#ident "$Id: setup.c,v 1.50 2005/04/29 06:04:45 hpa Exp $" /* ----------------------------------------------------------------------- * * * Copyright 2001-2004 H. Peter Anvin - All Rights Reserved * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, Inc., 53 Temple Place Ste 330, * Boston MA 02111-1307, USA; either version 2 of the License, or * (at your option) any later version; incorporated herein by reference. * * ----------------------------------------------------------------------- */ #include #include "e820.h" #include "conio.h" #include "version.h" #include "memdisk.h" const char memdisk_version[] = "MEMDISK " VERSION " " DATE; const char copyright[] = "Copyright " FIRSTYEAR "-" COPYYEAR " H. Peter Anvin"; extern const char _binary_memdisk_bin_start[], _binary_memdisk_bin_end[]; extern const char _binary_memdisk_bin_size[]; /* Weird, I know */ struct memdisk_header { uint16_t int13_offs; uint16_t int15_offs; uint16_t patch_offs; uint16_t total_size; }; /* The Disk Parameter Table may be required */ typedef union { struct hd_dpt { uint16_t max_cyl; /* Max cylinder */ uint8_t max_head; /* Max head */ uint8_t junk1[5]; /* Obsolete junk, leave at zero */ uint8_t ctrl; /* Control byte */ uint8_t junk2[7]; /* More obsolete junk */ } hd; struct fd_dpt { uint8_t specify1; /* "First specify byte" */ uint8_t specify2; /* "Second specify byte" */ uint8_t delay; /* Delay until motor turn off */ uint8_t sectors; /* Sectors/track */ uint8_t bps; /* Bytes/sector (02h = 512) */ uint8_t isgap; /* Length of intersector gap */ uint8_t dlen; /* Data length (0FFh) */ uint8_t fgap; /* Formatting gap */ uint8_t ffill; /* Format fill byte */ uint8_t settle; /* Head settle time (ms) */ uint8_t mstart; /* Motor start time */ uint8_t _pad1; /* Padding */ uint32_t old_fd_dpt; /* Extension: pointer to old INT 1Eh */ } fd; } dpt_t; struct patch_area { uint32_t diskbuf; uint32_t disksize; uint16_t cmdline_off, cmdline_seg; uint32_t oldint13; uint32_t oldint15; uint16_t olddosmem; uint8_t bootloaderid; uint8_t _pad[3]; uint16_t memint1588; uint16_t cylinders; uint16_t heads; uint32_t sectors; uint32_t mem1mb; uint32_t mem16mb; uint8_t driveno; uint8_t drivetype; uint8_t drivecnt; uint8_t configflags; #define CONFIG_READONLY 0x01 #define CONFIG_RAW 0x02 #define CONFIG_BIGRAW 0x08 /* MUST be 8! */ uint16_t mystack; uint16_t statusptr; dpt_t dpt; }; /* This is the header in the boot sector/setup area */ struct setup_header { char cmdline[0x1f1]; uint8_t setup_secs; uint16_t syssize; uint16_t swap_dev; uint16_t ram_size; uint16_t vid_mode; uint16_t root_dev; uint16_t boot_flag; uint16_t jump; char header[4]; uint16_t version; uint32_t realmode_swtch; uint32_t start_sys; uint8_t type_of_loader; uint8_t loadflags; uint16_t setup_move_size; uint32_t code32_start; uint32_t ramdisk_image; uint32_t ramdisk_size; uint32_t bootsect_kludge; uint16_t head_end_ptr; uint16_t pad1; uint32_t cmd_line_ptr; uint32_t initrd_addr_max; }; const struct setup_header * const shdr = (struct setup_header *)(LOW_SEG << 4); /* Access to high memory */ /* Access to objects in the zero page */ static inline void wrz_8(uint32_t addr, uint8_t data) { *((uint8_t *)addr) = data; } static inline void wrz_16(uint32_t addr, uint16_t data) { *((uint16_t *)addr) = data; } static inline void wrz_32(uint32_t addr, uint32_t data) { *((uint32_t *)addr) = data; } static inline uint8_t rdz_8(uint32_t addr) { return *((uint8_t *)addr); } static inline uint16_t rdz_16(uint32_t addr) { return *((uint16_t *)addr); } static inline uint32_t rdz_32(uint32_t addr) { return *((uint32_t *)addr); } /* Addresses in the zero page */ #define BIOS_INT13 (0x13*4) /* INT 13h vector */ #define BIOS_INT15 (0x15*4) /* INT 15h vector */ #define BIOS_INT1E (0x1E*4) /* INT 1Eh vector */ #define BIOS_INT40 (0x40*4) /* INT 13h vector */ #define BIOS_INT41 (0x41*4) /* INT 41h vector */ #define BIOS_INT46 (0x46*4) /* INT 46h vector */ #define BIOS_BASEMEM 0x413 /* Amount of DOS memory */ #define BIOS_EQUIP 0x410 /* BIOS equipment list */ #define BIOS_HD_COUNT 0x475 /* Number of hard drives present */ /* * Routine to seek for a command-line item and return a pointer * to the data portion, if present */ /* Magic return values */ #define CMD_NOTFOUND ((char *)-1) /* Not found */ #define CMD_BOOL ((char *)-2) /* Found boolean option */ #define CMD_HASDATA(X) ((int)(X) >= 0) const char *getcmditem(const char *what) { const char *p; const char *wp = what; int match = 0; for ( p = shdr->cmdline ; *p ; p++ ) { switch ( match ) { case 0: /* Ground state */ if ( *p == ' ' ) break; wp = what; match = 1; /* Fall through */ case 1: /* Matching */ if ( *wp == '\0' ) { if ( *p == '=' ) return p+1; else if ( *p == ' ' ) return CMD_BOOL; else { match = 2; break; } } if ( *p != *wp++ ) match = 2; break; case 2: /* Mismatch, skip rest of option */ if ( *p == ' ' ) match = 0; /* Next option */ break; } } /* Check for matching string at end of line */ if ( match == 1 && *wp == '\0' ) return CMD_BOOL; return CMD_NOTFOUND; } /* * Check to see if this is a gzip image */ #define UNZIP_ALIGN 512 extern void _end; /* Symbol signalling end of data */ void unzip_if_needed(uint32_t *where_p, uint32_t *size_p) { uint32_t where = *where_p; uint32_t size = *size_p; uint32_t zbytes; uint32_t startrange, endrange; uint32_t gzdatasize, gzwhere; uint32_t orig_crc, offset; uint32_t target = 0; int i, okmem; /* Is it a gzip image? */ if (check_zip ((void *)where, size, &zbytes, &gzdatasize, &orig_crc, &offset) == 0) { if (offset + zbytes > size) { /* Assertion failure; check_zip is supposed to guarantee this never happens. */ puts("internal error: check_zip returned nonsense\n"); die(); } /* Find a good place to put it: search memory ranges in descending order until we find one that is legal and fits */ okmem = 0; for ( i = nranges-1 ; i >= 0 ; i-- ) { /* We can't use > 4G memory (32 bits only.) Truncate to 2^32-1 so we don't have to deal with funny wraparound issues. */ /* Must be memory */ if ( ranges[i].type != 1 ) continue; /* Range start */ if ( ranges[i].start >= 0xFFFFFFFF ) continue; startrange = (uint32_t)ranges[i].start; /* Range end (0 for end means 2^64) */ endrange = ((ranges[i+1].start >= 0xFFFFFFFF || ranges[i+1].start == 0) ? 0xFFFFFFFF : (uint32_t)ranges[i+1].start); /* Make sure we don't overwrite ourselves */ if ( startrange < (uint32_t)&_end ) startrange = (uint32_t)&_end; /* Allow for alignment */ startrange = (ranges[i].start + (UNZIP_ALIGN-1)) & ~(UNZIP_ALIGN-1); /* In case we just killed the whole range... */ if ( startrange >= endrange ) continue; /* Must be large enough... don't rely on gzwhere for this (wraparound) */ if ( endrange-startrange < gzdatasize ) continue; /* This is where the gz image should be put if we put it in this range */ gzwhere = (endrange - gzdatasize) & ~(UNZIP_ALIGN-1); /* Cast to uint64_t just in case we're flush with the top byte */ if ( (uint64_t)where+size >= gzwhere && where < endrange ) { /* Need to move source data to avoid compressed/uncompressed overlap */ uint32_t newwhere; if ( gzwhere-startrange < size ) continue; /* Can't fit both old and new */ newwhere = (gzwhere - size) & ~(UNZIP_ALIGN-1); printf("Moving compressed data from 0x%08x to 0x%08x\n", where, newwhere); /* Our memcpy() is OK, because we always move from a higher address to a lower one */ memcpy((void *)newwhere, (void *)where, size); where = newwhere; } target = gzwhere; okmem = 1; break; } if ( !okmem ) { printf("Not enough memory to decompress image (need 0x%08x bytes)\n", gzdatasize); die(); } printf("gzip image: decompressed addr 0x%08x, len 0x%08x: ", target, gzdatasize); *size_p = gzdatasize; *where_p = (uint32_t)unzip((void *)(where + offset), zbytes, gzdatasize, orig_crc, (void *)target); } } /* * Figure out the "geometry" of the disk in question */ struct geometry { uint32_t sectors; /* 512-byte sector count */ uint32_t c, h, s; /* C/H/S geometry */ uint32_t offset; /* Byte offset for disk */ uint8_t type; /* Type byte for INT 13h AH=08h */ uint8_t driveno; /* Drive no */ }; static const struct geometry geometries[] = { { 360*2, 40, 2, 9, 0, 0x01, 0 }, /* 360 K */ { 720*2, 80, 2, 9, 0, 0x03, 0 }, /* 720 K*/ { 1200*2, 80, 2, 15, 0, 0x02, 0 }, /* 1200 K */ { 1440*2, 80, 2, 18, 0, 0x04, 0 }, /* 1440 K */ { 1680*2, 80, 2, 21, 0, 0x04, 0 }, /* 1680 K */ { 1722*2, 82, 2, 21, 0, 0x04, 0 }, /* 1722 K */ { 2880*2, 80, 2, 36, 0, 0x06, 0 }, /* 2880 K */ { 3840*2, 80, 2, 48, 0, 0x06, 0 }, /* 3840 K */ }; #define known_geometries (sizeof(geometries)/sizeof(struct geometry)) /* Format of a DOS partition table entry */ struct ptab_entry { uint8_t active; uint8_t start_h, start_s, start_c; uint8_t type; uint8_t end_h, end_s, end_c; uint32_t start; uint32_t size; }; /* Format of a DOSEMU header */ struct dosemu_header { uint8_t magic[7]; /* DOSEMU\0 */ uint32_t h; uint32_t s; uint32_t c; uint32_t offset; uint8_t pad[105]; } __attribute__((packed)); #define FOUR(a,b,c,d) (((a) << 24)|((b) << 16)|((c) << 8)|(d)) const struct geometry *get_disk_image_geometry(uint32_t where, uint32_t size) { static struct geometry hd_geometry = { 0, 0, 0, 0, 0, 0, 0x80 }; struct ptab_entry ptab[4]; /* Partition table buffer */ struct dosemu_header dosemu; unsigned int sectors, v; unsigned int max_c, max_h, max_s; unsigned int c, h, s, offset; int i; int drive_specified; const char *p; printf("command line: %s\n", shdr->cmdline); offset = 0; if ( CMD_HASDATA(p = getcmditem("offset")) && (v = atou(p)) ) offset = v; sectors = (size-offset) >> 9; for ( i = 0 ; i < known_geometries ; i++ ) { if ( sectors == geometries[i].sectors ) { hd_geometry = geometries[i]; break; } } hd_geometry.sectors = sectors; hd_geometry.offset = offset; /* Do we have a DOSEMU header? */ memcpy(&dosemu, (char *)where+hd_geometry.offset, sizeof dosemu); if ( !memcmp("DOSEMU", dosemu.magic, 7) ) { /* Always a hard disk unless overruled by command-line options */ hd_geometry.driveno = 0x80; hd_geometry.type = 0; hd_geometry.c = dosemu.c; hd_geometry.h = dosemu.h; hd_geometry.s = dosemu.s; hd_geometry.offset += dosemu.offset; sectors = (size-hd_geometry.offset) >> 9; } if ( CMD_HASDATA(p = getcmditem("c")) && (v = atou(p)) ) hd_geometry.c = v; if ( CMD_HASDATA(p = getcmditem("h")) && (v = atou(p)) ) hd_geometry.h = v; if ( CMD_HASDATA(p = getcmditem("s")) && (v = atou(p)) ) hd_geometry.s = v; if ( getcmditem("floppy") != CMD_NOTFOUND ) { hd_geometry.driveno = 0; if ( hd_geometry.type == 0 ) hd_geometry.type = 0x10; /* ATAPI floppy, e.g. LS-120 */ drive_specified = 1; } else if ( getcmditem("harddisk") != CMD_NOTFOUND ) { hd_geometry.driveno = 0x80; hd_geometry.type = 0; drive_specified = 1; } if ( (hd_geometry.c == 0) || (hd_geometry.h == 0) || (hd_geometry.s == 0) ) { /* Hard disk image, need to examine the partition table for geometry */ memcpy(&ptab, (char *)where+hd_geometry.offset+(512-2-4*16), sizeof ptab); max_c = max_h = 0; max_s = 1; for ( i = 0 ; i < 4 ; i++ ) { if ( ptab[i].type ) { c = ptab[i].start_c + (ptab[i].start_s >> 6); s = (ptab[i].start_s & 0x3f); h = ptab[i].start_h; if ( max_c < c ) max_c = c; if ( max_h < h ) max_h = h; if ( max_s < s ) max_s = s; c = ptab[i].end_c + (ptab[i].end_s >> 6); s = (ptab[i].end_s & 0x3f); h = ptab[i].end_h; if ( max_c < c ) max_c = c; if ( max_h < h ) max_h = h; if ( max_s < s ) max_s = s; } } max_c++; max_h++; /* Convert to count (1-based) */ if ( !hd_geometry.h ) hd_geometry.h = max_h; if ( !hd_geometry.s ) hd_geometry.s = max_s; if ( !hd_geometry.c ) hd_geometry.c = sectors/(hd_geometry.h*hd_geometry.s); } if ( (size-hd_geometry.offset) & 0x1ff ) { puts("MEMDISK: Image has fractional end sector\n"); } if ( sectors % (hd_geometry.h*hd_geometry.s) ) { puts("MEMDISK: Image seems to have fractional end cylinder\n"); } if ( (hd_geometry.c*hd_geometry.h*hd_geometry.s) > sectors ) { puts("MEMDISK: Image appears to be truncated\n"); } return &hd_geometry; } /* * Jump here if all hope is gone... */ void __attribute__((noreturn)) die(void) { asm volatile("sti"); for(;;) asm volatile("hlt"); } #define STACK_NEEDED 512 /* Number of bytes of stack */ /* * Actual setup routine * Returns the drive number (which is then passed in %dl to the * called routine.) */ syscall_t syscall; void *sys_bounce; uint32_t setup(syscall_t cs_syscall, void *cs_bounce) { unsigned int bin_size = (int) &_binary_memdisk_bin_size; struct memdisk_header *hptr; struct patch_area *pptr; uint16_t driverseg; uint32_t driverptr, driveraddr; uint16_t dosmem_k; uint32_t stddosmem; const struct geometry *geometry; int total_size, cmdlinelen; com32sys_t regs; uint32_t ramdisk_image, ramdisk_size; /* Set up global variables */ syscall = cs_syscall; sys_bounce = cs_bounce; /* Show signs of life */ printf("%s %s\n", memdisk_version, copyright); if ( !shdr->ramdisk_image || !shdr->ramdisk_size ) { puts("MEMDISK: No ramdisk image specified!\n"); die(); } ramdisk_image = shdr->ramdisk_image; ramdisk_size = shdr->ramdisk_size; e820map_init(); /* Initialize memory data structure */ get_mem(); /* Query BIOS for memory map */ parse_mem(); /* Parse memory map */ printf("Ramdisk at 0x%08x, length 0x%08x\n", ramdisk_image, ramdisk_size); unzip_if_needed(&ramdisk_image, &ramdisk_size); geometry = get_disk_image_geometry(ramdisk_image, ramdisk_size); printf("Disk is %s, %u K, C/H/S = %u/%u/%u\n", geometry->driveno ? "hard disk" : "floppy", geometry->sectors >> 1, geometry->c, geometry->h, geometry->s); /* Reserve the ramdisk memory */ insertrange(ramdisk_image, ramdisk_size, 2); parse_mem(); /* Recompute variables */ /* Figure out where it needs to go */ hptr = (struct memdisk_header *) &_binary_memdisk_bin_start; pptr = (struct patch_area *)(_binary_memdisk_bin_start + hptr->patch_offs); dosmem_k = rdz_16(BIOS_BASEMEM); pptr->olddosmem = dosmem_k; stddosmem = dosmem_k << 10; /* If INT 15 E820 and INT 12 disagree, go with the most conservative */ if ( stddosmem > dos_mem ) stddosmem = dos_mem; pptr->driveno = geometry->driveno; pptr->drivetype = geometry->type; pptr->cylinders = geometry->c; pptr->heads = geometry->h; pptr->sectors = geometry->s; pptr->disksize = geometry->sectors; pptr->diskbuf = ramdisk_image + geometry->offset; pptr->statusptr = (geometry->driveno & 0x80) ? 0x474 : 0x441; pptr->bootloaderid = shdr->type_of_loader; pptr->configflags = 0; /* Set config flags */ if ( getcmditem("ro") != CMD_NOTFOUND ) { puts("Marking disk readonly\n"); pptr->configflags |= CONFIG_READONLY; } if ( getcmditem("raw") != CMD_NOTFOUND ) { puts("Using raw access to high memory\n"); pptr->configflags |= CONFIG_RAW; } if ( getcmditem("bigraw") != CMD_NOTFOUND ) { puts("Using raw access to high memory - assuming big real mode\n"); pptr->configflags |= CONFIG_BIGRAW|CONFIG_RAW; } /* Set up a drive parameter table */ if ( geometry->driveno & 0x80 ) { /* Hard disk */ pptr->dpt.hd.max_cyl = geometry->c-1; pptr->dpt.hd.max_head = geometry->h-1; pptr->dpt.hd.ctrl = (geometry->h > 8) ? 0x08: 0; } else { /* Floppy - most of these fields are bogus and mimic a 1.44 MB floppy drive */ pptr->dpt.fd.specify1 = 0xdf; pptr->dpt.fd.specify2 = 0x02; pptr->dpt.fd.delay = 0x25; pptr->dpt.fd.sectors = geometry->s; pptr->dpt.fd.bps = 0x02; pptr->dpt.fd.isgap = 0x12; pptr->dpt.fd.dlen = 0xff; pptr->dpt.fd.fgap = 0x6c; pptr->dpt.fd.ffill = 0xf6; pptr->dpt.fd.settle = 0x0f; pptr->dpt.fd.mstart = 0x05; pptr->dpt.fd.old_fd_dpt = rdz_32(BIOS_INT1E); } /* The size is given by hptr->total_size plus the size of the E820 map -- 12 bytes per range; we may need as many as 2 additional ranges (each insertrange() can worst-case turn 1 area into 3) plus the terminating range, over what nranges currently show. */ cmdlinelen = strlen(shdr->cmdline)+1; total_size = hptr->total_size; /* Actual memdisk code */ total_size += (nranges+3)*sizeof(ranges[0]); /* E820 memory ranges */ total_size += cmdlinelen; /* Command line */ total_size += STACK_NEEDED; /* Stack */ printf("Total size needed = %u bytes, allocating %uK\n", total_size, (total_size+0x3ff) >> 10); if ( total_size > dos_mem ) { puts("MEMDISK: Insufficient low memory\n"); die(); } driveraddr = stddosmem - total_size; driveraddr &= ~0x3FF; printf("Old dos memory at 0x%05x (map says 0x%05x), loading at 0x%05x\n", stddosmem, dos_mem, driveraddr); /* Reserve this range of memory */ wrz_16(BIOS_BASEMEM, driveraddr >> 10); insertrange(driveraddr, dos_mem-driveraddr, 2); parse_mem(); pptr->mem1mb = low_mem >> 10; pptr->mem16mb = high_mem >> 16; if ( low_mem == (15 << 20) ) { /* lowmem maxed out */ uint32_t int1588mem = (high_mem >> 10)+(low_mem >> 10); pptr->memint1588 = (int1588mem > 0xffff) ? 0xffff : int1588mem; } else { pptr->memint1588 = low_mem >> 10; } printf("1588: 0x%04x 15E801: 0x%04x 0x%04x\n", pptr->memint1588, pptr->mem1mb, pptr->mem16mb); driverseg = driveraddr >> 4; driverptr = driverseg << 16; /* Anything beyond the end is for the stack */ pptr->mystack = (uint16_t)(stddosmem-driveraddr); pptr->oldint13 = rdz_32(BIOS_INT13); pptr->oldint15 = rdz_32(BIOS_INT15); /* Adjust the E820 table: if there are null ranges (type 0) at the end, change them to type end of list (-1). This is necessary for the driver to be able to report end of list correctly. */ while ( nranges && ranges[nranges-1].type == 0 ) { ranges[--nranges].type = -1; } /* Query drive parameters of this type */ memset(®s, 0, sizeof regs); regs.es = 0; regs.eax.b[1] = 0x08; regs.edx.b[0] = geometry->driveno; syscall(0x13, ®s, ®s); if ( regs.eflags.l & 1 ) { printf("INT 13 08: Failure, assuming this is the only drive\n"); pptr->drivecnt = 1; } else { printf("INT 13 08: Success, count = %u, BPT = %04x:%04x\n", regs.edx.b[0], regs.es, regs.edi.w[0]); pptr->drivecnt = regs.edx.b[0]+1; } /* Pointer to the command line */ pptr->cmdline_off = bin_size + (nranges+1)*sizeof(ranges[0]); pptr->cmdline_seg = driverseg; /* Copy driver followed by E820 table followed by command line */ { unsigned char *dpp = (unsigned char *)(driverseg << 4); dpp = memcpy_endptr(dpp, &_binary_memdisk_bin_start, bin_size); dpp = memcpy_endptr(dpp, ranges, (nranges+1)*sizeof(ranges[0])); dpp = memcpy_endptr(dpp, shdr->cmdline, cmdlinelen+1); } /* Install the interrupt handlers */ printf("old: int13 = %08x int15 = %08x\n", rdz_32(BIOS_INT13), rdz_32(BIOS_INT15)); wrz_32(BIOS_INT13, driverptr+hptr->int13_offs); wrz_32(BIOS_INT15, driverptr+hptr->int15_offs); printf("new: int13 = %08x int15 = %08x\n", rdz_32(BIOS_INT13), rdz_32(BIOS_INT15)); /* Update various BIOS magic data areas (gotta love this shit) */ if ( geometry->driveno & 0x80 ) { /* Update BIOS hard disk count */ wrz_8(BIOS_HD_COUNT, rdz_8(BIOS_HD_COUNT)+1); } else { /* Update BIOS floppy disk count */ uint8_t equip = rdz_8(BIOS_EQUIP); if ( equip & 1 ) { if ( (equip & (3 << 6)) != (3 << 6) ) { equip += (1 << 6); } } else { equip |= 1; equip &= ~(3 << 6); } wrz_8(BIOS_EQUIP, equip); } /* Reboot into the new "disk"; this is also a test for the interrupt hooks */ puts("Loading boot sector... "); memset(®s, 0, sizeof regs); // regs.es = 0; regs.eax.w[0] = 0x0201; /* Read sector */ regs.ebx.w[0] = 0x7c00; /* 0000:7C00 */ regs.ecx.w[0] = 1; /* One sector */ regs.edx.w[0] = geometry->driveno; syscall(0x13, ®s, ®s); if ( regs.eflags.l & 1 ) { puts("MEMDISK: Failed to load new boot sector\n"); die(); } if ( getcmditem("pause") != CMD_NOTFOUND ) { puts("press any key to boot... "); regs.eax.w[0] = 0; syscall(0x16, ®s, NULL); } puts("booting...\n"); /* On return the assembly code will jump to the boot vector */ return geometry->driveno; }