/* Copyright (c) 2008 The Board of Trustees of The Leland Stanford * Junior University * * We are making the OpenFlow specification and associated documentation * (Software) available for public use and benefit with the expectation * that others will use, modify and enhance the Software and contribute * those enhancements back to the community. However, since we would * like to make the Software available for broadest use, with as few * restrictions as possible permission is hereby granted, free of * charge, to any person obtaining a copy of this Software to deal in * the Software under the copyrights without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * The name and trademarks of copyright holder(s) may NOT be used in * advertising or publicity pertaining to the Software or any * derivatives without specific, written prior permission. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "command-line.h" #include "compiler.h" #include "daemon.h" #include "dhcp-client.h" #include "dhcp.h" #include "dynamic-string.h" #include "fault.h" #include "flow.h" #include "learning-switch.h" #include "list.h" #include "mac-learning.h" #include "netdev.h" #include "nicira-ext.h" #include "ofpbuf.h" #include "openflow.h" #include "packets.h" #include "poll-loop.h" #include "port-array.h" #include "rconn.h" #include "stp.h" #include "timeval.h" #include "util.h" #include "vconn-ssl.h" #include "vconn.h" #include "vlog-socket.h" #include "xtoxll.h" #include "vlog.h" #define THIS_MODULE VLM_secchan /* Behavior when the connection to the controller fails. */ enum fail_mode { FAIL_OPEN, /* Act as learning switch. */ FAIL_CLOSED /* Drop all packets. */ }; /* Maximum number of management connection listeners. */ #define MAX_MGMT 8 /* Settings that may be configured by the user. */ struct settings { /* Overall mode of operation. */ bool discovery; /* Discover the controller automatically? */ bool in_band; /* Connect to controller in-band? */ /* Related vconns and network devices. */ const char *dp_name; /* Local datapath. */ const char *controller_name; /* Controller (if not discovery mode). */ const char *listener_names[MAX_MGMT]; /* Listen for mgmt connections. */ size_t n_listeners; /* Number of mgmt connection listeners. */ const char *monitor_name; /* Listen for traffic monitor connections. */ /* Failure behavior. */ enum fail_mode fail_mode; /* Act as learning switch if no controller? */ int max_idle; /* Idle time for flows in fail-open mode. */ int probe_interval; /* # seconds idle before sending echo request. */ int max_backoff; /* Max # seconds between connection attempts. */ /* Packet-in rate-limiting. */ int rate_limit; /* Tokens added to bucket per second. */ int burst_limit; /* Maximum number token bucket size. */ /* Discovery behavior. */ regex_t accept_controller_regex; /* Controller vconns to accept. */ const char *accept_controller_re; /* String version of regex. */ bool update_resolv_conf; /* Update /etc/resolv.conf? */ /* Spanning tree protocol. */ bool enable_stp; }; struct half { struct rconn *rconn; struct ofpbuf *rxbuf; int n_txq; /* No. of packets queued for tx on 'rconn'. */ }; struct relay { struct list node; #define HALF_LOCAL 0 #define HALF_REMOTE 1 struct half halves[2]; bool is_mgmt_conn; }; struct hook { bool (*packet_cb[2])(struct relay *, void *aux); void (*periodic_cb)(void *aux); void (*wait_cb)(void *aux); void *aux; }; static struct vlog_rate_limit vrl = VLOG_RATE_LIMIT_INIT(60, 60); static void parse_options(int argc, char *argv[], struct settings *); static void usage(void) NO_RETURN; static struct pvconn *open_passive_vconn(const char *name); static struct vconn *accept_vconn(struct pvconn *pvconn); static struct relay *relay_create(struct rconn *local, struct rconn *remote, bool is_mgmt_conn); static struct relay *relay_accept(const struct settings *, struct pvconn *); static void relay_run(struct relay *, const struct hook[], size_t n_hooks); static void relay_wait(struct relay *); static void relay_destroy(struct relay *); static struct hook make_hook(bool (*local_packet_cb)(struct relay *, void *), bool (*remote_packet_cb)(struct relay *, void *), void (*periodic_cb)(void *), void (*wait_cb)(void *), void *aux); static struct ofp_packet_in *get_ofp_packet_in(struct relay *); static bool get_ofp_packet_eth_header(struct relay *, struct ofp_packet_in **, struct eth_header **); static void get_ofp_packet_payload(struct ofp_packet_in *, struct ofpbuf *); struct switch_status; struct status_reply; static struct hook switch_status_hook_create(const struct settings *, struct switch_status **); static void switch_status_register_category(struct switch_status *, const char *category, void (*cb)(struct status_reply *, void *aux), void *aux); static void status_reply_put(struct status_reply *, const char *, ...) PRINTF_FORMAT(2, 3); static void rconn_status_cb(struct status_reply *, void *rconn_); struct port_watcher; static struct discovery *discovery_init(const struct settings *, struct port_watcher *, struct switch_status *); static void discovery_question_connectivity(struct discovery *); static bool discovery_run(struct discovery *, char **controller_name); static void discovery_wait(struct discovery *); static struct hook in_band_hook_create(const struct settings *, struct switch_status *, struct port_watcher *, struct rconn *remote); static struct hook port_watcher_create(struct rconn *local, struct rconn *remote, struct port_watcher **); static uint32_t port_watcher_get_config(const struct port_watcher *, uint16_t port_no); static const char *port_watcher_get_name(const struct port_watcher *, uint16_t port_no) UNUSED; static const uint8_t *port_watcher_get_hwaddr(const struct port_watcher *, uint16_t port_no); static void port_watcher_set_flags(struct port_watcher *, uint16_t port_no, uint32_t config, uint32_t c_mask, uint32_t state, uint32_t s_mask); #ifdef SUPPORT_SNAT static struct hook snat_hook_create(struct port_watcher *pw); #endif static struct hook stp_hook_create(const struct settings *, struct port_watcher *, struct rconn *local, struct rconn *remote); static struct hook fail_open_hook_create(const struct settings *, struct switch_status *, struct rconn *local, struct rconn *remote); static struct hook rate_limit_hook_create(const struct settings *, struct switch_status *, struct rconn *local, struct rconn *remote); static void modify_dhcp_request(struct dhcp_msg *, void *aux); static bool validate_dhcp_offer(const struct dhcp_msg *, void *aux); int main(int argc, char *argv[]) { struct settings s; struct list relays = LIST_INITIALIZER(&relays); struct hook hooks[8]; size_t n_hooks = 0; struct pvconn *monitor; struct pvconn *listeners[MAX_MGMT]; size_t n_listeners; struct rconn *local_rconn, *remote_rconn; struct relay *controller_relay; struct discovery *discovery; struct switch_status *switch_status; struct port_watcher *pw; int i; int retval; set_program_name(argv[0]); register_fault_handlers(); time_init(); vlog_init(); parse_options(argc, argv, &s); signal(SIGPIPE, SIG_IGN); /* Start listening for management and monitoring connections. */ n_listeners = 0; for (i = 0; i < s.n_listeners; i++) { listeners[n_listeners++] = open_passive_vconn(s.listener_names[i]); } monitor = s.monitor_name ? open_passive_vconn(s.monitor_name) : NULL; /* Initialize switch status hook. */ hooks[n_hooks++] = switch_status_hook_create(&s, &switch_status); /* Start listening for vlogconf requests. */ retval = vlog_server_listen(NULL, NULL); if (retval) { ofp_fatal(retval, "Could not listen for vlog connections"); } die_if_already_running(); daemonize(); VLOG_WARN("OpenFlow reference implementation version %s", VERSION); VLOG_WARN("OpenFlow protocol version 0x%02x", OFP_VERSION); /* Connect to datapath. */ local_rconn = rconn_create(0, s.max_backoff); rconn_connect(local_rconn, s.dp_name); switch_status_register_category(switch_status, "local", rconn_status_cb, local_rconn); /* Connect to controller. */ remote_rconn = rconn_create(s.probe_interval, s.max_backoff); if (s.controller_name) { retval = rconn_connect(remote_rconn, s.controller_name); if (retval == EAFNOSUPPORT) { ofp_fatal(0, "No support for %s vconn", s.controller_name); } } switch_status_register_category(switch_status, "remote", rconn_status_cb, remote_rconn); /* Start relaying. */ controller_relay = relay_create(local_rconn, remote_rconn, false); list_push_back(&relays, &controller_relay->node); /* Set up hooks. */ hooks[n_hooks++] = port_watcher_create(local_rconn, remote_rconn, &pw); discovery = s.discovery ? discovery_init(&s, pw, switch_status) : NULL; #ifdef SUPPORT_SNAT hooks[n_hooks++] = snat_hook_create(pw); #endif if (s.enable_stp) { hooks[n_hooks++] = stp_hook_create(&s, pw, local_rconn, remote_rconn); } if (s.in_band) { hooks[n_hooks++] = in_band_hook_create(&s, switch_status, pw, remote_rconn); } if (s.fail_mode == FAIL_OPEN) { hooks[n_hooks++] = fail_open_hook_create(&s, switch_status, local_rconn, remote_rconn); } if (s.rate_limit) { hooks[n_hooks++] = rate_limit_hook_create(&s, switch_status, local_rconn, remote_rconn); } assert(n_hooks <= ARRAY_SIZE(hooks)); for (;;) { struct relay *r, *n; size_t i; /* Do work. */ LIST_FOR_EACH_SAFE (r, n, struct relay, node, &relays) { relay_run(r, hooks, n_hooks); } for (i = 0; i < n_listeners; i++) { for (;;) { struct relay *r = relay_accept(&s, listeners[i]); if (!r) { break; } list_push_back(&relays, &r->node); } } if (monitor) { struct vconn *new = accept_vconn(monitor); if (new) { rconn_add_monitor(local_rconn, new); } } for (i = 0; i < n_hooks; i++) { if (hooks[i].periodic_cb) { hooks[i].periodic_cb(hooks[i].aux); } } if (s.discovery) { char *controller_name; if (rconn_is_connectivity_questionable(remote_rconn)) { discovery_question_connectivity(discovery); } if (discovery_run(discovery, &controller_name)) { if (controller_name) { rconn_connect(remote_rconn, controller_name); } else { rconn_disconnect(remote_rconn); } } } /* Wait for something to happen. */ LIST_FOR_EACH (r, struct relay, node, &relays) { relay_wait(r); } for (i = 0; i < n_listeners; i++) { pvconn_wait(listeners[i]); } if (monitor) { pvconn_wait(monitor); } for (i = 0; i < n_hooks; i++) { if (hooks[i].wait_cb) { hooks[i].wait_cb(hooks[i].aux); } } if (discovery) { discovery_wait(discovery); } poll_block(); } return 0; } static struct pvconn * open_passive_vconn(const char *name) { struct pvconn *pvconn; int retval; retval = pvconn_open(name, &pvconn); if (retval && retval != EAGAIN) { ofp_fatal(retval, "opening %s", name); } return pvconn; } static struct vconn * accept_vconn(struct pvconn *pvconn) { struct vconn *new; int retval; retval = pvconn_accept(pvconn, OFP_VERSION, &new); if (retval && retval != EAGAIN) { VLOG_WARN_RL(&vrl, "accept failed (%s)", strerror(retval)); } return new; } static struct hook make_hook(bool (*local_packet_cb)(struct relay *, void *aux), bool (*remote_packet_cb)(struct relay *, void *aux), void (*periodic_cb)(void *aux), void (*wait_cb)(void *aux), void *aux) { struct hook h; h.packet_cb[HALF_LOCAL] = local_packet_cb; h.packet_cb[HALF_REMOTE] = remote_packet_cb; h.periodic_cb = periodic_cb; h.wait_cb = wait_cb; h.aux = aux; return h; } static struct ofp_packet_in * get_ofp_packet_in(struct relay *r) { struct ofpbuf *msg = r->halves[HALF_LOCAL].rxbuf; struct ofp_header *oh = msg->data; if (oh->type == OFPT_PACKET_IN) { if (msg->size >= offsetof (struct ofp_packet_in, data)) { return msg->data; } else { VLOG_WARN("packet too short (%zu bytes) for packet_in", msg->size); } } return NULL; } static bool get_ofp_packet_eth_header(struct relay *r, struct ofp_packet_in **opip, struct eth_header **ethp) { const int min_len = offsetof(struct ofp_packet_in, data) + ETH_HEADER_LEN; struct ofp_packet_in *opi = get_ofp_packet_in(r); if (opi && ntohs(opi->header.length) >= min_len) { *opip = opi; *ethp = (void *) opi->data; return true; } return false; } /* OpenFlow message relaying. */ static struct relay * relay_accept(const struct settings *s, struct pvconn *pvconn) { struct vconn *new_remote, *new_local; struct rconn *r1, *r2; char *vconn_name; int nl_index; int retval; new_remote = accept_vconn(pvconn); if (!new_remote) { return NULL; } if (sscanf(s->dp_name, "nl:%d", &nl_index) == 1) { /* nl:123 or nl:123:1 opens a netlink connection to local datapath 123. * nl:123:0 opens a netlink connection to local datapath 123 without * obtaining a subscription for ofp_packet_in or ofp_flow_expired * messages. That's what we want here; management connections should * not receive those messages, at least by default. */ vconn_name = xasprintf("nl:%d:0", nl_index); } else { /* We don't have a way to specify not to subscribe to those messages * for other transports. (That's a defect: really this should be in * the OpenFlow protocol, not the Netlink transport). */ VLOG_WARN_RL(&vrl, "new management connection will receive " "asynchronous messages"); vconn_name = xstrdup(s->dp_name); } retval = vconn_open(vconn_name, OFP_VERSION, &new_local); if (retval) { VLOG_ERR_RL(&vrl, "could not connect to %s (%s)", vconn_name, strerror(retval)); vconn_close(new_remote); free(vconn_name); return NULL; } /* Create and return relay. */ r1 = rconn_create(0, 0); rconn_connect_unreliably(r1, vconn_name, new_local); free(vconn_name); r2 = rconn_create(0, 0); rconn_connect_unreliably(r2, "passive", new_remote); return relay_create(r1, r2, true); } static struct relay * relay_create(struct rconn *local, struct rconn *remote, bool is_mgmt_conn) { struct relay *r = xcalloc(1, sizeof *r); r->halves[HALF_LOCAL].rconn = local; r->halves[HALF_REMOTE].rconn = remote; r->is_mgmt_conn = is_mgmt_conn; return r; } static void relay_run(struct relay *r, const struct hook hooks[], size_t n_hooks) { int iteration; int i; for (i = 0; i < 2; i++) { rconn_run(r->halves[i].rconn); } /* Limit the number of iterations to prevent other tasks from starving. */ for (iteration = 0; iteration < 50; iteration++) { bool progress = false; for (i = 0; i < 2; i++) { struct half *this = &r->halves[i]; struct half *peer = &r->halves[!i]; if (!this->rxbuf) { this->rxbuf = rconn_recv(this->rconn); if (this->rxbuf && (i == HALF_REMOTE || !r->is_mgmt_conn)) { const struct hook *h; for (h = hooks; h < &hooks[n_hooks]; h++) { if (h->packet_cb[i] && h->packet_cb[i](r, h->aux)) { ofpbuf_delete(this->rxbuf); this->rxbuf = NULL; progress = true; break; } } } } if (this->rxbuf && !this->n_txq) { int retval = rconn_send(peer->rconn, this->rxbuf, &this->n_txq); if (retval != EAGAIN) { if (!retval) { progress = true; } else { ofpbuf_delete(this->rxbuf); } this->rxbuf = NULL; } } } if (!progress) { break; } } if (r->is_mgmt_conn) { for (i = 0; i < 2; i++) { struct half *this = &r->halves[i]; if (!rconn_is_alive(this->rconn)) { relay_destroy(r); return; } } } } static void relay_wait(struct relay *r) { int i; for (i = 0; i < 2; i++) { struct half *this = &r->halves[i]; rconn_run_wait(this->rconn); if (!this->rxbuf) { rconn_recv_wait(this->rconn); } } } static void relay_destroy(struct relay *r) { int i; list_remove(&r->node); for (i = 0; i < 2; i++) { struct half *this = &r->halves[i]; rconn_destroy(this->rconn); ofpbuf_delete(this->rxbuf); } free(r); } /* Port status watcher. */ typedef void port_changed_cb_func(uint16_t port_no, const struct ofp_phy_port *old, const struct ofp_phy_port *new, void *aux); struct port_watcher_cb { port_changed_cb_func *port_changed; void *aux; }; typedef void local_port_changed_cb_func(const struct ofp_phy_port *new, void *aux); struct port_watcher_local_cb { local_port_changed_cb_func *local_port_changed; void *aux; }; struct port_watcher { struct rconn *local_rconn; struct rconn *remote_rconn; struct port_array ports; time_t last_feature_request; bool got_feature_reply; uint64_t datapath_id; int n_txq; struct port_watcher_cb cbs[2]; int n_cbs; struct port_watcher_local_cb local_cbs[4]; int n_local_cbs; char local_port_name[OFP_MAX_PORT_NAME_LEN + 1]; }; /* Returns the number of fields that differ from 'a' to 'b'. */ static int opp_differs(const struct ofp_phy_port *a, const struct ofp_phy_port *b) { BUILD_ASSERT_DECL(sizeof *a == 48); /* Trips when we add or remove fields. */ return ((a->port_no != b->port_no) + (memcmp(a->hw_addr, b->hw_addr, sizeof a->hw_addr) != 0) + (memcmp(a->name, b->name, sizeof a->name) != 0) + (a->config != b->config) + (a->state != b->state) + (a->curr != b->curr) + (a->advertised != b->advertised) + (a->supported != b->supported) + (a->peer != b->peer)); } static void sanitize_opp(struct ofp_phy_port *opp) { size_t i; for (i = 0; i < sizeof opp->name; i++) { char c = opp->name[i]; if (c && (c < 0x20 || c > 0x7e)) { opp->name[i] = '.'; } } opp->name[sizeof opp->name - 1] = '\0'; } static void call_port_changed_callbacks(struct port_watcher *pw, int port_no, const struct ofp_phy_port *old, const struct ofp_phy_port *new) { int i; for (i = 0; i < pw->n_cbs; i++) { port_changed_cb_func *port_changed = pw->cbs[i].port_changed; (port_changed)(port_no, old, new, pw->cbs[i].aux); } } static void get_port_name(const struct ofp_phy_port *port, char *name, size_t name_size) { char *p; memcpy(name, port->name, MIN(name_size, sizeof port->name)); name[name_size - 1] = '\0'; for (p = name; *p != '\0'; p++) { if (*p < 32 || *p > 126) { *p = '.'; } } } static struct ofp_phy_port * lookup_port(const struct port_watcher *pw, uint16_t port_no) { return port_array_get(&pw->ports, port_no); } static void call_local_port_changed_callbacks(struct port_watcher *pw) { char name[OFP_MAX_PORT_NAME_LEN + 1]; const struct ofp_phy_port *port; int i; /* Pass the local port to the callbacks, if it exists. Pass a null pointer if there is no local port. */ port = lookup_port(pw, OFPP_LOCAL); /* Log the name of the local port. */ if (port) { get_port_name(port, name, sizeof name); } else { name[0] = '\0'; } if (strcmp(pw->local_port_name, name)) { if (name[0]) { VLOG_WARN("Identified data path local port as \"%s\".", name); } else { VLOG_WARN("Data path has no local port."); } strcpy(pw->local_port_name, name); } /* Invoke callbacks. */ for (i = 0; i < pw->n_local_cbs; i++) { local_port_changed_cb_func *cb = pw->local_cbs[i].local_port_changed; (cb)(port, pw->local_cbs[i].aux); } } static void update_phy_port(struct port_watcher *pw, struct ofp_phy_port *opp, uint8_t reason) { struct ofp_phy_port *old; uint16_t port_no; port_no = ntohs(opp->port_no); old = lookup_port(pw, port_no); if (reason == OFPPR_DELETE && old) { call_port_changed_callbacks(pw, port_no, old, NULL); free(old); port_array_set(&pw->ports, port_no, NULL); } else if (reason == OFPPR_MODIFY || reason == OFPPR_ADD) { if (old) { uint32_t s_mask = htonl(OFPPS_STP_MASK); opp->state = (opp->state & ~s_mask) | (old->state & s_mask); } if (!old || opp_differs(opp, old)) { struct ofp_phy_port new = *opp; sanitize_opp(&new); call_port_changed_callbacks(pw, port_no, old, &new); if (old) { *old = new; } else { port_array_set(&pw->ports, port_no, xmemdup(&new, sizeof new)); } } } } static bool port_watcher_local_packet_cb(struct relay *r, void *pw_) { struct port_watcher *pw = pw_; struct ofpbuf *msg = r->halves[HALF_LOCAL].rxbuf; struct ofp_header *oh = msg->data; if (oh->type == OFPT_FEATURES_REPLY && msg->size >= offsetof(struct ofp_switch_features, ports)) { struct ofp_switch_features *osf = msg->data; bool seen[PORT_ARRAY_SIZE]; struct ofp_phy_port *p; unsigned int port_no; size_t n_ports; size_t i; pw->got_feature_reply = true; if (pw->datapath_id != osf->datapath_id) { pw->datapath_id = osf->datapath_id; VLOG_WARN("Datapath id is %012"PRIx64, ntohll(pw->datapath_id)); } /* Update each port included in the message. */ memset(seen, false, sizeof seen); n_ports = ((msg->size - offsetof(struct ofp_switch_features, ports)) / sizeof *osf->ports); for (i = 0; i < n_ports; i++) { struct ofp_phy_port *opp = &osf->ports[i]; update_phy_port(pw, opp, OFPPR_MODIFY); seen[ntohs(opp->port_no)] = true; } /* Delete all the ports not included in the message. */ for (p = port_array_first(&pw->ports, &port_no); p; p = port_array_next(&pw->ports, &port_no)) { if (!seen[port_no]) { update_phy_port(pw, p, OFPPR_DELETE); } } call_local_port_changed_callbacks(pw); } else if (oh->type == OFPT_PORT_STATUS && msg->size >= sizeof(struct ofp_port_status)) { struct ofp_port_status *ops = msg->data; update_phy_port(pw, &ops->desc, ops->reason); if (ops->desc.port_no == htons(OFPP_LOCAL)) { call_local_port_changed_callbacks(pw); } } return false; } static bool port_watcher_remote_packet_cb(struct relay *r, void *pw_) { struct port_watcher *pw = pw_; struct ofpbuf *msg = r->halves[HALF_REMOTE].rxbuf; struct ofp_header *oh = msg->data; if (oh->type == OFPT_PORT_MOD && msg->size >= sizeof(struct ofp_port_mod)) { struct ofp_port_mod *opm = msg->data; uint16_t port_no = ntohs(opm->port_no); struct ofp_phy_port *pw_opp = lookup_port(pw, port_no); if (pw_opp->port_no != htons(OFPP_NONE)) { struct ofp_phy_port old = *pw_opp; pw_opp->config = ((pw_opp->config & ~opm->mask) | (opm->config & opm->mask)); call_port_changed_callbacks(pw, port_no, &old, pw_opp); if (pw_opp->port_no == htons(OFPP_LOCAL)) { call_local_port_changed_callbacks(pw); } } } return false; } static void port_watcher_periodic_cb(void *pw_) { struct port_watcher *pw = pw_; if (!pw->got_feature_reply && time_now() >= pw->last_feature_request + 5 && rconn_is_connected(pw->local_rconn)) { struct ofpbuf *b; make_openflow(sizeof(struct ofp_header), OFPT_FEATURES_REQUEST, &b); rconn_send_with_limit(pw->local_rconn, b, &pw->n_txq, 1); pw->last_feature_request = time_now(); } } static void port_watcher_wait_cb(void *pw_) { struct port_watcher *pw = pw_; if (!pw->got_feature_reply && rconn_is_connected(pw->local_rconn)) { if (pw->last_feature_request != TIME_MIN) { poll_timer_wait(pw->last_feature_request + 5 - time_now()); } else { poll_immediate_wake(); } } } static void put_duplexes(struct ds *ds, const char *name, uint32_t features, uint32_t hd_bit, uint32_t fd_bit) { if (features & (hd_bit | fd_bit)) { ds_put_format(ds, " %s", name); if (features & hd_bit) { ds_put_cstr(ds, "(HD)"); } if (features & fd_bit) { ds_put_cstr(ds, "(FD)"); } } } static void put_features(struct ds *ds, const char *name, uint32_t features) { if (features & (OFPPF_10MB_HD | OFPPF_10MB_FD | OFPPF_100MB_HD | OFPPF_100MB_FD | OFPPF_1GB_HD | OFPPF_1GB_FD | OFPPF_10GB_FD)) { ds_put_cstr(ds, name); put_duplexes(ds, "10M", features, OFPPF_10MB_HD, OFPPF_10MB_FD); put_duplexes(ds, "100M", features, OFPPF_100MB_HD, OFPPF_100MB_FD); put_duplexes(ds, "1G", features, OFPPF_100MB_HD, OFPPF_100MB_FD); if (features & OFPPF_10GB_FD) { ds_put_cstr(ds, " 10G"); } if (features & OFPPF_AUTONEG) { ds_put_cstr(ds, " AUTO_NEG"); } if (features & OFPPF_PAUSE) { ds_put_cstr(ds, " PAUSE"); } if (features & OFPPF_PAUSE_ASYM) { ds_put_cstr(ds, " PAUSE_ASYM"); } } } static void log_port_status(uint16_t port_no, const struct ofp_phy_port *old, const struct ofp_phy_port *new, void *aux) { if (VLOG_IS_DBG_ENABLED()) { if (old && new && (opp_differs(old, new) == ((old->config != new->config) + (old->state != new->state)))) { /* Don't care if only state or config changed. */ } else if (!new) { if (old) { VLOG_DBG("Port %d deleted", port_no); } } else { struct ds ds = DS_EMPTY_INITIALIZER; uint32_t curr = ntohl(new->curr); uint32_t supported = ntohl(new->supported); ds_put_format(&ds, "\"%s\", "ETH_ADDR_FMT, new->name, ETH_ADDR_ARGS(new->hw_addr)); if (curr) { put_features(&ds, ", current", curr); } if (supported) { put_features(&ds, ", supports", supported); } VLOG_DBG("Port %d %s: %s", port_no, old ? "changed" : "added", ds_cstr(&ds)); ds_destroy(&ds); } } } static void port_watcher_register_callback(struct port_watcher *pw, port_changed_cb_func *port_changed, void *aux) { assert(pw->n_cbs < ARRAY_SIZE(pw->cbs)); pw->cbs[pw->n_cbs].port_changed = port_changed; pw->cbs[pw->n_cbs].aux = aux; pw->n_cbs++; } static void port_watcher_register_local_port_callback(struct port_watcher *pw, local_port_changed_cb_func *cb, void *aux) { assert(pw->n_local_cbs < ARRAY_SIZE(pw->local_cbs)); pw->local_cbs[pw->n_local_cbs].local_port_changed = cb; pw->local_cbs[pw->n_local_cbs].aux = aux; pw->n_local_cbs++; } static uint32_t port_watcher_get_config(const struct port_watcher *pw, uint16_t port_no) { struct ofp_phy_port *p = lookup_port(pw, port_no); return p ? ntohl(p->config) : 0; } static const char * port_watcher_get_name(const struct port_watcher *pw, uint16_t port_no) { struct ofp_phy_port *p = lookup_port(pw, port_no); return p ? (const char *) p->name : NULL; } static const uint8_t * port_watcher_get_hwaddr(const struct port_watcher *pw, uint16_t port_no) { struct ofp_phy_port *p = lookup_port(pw, port_no); return p ? p->hw_addr : NULL; } static void port_watcher_set_flags(struct port_watcher *pw, uint16_t port_no, uint32_t config, uint32_t c_mask, uint32_t state, uint32_t s_mask) { struct ofp_phy_port old; struct ofp_phy_port *p; struct ofp_port_mod *opm; struct ofp_port_status *ops; struct ofpbuf *b; p = lookup_port(pw, port_no); if (!p) { return; } if (!((ntohl(p->state) ^ state) & s_mask) && (!((ntohl(p->config) ^ config) & c_mask))) { return; } old = *p; /* Update our idea of the flags. */ p->config = htonl((ntohl(p->config) & ~c_mask) | (config & c_mask)); p->state = htonl((ntohl(p->state) & ~s_mask) | (state & s_mask)); call_port_changed_callbacks(pw, port_no, &old, p); /* Change the flags in the datapath. */ opm = make_openflow(sizeof *opm, OFPT_PORT_MOD, &b); opm->port_no = p->port_no; memcpy(opm->hw_addr, p->hw_addr, OFP_ETH_ALEN); opm->config = p->config; opm->mask = htonl(c_mask); opm->advertise = htonl(0); rconn_send(pw->local_rconn, b, NULL); /* Notify the controller that the flags changed. */ ops = make_openflow(sizeof *ops, OFPT_PORT_STATUS, &b); ops->reason = OFPPR_MODIFY; ops->desc = *p; rconn_send(pw->remote_rconn, b, NULL); } static bool port_watcher_is_ready(const struct port_watcher *pw) { return pw->got_feature_reply; } static struct hook port_watcher_create(struct rconn *local_rconn, struct rconn *remote_rconn, struct port_watcher **pwp) { struct port_watcher *pw; pw = *pwp = xcalloc(1, sizeof *pw); pw->local_rconn = local_rconn; pw->remote_rconn = remote_rconn; pw->last_feature_request = TIME_MIN; port_array_init(&pw->ports); pw->local_port_name[0] = '\0'; port_watcher_register_callback(pw, log_port_status, NULL); return make_hook(port_watcher_local_packet_cb, port_watcher_remote_packet_cb, port_watcher_periodic_cb, port_watcher_wait_cb, pw); } #ifdef SUPPORT_SNAT struct snat_port_conf { struct list node; struct nx_snat_config config; }; struct snat_data { struct port_watcher *pw; struct list port_list; }; /* Source-NAT configuration monitor. */ #define SNAT_CMD_LEN 1024 /* Commands to configure iptables. There is no programmatic interface * to iptables from the kernel, so we're stuck making command-line calls * in user-space. */ #define SNAT_FLUSH_ALL_CMD "/sbin/iptables -t nat -F" #define SNAT_FLUSH_CHAIN_CMD "/sbin/iptables -t nat -F of-snat-%s" #define SNAT_ADD_CHAIN_CMD "/sbin/iptables -t nat -N of-snat-%s" #define SNAT_CONF_CHAIN_CMD "/sbin/iptables -t nat -A POSTROUTING -o %s -j of-snat-%s" #define SNAT_ADD_IP_CMD "/sbin/iptables -t nat -A of-snat-%s -j SNAT --to %s-%s" #define SNAT_ADD_TCP_CMD "/sbin/iptables -t nat -A of-snat-%s -j SNAT -p TCP --to %s-%s:%d-%d" #define SNAT_ADD_UDP_CMD "/sbin/iptables -t nat -A of-snat-%s -j SNAT -p UDP --to %s-%s:%d-%d" #define SNAT_UNSET_CHAIN_CMD "/sbin/iptables -t nat -D POSTROUTING -o %s -j of-snat-%s" #define SNAT_DEL_CHAIN_CMD "/sbin/iptables -t nat -X of-snat-%s" static void snat_add_rules(const struct nx_snat_config *sc, const uint8_t *dev_name) { char command[SNAT_CMD_LEN]; char ip_str_start[16]; char ip_str_end[16]; snprintf(ip_str_start, sizeof ip_str_start, IP_FMT, IP_ARGS(&sc->ip_addr_start)); snprintf(ip_str_end, sizeof ip_str_end, IP_FMT, IP_ARGS(&sc->ip_addr_end)); /* We always attempt to remove existing entries, so that we know * there's a pristine state for SNAT on the interface. We just ignore * the results of these calls, since iptables will complain about * any non-existent entries. */ /* Flush the chain that does the SNAT. */ snprintf(command, sizeof(command), SNAT_FLUSH_CHAIN_CMD, dev_name); system(command); /* We always try to create the a new chain. */ snprintf(command, sizeof(command), SNAT_ADD_CHAIN_CMD, dev_name); system(command); /* Disassociate any old SNAT chain from the POSTROUTING chain. */ snprintf(command, sizeof(command), SNAT_UNSET_CHAIN_CMD, dev_name, dev_name); system(command); /* Associate the new chain with the POSTROUTING hook. */ snprintf(command, sizeof(command), SNAT_CONF_CHAIN_CMD, dev_name, dev_name); if (system(command) != 0) { VLOG_ERR("SNAT: problem flushing chain for add"); return; } /* If configured, restrict TCP source port ranges. */ if ((sc->tcp_start != 0) && (sc->tcp_end != 0)) { snprintf(command, sizeof(command), SNAT_ADD_TCP_CMD, dev_name, ip_str_start, ip_str_end, ntohs(sc->tcp_start), ntohs(sc->tcp_end)); if (system(command) != 0) { VLOG_ERR("SNAT: problem adding TCP rule"); return; } } /* If configured, restrict UDP source port ranges. */ if ((sc->udp_start != 0) && (sc->udp_end != 0)) { snprintf(command, sizeof(command), SNAT_ADD_UDP_CMD, dev_name, ip_str_start, ip_str_end, ntohs(sc->udp_start), ntohs(sc->udp_end)); if (system(command) != 0) { VLOG_ERR("SNAT: problem adding UDP rule"); return; } } /* Add a rule that covers all IP traffic that would not be covered * by the prior TCP or UDP ranges. */ snprintf(command, sizeof(command), SNAT_ADD_IP_CMD, dev_name, ip_str_start, ip_str_end); if (system(command) != 0) { VLOG_ERR("SNAT: problem adding base rule"); return; } } static void snat_del_rules(const uint8_t *dev_name) { char command[SNAT_CMD_LEN]; /* Flush the chain that does the SNAT. */ snprintf(command, sizeof(command), SNAT_FLUSH_CHAIN_CMD, dev_name); if (system(command) != 0) { VLOG_ERR("SNAT: problem flushing chain for deletion"); return; } /* Disassociate the SNAT chain from the POSTROUTING chain. */ snprintf(command, sizeof(command), SNAT_UNSET_CHAIN_CMD, dev_name, dev_name); if (system(command) != 0) { VLOG_ERR("SNAT: problem unsetting chain"); return; } /* Now we can finally delete our SNAT chain. */ snprintf(command, sizeof(command), SNAT_DEL_CHAIN_CMD, dev_name); if (system(command) != 0) { VLOG_ERR("SNAT: problem deleting chain"); return; } } static void snat_config(const struct nx_snat_config *sc, struct snat_data *snat) { struct snat_port_conf *c, *spc=NULL; const uint8_t *netdev_name; netdev_name = (const uint8_t *) port_watcher_get_name(snat->pw, ntohs(sc->port)); if (!netdev_name) { return; } LIST_FOR_EACH(c, struct snat_port_conf, node, &snat->port_list) { if (c->config.port == sc->port) { spc = c; break; } } if (sc->command == NXSC_ADD) { if (!spc) { spc = xmalloc(sizeof(*c)); if (!spc) { VLOG_ERR("SNAT: no memory for new entry"); return; } list_push_back(&snat->port_list, &spc->node); } memcpy(&spc->config, sc, sizeof(spc->config)); snat_add_rules(sc, netdev_name); } else if (spc) { snat_del_rules(netdev_name); list_remove(&spc->node); } } static bool snat_remote_packet_cb(struct relay *r, void *snat_) { struct snat_data *snat = snat_; struct ofpbuf *msg = r->halves[HALF_REMOTE].rxbuf; struct nicira_header *request = msg->data; struct nx_act_config *nac = msg->data; int n_configs, i; if (msg->size < sizeof(struct nx_act_config)) { return false; } request = msg->data; if (request->header.type != OFPT_VENDOR || request->vendor != htonl(NX_VENDOR_ID) || request->subtype != htonl(NXT_ACT_SET_CONFIG)) { return false; } /* We're only interested in attempts to configure SNAT */ if (nac->type != htons(NXAST_SNAT)) { return false; } n_configs = (msg->size - sizeof *nac) / sizeof *nac->snat; for (i=0; isnat[i], snat); } return false; } static void snat_port_changed_cb(uint16_t port_no, const struct ofp_phy_port *old, const struct ofp_phy_port *new, void *snat_) { struct snat_data *snat = snat_; struct snat_port_conf *c; /* We're only interested in ports that went away */ if (old && !new) { return; } LIST_FOR_EACH(c, struct snat_port_conf, node, &snat->port_list) { if (c->config.port == old->port_no) { snat_del_rules(old->name); list_remove(&c->node); return; } } } static struct hook snat_hook_create(struct port_watcher *pw) { int ret; struct snat_data *snat; ret = system(SNAT_FLUSH_ALL_CMD); if (ret != 0) { VLOG_ERR("SNAT: problem flushing tables"); } snat = xcalloc(1, sizeof *snat); snat->pw = pw; list_init(&snat->port_list); port_watcher_register_callback(pw, snat_port_changed_cb, snat); return make_hook(NULL, snat_remote_packet_cb, NULL, NULL, snat); } #endif /* SUPPORT_SNAT */ /* Spanning tree protocol. */ /* Extra time, in seconds, at boot before going into fail-open, to give the * spanning tree protocol time to figure out the network layout. */ #define STP_EXTRA_BOOT_TIME 30 struct stp_data { struct stp *stp; struct port_watcher *pw; struct rconn *local_rconn; struct rconn *remote_rconn; long long int last_tick_256ths; int n_txq; }; static bool stp_local_packet_cb(struct relay *r, void *stp_) { struct ofpbuf *msg = r->halves[HALF_LOCAL].rxbuf; struct ofp_header *oh; struct stp_data *stp = stp_; struct ofp_packet_in *opi; struct eth_header *eth; struct llc_header *llc; struct ofpbuf payload; uint16_t port_no; struct flow flow; oh = msg->data; if (oh->type == OFPT_FEATURES_REPLY && msg->size >= offsetof(struct ofp_switch_features, ports)) { struct ofp_switch_features *osf = msg->data; osf->capabilities |= htonl(OFPC_STP); return false; } if (!get_ofp_packet_eth_header(r, &opi, ð) || !eth_addr_equals(eth->eth_dst, stp_eth_addr)) { return false; } port_no = ntohs(opi->in_port); if (port_no >= STP_MAX_PORTS) { /* STP only supports 255 ports. */ return false; } if (port_watcher_get_config(stp->pw, port_no) & OFPPC_NO_STP) { /* We're not doing STP on this port. */ return false; } if (opi->reason == OFPR_ACTION) { /* The controller set up a flow for this, so we won't intercept it. */ return false; } get_ofp_packet_payload(opi, &payload); flow_extract(&payload, port_no, &flow); if (flow.dl_type != htons(OFP_DL_TYPE_NOT_ETH_TYPE)) { VLOG_DBG("non-LLC frame received on STP multicast address"); return false; } llc = ofpbuf_at_assert(&payload, sizeof *eth, sizeof *llc); if (llc->llc_dsap != STP_LLC_DSAP) { VLOG_DBG("bad DSAP 0x%02"PRIx8" received on STP multicast address", llc->llc_dsap); return false; } /* Trim off padding on payload. */ if (payload.size > ntohs(eth->eth_type) + ETH_HEADER_LEN) { payload.size = ntohs(eth->eth_type) + ETH_HEADER_LEN; } if (ofpbuf_try_pull(&payload, ETH_HEADER_LEN + LLC_HEADER_LEN)) { struct stp_port *p = stp_get_port(stp->stp, port_no); stp_received_bpdu(p, payload.data, payload.size); } return true; } static long long int time_256ths(void) { return time_msec() * 256 / 1000; } static void stp_periodic_cb(void *stp_) { struct stp_data *stp = stp_; long long int now_256ths = time_256ths(); long long int elapsed_256ths = now_256ths - stp->last_tick_256ths; struct stp_port *p; if (!port_watcher_is_ready(stp->pw)) { /* Can't start STP until we know port flags, because port flags can * disable STP. */ return; } if (elapsed_256ths <= 0) { return; } stp_tick(stp->stp, MIN(INT_MAX, elapsed_256ths)); stp->last_tick_256ths = now_256ths; while (stp_get_changed_port(stp->stp, &p)) { int port_no = stp_port_no(p); enum stp_state s_state = stp_port_get_state(p); if (s_state != STP_DISABLED) { VLOG_WARN("STP: Port %d entered %s state", port_no, stp_state_name(s_state)); } if (!(port_watcher_get_config(stp->pw, port_no) & OFPPC_NO_STP)) { uint32_t p_config = 0; uint32_t p_state; switch (s_state) { case STP_LISTENING: p_state = OFPPS_STP_LISTEN; break; case STP_LEARNING: p_state = OFPPS_STP_LEARN; break; case STP_DISABLED: case STP_FORWARDING: p_state = OFPPS_STP_FORWARD; break; case STP_BLOCKING: p_state = OFPPS_STP_BLOCK; break; default: VLOG_DBG_RL(&vrl, "STP: Port %d has bad state %x", port_no, s_state); p_state = OFPPS_STP_FORWARD; break; } if (!stp_forward_in_state(s_state)) { p_config = OFPPC_NO_FLOOD; } port_watcher_set_flags(stp->pw, port_no, p_config, OFPPC_NO_FLOOD, p_state, OFPPS_STP_MASK); } else { /* We don't own those flags. */ } } } static void stp_wait_cb(void *stp_ UNUSED) { poll_timer_wait(1000); } static void send_bpdu(const void *bpdu, size_t bpdu_size, int port_no, void *stp_) { struct stp_data *stp = stp_; const uint8_t *port_mac; struct eth_header *eth; struct llc_header *llc; struct ofpbuf pkt, *opo; port_mac = port_watcher_get_hwaddr(stp->pw, port_no); if (!port_mac) { VLOG_WARN_RL(&vrl, "cannot send BPDU on missing port %d", port_no); return; } /* Packet skeleton. */ ofpbuf_init(&pkt, ETH_HEADER_LEN + LLC_HEADER_LEN + bpdu_size); eth = ofpbuf_put_uninit(&pkt, sizeof *eth); llc = ofpbuf_put_uninit(&pkt, sizeof *llc); ofpbuf_put(&pkt, bpdu, bpdu_size); /* 802.2 header. */ memcpy(eth->eth_dst, stp_eth_addr, ETH_ADDR_LEN); memcpy(eth->eth_src, port_mac, ETH_ADDR_LEN); eth->eth_type = htons(pkt.size - ETH_HEADER_LEN); /* LLC header. */ llc->llc_dsap = STP_LLC_DSAP; llc->llc_ssap = STP_LLC_SSAP; llc->llc_cntl = STP_LLC_CNTL; opo = make_unbuffered_packet_out(&pkt, OFPP_NONE, port_no); ofpbuf_uninit(&pkt); rconn_send_with_limit(stp->local_rconn, opo, &stp->n_txq, OFPP_MAX); } static bool stp_is_port_supported(uint16_t port_no) { return port_no < STP_MAX_PORTS; } static void stp_port_changed_cb(uint16_t port_no, const struct ofp_phy_port *old, const struct ofp_phy_port *new, void *stp_) { struct stp_data *stp = stp_; struct stp_port *p; if (!stp_is_port_supported(port_no)) { return; } p = stp_get_port(stp->stp, port_no); if (!new || new->config & htonl(OFPPC_NO_STP | OFPPC_PORT_DOWN) || new->state & htonl(OFPPS_LINK_DOWN)) { stp_port_disable(p); } else { int speed = 0; stp_port_enable(p); if (new->curr & (OFPPF_10MB_HD | OFPPF_10MB_FD)) { speed = 10; } else if (new->curr & (OFPPF_100MB_HD | OFPPF_100MB_FD)) { speed = 100; } else if (new->curr & (OFPPF_1GB_HD | OFPPF_1GB_FD)) { speed = 1000; } else if (new->curr & OFPPF_100MB_FD) { speed = 10000; } stp_port_set_speed(p, speed); } } static void stp_local_port_changed_cb(const struct ofp_phy_port *port, void *stp_) { struct stp_data *stp = stp_; if (port) { stp_set_bridge_id(stp->stp, eth_addr_to_uint64(port->hw_addr)); } } static struct hook stp_hook_create(const struct settings *s, struct port_watcher *pw, struct rconn *local, struct rconn *remote) { uint8_t dpid[ETH_ADDR_LEN]; struct stp_data *stp; stp = xcalloc(1, sizeof *stp); eth_addr_random(dpid); stp->stp = stp_create("stp", eth_addr_to_uint64(dpid), send_bpdu, stp); stp->pw = pw; stp->local_rconn = local; stp->remote_rconn = remote; stp->last_tick_256ths = time_256ths(); port_watcher_register_callback(pw, stp_port_changed_cb, stp); port_watcher_register_local_port_callback(pw, stp_local_port_changed_cb, stp); return make_hook(stp_local_packet_cb, NULL, stp_periodic_cb, stp_wait_cb, stp); } /* In-band control. */ struct in_band_data { const struct settings *s; struct mac_learning *ml; struct netdev *of_device; struct rconn *controller; int n_queued; }; static void queue_tx(struct rconn *rc, struct in_band_data *in_band, struct ofpbuf *b) { rconn_send_with_limit(rc, b, &in_band->n_queued, 10); } static const uint8_t * get_controller_mac(struct in_band_data *in_band) { static uint32_t ip, last_nonzero_ip; static uint8_t mac[ETH_ADDR_LEN], last_nonzero_mac[ETH_ADDR_LEN]; static time_t next_refresh = 0; uint32_t last_ip = ip; time_t now = time_now(); ip = rconn_get_ip(in_band->controller); if (last_ip != ip || !next_refresh || now >= next_refresh) { bool have_mac; /* Look up MAC address. */ memset(mac, 0, sizeof mac); if (ip && in_band->of_device) { int retval = netdev_arp_lookup(in_band->of_device, ip, mac); if (retval) { VLOG_DBG_RL(&vrl, "cannot look up controller hw address " "("IP_FMT"): %s", IP_ARGS(&ip), strerror(retval)); } } have_mac = !eth_addr_is_zero(mac); /* Log changes in IP, MAC addresses. */ if (ip && ip != last_nonzero_ip) { VLOG_DBG("controller IP address changed from "IP_FMT " to "IP_FMT, IP_ARGS(&last_nonzero_ip), IP_ARGS(&ip)); last_nonzero_ip = ip; } if (have_mac && memcmp(last_nonzero_mac, mac, ETH_ADDR_LEN)) { VLOG_DBG("controller MAC address changed from "ETH_ADDR_FMT" to " ETH_ADDR_FMT, ETH_ADDR_ARGS(last_nonzero_mac), ETH_ADDR_ARGS(mac)); memcpy(last_nonzero_mac, mac, ETH_ADDR_LEN); } /* Schedule next refresh. * * If we have an IP address but not a MAC address, then refresh * quickly, since we probably will get a MAC address soon (via ARP). * Otherwise, we can afford to wait a little while. */ next_refresh = now + (!ip || have_mac ? 10 : 1); } return !eth_addr_is_zero(mac) ? mac : NULL; } static bool is_controller_mac(const uint8_t dl_addr[ETH_ADDR_LEN], struct in_band_data *in_band) { const uint8_t *mac = get_controller_mac(in_band); return mac && eth_addr_equals(mac, dl_addr); } static void in_band_learn_mac(struct in_band_data *in_band, uint16_t in_port, const uint8_t src_mac[ETH_ADDR_LEN]) { if (mac_learning_learn(in_band->ml, src_mac, in_port)) { VLOG_DBG_RL(&vrl, "learned that "ETH_ADDR_FMT" is on port %"PRIu16, ETH_ADDR_ARGS(src_mac), in_port); } } static bool in_band_local_packet_cb(struct relay *r, void *in_band_) { struct in_band_data *in_band = in_band_; struct rconn *rc = r->halves[HALF_LOCAL].rconn; struct ofp_packet_in *opi; struct eth_header *eth; struct ofpbuf payload; struct flow flow; uint16_t in_port; int out_port; if (!get_ofp_packet_eth_header(r, &opi, ð) || !in_band->of_device) { return false; } in_port = ntohs(opi->in_port); /* Deal with local stuff. */ if (in_port == OFPP_LOCAL) { /* Sent by secure channel. */ out_port = mac_learning_lookup(in_band->ml, eth->eth_dst); } else if (eth_addr_equals(eth->eth_dst, netdev_get_etheraddr(in_band->of_device))) { /* Sent to secure channel. */ out_port = OFPP_LOCAL; in_band_learn_mac(in_band, in_port, eth->eth_src); } else if (eth->eth_type == htons(ETH_TYPE_ARP) && eth_addr_is_broadcast(eth->eth_dst) && is_controller_mac(eth->eth_src, in_band)) { /* ARP sent by controller. */ out_port = OFPP_FLOOD; } else if (is_controller_mac(eth->eth_dst, in_band) || is_controller_mac(eth->eth_src, in_band)) { /* Traffic to or from controller. Switch it by hand. */ in_band_learn_mac(in_band, in_port, eth->eth_src); out_port = mac_learning_lookup(in_band->ml, eth->eth_dst); } else { const uint8_t *controller_mac; controller_mac = get_controller_mac(in_band); if (eth->eth_type == htons(ETH_TYPE_ARP) && eth_addr_is_broadcast(eth->eth_dst) && is_controller_mac(eth->eth_src, in_band)) { /* ARP sent by controller. */ out_port = OFPP_FLOOD; } else if (is_controller_mac(eth->eth_dst, in_band) && in_port == mac_learning_lookup(in_band->ml, controller_mac)) { /* Drop controller traffic that arrives on the controller port. */ out_port = -1; } else { return false; } } get_ofp_packet_payload(opi, &payload); flow_extract(&payload, in_port, &flow); if (in_port == out_port) { /* The input and output port match. Set up a flow to drop packets. */ queue_tx(rc, in_band, make_add_flow(&flow, ntohl(opi->buffer_id), in_band->s->max_idle, 0)); } else if (out_port != OFPP_FLOOD) { /* The output port is known, so add a new flow. */ queue_tx(rc, in_band, make_add_simple_flow(&flow, ntohl(opi->buffer_id), out_port, in_band->s->max_idle)); /* If the switch didn't buffer the packet, we need to send a copy. */ if (ntohl(opi->buffer_id) == UINT32_MAX) { queue_tx(rc, in_band, make_unbuffered_packet_out(&payload, in_port, out_port)); } } else { /* We don't know that MAC. Send along the packet without setting up a * flow. */ struct ofpbuf *b; if (ntohl(opi->buffer_id) == UINT32_MAX) { b = make_unbuffered_packet_out(&payload, in_port, out_port); } else { b = make_buffered_packet_out(ntohl(opi->buffer_id), in_port, out_port); } queue_tx(rc, in_band, b); } return true; } static void in_band_status_cb(struct status_reply *sr, void *in_band_) { struct in_band_data *in_band = in_band_; struct in_addr local_ip; uint32_t controller_ip; const uint8_t *controller_mac; if (in_band->of_device) { const uint8_t *mac = netdev_get_etheraddr(in_band->of_device); if (netdev_get_in4(in_band->of_device, &local_ip)) { status_reply_put(sr, "local-ip="IP_FMT, IP_ARGS(&local_ip.s_addr)); } status_reply_put(sr, "local-mac="ETH_ADDR_FMT, ETH_ADDR_ARGS(mac)); controller_ip = rconn_get_ip(in_band->controller); if (controller_ip) { status_reply_put(sr, "controller-ip="IP_FMT, IP_ARGS(&controller_ip)); } controller_mac = get_controller_mac(in_band); if (controller_mac) { status_reply_put(sr, "controller-mac="ETH_ADDR_FMT, ETH_ADDR_ARGS(controller_mac)); } } } static void get_ofp_packet_payload(struct ofp_packet_in *opi, struct ofpbuf *payload) { payload->data = opi->data; payload->size = ntohs(opi->header.length) - offsetof(struct ofp_packet_in, data); } static void in_band_local_port_cb(const struct ofp_phy_port *port, void *in_band_) { struct in_band_data *in_band = in_band_; if (port) { char name[sizeof port->name + 1]; get_port_name(port, name, sizeof name); if (!in_band->of_device || strcmp(netdev_get_name(in_band->of_device), name)) { int error; netdev_close(in_band->of_device); error = netdev_open(name, NETDEV_ETH_TYPE_NONE, &in_band->of_device); if (error) { VLOG_ERR("failed to open in-band control network device " "\"%s\": %s", name, strerror(errno)); } } } else { netdev_close(in_band->of_device); in_band->of_device = NULL; } } static struct hook in_band_hook_create(const struct settings *s, struct switch_status *ss, struct port_watcher *pw, struct rconn *remote) { struct in_band_data *in_band; in_band = xcalloc(1, sizeof *in_band); in_band->s = s; in_band->ml = mac_learning_create(); in_band->of_device = NULL; in_band->controller = remote; switch_status_register_category(ss, "in-band", in_band_status_cb, in_band); port_watcher_register_local_port_callback(pw, in_band_local_port_cb, in_band); return make_hook(in_band_local_packet_cb, NULL, NULL, NULL, in_band); } /* Fail open support. */ struct fail_open_data { const struct settings *s; struct rconn *local_rconn; struct rconn *remote_rconn; struct lswitch *lswitch; int last_disconn_secs; time_t boot_deadline; }; /* Causes 'r' to enter or leave fail-open mode, if appropriate. */ static void fail_open_periodic_cb(void *fail_open_) { struct fail_open_data *fail_open = fail_open_; int disconn_secs; bool open; if (time_now() < fail_open->boot_deadline) { return; } disconn_secs = rconn_failure_duration(fail_open->remote_rconn); open = disconn_secs >= fail_open->s->probe_interval * 3; if (open != (fail_open->lswitch != NULL)) { if (!open) { VLOG_WARN("No longer in fail-open mode"); lswitch_destroy(fail_open->lswitch); fail_open->lswitch = NULL; } else { VLOG_WARN("Could not connect to controller for %d seconds, " "failing open", disconn_secs); fail_open->lswitch = lswitch_create(fail_open->local_rconn, true, fail_open->s->max_idle); fail_open->last_disconn_secs = disconn_secs; } } else if (open && disconn_secs > fail_open->last_disconn_secs + 60) { VLOG_WARN("Still in fail-open mode after %d seconds disconnected " "from controller", disconn_secs); fail_open->last_disconn_secs = disconn_secs; } if (fail_open->lswitch) { lswitch_run(fail_open->lswitch, fail_open->local_rconn); } } static void fail_open_wait_cb(void *fail_open_) { struct fail_open_data *fail_open = fail_open_; if (fail_open->lswitch) { lswitch_wait(fail_open->lswitch); } } static bool fail_open_local_packet_cb(struct relay *r, void *fail_open_) { struct fail_open_data *fail_open = fail_open_; if (rconn_is_connected(fail_open->remote_rconn) || !fail_open->lswitch) { return false; } else { lswitch_process_packet(fail_open->lswitch, fail_open->local_rconn, r->halves[HALF_LOCAL].rxbuf); rconn_run(fail_open->local_rconn); return true; } } static void fail_open_status_cb(struct status_reply *sr, void *fail_open_) { struct fail_open_data *fail_open = fail_open_; const struct settings *s = fail_open->s; int trigger_duration = s->probe_interval * 3; int cur_duration = rconn_failure_duration(fail_open->remote_rconn); status_reply_put(sr, "trigger-duration=%d", trigger_duration); status_reply_put(sr, "current-duration=%d", cur_duration); status_reply_put(sr, "triggered=%s", cur_duration >= trigger_duration ? "true" : "false"); status_reply_put(sr, "max-idle=%d", s->max_idle); } static struct hook fail_open_hook_create(const struct settings *s, struct switch_status *ss, struct rconn *local_rconn, struct rconn *remote_rconn) { struct fail_open_data *fail_open = xmalloc(sizeof *fail_open); fail_open->s = s; fail_open->local_rconn = local_rconn; fail_open->remote_rconn = remote_rconn; fail_open->lswitch = NULL; fail_open->boot_deadline = time_now() + s->probe_interval * 3; if (s->enable_stp) { fail_open->boot_deadline += STP_EXTRA_BOOT_TIME; } switch_status_register_category(ss, "fail-open", fail_open_status_cb, fail_open); return make_hook(fail_open_local_packet_cb, NULL, fail_open_periodic_cb, fail_open_wait_cb, fail_open); } struct rate_limiter { const struct settings *s; struct rconn *remote_rconn; /* One queue per physical port. */ struct ofp_queue queues[OFPP_MAX]; int n_queued; /* Sum over queues[*].n. */ int next_tx_port; /* Next port to check in round-robin. */ /* Token bucket. * * It costs 1000 tokens to send a single packet_in message. A single token * per message would be more straightforward, but this choice lets us avoid * round-off error in refill_bucket()'s calculation of how many tokens to * add to the bucket, since no division step is needed. */ long long int last_fill; /* Time at which we last added tokens. */ int tokens; /* Current number of tokens. */ /* Transmission queue. */ int n_txq; /* No. of packets waiting in rconn for tx. */ /* Statistics reporting. */ unsigned long long n_normal; /* # txed w/o rate limit queuing. */ unsigned long long n_limited; /* # queued for rate limiting. */ unsigned long long n_queue_dropped; /* # dropped due to queue overflow. */ unsigned long long n_tx_dropped; /* # dropped due to tx overflow. */ }; /* Drop a packet from the longest queue in 'rl'. */ static void drop_packet(struct rate_limiter *rl) { struct ofp_queue *longest; /* Queue currently selected as longest. */ int n_longest; /* # of queues of same length as 'longest'. */ struct ofp_queue *q; longest = &rl->queues[0]; n_longest = 1; for (q = &rl->queues[0]; q < &rl->queues[OFPP_MAX]; q++) { if (longest->n < q->n) { longest = q; n_longest = 1; } else if (longest->n == q->n) { n_longest++; /* Randomly select one of the longest queues, with a uniform * distribution (Knuth algorithm 3.4.2R). */ if (!random_range(n_longest)) { longest = q; } } } /* FIXME: do we want to pop the tail instead? */ ofpbuf_delete(queue_pop_head(longest)); rl->n_queued--; } /* Remove and return the next packet to transmit (in round-robin order). */ static struct ofpbuf * dequeue_packet(struct rate_limiter *rl) { unsigned int i; for (i = 0; i < OFPP_MAX; i++) { unsigned int port = (rl->next_tx_port + i) % OFPP_MAX; struct ofp_queue *q = &rl->queues[port]; if (q->n) { rl->next_tx_port = (port + 1) % OFPP_MAX; rl->n_queued--; return queue_pop_head(q); } } NOT_REACHED(); } /* Add tokens to the bucket based on elapsed time. */ static void refill_bucket(struct rate_limiter *rl) { const struct settings *s = rl->s; long long int now = time_msec(); long long int tokens = (now - rl->last_fill) * s->rate_limit + rl->tokens; if (tokens >= 1000) { rl->last_fill = now; rl->tokens = MIN(tokens, s->burst_limit * 1000); } } /* Attempts to remove enough tokens from 'rl' to transmit a packet. Returns * true if successful, false otherwise. (In the latter case no tokens are * removed.) */ static bool get_token(struct rate_limiter *rl) { if (rl->tokens >= 1000) { rl->tokens -= 1000; return true; } else { return false; } } static bool rate_limit_local_packet_cb(struct relay *r, void *rl_) { struct rate_limiter *rl = rl_; const struct settings *s = rl->s; struct ofp_packet_in *opi; opi = get_ofp_packet_in(r); if (!opi) { return false; } if (!rl->n_queued && get_token(rl)) { /* In the common case where we are not constrained by the rate limit, * let the packet take the normal path. */ rl->n_normal++; return false; } else { /* Otherwise queue it up for the periodic callback to drain out. */ struct ofpbuf *msg = r->halves[HALF_LOCAL].rxbuf; int port = ntohs(opi->in_port) % OFPP_MAX; if (rl->n_queued >= s->burst_limit) { drop_packet(rl); } queue_push_tail(&rl->queues[port], ofpbuf_clone(msg)); rl->n_queued++; rl->n_limited++; return true; } } static void rate_limit_status_cb(struct status_reply *sr, void *rl_) { struct rate_limiter *rl = rl_; status_reply_put(sr, "normal=%llu", rl->n_normal); status_reply_put(sr, "limited=%llu", rl->n_limited); status_reply_put(sr, "queue-dropped=%llu", rl->n_queue_dropped); status_reply_put(sr, "tx-dropped=%llu", rl->n_tx_dropped); } static void rate_limit_periodic_cb(void *rl_) { struct rate_limiter *rl = rl_; int i; /* Drain some packets out of the bucket if possible, but limit the number * of iterations to allow other code to get work done too. */ refill_bucket(rl); for (i = 0; rl->n_queued && get_token(rl) && i < 50; i++) { /* Use a small, arbitrary limit for the amount of queuing to do here, * because the TCP connection is responsible for buffering and there is * no point in trying to transmit faster than the TCP connection can * handle. */ struct ofpbuf *b = dequeue_packet(rl); if (rconn_send_with_limit(rl->remote_rconn, b, &rl->n_txq, 10)) { rl->n_tx_dropped++; } } } static void rate_limit_wait_cb(void *rl_) { struct rate_limiter *rl = rl_; if (rl->n_queued) { if (rl->tokens >= 1000) { /* We can transmit more packets as soon as we're called again. */ poll_immediate_wake(); } else { /* We have to wait for the bucket to re-fill. We could calculate * the exact amount of time here for increased smoothness. */ poll_timer_wait(TIME_UPDATE_INTERVAL / 2); } } } static struct hook rate_limit_hook_create(const struct settings *s, struct switch_status *ss, struct rconn *local, struct rconn *remote) { struct rate_limiter *rl; size_t i; rl = xcalloc(1, sizeof *rl); rl->s = s; rl->remote_rconn = remote; for (i = 0; i < ARRAY_SIZE(rl->queues); i++) { queue_init(&rl->queues[i]); } rl->last_fill = time_msec(); rl->tokens = s->rate_limit * 100; switch_status_register_category(ss, "rate-limit", rate_limit_status_cb, rl); return make_hook(rate_limit_local_packet_cb, NULL, rate_limit_periodic_cb, rate_limit_wait_cb, rl); } /* OFPST_SWITCH statistics. */ struct switch_status_category { char *name; void (*cb)(struct status_reply *, void *aux); void *aux; }; struct switch_status { const struct settings *s; time_t booted; struct switch_status_category categories[8]; int n_categories; }; struct status_reply { struct switch_status_category *category; struct ds request; struct ds output; }; static bool switch_status_remote_packet_cb(struct relay *r, void *ss_) { struct switch_status *ss = ss_; struct rconn *rc = r->halves[HALF_REMOTE].rconn; struct ofpbuf *msg = r->halves[HALF_REMOTE].rxbuf; struct switch_status_category *c; struct nicira_header *request; struct nicira_header *reply; struct status_reply sr; struct ofpbuf *b; int retval; if (msg->size < sizeof(struct nicira_header)) { return false; } request = msg->data; if (request->header.type != OFPT_VENDOR || request->vendor != htonl(NX_VENDOR_ID) || request->subtype != htonl(NXT_STATUS_REQUEST)) { return false; } sr.request.string = (void *) (request + 1); sr.request.length = msg->size - sizeof *request; ds_init(&sr.output); for (c = ss->categories; c < &ss->categories[ss->n_categories]; c++) { if (!memcmp(c->name, sr.request.string, MIN(strlen(c->name), sr.request.length))) { sr.category = c; c->cb(&sr, c->aux); } } reply = make_openflow_xid(sizeof *reply + sr.output.length, OFPT_VENDOR, request->header.xid, &b); reply->vendor = htonl(NX_VENDOR_ID); reply->subtype = htonl(NXT_STATUS_REPLY); memcpy(reply + 1, sr.output.string, sr.output.length); retval = rconn_send(rc, b, NULL); if (retval && retval != EAGAIN) { VLOG_WARN("send failed (%s)", strerror(retval)); } ds_destroy(&sr.output); return true; } static void rconn_status_cb(struct status_reply *sr, void *rconn_) { struct rconn *rconn = rconn_; time_t now = time_now(); status_reply_put(sr, "name=%s", rconn_get_name(rconn)); status_reply_put(sr, "state=%s", rconn_get_state(rconn)); status_reply_put(sr, "backoff=%d", rconn_get_backoff(rconn)); status_reply_put(sr, "is-connected=%s", rconn_is_connected(rconn) ? "true" : "false"); status_reply_put(sr, "sent-msgs=%u", rconn_packets_sent(rconn)); status_reply_put(sr, "received-msgs=%u", rconn_packets_received(rconn)); status_reply_put(sr, "attempted-connections=%u", rconn_get_attempted_connections(rconn)); status_reply_put(sr, "successful-connections=%u", rconn_get_successful_connections(rconn)); status_reply_put(sr, "last-connection=%ld", (long int) (now - rconn_get_last_connection(rconn))); status_reply_put(sr, "time-connected=%lu", rconn_get_total_time_connected(rconn)); status_reply_put(sr, "state-elapsed=%u", rconn_get_state_elapsed(rconn)); } static void config_status_cb(struct status_reply *sr, void *s_) { const struct settings *s = s_; size_t i; for (i = 0; i < s->n_listeners; i++) { status_reply_put(sr, "management%zu=%s", i, s->listener_names[i]); } if (s->probe_interval) { status_reply_put(sr, "probe-interval=%d", s->probe_interval); } if (s->max_backoff) { status_reply_put(sr, "max-backoff=%d", s->max_backoff); } } static void switch_status_cb(struct status_reply *sr, void *ss_) { struct switch_status *ss = ss_; time_t now = time_now(); status_reply_put(sr, "now=%ld", (long int) now); status_reply_put(sr, "uptime=%ld", (long int) (now - ss->booted)); status_reply_put(sr, "pid=%ld", (long int) getpid()); } static struct hook switch_status_hook_create(const struct settings *s, struct switch_status **ssp) { struct switch_status *ss = xcalloc(1, sizeof *ss); ss->s = s; ss->booted = time_now(); switch_status_register_category(ss, "config", config_status_cb, (void *) s); switch_status_register_category(ss, "switch", switch_status_cb, ss); *ssp = ss; return make_hook(NULL, switch_status_remote_packet_cb, NULL, NULL, ss); } static void switch_status_register_category(struct switch_status *ss, const char *category, void (*cb)(struct status_reply *, void *aux), void *aux) { struct switch_status_category *c; assert(ss->n_categories < ARRAY_SIZE(ss->categories)); c = &ss->categories[ss->n_categories++]; c->cb = cb; c->aux = aux; c->name = xstrdup(category); } static void status_reply_put(struct status_reply *sr, const char *content, ...) { size_t old_length = sr->output.length; size_t added; va_list args; /* Append the status reply to the output. */ ds_put_format(&sr->output, "%s.", sr->category->name); va_start(args, content); ds_put_format_valist(&sr->output, content, args); va_end(args); if (ds_last(&sr->output) != '\n') { ds_put_char(&sr->output, '\n'); } /* Drop what we just added if it doesn't match the request. */ added = sr->output.length - old_length; if (added < sr->request.length || memcmp(&sr->output.string[old_length], sr->request.string, sr->request.length)) { ds_truncate(&sr->output, old_length); } } /* Controller discovery. */ struct discovery { const struct settings *s; struct dhclient *dhcp; int n_changes; }; static void discovery_status_cb(struct status_reply *sr, void *d_) { struct discovery *d = d_; status_reply_put(sr, "accept-remote=%s", d->s->accept_controller_re); status_reply_put(sr, "n-changes=%d", d->n_changes); if (d->dhcp) { status_reply_put(sr, "state=%s", dhclient_get_state(d->dhcp)); status_reply_put(sr, "state-elapsed=%u", dhclient_get_state_elapsed(d->dhcp)); if (dhclient_is_bound(d->dhcp)) { uint32_t ip = dhclient_get_ip(d->dhcp); uint32_t netmask = dhclient_get_netmask(d->dhcp); uint32_t router = dhclient_get_router(d->dhcp); const struct dhcp_msg *cfg = dhclient_get_config(d->dhcp); uint32_t dns_server; char *domain_name; int i; status_reply_put(sr, "ip="IP_FMT, IP_ARGS(&ip)); status_reply_put(sr, "netmask="IP_FMT, IP_ARGS(&netmask)); if (router) { status_reply_put(sr, "router="IP_FMT, IP_ARGS(&router)); } for (i = 0; dhcp_msg_get_ip(cfg, DHCP_CODE_DNS_SERVER, i, &dns_server); i++) { status_reply_put(sr, "dns%d="IP_FMT, i, IP_ARGS(&dns_server)); } domain_name = dhcp_msg_get_string(cfg, DHCP_CODE_DOMAIN_NAME); if (domain_name) { status_reply_put(sr, "domain=%s", domain_name); free(domain_name); } status_reply_put(sr, "lease-remaining=%u", dhclient_get_lease_remaining(d->dhcp)); } } } static void discovery_local_port_cb(const struct ofp_phy_port *port, void *d_) { struct discovery *d = d_; if (port) { char name[OFP_MAX_PORT_NAME_LEN + 1]; struct netdev *netdev; int retval; /* Check that this was really a change. */ get_port_name(port, name, sizeof name); if (d->dhcp && !strcmp(netdev_get_name(dhclient_get_netdev(d->dhcp)), name)) { return; } /* Destroy current DHCP client. */ dhclient_destroy(d->dhcp); d->dhcp = NULL; /* Bring local network device up. */ retval = netdev_open(name, NETDEV_ETH_TYPE_NONE, &netdev); if (retval) { VLOG_ERR("Could not open %s device, discovery disabled: %s", name, strerror(retval)); return; } retval = netdev_turn_flags_on(netdev, NETDEV_UP, true); if (retval) { VLOG_ERR("Could not bring %s device up, discovery disabled: %s", name, strerror(retval)); return; } netdev_close(netdev); /* Initialize DHCP client. */ retval = dhclient_create(name, modify_dhcp_request, validate_dhcp_offer, (void *) d->s, &d->dhcp); if (retval) { VLOG_ERR("Failed to initialize DHCP client, " "discovery disabled: %s", strerror(retval)); return; } dhclient_set_max_timeout(d->dhcp, 3); dhclient_init(d->dhcp, 0); } else { dhclient_destroy(d->dhcp); d->dhcp = NULL; } } static struct discovery * discovery_init(const struct settings *s, struct port_watcher *pw, struct switch_status *ss) { struct discovery *d; d = xmalloc(sizeof *d); d->s = s; d->dhcp = NULL; d->n_changes = 0; switch_status_register_category(ss, "discovery", discovery_status_cb, d); port_watcher_register_local_port_callback(pw, discovery_local_port_cb, d); return d; } static void discovery_question_connectivity(struct discovery *d) { if (d->dhcp) { dhclient_force_renew(d->dhcp, 15); } } static bool discovery_run(struct discovery *d, char **controller_name) { if (!d->dhcp) { *controller_name = NULL; return true; } dhclient_run(d->dhcp); if (!dhclient_changed(d->dhcp)) { return false; } dhclient_configure_netdev(d->dhcp); if (d->s->update_resolv_conf) { dhclient_update_resolv_conf(d->dhcp); } if (dhclient_is_bound(d->dhcp)) { *controller_name = dhcp_msg_get_string(dhclient_get_config(d->dhcp), DHCP_CODE_OFP_CONTROLLER_VCONN); VLOG_WARN("%s: discovered controller", *controller_name); d->n_changes++; } else { *controller_name = NULL; if (d->n_changes) { VLOG_WARN("discovered controller no longer available"); d->n_changes++; } } return true; } static void discovery_wait(struct discovery *d) { if (d->dhcp) { dhclient_wait(d->dhcp); } } static void modify_dhcp_request(struct dhcp_msg *msg, void *aux) { dhcp_msg_put_string(msg, DHCP_CODE_VENDOR_CLASS, "OpenFlow"); } static bool validate_dhcp_offer(const struct dhcp_msg *msg, void *s_) { const struct settings *s = s_; char *vconn_name; bool accept; vconn_name = dhcp_msg_get_string(msg, DHCP_CODE_OFP_CONTROLLER_VCONN); if (!vconn_name) { VLOG_WARN_RL(&vrl, "rejecting DHCP offer missing controller vconn"); return false; } accept = !regexec(&s->accept_controller_regex, vconn_name, 0, NULL, 0); if (!accept) { VLOG_WARN_RL(&vrl, "rejecting controller vconn that fails to match %s", s->accept_controller_re); } free(vconn_name); return accept; } /* User interface. */ static void parse_options(int argc, char *argv[], struct settings *s) { enum { OPT_ACCEPT_VCONN = UCHAR_MAX + 1, OPT_NO_RESOLV_CONF, OPT_INACTIVITY_PROBE, OPT_MAX_IDLE, OPT_MAX_BACKOFF, OPT_RATE_LIMIT, OPT_BURST_LIMIT, OPT_BOOTSTRAP_CA_CERT, OPT_STP, OPT_NO_STP, OPT_OUT_OF_BAND, OPT_IN_BAND }; static struct option long_options[] = { {"accept-vconn", required_argument, 0, OPT_ACCEPT_VCONN}, {"no-resolv-conf", no_argument, 0, OPT_NO_RESOLV_CONF}, {"fail", required_argument, 0, 'F'}, {"inactivity-probe", required_argument, 0, OPT_INACTIVITY_PROBE}, {"max-idle", required_argument, 0, OPT_MAX_IDLE}, {"max-backoff", required_argument, 0, OPT_MAX_BACKOFF}, {"listen", required_argument, 0, 'l'}, {"monitor", required_argument, 0, 'm'}, {"rate-limit", optional_argument, 0, OPT_RATE_LIMIT}, {"burst-limit", required_argument, 0, OPT_BURST_LIMIT}, {"stp", no_argument, 0, OPT_STP}, {"no-stp", no_argument, 0, OPT_NO_STP}, {"out-of-band", no_argument, 0, OPT_OUT_OF_BAND}, {"in-band", no_argument, 0, OPT_IN_BAND}, {"verbose", optional_argument, 0, 'v'}, {"help", no_argument, 0, 'h'}, {"version", no_argument, 0, 'V'}, DAEMON_LONG_OPTIONS, #ifdef HAVE_OPENSSL VCONN_SSL_LONG_OPTIONS {"bootstrap-ca-cert", required_argument, 0, OPT_BOOTSTRAP_CA_CERT}, #endif {0, 0, 0, 0}, }; char *short_options = long_options_to_short_options(long_options); char *accept_re = NULL; int retval; /* Set defaults that we can figure out before parsing options. */ s->n_listeners = 0; s->monitor_name = NULL; s->fail_mode = FAIL_OPEN; s->max_idle = 15; s->probe_interval = 15; s->max_backoff = 15; s->update_resolv_conf = true; s->rate_limit = 0; s->burst_limit = 0; s->enable_stp = false; s->in_band = true; for (;;) { int c; c = getopt_long(argc, argv, short_options, long_options, NULL); if (c == -1) { break; } switch (c) { case OPT_ACCEPT_VCONN: accept_re = optarg[0] == '^' ? optarg : xasprintf("^%s", optarg); break; case OPT_NO_RESOLV_CONF: s->update_resolv_conf = false; break; case 'F': if (!strcmp(optarg, "open")) { s->fail_mode = FAIL_OPEN; } else if (!strcmp(optarg, "closed")) { s->fail_mode = FAIL_CLOSED; } else { ofp_fatal(0, "-f or --fail argument must be \"open\" " "or \"closed\""); } break; case OPT_INACTIVITY_PROBE: s->probe_interval = atoi(optarg); if (s->probe_interval < 5) { ofp_fatal(0, "--inactivity-probe argument must be at least 5"); } break; case OPT_MAX_IDLE: if (!strcmp(optarg, "permanent")) { s->max_idle = OFP_FLOW_PERMANENT; } else { s->max_idle = atoi(optarg); if (s->max_idle < 1 || s->max_idle > 65535) { ofp_fatal(0, "--max-idle argument must be between 1 and " "65535 or the word 'permanent'"); } } break; case OPT_MAX_BACKOFF: s->max_backoff = atoi(optarg); if (s->max_backoff < 1) { ofp_fatal(0, "--max-backoff argument must be at least 1"); } else if (s->max_backoff > 3600) { s->max_backoff = 3600; } break; case OPT_RATE_LIMIT: if (optarg) { s->rate_limit = atoi(optarg); if (s->rate_limit < 1) { ofp_fatal(0, "--rate-limit argument must be at least 1"); } } else { s->rate_limit = 1000; } break; case OPT_BURST_LIMIT: s->burst_limit = atoi(optarg); if (s->burst_limit < 1) { ofp_fatal(0, "--burst-limit argument must be at least 1"); } break; case OPT_STP: s->enable_stp = true; break; case OPT_NO_STP: s->enable_stp = false; break; case OPT_OUT_OF_BAND: s->in_band = false; break; case OPT_IN_BAND: s->in_band = true; break; case 'l': if (s->n_listeners >= MAX_MGMT) { ofp_fatal(0, "-l or --listen may be specified at most %d times", MAX_MGMT); } s->listener_names[s->n_listeners++] = optarg; break; case 'm': if (s->monitor_name) { ofp_fatal(0, "-m or --monitor may only be specified once"); } s->monitor_name = optarg; break; case 'h': usage(); case 'V': printf("%s "VERSION" compiled "__DATE__" "__TIME__"\n", argv[0]); exit(EXIT_SUCCESS); case 'v': vlog_set_verbosity(optarg); break; DAEMON_OPTION_HANDLERS #ifdef HAVE_OPENSSL VCONN_SSL_OPTION_HANDLERS case OPT_BOOTSTRAP_CA_CERT: vconn_ssl_set_ca_cert_file(optarg, true); break; #endif case '?': exit(EXIT_FAILURE); default: abort(); } } free(short_options); argc -= optind; argv += optind; if (argc < 1 || argc > 2) { ofp_fatal(0, "need one or two non-option arguments; " "use --help for usage"); } /* Local and remote vconns. */ s->dp_name = argv[0]; s->controller_name = argc > 1 ? xstrdup(argv[1]) : NULL; /* Set accept_controller_regex. */ if (!accept_re) { accept_re = vconn_ssl_is_configured() ? "^ssl:.*" : ".*"; } retval = regcomp(&s->accept_controller_regex, accept_re, REG_NOSUB | REG_EXTENDED); if (retval) { size_t length = regerror(retval, &s->accept_controller_regex, NULL, 0); char *buffer = xmalloc(length); regerror(retval, &s->accept_controller_regex, buffer, length); ofp_fatal(0, "%s: %s", accept_re, buffer); } s->accept_controller_re = accept_re; /* Mode of operation. */ s->discovery = s->controller_name == NULL; if (s->discovery && !s->in_band) { ofp_fatal(0, "Cannot perform discovery with out-of-band control"); } /* Rate limiting. */ if (s->rate_limit) { if (s->rate_limit < 100) { VLOG_WARN("Rate limit set to unusually low value %d", s->rate_limit); } if (!s->burst_limit) { s->burst_limit = s->rate_limit / 4; } s->burst_limit = MAX(s->burst_limit, 1); s->burst_limit = MIN(s->burst_limit, INT_MAX / 1000); } } static void usage(void) { printf("%s: secure channel, a relay for OpenFlow messages.\n" "usage: %s [OPTIONS] nl:DP_IDX [CONTROLLER]\n" "where nl:DP_IDX is a datapath that has been added with dpctl.\n" "CONTROLLER is an active OpenFlow connection method; if it is\n" "omitted, then secchan performs controller discovery.\n", program_name, program_name); vconn_usage(true, true, true); printf("\nController discovery options:\n" " --accept-vconn=REGEX accept matching discovered controllers\n" " --no-resolv-conf do not update /etc/resolv.conf\n" "\nNetworking options:\n" " -F, --fail=open|closed when controller connection fails:\n" " closed: drop all packets\n" " open (default): act as learning switch\n" " --inactivity-probe=SECS time between inactivity probes\n" " --max-idle=SECS max idle for flows set up by secchan\n" " --max-backoff=SECS max time between controller connection\n" " attempts (default: 15 seconds)\n" " -l, --listen=METHOD allow management connections on METHOD\n" " (a passive OpenFlow connection method)\n" " -m, --monitor=METHOD copy traffic to/from kernel to METHOD\n" " (a passive OpenFlow connection method)\n" " --out-of-band controller connection is out-of-band\n" " --stp enable 802.1D Spanning Tree Protocol\n" " --no-stp disable 802.1D Spanning Tree Protocol\n" "\nRate-limiting of \"packet-in\" messages to the controller:\n" " --rate-limit[=PACKETS] max rate, in packets/s (default: 1000)\n" " --burst-limit=BURST limit on packet credit for idle time\n"); daemon_usage(); printf("\nOther options:\n" " -v, --verbose=MODULE[:FACILITY[:LEVEL]] set logging levels\n" " -v, --verbose set maximum verbosity level\n" " -h, --help display this help message\n" " -V, --version display version information\n"); exit(EXIT_SUCCESS); }