/* Copyright (c) 2008 The Board of Trustees of The Leland Stanford * Junior University * * We are making the OpenFlow specification and associated documentation * (Software) available for public use and benefit with the expectation * that others will use, modify and enhance the Software and contribute * those enhancements back to the community. However, since we would * like to make the Software available for broadest use, with as few * restrictions as possible permission is hereby granted, free of * charge, to any person obtaining a copy of this Software to deal in * the Software under the copyrights without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * The name and trademarks of copyright holder(s) may NOT be used in * advertising or publicity pertaining to the Software or any * derivatives without specific, written prior permission. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "buffer.h" #include "command-line.h" #include "compiler.h" #include "daemon.h" #include "dhcp.h" #include "dhcp-client.h" #include "dynamic-string.h" #include "fault.h" #include "flow.h" #include "learning-switch.h" #include "list.h" #include "mac-learning.h" #include "netdev.h" #include "openflow.h" #include "packets.h" #include "poll-loop.h" #include "rconn.h" #include "timeval.h" #include "util.h" #include "vconn-ssl.h" #include "vconn.h" #include "vlog-socket.h" #include "vlog.h" #define THIS_MODULE VLM_secchan /* Behavior when the connection to the controller fails. */ enum fail_mode { FAIL_OPEN, /* Act as learning switch. */ FAIL_CLOSED /* Drop all packets. */ }; /* Settings that may be configured by the user. */ struct settings { /* Overall mode of operation. */ bool discovery; /* Discover the controller automatically? */ bool in_band; /* Connect to controller in-band? */ /* Related vconns and network devices. */ const char *nl_name; /* Local datapath (must be "nl:" vconn). */ char *of_name; /* ofX network device name. */ const char *controller_name; /* Controller (if not discovery mode). */ const char *listen_vconn_name; /* Listens for mgmt connections. */ /* Failure behavior. */ enum fail_mode fail_mode; /* Act as learning switch if no controller? */ int max_idle; /* Idle time for flows in fail-open mode. */ int probe_interval; /* # seconds idle before sending echo request. */ int max_backoff; /* Max # seconds between connection attempts. */ /* Packet-in rate-limiting. */ int rate_limit; /* Tokens added to bucket per second. */ int burst_limit; /* Maximum number token bucket size. */ /* Discovery behavior. */ regex_t accept_controller_regex; /* Controller vconns to accept. */ const char *accept_controller_re; /* String version of regex. */ bool update_resolv_conf; /* Update /etc/resolv.conf? */ }; struct half { struct rconn *rconn; struct buffer *rxbuf; int n_txq; /* No. of packets queued for tx on 'rconn'. */ }; struct relay { struct list node; #define HALF_LOCAL 0 #define HALF_REMOTE 1 struct half halves[2]; bool is_mgmt_conn; }; struct hook { bool (*packet_cb)(struct relay *, int half, void *aux); void (*periodic_cb)(void *aux); void (*wait_cb)(void *aux); void *aux; }; static void parse_options(int argc, char *argv[], struct settings *); static void usage(void) NO_RETURN; static struct relay *relay_create(struct rconn *local, struct rconn *remote, bool is_mgmt_conn); static struct relay *relay_accept(const struct settings *, struct vconn *); static void relay_run(struct relay *, const struct hook[], size_t n_hooks); static void relay_wait(struct relay *); static void relay_destroy(struct relay *); static struct hook make_hook(bool (*packet_cb)(struct relay *, int, void *), void (*periodic_cb)(void *), void (*wait_cb)(void *), void *aux); static struct discovery *discovery_init(const struct settings *); static void discovery_question_connectivity(struct discovery *); static bool discovery_run(struct discovery *, char **controller_name); static void discovery_wait(struct discovery *); static struct hook in_band_hook_create(const struct settings *); static struct hook fail_open_hook_create(const struct settings *, struct rconn *local, struct rconn *remote); static struct hook rate_limit_hook_create(const struct settings *, struct rconn *local, struct rconn *remote); static void modify_dhcp_request(struct dhcp_msg *, void *aux); static bool validate_dhcp_offer(const struct dhcp_msg *, void *aux); int main(int argc, char *argv[]) { struct settings s; struct list relays = LIST_INITIALIZER(&relays); struct hook hooks[4]; size_t n_hooks; struct rconn *local_rconn, *remote_rconn; struct vconn *listen_vconn; struct relay *controller_relay; struct discovery *discovery; int retval; set_program_name(argv[0]); register_fault_handlers(); time_init(); vlog_init(); parse_options(argc, argv, &s); signal(SIGPIPE, SIG_IGN); /* Start listening for management connections. */ if (s.listen_vconn_name) { retval = vconn_open(s.listen_vconn_name, &listen_vconn); if (retval && retval != EAGAIN) { fatal(retval, "opening %s", s.listen_vconn_name); } if (!vconn_is_passive(listen_vconn)) { fatal(0, "%s is not a passive vconn", s.listen_vconn_name); } } else { listen_vconn = NULL; } /* Start controller discovery. */ discovery = s.discovery ? discovery_init(&s) : NULL; /* Start listening for vlogconf requests. */ retval = vlog_server_listen(NULL, NULL); if (retval) { fatal(retval, "Could not listen for vlog connections"); } daemonize(); VLOG_WARN("OpenFlow reference implementation version %s", VERSION); VLOG_WARN("OpenFlow protocol version 0x%02x", OFP_VERSION); /* Connect to datapath. */ local_rconn = rconn_create(0, s.max_backoff); rconn_connect(local_rconn, s.nl_name); /* Connect to controller. */ remote_rconn = rconn_create(s.probe_interval, s.max_backoff); if (s.controller_name) { retval = rconn_connect(remote_rconn, s.controller_name); if (retval == EAFNOSUPPORT) { fatal(0, "No support for %s vconn", s.controller_name); } } /* Start relaying. */ controller_relay = relay_create(local_rconn, remote_rconn, false); list_push_back(&relays, &controller_relay->node); /* Set up hooks. */ n_hooks = 0; if (s.in_band) { hooks[n_hooks++] = in_band_hook_create(&s); } if (s.fail_mode == FAIL_OPEN) { hooks[n_hooks++] = fail_open_hook_create(&s, local_rconn, remote_rconn); } if (s.rate_limit) { hooks[n_hooks++] = rate_limit_hook_create(&s, local_rconn, remote_rconn); } assert(n_hooks <= ARRAY_SIZE(hooks)); for (;;) { struct relay *r, *n; size_t i; /* Do work. */ LIST_FOR_EACH_SAFE (r, n, struct relay, node, &relays) { relay_run(r, hooks, n_hooks); } if (listen_vconn) { for (;;) { struct relay *r = relay_accept(&s, listen_vconn); if (!r) { break; } list_push_back(&relays, &r->node); } } for (i = 0; i < n_hooks; i++) { if (hooks[i].periodic_cb) { hooks[i].periodic_cb(hooks[i].aux); } } if (s.discovery) { char *controller_name; if (rconn_is_connectivity_questionable(remote_rconn)) { discovery_question_connectivity(discovery); } if (discovery_run(discovery, &controller_name)) { if (controller_name) { rconn_connect(remote_rconn, controller_name); } else { rconn_disconnect(remote_rconn); } } } /* Wait for something to happen. */ LIST_FOR_EACH (r, struct relay, node, &relays) { relay_wait(r); } if (listen_vconn) { vconn_accept_wait(listen_vconn); } for (i = 0; i < n_hooks; i++) { if (hooks[i].wait_cb) { hooks[i].wait_cb(hooks[i].aux); } } if (discovery) { discovery_wait(discovery); } poll_block(); } return 0; } static struct hook make_hook(bool (*packet_cb)(struct relay *, int half, void *aux), void (*periodic_cb)(void *aux), void (*wait_cb)(void *aux), void *aux) { struct hook h; h.packet_cb = packet_cb; h.periodic_cb = periodic_cb; h.wait_cb = wait_cb; h.aux = aux; return h; } /* OpenFlow message relaying. */ static struct relay * relay_accept(const struct settings *s, struct vconn *listen_vconn) { struct vconn *new_remote, *new_local; char *nl_name_without_subscription; struct rconn *r1, *r2; int retval; retval = vconn_accept(listen_vconn, &new_remote); if (retval) { if (retval != EAGAIN) { VLOG_WARN("accept failed (%s)", strerror(retval)); } return NULL; } /* nl:123 or nl:123:1 opens a netlink connection to local datapath 123. We * only accept the former syntax in main(). * * nl:123:0 opens a netlink connection to local datapath 123 without * obtaining a subscription for ofp_packet_in or ofp_flow_expired * messages.*/ nl_name_without_subscription = xasprintf("%s:0", s->nl_name); retval = vconn_open(nl_name_without_subscription, &new_local); if (retval) { VLOG_ERR("could not connect to %s (%s)", nl_name_without_subscription, strerror(retval)); vconn_close(new_remote); free(nl_name_without_subscription); return NULL; } /* Create and return relay. */ r1 = rconn_create(0, 0); rconn_connect_unreliably(r1, nl_name_without_subscription, new_local); free(nl_name_without_subscription); r2 = rconn_create(0, 0); rconn_connect_unreliably(r2, "passive", new_remote); return relay_create(r1, r2, true); } static struct relay * relay_create(struct rconn *local, struct rconn *remote, bool is_mgmt_conn) { struct relay *r = xcalloc(1, sizeof *r); r->halves[HALF_LOCAL].rconn = local; r->halves[HALF_REMOTE].rconn = remote; r->is_mgmt_conn = is_mgmt_conn; return r; } static void relay_run(struct relay *r, const struct hook hooks[], size_t n_hooks) { int iteration; int i; for (i = 0; i < 2; i++) { rconn_run(r->halves[i].rconn); } /* Limit the number of iterations to prevent other tasks from starving. */ for (iteration = 0; iteration < 50; iteration++) { bool progress = false; for (i = 0; i < 2; i++) { struct half *this = &r->halves[i]; struct half *peer = &r->halves[!i]; if (!this->rxbuf) { this->rxbuf = rconn_recv(this->rconn); if (this->rxbuf) { const struct hook *h; for (h = hooks; h < &hooks[n_hooks]; h++) { if (h->packet_cb(r, i, h->aux)) { buffer_delete(this->rxbuf); this->rxbuf = NULL; progress = true; break; } } } } if (this->rxbuf && !this->n_txq) { int retval = rconn_send(peer->rconn, this->rxbuf, &this->n_txq); if (retval != EAGAIN) { if (!retval) { progress = true; } else { buffer_delete(this->rxbuf); } this->rxbuf = NULL; } } } if (!progress) { break; } } if (r->is_mgmt_conn) { for (i = 0; i < 2; i++) { struct half *this = &r->halves[i]; if (!rconn_is_alive(this->rconn)) { relay_destroy(r); return; } } } } static void relay_wait(struct relay *r) { int i; for (i = 0; i < 2; i++) { struct half *this = &r->halves[i]; rconn_run_wait(this->rconn); if (!this->rxbuf) { rconn_recv_wait(this->rconn); } } } static void relay_destroy(struct relay *r) { int i; list_remove(&r->node); for (i = 0; i < 2; i++) { struct half *this = &r->halves[i]; rconn_destroy(this->rconn); buffer_delete(this->rxbuf); } free(r); } /* In-band control. */ struct in_band_data { const struct settings *s; struct mac_learning *ml; struct netdev *of_device; uint8_t mac[ETH_ADDR_LEN]; int n_queued; }; static void queue_tx(struct rconn *rc, struct in_band_data *in_band, struct buffer *b) { rconn_send_with_limit(rc, b, &in_band->n_queued, 10); } static const uint8_t * get_controller_mac(struct netdev *netdev, struct rconn *controller) { static uint32_t ip, last_nonzero_ip; static uint8_t mac[ETH_ADDR_LEN], last_nonzero_mac[ETH_ADDR_LEN]; static time_t next_refresh = 0; uint32_t last_ip = ip; time_t now = time_now(); ip = rconn_get_ip(controller); if (last_ip != ip || !next_refresh || now >= next_refresh) { bool have_mac; /* Look up MAC address. */ memset(mac, 0, sizeof mac); if (ip) { int retval = netdev_arp_lookup(netdev, ip, mac); if (retval) { VLOG_DBG("cannot look up controller hw address ("IP_FMT"): %s", IP_ARGS(&ip), strerror(retval)); } } have_mac = !eth_addr_is_zero(mac); /* Log changes in IP, MAC addresses. */ if (ip && ip != last_nonzero_ip) { VLOG_DBG("controller IP address changed from "IP_FMT " to "IP_FMT, IP_ARGS(&last_nonzero_ip), IP_ARGS(&ip)); last_nonzero_ip = ip; } if (have_mac && memcmp(last_nonzero_mac, mac, ETH_ADDR_LEN)) { VLOG_DBG("controller MAC address changed from "ETH_ADDR_FMT" to " ETH_ADDR_FMT, ETH_ADDR_ARGS(last_nonzero_mac), ETH_ADDR_ARGS(mac)); memcpy(last_nonzero_mac, mac, ETH_ADDR_LEN); } /* Schedule next refresh. * * If we have an IP address but not a MAC address, then refresh * quickly, since we probably will get a MAC address soon (via ARP). * Otherwise, we can afford to wait a little while. */ next_refresh = now + (!ip || have_mac ? 10 : 1); } return !eth_addr_is_zero(mac) ? mac : NULL; } static bool is_controller_mac(const uint8_t mac[ETH_ADDR_LEN], const uint8_t *controller_mac) { return controller_mac && eth_addr_equals(mac, controller_mac); } static bool in_band_packet_cb(struct relay *r, int half, void *in_band_) { struct in_band_data *in_band = in_band_; struct rconn *rc = r->halves[HALF_LOCAL].rconn; struct buffer *msg = r->halves[HALF_LOCAL].rxbuf; struct ofp_packet_in *opi; struct ofp_header *oh; size_t pkt_ofs, pkt_len; struct buffer pkt; struct flow flow; uint16_t in_port, out_port; const uint8_t *controller_mac; if (half != HALF_LOCAL || r->is_mgmt_conn) { return false; } oh = msg->data; if (oh->type != OFPT_PACKET_IN) { return false; } if (msg->size < offsetof (struct ofp_packet_in, data)) { VLOG_WARN("packet too short (%zu bytes) for packet_in", msg->size); return false; } /* Extract flow data from 'opi' into 'flow'. */ opi = msg->data; in_port = ntohs(opi->in_port); pkt_ofs = offsetof(struct ofp_packet_in, data); pkt_len = ntohs(opi->header.length) - pkt_ofs; pkt.data = opi->data; pkt.size = pkt_len; flow_extract(&pkt, in_port, &flow); /* Deal with local stuff. */ controller_mac = get_controller_mac(in_band->of_device, r->halves[HALF_REMOTE].rconn); if (in_port == OFPP_LOCAL) { /* Sent by secure channel. */ out_port = mac_learning_lookup(in_band->ml, flow.dl_dst); } else if (eth_addr_equals(flow.dl_dst, in_band->mac)) { /* Sent to secure channel. */ out_port = OFPP_LOCAL; if (mac_learning_learn(in_band->ml, flow.dl_src, in_port)) { VLOG_DBG("learned that "ETH_ADDR_FMT" is on port %"PRIu16, ETH_ADDR_ARGS(flow.dl_src), in_port); } } else if (flow.dl_type == htons(ETH_TYPE_ARP) && eth_addr_is_broadcast(flow.dl_dst) && is_controller_mac(flow.dl_src, controller_mac)) { /* ARP sent by controller. */ out_port = OFPP_FLOOD; } else if (is_controller_mac(flow.dl_dst, controller_mac) && in_port == mac_learning_lookup(in_band->ml, controller_mac)) { /* Drop controller traffic that arrives on the controller port. */ queue_tx(rc, in_band, make_add_flow(&flow, ntohl(opi->buffer_id), in_band->s->max_idle, 0)); return true; } else { return false; } if (out_port != OFPP_FLOOD) { /* The output port is known, so add a new flow. */ queue_tx(rc, in_band, make_add_simple_flow(&flow, ntohl(opi->buffer_id), out_port, in_band->s->max_idle)); /* If the switch didn't buffer the packet, we need to send a copy. */ if (ntohl(opi->buffer_id) == UINT32_MAX) { queue_tx(rc, in_band, make_unbuffered_packet_out(&pkt, in_port, out_port)); } } else { /* We don't know that MAC. Send along the packet without setting up a * flow. */ struct buffer *b; if (ntohl(opi->buffer_id) == UINT32_MAX) { b = make_unbuffered_packet_out(&pkt, in_port, out_port); } else { b = make_buffered_packet_out(ntohl(opi->buffer_id), in_port, out_port); } queue_tx(rc, in_band, b); } return true; } static struct hook in_band_hook_create(const struct settings *s) { struct in_band_data *in_band; int retval; in_band = xcalloc(1, sizeof *in_band); in_band->s = s; in_band->ml = mac_learning_create(); retval = netdev_open(s->of_name, NETDEV_ETH_TYPE_NONE, &in_band->of_device); if (retval) { fatal(retval, "Could not open %s device", s->of_name); } memcpy(in_band->mac, netdev_get_etheraddr(in_band->of_device), ETH_ADDR_LEN); return make_hook(in_band_packet_cb, NULL, NULL, in_band); } /* Fail open support. */ struct fail_open_data { const struct settings *s; struct rconn *local_rconn; struct rconn *remote_rconn; struct lswitch *lswitch; int last_disconn_secs; }; /* Causes 'r' to enter or leave fail-open mode, if appropriate. */ static void fail_open_periodic_cb(void *fail_open_) { struct fail_open_data *fail_open = fail_open_; int disconn_secs; bool open; disconn_secs = rconn_disconnected_duration(fail_open->remote_rconn); open = disconn_secs >= fail_open->s->probe_interval * 3; if (open != (fail_open->lswitch != NULL)) { if (!open) { VLOG_WARN("No longer in fail-open mode"); lswitch_destroy(fail_open->lswitch); fail_open->lswitch = NULL; } else { VLOG_WARN("Could not connect to controller for %d seconds, " "failing open", disconn_secs); fail_open->lswitch = lswitch_create(fail_open->local_rconn, true, fail_open->s->max_idle); fail_open->last_disconn_secs = disconn_secs; } } else if (open && disconn_secs > fail_open->last_disconn_secs + 60) { VLOG_WARN("Still in fail-open mode after %d seconds disconnected " "from controller", disconn_secs); fail_open->last_disconn_secs = disconn_secs; } } static bool fail_open_packet_cb(struct relay *r, int half, void *fail_open_) { struct fail_open_data *fail_open = fail_open_; if (half != HALF_LOCAL || r->is_mgmt_conn || !fail_open->lswitch) { return false; } else { lswitch_process_packet(fail_open->lswitch, fail_open->local_rconn, r->halves[HALF_LOCAL].rxbuf); rconn_run(fail_open->local_rconn); return true; } } static struct hook fail_open_hook_create(const struct settings *s, struct rconn *local_rconn, struct rconn *remote_rconn) { struct fail_open_data *fail_open = xmalloc(sizeof *fail_open); fail_open->s = s; fail_open->local_rconn = local_rconn; fail_open->remote_rconn = remote_rconn; fail_open->lswitch = NULL; return make_hook(fail_open_packet_cb, fail_open_periodic_cb, NULL, fail_open); } struct rate_limiter { const struct settings *s; struct rconn *remote_rconn; /* One queue per physical port. */ struct queue queues[OFPP_MAX]; int n_queued; /* Sum over queues[*].n. */ int next_tx_port; /* Next port to check in round-robin. */ /* Token bucket. * * It costs 1000 tokens to send a single packet_in message. A single token * per message would be more straightforward, but this choice lets us avoid * round-off error in refill_bucket()'s calculation of how many tokens to * add to the bucket, since no division step is needed. */ long long int last_fill; /* Time at which we last added tokens. */ int tokens; /* Current number of tokens. */ /* Transmission queue. */ int n_txq; /* No. of packets waiting in rconn for tx. */ }; /* Drop a packet from the longest queue in 'rl'. */ static void drop_packet(struct rate_limiter *rl) { struct queue *longest; /* Queue currently selected as longest. */ int n_longest; /* # of queues of same length as 'longest'. */ struct queue *q; longest = &rl->queues[0]; n_longest = 1; for (q = &rl->queues[0]; q < &rl->queues[OFPP_MAX]; q++) { if (longest->n < q->n) { longest = q; n_longest = 1; } else if (longest->n == q->n) { n_longest++; /* Randomly select one of the longest queues, with a uniform * distribution (Knuth algorithm 3.4.2R). */ if (!random_range(n_longest)) { longest = q; } } } /* FIXME: do we want to pop the tail instead? */ buffer_delete(queue_pop_head(longest)); rl->n_queued--; } /* Remove and return the next packet to transmit (in round-robin order). */ static struct buffer * dequeue_packet(struct rate_limiter *rl) { unsigned int i; for (i = 0; i < OFPP_MAX; i++) { unsigned int port = (rl->next_tx_port + i) % OFPP_MAX; struct queue *q = &rl->queues[port]; if (q->n) { rl->next_tx_port = (port + 1) % OFPP_MAX; rl->n_queued--; return queue_pop_head(q); } } NOT_REACHED(); } /* Add tokens to the bucket based on elapsed time. */ static void refill_bucket(struct rate_limiter *rl) { const struct settings *s = rl->s; long long int now = time_msec(); long long int tokens = (now - rl->last_fill) * s->rate_limit + rl->tokens; if (tokens >= 1000) { rl->last_fill = now; rl->tokens = MIN(tokens, s->burst_limit * 1000); } } /* Attempts to remove enough tokens from 'rl' to transmit a packet. Returns * true if successful, false otherwise. (In the latter case no tokens are * removed.) */ static bool get_token(struct rate_limiter *rl) { if (rl->tokens >= 1000) { rl->tokens -= 1000; return true; } else { return false; } } static bool rate_limit_packet_cb(struct relay *r, int half, void *rl_) { struct rate_limiter *rl = rl_; const struct settings *s = rl->s; struct buffer *msg = r->halves[HALF_LOCAL].rxbuf; struct ofp_header *oh; if (half == HALF_REMOTE) { return false; } oh = msg->data; if (oh->type != OFPT_PACKET_IN) { return false; } if (msg->size < offsetof(struct ofp_packet_in, data)) { VLOG_WARN("packet too short (%zu bytes) for packet_in", msg->size); return false; } if (!rl->n_queued && get_token(rl)) { /* In the common case where we are not constrained by the rate limit, * let the packet take the normal path. */ return false; } else { /* Otherwise queue it up for the periodic callback to drain out. */ struct ofp_packet_in *opi = msg->data; int port = ntohs(opi->in_port) % OFPP_MAX; if (rl->n_queued >= s->burst_limit) { drop_packet(rl); } queue_push_tail(&rl->queues[port], buffer_clone(msg)); rl->n_queued++; return true; } } static void rate_limit_periodic_cb(void *rl_) { struct rate_limiter *rl = rl_; int i; /* Drain some packets out of the bucket if possible, but limit the number * of iterations to allow other code to get work done too. */ refill_bucket(rl); for (i = 0; rl->n_queued && get_token(rl) && i < 50; i++) { /* Use a small, arbitrary limit for the amount of queuing to do here, * because the TCP connection is responsible for buffering and there is * no point in trying to transmit faster than the TCP connection can * handle. */ struct buffer *b = dequeue_packet(rl); rconn_send_with_limit(rl->remote_rconn, b, &rl->n_txq, 10); } } static void rate_limit_wait_cb(void *rl_) { struct rate_limiter *rl = rl_; if (rl->n_queued) { if (rl->tokens >= 1000) { /* We can transmit more packets as soon as we're called again. */ poll_immediate_wake(); } else { /* We have to wait for the bucket to re-fill. We could calculate * the exact amount of time here for increased smoothness. */ poll_timer_wait(TIME_UPDATE_INTERVAL / 2); } } } static struct hook rate_limit_hook_create(const struct settings *s, struct rconn *local, struct rconn *remote) { struct rate_limiter *rl; size_t i; rl = xcalloc(1, sizeof *rl); rl->s = s; rl->remote_rconn = remote; for (i = 0; i < ARRAY_SIZE(rl->queues); i++) { queue_init(&rl->queues[i]); } rl->last_fill = time_msec(); rl->tokens = s->rate_limit * 100; return make_hook(rate_limit_packet_cb, rate_limit_periodic_cb, rate_limit_wait_cb, rl); } /* Controller discovery. */ struct discovery { const struct settings *s; struct dhclient *dhcp; bool ever_successful; }; static struct discovery * discovery_init(const struct settings *s) { struct netdev *netdev; struct discovery *d; struct dhclient *dhcp; int retval; /* Bring ofX network device up. */ retval = netdev_open(s->of_name, NETDEV_ETH_TYPE_NONE, &netdev); if (retval) { fatal(retval, "Could not open %s device", s->of_name); } retval = netdev_turn_flags_on(netdev, NETDEV_UP, true); if (retval) { fatal(retval, "Could not bring %s device up", s->of_name); } netdev_close(netdev); /* Initialize DHCP client. */ retval = dhclient_create(s->of_name, modify_dhcp_request, validate_dhcp_offer, (void *) s, &dhcp); if (retval) { fatal(retval, "Failed to initialize DHCP client"); } dhclient_init(dhcp, 0); d = xmalloc(sizeof *d); d->s = s; d->dhcp = dhcp; d->ever_successful = false; return d; } static void discovery_question_connectivity(struct discovery *d) { dhclient_force_renew(d->dhcp, 15); } static bool discovery_run(struct discovery *d, char **controller_name) { dhclient_run(d->dhcp); if (!dhclient_changed(d->dhcp)) { return false; } dhclient_configure_netdev(d->dhcp); if (d->s->update_resolv_conf) { dhclient_update_resolv_conf(d->dhcp); } if (dhclient_is_bound(d->dhcp)) { *controller_name = dhcp_msg_get_string(dhclient_get_config(d->dhcp), DHCP_CODE_OFP_CONTROLLER_VCONN); VLOG_WARN("%s: discovered controller", *controller_name); d->ever_successful = true; } else if (controller_name) { *controller_name = NULL; if (d->ever_successful) { VLOG_WARN("discovered controller no longer available"); } } return true; } static void discovery_wait(struct discovery *d) { dhclient_wait(d->dhcp); } static void modify_dhcp_request(struct dhcp_msg *msg, void *aux) { dhcp_msg_put_string(msg, DHCP_CODE_VENDOR_CLASS, "OpenFlow"); } static bool validate_dhcp_offer(const struct dhcp_msg *msg, void *s_) { const struct settings *s = s_; char *vconn_name; bool accept; vconn_name = dhcp_msg_get_string(msg, DHCP_CODE_OFP_CONTROLLER_VCONN); if (!vconn_name) { VLOG_WARN("rejecting DHCP offer missing controller vconn"); return false; } accept = !regexec(&s->accept_controller_regex, vconn_name, 0, NULL, 0); if (!accept) { VLOG_WARN("rejecting controller vconn that fails to match %s", s->accept_controller_re); } free(vconn_name); return accept; } /* User interface. */ static void parse_options(int argc, char *argv[], struct settings *s) { enum { OPT_ACCEPT_VCONN = UCHAR_MAX + 1, OPT_NO_RESOLV_CONF, OPT_INACTIVITY_PROBE, OPT_MAX_IDLE, OPT_MAX_BACKOFF, OPT_RATE_LIMIT, OPT_BURST_LIMIT }; static struct option long_options[] = { {"accept-vconn", required_argument, 0, OPT_ACCEPT_VCONN}, {"no-resolv-conf", no_argument, 0, OPT_NO_RESOLV_CONF}, {"fail", required_argument, 0, 'f'}, {"inactivity-probe", required_argument, 0, OPT_INACTIVITY_PROBE}, {"max-idle", required_argument, 0, OPT_MAX_IDLE}, {"max-backoff", required_argument, 0, OPT_MAX_BACKOFF}, {"listen", required_argument, 0, 'l'}, {"rate-limit", optional_argument, 0, OPT_RATE_LIMIT}, {"burst-limit", required_argument, 0, OPT_BURST_LIMIT}, {"detach", no_argument, 0, 'D'}, {"pidfile", optional_argument, 0, 'P'}, {"verbose", optional_argument, 0, 'v'}, {"help", no_argument, 0, 'h'}, {"version", no_argument, 0, 'V'}, VCONN_SSL_LONG_OPTIONS {0, 0, 0, 0}, }; char *short_options = long_options_to_short_options(long_options); char *accept_re = NULL; int retval; /* Set defaults that we can figure out before parsing options. */ s->listen_vconn_name = NULL; s->fail_mode = FAIL_OPEN; s->max_idle = 15; s->probe_interval = 15; s->max_backoff = 15; s->update_resolv_conf = true; s->rate_limit = 0; s->burst_limit = 0; for (;;) { int c; c = getopt_long(argc, argv, short_options, long_options, NULL); if (c == -1) { break; } switch (c) { case OPT_ACCEPT_VCONN: accept_re = optarg[0] == '^' ? optarg : xasprintf("^%s", optarg); break; case OPT_NO_RESOLV_CONF: s->update_resolv_conf = false; break; case 'f': if (!strcmp(optarg, "open")) { s->fail_mode = FAIL_OPEN; } else if (!strcmp(optarg, "closed")) { s->fail_mode = FAIL_CLOSED; } else { fatal(0, "-f or --fail argument must be \"open\" or \"closed\""); } break; case OPT_INACTIVITY_PROBE: s->probe_interval = atoi(optarg); if (s->probe_interval < 5) { fatal(0, "--inactivity-probe argument must be at least 5"); } break; case OPT_MAX_IDLE: if (!strcmp(optarg, "permanent")) { s->max_idle = OFP_FLOW_PERMANENT; } else { s->max_idle = atoi(optarg); if (s->max_idle < 1 || s->max_idle > 65535) { fatal(0, "--max-idle argument must be between 1 and " "65535 or the word 'permanent'"); } } break; case OPT_MAX_BACKOFF: s->max_backoff = atoi(optarg); if (s->max_backoff < 1) { fatal(0, "--max-backoff argument must be at least 1"); } else if (s->max_backoff > 3600) { s->max_backoff = 3600; } break; case OPT_RATE_LIMIT: if (optarg) { s->rate_limit = atoi(optarg); if (s->rate_limit < 1) { fatal(0, "--rate-limit argument must be at least 1"); } } else { s->rate_limit = 1000; } break; case OPT_BURST_LIMIT: s->burst_limit = atoi(optarg); if (s->burst_limit < 1) { fatal(0, "--burst-limit argument must be at least 1"); } break; case 'D': set_detach(); break; case 'P': set_pidfile(optarg); break; case 'l': if (s->listen_vconn_name) { fatal(0, "-l or --listen may be only specified once"); } s->listen_vconn_name = optarg; break; case 'h': usage(); case 'V': printf("%s "VERSION" compiled "__DATE__" "__TIME__"\n", argv[0]); exit(EXIT_SUCCESS); case 'v': vlog_set_verbosity(optarg); break; VCONN_SSL_OPTION_HANDLERS case '?': exit(EXIT_FAILURE); default: abort(); } } free(short_options); argc -= optind; argv += optind; if (argc < 1 || argc > 2) { fatal(0, "need one or two non-option arguments; use --help for usage"); } /* Local and remote vconns. */ s->nl_name = argv[0]; if (strncmp(s->nl_name, "nl:", 3) || strlen(s->nl_name) < 4 || s->nl_name[strspn(s->nl_name + 3, "0123456789") + 3]) { fatal(0, "%s: argument is not of the form \"nl:DP_IDX\"", s->nl_name); } s->of_name = xasprintf("of%s", s->nl_name + 3); s->controller_name = argc > 1 ? xstrdup(argv[1]) : NULL; /* Set accept_controller_regex. */ if (!accept_re) { accept_re = vconn_ssl_is_configured() ? "^ssl:.*" : ".*"; } retval = regcomp(&s->accept_controller_regex, accept_re, REG_NOSUB | REG_EXTENDED); if (retval) { size_t length = regerror(retval, &s->accept_controller_regex, NULL, 0); char *buffer = xmalloc(length); regerror(retval, &s->accept_controller_regex, buffer, length); fatal(0, "%s: %s", accept_re, buffer); } s->accept_controller_re = accept_re; /* Mode of operation. */ s->discovery = s->controller_name == NULL; if (s->discovery) { s->in_band = true; } else { enum netdev_flags flags; struct netdev *netdev; retval = netdev_open(s->of_name, NETDEV_ETH_TYPE_NONE, &netdev); if (retval) { fatal(retval, "Could not open %s device", s->of_name); } retval = netdev_get_flags(netdev, &flags); if (retval) { fatal(retval, "Could not get flags for %s device", s->of_name); } s->in_band = (flags & NETDEV_UP) != 0; if (s->in_band && netdev_get_in6(netdev, NULL)) { VLOG_WARN("Ignoring IPv6 address on %s device: IPv6 not supported", s->of_name); } netdev_close(netdev); } /* Rate limiting. */ if (s->rate_limit) { if (s->rate_limit < 100) { VLOG_WARN("Rate limit set to unusually low value %d", s->rate_limit); } if (!s->burst_limit) { s->burst_limit = s->rate_limit / 4; } s->burst_limit = MAX(s->burst_limit, 1); s->burst_limit = MIN(s->burst_limit, INT_MAX / 1000); } } static void usage(void) { printf("%s: secure channel, a relay for OpenFlow messages.\n" "usage: %s [OPTIONS] nl:DP_IDX [CONTROLLER]\n" "where nl:DP_IDX is a datapath that has been added with dpctl.\n" "CONTROLLER is an active OpenFlow connection method; if it is\n" "omitted, then secchan performs controller discovery.\n", program_name, program_name); vconn_usage(true, true); printf("\nController discovery options:\n" " --accept-vconn=REGEX accept matching discovered controllers\n" " --no-resolv-conf do not update /etc/resolv.conf\n" "\nNetworking options:\n" " -f, --fail=open|closed when controller connection fails:\n" " closed: drop all packets\n" " open (default): act as learning switch\n" " --inactivity-probe=SECS time between inactivity probes\n" " --max-idle=SECS max idle for flows set up by secchan\n" " --max-backoff=SECS max time between controller connection\n" " attempts (default: 15 seconds)\n" " -l, --listen=METHOD allow management connections on METHOD\n" " (a passive OpenFlow connection method)\n" "\nRate-limiting of \"packet-in\" messages to the controller:\n" " --rate-limit[=PACKETS] max rate, in packets/s (default: 1000)\n" " --burst-limit=BURST limit on packet credit for idle time\n" "\nOther options:\n" " -D, --detach run in background as daemon\n" " -P, --pidfile[=FILE] create pidfile (default: %s/secchan.pid)\n" " -v, --verbose=MODULE[:FACILITY[:LEVEL]] set logging levels\n" " -v, --verbose set maximum verbosity level\n" " -h, --help display this help message\n" " -V, --version display version information\n", RUNDIR); exit(EXIT_SUCCESS); }