put_queue_stats(cbdata, queue_id, stats); } static void handle_queue_stats_for_port(struct wdp_port *port, uint32_t queue_id, struct queue_stats_cbdata *cbdata) { cbdata->wdp_port = port; if (queue_id == OFPQ_ALL) { netdev_dump_queue_stats(port->netdev, handle_queue_stats_dump_cb, cbdata); } else { struct netdev_queue_stats stats; if (!netdev_get_queue_stats(port->netdev, queue_id, &stats)) { put_queue_stats(cbdata, queue_id, &stats); } } } static int handle_queue_stats_request(struct ofproto *ofproto, struct ofconn *ofconn, const struct ofp_stats_request *osr, size_t arg_size) { struct ofp_queue_stats_request *qsr; struct queue_stats_cbdata cbdata; unsigned int port_no; uint32_t queue_id; if (arg_size != sizeof *qsr) { return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN); } qsr = (struct ofp_queue_stats_request *) osr->body; COVERAGE_INC(ofproto_queue_req); cbdata.ofconn = ofconn; cbdata.msg = start_stats_reply(osr, 128); port_no = ntohs(qsr->port_no); queue_id = ntohl(qsr->queue_id); if (port_no == OFPP_ALL) { struct wdp_port *ports; size_t n_ports, i; wdp_port_list(ofproto->wdp, &ports, &n_ports); /* XXX deal with wdp_port_list() errors */ for (i = 0; i < n_ports; i++) { handle_queue_stats_for_port(&ports[i], queue_id, &cbdata); } wdp_port_array_free(ports, n_ports); } else if (port_no < ofproto->max_ports) { struct wdp_port port; int error; error = wdp_port_query_by_number(ofproto->wdp, port_no, &port); if (!error) { handle_queue_stats_for_port(&port, queue_id, &cbdata); } else { /* XXX deal with wdp_port_query_by_number() errors */ } wdp_port_free(&port); } else { ofpbuf_delete(cbdata.msg); return ofp_mkerr(OFPET_QUEUE_OP_FAILED, OFPQOFC_BAD_PORT); } queue_tx(cbdata.msg, ofconn, ofconn->reply_counter); return 0; } static int handle_stats_request(struct ofproto *p, struct ofconn *ofconn, struct ofp_header *oh) { struct ofp_stats_request *osr; size_t arg_size; int error; error = check_ofp_message_array(oh, OFPT_STATS_REQUEST, sizeof *osr, 1, &arg_size); if (error) { return error; } osr = (struct ofp_stats_request *) oh; switch (ntohs(osr->type)) { case OFPST_DESC: return handle_desc_stats_request(p, ofconn, osr); case OFPST_FLOW: return handle_flow_stats_request(p, ofconn, osr, arg_size); case OFPST_AGGREGATE: return handle_aggregate_stats_request(p, ofconn, osr, arg_size); case OFPST_TABLE: return handle_table_stats_request(p, ofconn, osr); case OFPST_PORT: return handle_port_stats_request(p, ofconn, osr, arg_size); case OFPST_QUEUE: return handle_queue_stats_request(p, ofconn, osr, arg_size); case OFPST_VENDOR: return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_VENDOR); default: return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_STAT); } } /* Implements OFPFC_ADD and the cases for OFPFC_MODIFY and OFPFC_MODIFY_STRICT * in which no matching flow already exists in the flow table. * * Adds the flow specified by 'ofm', which is followed by 'n_actions' * ofp_actions, to 'p''s flow table. Returns 0 on success or an OpenFlow error * code as encoded by ofp_mkerr() on failure. * * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id, * if any. */ static int add_flow(struct ofproto *p, struct ofconn *ofconn, const struct ofp_flow_mod *ofm, size_t n_actions) { struct wdp_rule *rule; struct wdp_flow_put put; struct ofpbuf *packet; uint16_t in_port; flow_t flow; int error; flow_from_match(&ofm->match, ntohs(ofm->priority), p->tun_id_from_cookie, ofm->cookie, &flow); if (ofm->flags & htons(OFPFF_CHECK_OVERLAP) && wdp_flow_overlaps(p->wdp, &flow)) { return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_OVERLAP); } put.flags = WDP_PUT_CREATE | WDP_PUT_MODIFY | WDP_PUT_ALL; put.flow = &flow; put.actions = (const union ofp_action *) ofm->actions; put.n_actions = n_actions; put.idle_timeout = ntohs(ofm->idle_timeout); put.hard_timeout = ntohs(ofm->hard_timeout); put.ofp_table_id = flow_mod_table_id(ofconn, ofm); put.cookie = ofm->cookie; put.xid = ofm->header.xid; error = wdp_flow_put(p->wdp, &put, NULL, &rule); if (error) { /* XXX wdp_flow_put should return OpenFlow error code. */ return error; } ofproto_rule_init(rule); if (ofm->buffer_id != htonl(UINT32_MAX)) { error = pktbuf_retrieve(ofconn->pktbuf, ntohl(ofm->buffer_id), &packet, &in_port); if (!error) { error = wdp_flow_inject(p->wdp, rule, in_port, packet); ofpbuf_delete(packet); } } return error; } static struct wdp_rule * find_flow_strict(struct ofproto *p, const struct ofconn *ofconn, const struct ofp_flow_mod *ofm) { uint8_t table_id; flow_t flow; flow_from_match(&ofm->match, ntohs(ofm->priority), p->tun_id_from_cookie, ofm->cookie, &flow); table_id = flow_mod_table_id(ofconn, ofm); return wdp_flow_get(p->wdp, &flow, table_id_to_include(table_id)); } static int send_buffered_packet(struct ofproto *ofproto, struct ofconn *ofconn, struct wdp_rule *rule, const struct ofp_flow_mod *ofm) { struct ofpbuf *packet; uint16_t in_port; int error; if (ofm->buffer_id == htonl(UINT32_MAX)) { return 0; } error = pktbuf_retrieve(ofconn->pktbuf, ntohl(ofm->buffer_id), &packet, &in_port); if (error) { return error; } error = wdp_flow_inject(ofproto->wdp, rule, in_port, packet); ofpbuf_delete(packet); return error; } /* OFPFC_MODIFY and OFPFC_MODIFY_STRICT. */ struct modify_flows_cbdata { struct ofproto *ofproto; const struct ofp_flow_mod *ofm; size_t n_actions; struct wdp_rule *match; }; static int modify_flow(struct ofproto *, const struct ofp_flow_mod *, size_t n_actions, struct wdp_rule *) WARN_UNUSED_RESULT; static int modify_flows_cb(struct wdp_rule *, void *cbdata_); /* Implements OFPFC_ADD and OFPFC_MODIFY. Returns 0 on success or an OpenFlow * error code as encoded by ofp_mkerr() on failure. * * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id, * if any. */ static int modify_flows_loose(struct ofproto *p, struct ofconn *ofconn, const struct ofp_flow_mod *ofm, size_t n_actions) { struct modify_flows_cbdata cbdata; uint8_t table_id; flow_t target; int error; cbdata.ofproto = p; cbdata.ofm = ofm; cbdata.n_actions = n_actions; cbdata.match = NULL; flow_from_match(&ofm->match, 0, p->tun_id_from_cookie, ofm->cookie, &target); table_id = flow_mod_table_id(ofconn, ofm); error = wdp_flow_for_each_match(p->wdp, &target, table_id_to_include(table_id), modify_flows_cb, &cbdata); if (error) { return error; } if (cbdata.match) { /* This credits the packet to whichever flow happened to match last. * That's weird. Maybe we should do a lookup for the flow that * actually matches the packet? Who knows. */ return send_buffered_packet(p, ofconn, cbdata.match, ofm); } else { return add_flow(p, ofconn, ofm, n_actions); } } /* Implements OFPFC_MODIFY_STRICT. Returns 0 on success or an OpenFlow error * code as encoded by ofp_mkerr() on failure. * * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id, * if any. */ static int modify_flow_strict(struct ofproto *p, struct ofconn *ofconn, struct ofp_flow_mod *ofm, size_t n_actions) { struct wdp_rule *rule = find_flow_strict(p, ofconn, ofm); if (rule && !rule_is_hidden(rule)) { int error = modify_flow(p, ofm, n_actions, rule); return error ? error : send_buffered_packet(p, ofconn, rule, ofm); } else { return add_flow(p, ofconn, ofm, n_actions); } } /* Callback for modify_flows_loose(). */ static int modify_flows_cb(struct wdp_rule *rule, void *cbdata_) { struct modify_flows_cbdata *cbdata = cbdata_; if (!rule_is_hidden(rule)) { cbdata->match = rule; return modify_flow(cbdata->ofproto, cbdata->ofm, cbdata->n_actions, rule); } return 0; } /* Implements core of OFPFC_MODIFY and OFPFC_MODIFY_STRICT where 'rule' has * been identified as a flow in 'p''s flow table to be modified, by changing * the rule's actions to match those in 'ofm' (which is followed by 'n_actions' * ofp_action[] structures). */ static int modify_flow(struct ofproto *p, const struct ofp_flow_mod *ofm, size_t n_actions, struct wdp_rule *rule) { const struct ofp_action_header *actions = ofm->actions; struct ofproto_rule *ofproto_rule = ofproto_rule_cast(rule); struct wdp_flow_put put; ofproto_rule->flow_cookie = ofm->cookie; /* If the actions are the same, do nothing. */ if (n_actions == rule->n_actions && !memcmp(ofm->actions, rule->actions, sizeof *actions * n_actions)) { return 0; } put.flags = WDP_PUT_MODIFY | WDP_PUT_ACTIONS; put.flow = &rule->cr.flow; put.actions = (const union ofp_action *) actions; put.n_actions = n_actions; put.idle_timeout = put.hard_timeout = 0; put.ofp_table_id = rule->ofp_table_id; put.cookie = ofm->cookie; put.xid = ofm->header.xid; return wdp_flow_put(p->wdp, &put, NULL, NULL); } /* OFPFC_DELETE implementation. */ struct delete_flows_cbdata { struct ofproto *ofproto; uint16_t out_port; }; static int delete_flows_cb(struct wdp_rule *, void *cbdata_); static int delete_flow_core(struct ofproto *, struct wdp_rule *, uint16_t out_port); /* Implements OFPFC_DELETE. */ static int delete_flows_loose(struct ofproto *p, const struct ofconn *ofconn, const struct ofp_flow_mod *ofm) { struct delete_flows_cbdata cbdata; uint8_t table_id; flow_t target; cbdata.ofproto = p; cbdata.out_port = ofm->out_port; flow_from_match(&ofm->match, 0, p->tun_id_from_cookie, ofm->cookie, &target); table_id = flow_mod_table_id(ofconn, ofm); return wdp_flow_for_each_match(p->wdp, &target, table_id_to_include(table_id), delete_flows_cb, &cbdata); } /* Implements OFPFC_DELETE_STRICT. */ static int delete_flow_strict(struct ofproto *p, const struct ofconn *ofconn, struct ofp_flow_mod *ofm) { struct wdp_rule *rule = find_flow_strict(p, ofconn, ofm); if (rule) { return delete_flow_core(p, rule, ofm->out_port); } return 0; } /* Callback for delete_flows_loose(). */ static int delete_flows_cb(struct wdp_rule *rule, void *cbdata_) { struct delete_flows_cbdata *cbdata = cbdata_; return delete_flow_core(cbdata->ofproto, rule, cbdata->out_port); } /* Implements core of OFPFC_DELETE and OFPFC_DELETE_STRICT where 'rule' has * been identified as a flow to delete from 'p''s flow table, by deleting the * flow and sending out a OFPT_FLOW_REMOVED message to any interested * controller. * * Will not delete 'rule' if it is hidden. Will delete 'rule' only if * 'out_port' is htons(OFPP_NONE) or if 'rule' actually outputs to the * specified 'out_port'. */ static int delete_flow_core(struct ofproto *p, struct wdp_rule *rule, uint16_t out_port) { if (rule_is_hidden(rule)) { return 0; } if (out_port != htons(OFPP_NONE) && !rule_has_out_port(rule, out_port)) { return 0; } return delete_flow(p, rule, OFPRR_DELETE); } static int handle_flow_mod(struct ofproto *p, struct ofconn *ofconn, struct ofp_flow_mod *ofm) { struct ofp_match orig_match; size_t n_actions; int error; error = reject_slave_controller(ofconn, &ofm->header); if (error) { return error; } error = check_ofp_message_array(&ofm->header, OFPT_FLOW_MOD, sizeof *ofm, sizeof *ofm->actions, &n_actions); if (error) { return error; } /* We do not support the emergency flow cache. It will hopefully * get dropped from OpenFlow in the near future. */ if (ofm->flags & htons(OFPFF_EMERG)) { /* There isn't a good fit for an error code, so just state that the * flow table is full. */ return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_ALL_TABLES_FULL); } /* Normalize ofp->match. If normalization actually changes anything, then * log the differences. */ ofm->match.pad1[0] = ofm->match.pad2[0] = 0; orig_match = ofm->match; normalize_match(&ofm->match); if (memcmp(&ofm->match, &orig_match, sizeof orig_match)) { static struct vlog_rate_limit normal_rl = VLOG_RATE_LIMIT_INIT(1, 1); if (!VLOG_DROP_INFO(&normal_rl)) { char *old = ofp_match_to_literal_string(&orig_match); char *new = ofp_match_to_literal_string(&ofm->match); VLOG_INFO("%s: normalization changed ofp_match, details:", rconn_get_name(ofconn->rconn)); VLOG_INFO(" pre: %s", old); VLOG_INFO("post: %s", new); free(old); free(new); } } if (!ofm->match.wildcards) { ofm->priority = htons(UINT16_MAX); } error = validate_actions((const union ofp_action *) ofm->actions, n_actions, p->max_ports); if (error) { return error; } if (!ofconn->flow_mod_table_id && ofm->command & htons(0xff00)) { static struct vlog_rate_limit table_id_rl = VLOG_RATE_LIMIT_INIT(1, 1); VLOG_WARN_RL(&table_id_rl, "%s: flow_mod table_id feature must be " "enabled with NXT_FLOW_MOD_TABLE_ID", rconn_get_name(ofconn->rconn)); return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_BAD_COMMAND); } switch (ntohs(ofm->command) & 0xff) { case OFPFC_ADD: return add_flow(p, ofconn, ofm, n_actions); case OFPFC_MODIFY: return modify_flows_loose(p, ofconn, ofm, n_actions); case OFPFC_MODIFY_STRICT: return modify_flow_strict(p, ofconn, ofm, n_actions); case OFPFC_DELETE: return delete_flows_loose(p, ofconn, ofm); case OFPFC_DELETE_STRICT: return delete_flow_strict(p, ofconn, ofm); default: return ofp_mkerr(OFPET_FLOW_MOD_FAILED, OFPFMFC_BAD_COMMAND); } } static int handle_tun_id_from_cookie(struct ofproto *p, struct nxt_tun_id_cookie *msg) { int error; error = check_ofp_message(&msg->header, OFPT_VENDOR, sizeof *msg); if (error) { return error; } p->tun_id_from_cookie = !!msg->set; return 0; } static int handle_flow_mod_table_id(struct ofconn *ofconn, struct nxt_flow_mod_table_id *msg) { int error; error = check_ofp_message(&msg->header, OFPT_VENDOR, sizeof *msg); if (error) { return error; } ofconn->flow_mod_table_id = !!msg->set; return 0; } static int handle_role_request(struct ofproto *ofproto, struct ofconn *ofconn, struct nicira_header *msg) { struct nx_role_request *nrr; struct nx_role_request *reply; struct ofpbuf *buf; uint32_t role; if (ntohs(msg->header.length) != sizeof *nrr) { VLOG_WARN_RL(&rl, "received role request of length %u (expected %zu)", ntohs(msg->header.length), sizeof *nrr); return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN); } nrr = (struct nx_role_request *) msg; if (ofconn->type != OFCONN_PRIMARY) { VLOG_WARN_RL(&rl, "ignoring role request on non-controller " "connection"); return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_EPERM); } role = ntohl(nrr->role); if (role != NX_ROLE_OTHER && role != NX_ROLE_MASTER && role != NX_ROLE_SLAVE) { VLOG_WARN_RL(&rl, "received request for unknown role %"PRIu32, role); /* There's no good error code for this. */ return ofp_mkerr(OFPET_BAD_REQUEST, -1); } if (role == NX_ROLE_MASTER) { struct ofconn *other; HMAP_FOR_EACH (other, hmap_node, &ofproto->controllers) { if (other->role == NX_ROLE_MASTER) { other->role = NX_ROLE_SLAVE; } } } ofconn->role = role; reply = make_openflow_xid(sizeof *reply, OFPT_VENDOR, msg->header.xid, &buf); reply->nxh.vendor = htonl(NX_VENDOR_ID); reply->nxh.subtype = htonl(NXT_ROLE_REPLY); reply->role = htonl(role); queue_tx(buf, ofconn, ofconn->reply_counter); return 0; } static int handle_vendor(struct ofproto *p, struct ofconn *ofconn, void *msg) { struct ofp_vendor_header *ovh = msg; struct nicira_header *nh; if (ntohs(ovh->header.length) < sizeof(struct ofp_vendor_header)) { VLOG_WARN_RL(&rl, "received vendor message of length %u " "(expected at least %zu)", ntohs(ovh->header.length), sizeof(struct ofp_vendor_header)); return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN); } if (ovh->vendor != htonl(NX_VENDOR_ID)) { return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_VENDOR); } if (ntohs(ovh->header.length) < sizeof(struct nicira_header)) { VLOG_WARN_RL(&rl, "received Nicira vendor message of length %u " "(expected at least %zu)", ntohs(ovh->header.length), sizeof(struct nicira_header)); return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LEN); } nh = msg; switch (ntohl(nh->subtype)) { case NXT_STATUS_REQUEST: return switch_status_handle_request(p->switch_status, ofconn->rconn, msg); case NXT_TUN_ID_FROM_COOKIE: return handle_tun_id_from_cookie(p, msg); case NXT_FLOW_MOD_TABLE_ID: return handle_flow_mod_table_id(ofconn, msg); case NXT_ROLE_REQUEST: return handle_role_request(p, ofconn, msg); } return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_SUBTYPE); } static int handle_barrier_request(struct ofconn *ofconn, struct ofp_header *oh) { struct ofp_header *ob; struct ofpbuf *buf; /* Currently, everything executes synchronously, so we can just * immediately send the barrier reply. */ ob = make_openflow_xid(sizeof *ob, OFPT_BARRIER_REPLY, oh->xid, &buf); queue_tx(buf, ofconn, ofconn->reply_counter); return 0; } static void handle_openflow(struct ofconn *ofconn, struct ofproto *p, struct ofpbuf *ofp_msg) { struct ofp_header *oh = ofp_msg->data; int error; COVERAGE_INC(ofproto_recv_openflow); switch (oh->type) { case OFPT_ECHO_REQUEST: error = handle_echo_request(ofconn, oh); break; case OFPT_ECHO_REPLY: error = 0; break; case OFPT_FEATURES_REQUEST: error = handle_features_request(p, ofconn, oh); break; case OFPT_GET_CONFIG_REQUEST: error = handle_get_config_request(p, ofconn, oh); break; case OFPT_SET_CONFIG: error = handle_set_config(p, ofconn, ofp_msg->data); break; case OFPT_PACKET_OUT: error = handle_packet_out(p, ofconn, ofp_msg->data); break; case OFPT_PORT_MOD: error = handle_port_mod(p, ofconn, oh); break; case OFPT_FLOW_MOD: error = handle_flow_mod(p, ofconn, ofp_msg->data); break; case OFPT_STATS_REQUEST: error = handle_stats_request(p, ofconn, oh); break; case OFPT_VENDOR: error = handle_vendor(p, ofconn, ofp_msg->data); break; case OFPT_BARRIER_REQUEST: error = handle_barrier_request(ofconn, oh); break; default: if (VLOG_IS_WARN_ENABLED()) { char *s = ofp_to_string(oh, ntohs(oh->length), 2); VLOG_DBG_RL(&rl, "OpenFlow message ignored: %s", s); free(s); } error = ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_TYPE); break; } if (error) { send_error_oh(ofconn, ofp_msg->data, error); } } static void handle_flow_miss(struct ofproto *p, struct wdp_packet *packet) { struct wdp_rule *rule; flow_t flow; flow_extract(packet->payload, packet->tun_id, packet->in_port, &flow); rule = wdp_flow_match(p->wdp, &flow); if (!rule) { /* Don't send a packet-in if OFPPC_NO_PACKET_IN asserted. */ struct wdp_port port; if (!wdp_port_query_by_number(p->wdp, packet->in_port, &port)) { bool no_packet_in = (port.opp.config & OFPPC_NO_PACKET_IN) != 0; wdp_port_free(&port); if (no_packet_in) { COVERAGE_INC(ofproto_no_packet_in); wdp_packet_destroy(packet); return; } } else { VLOG_WARN_RL(&rl, "packet-in on unknown port %"PRIu16, packet->in_port); } COVERAGE_INC(ofproto_packet_in); send_packet_in(p, packet); return; } wdp_flow_inject(p->wdp, rule, packet->in_port, packet->payload); if (rule->cr.flow.priority == FAIL_OPEN_PRIORITY) { /* * Extra-special case for fail-open mode. * * We are in fail-open mode and the packet matched the fail-open rule, * but we are connected to a controller too. We should send the packet * up to the controller in the hope that it will try to set up a flow * and thereby allow us to exit fail-open. * * See the top-level comment in fail-open.c for more information. */ send_packet_in(p, packet); } else { wdp_packet_destroy(packet); } } static void handle_wdp_packet(struct ofproto *p, struct wdp_packet *packet) { switch (packet->channel) { case WDP_CHAN_ACTION: COVERAGE_INC(ofproto_ctlr_action); send_packet_in(p, packet); break; case WDP_CHAN_SFLOW: /* XXX */ wdp_packet_destroy(packet); break; case WDP_CHAN_MISS: handle_flow_miss(p, packet); break; case WDP_N_CHANS: default: wdp_packet_destroy(packet); VLOG_WARN_RL(&rl, "received message on unexpected channel %d", (int) packet->channel); break; } } static struct ofpbuf * compose_flow_removed(struct ofproto *p, const struct wdp_rule *rule, uint8_t reason) { long long int tdiff = time_msec() - rule->created; uint32_t sec = tdiff / 1000; uint32_t msec = tdiff - (sec * 1000); struct ofp_flow_removed *ofr; struct ofpbuf *buf; ofr = make_openflow(sizeof *ofr, OFPT_FLOW_REMOVED, &buf); flow_to_match(&rule->cr.flow, p->tun_id_from_cookie, &ofr->match); ofr->cookie = ofproto_rule_cast(rule)->flow_cookie; ofr->priority = htons(rule->cr.flow.priority); ofr->reason = reason; ofr->duration_sec = htonl(sec); ofr->duration_nsec = htonl(msec * 1000000); ofr->idle_timeout = htons(rule->idle_timeout); return buf; } static int delete_flow(struct ofproto *p, struct wdp_rule *rule, uint8_t reason) { /* We limit the maximum number of queued flow expirations it by accounting * them under the counter for replies. That works because preventing * OpenFlow requests from being processed also prevents new flows from * being added (and expiring). (It also prevents processing OpenFlow * requests that would not add new flows, so it is imperfect.) */ struct ofproto_rule *ofproto_rule = ofproto_rule_cast(rule); struct wdp_flow_stats stats; struct ofpbuf *buf; int error; if (ofproto_rule->send_flow_removed) { /* Compose most of the ofp_flow_removed before 'rule' is destroyed. */ buf = compose_flow_removed(p, rule, reason); } else { buf = NULL; } error = wdp_flow_delete(p->wdp, rule, &stats); if (error) { return error; } if (buf) { struct ofp_flow_removed *ofr; struct ofconn *prev = NULL; struct ofconn *ofconn; /* Compose the parts of the ofp_flow_removed that require stats. */ ofr = buf->data; ofr->packet_count = htonll(stats.n_packets); ofr->byte_count = htonll(stats.n_bytes); LIST_FOR_EACH (ofconn, node, &p->all_conns) { if (rconn_is_connected(ofconn->rconn)) { if (prev) { queue_tx(ofpbuf_clone(buf), prev, prev->reply_counter); } prev = ofconn; } } if (prev) { queue_tx(buf, prev, prev->reply_counter); } else { ofpbuf_delete(buf); } } free(ofproto_rule); return 0; } /* pinsched callback for sending 'packet' on 'ofconn'. */ static void do_send_packet_in(struct wdp_packet *packet, void *ofconn_) { struct ofconn *ofconn = ofconn_; rconn_send_with_limit(ofconn->rconn, packet->payload, ofconn->packet_in_counter, 100); packet->payload = NULL; wdp_packet_destroy(packet); } /* Takes 'packet', which has been converted with do_convert_to_packet_in(), and * finalizes its content for sending on 'ofconn', and passes it to 'ofconn''s * packet scheduler for sending. * * 'max_len' specifies the maximum number of bytes of the packet to send on * 'ofconn' (INT_MAX specifies no limit). * * If 'clone' is true, the caller retains ownership of 'packet'. Otherwise, * ownership is transferred to this function. */ static void schedule_packet_in(struct ofconn *ofconn, struct wdp_packet *packet, int max_len, bool clone) { struct ofproto *ofproto = ofconn->ofproto; struct ofp_packet_in *opi = packet->payload->data; int send_len, trim_size; uint32_t buffer_id; /* Get buffer. */ if (opi->reason == OFPR_ACTION) { buffer_id = UINT32_MAX; } else if (ofproto->fail_open && fail_open_is_active(ofproto->fail_open)) { buffer_id = pktbuf_get_null(); } else if (!ofconn->pktbuf) { buffer_id = UINT32_MAX; } else { struct ofpbuf payload; payload.data = opi->data; payload.size = (packet->payload->size - offsetof(struct ofp_packet_in, data)); buffer_id = pktbuf_save(ofconn->pktbuf, &payload, packet->in_port); } /* Figure out how much of the packet to send. */ send_len = ntohs(opi->total_len); if (buffer_id != UINT32_MAX) { send_len = MIN(send_len, ofconn->miss_send_len); } send_len = MIN(send_len, max_len); /* Adjust packet length and clone if necessary. */ trim_size = offsetof(struct ofp_packet_in, data) + send_len; if (clone) { packet = wdp_packet_clone(packet, trim_size); opi = packet->payload->data; } else { packet->payload->size = trim_size; } /* Update packet headers. */ opi->buffer_id = htonl(buffer_id); update_openflow_length(packet->payload); /* Hand over to packet scheduler. It might immediately call into * do_send_packet_in() or it might buffer it for a while (until a later * call to pinsched_run()). */ pinsched_send(ofconn->schedulers[opi->reason], packet->in_port, packet, do_send_packet_in, ofconn); } /* Converts 'packet->payload' to a struct ofp_packet_in. It must have * sufficient headroom to do so (e.g. as returned by xfif_recv()). * * The conversion is not complete: the caller still needs to trim any unneeded * payload off the end of the buffer, set the length in the OpenFlow header, * and set buffer_id. Those require us to know the controller settings and so * must be done on a per-controller basis. * * Returns the maximum number of bytes of the packet that should be sent to * the controller (INT_MAX if no limit). */ static int do_convert_to_packet_in(struct wdp_packet *packet) { uint16_t total_len = packet->payload->size; struct ofp_packet_in *opi; /* Repurpose packet buffer by overwriting header. */ opi = ofpbuf_push_zeros(packet->payload, offsetof(struct ofp_packet_in, data)); opi->header.version = OFP_VERSION; opi->header.type = OFPT_PACKET_IN; opi->total_len = htons(total_len); opi->in_port = htons(packet->in_port); if (packet->channel == WDP_CHAN_MISS) { opi->reason = OFPR_NO_MATCH; return INT_MAX; } else { opi->reason = OFPR_ACTION; return packet->send_len; } } /* Given 'packet' with channel WDP_CHAN_ACTION or WDP_CHAN_MISS, sends an * OFPT_PACKET_IN message to each OpenFlow controller as necessary according to * their individual configurations. * * 'packet->payload' must have sufficient headroom to convert it into a struct * ofp_packet_in (e.g. as returned by dpif_recv()). * * Takes ownership of 'packet'. */ static void send_packet_in(struct ofproto *ofproto, struct wdp_packet *packet) { struct ofconn *ofconn, *prev; int max_len; max_len = do_convert_to_packet_in(packet); prev = NULL; LIST_FOR_EACH (ofconn, node, &ofproto->all_conns) { if (ofconn_receives_async_msgs(ofconn)) { if (prev) { schedule_packet_in(prev, packet, max_len, true); } prev = ofconn; } } if (prev) { schedule_packet_in(prev, packet, max_len, false); } else { wdp_packet_destroy(packet); } } static uint64_t pick_datapath_id(const struct ofproto *ofproto) { struct wdp_port port; if (!wdp_port_query_by_number(ofproto->wdp, OFPP_LOCAL, &port)) { uint8_t ea[ETH_ADDR_LEN]; int error; error = netdev_get_etheraddr(port.netdev, ea); if (!error) { wdp_port_free(&port); return eth_addr_to_uint64(ea); } VLOG_WARN("could not get MAC address for %s (%s)", netdev_get_name(port.netdev), strerror(error)); wdp_port_free(&port); } return ofproto->fallback_dpid; } static uint64_t pick_fallback_dpid(void) { uint8_t ea[ETH_ADDR_LEN]; eth_addr_nicira_random(ea); return eth_addr_to_uint64(ea); }