/* Copyright (c) 2008, 2009, 2010, 2011 Nicira Networks * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "bridge.h" #include "byte-order.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "bitmap.h" #include "cfm.h" #include "classifier.h" #include "coverage.h" #include "daemon.h" #include "dirs.h" #include "dpif.h" #include "dynamic-string.h" #include "flow.h" #include "hash.h" #include "hmap.h" #include "jsonrpc.h" #include "list.h" #include "mac-learning.h" #include "netdev.h" #include "netlink.h" #include "odp-util.h" #include "ofp-print.h" #include "ofpbuf.h" #include "ofproto/netflow.h" #include "ofproto/ofproto.h" #include "ovsdb-data.h" #include "packets.h" #include "poll-loop.h" #include "process.h" #include "sha1.h" #include "shash.h" #include "socket-util.h" #include "stream-ssl.h" #include "svec.h" #include "system-stats.h" #include "timeval.h" #include "util.h" #include "unixctl.h" #include "vconn.h" #include "vswitchd/vswitch-idl.h" #include "xenserver.h" #include "vlog.h" #include "sflow_api.h" VLOG_DEFINE_THIS_MODULE(bridge); COVERAGE_DEFINE(bridge_flush); COVERAGE_DEFINE(bridge_process_flow); COVERAGE_DEFINE(bridge_process_cfm); COVERAGE_DEFINE(bridge_process_lacp); COVERAGE_DEFINE(bridge_reconfigure); COVERAGE_DEFINE(bridge_lacp_update); struct dst { uint16_t vlan; uint16_t dp_ifidx; }; struct dst_set { struct dst builtin[32]; struct dst *dsts; size_t n, allocated; }; static void dst_set_init(struct dst_set *); static void dst_set_add(struct dst_set *, const struct dst *); static void dst_set_free(struct dst_set *); enum lacp_status { LACP_CURRENT = 0x01, /* Current State. */ LACP_EXPIRED = 0x02, /* Expired State. */ LACP_DEFAULTED = 0x04, /* Partner is defaulted. */ LACP_ATTACHED = 0x08, /* Attached. Interface may be choosen for flows. */ }; struct iface { /* These members are always valid. */ struct port *port; /* Containing port. */ size_t port_ifidx; /* Index within containing port. */ char *name; /* Host network device name. */ tag_type tag; /* Tag associated with this interface. */ long long delay_expires; /* Time after which 'enabled' may change. */ /* These members are valid only after bridge_reconfigure() causes them to * be initialized. */ struct hmap_node dp_ifidx_node; /* In struct bridge's "ifaces" hmap. */ int dp_ifidx; /* Index within kernel datapath. */ struct netdev *netdev; /* Network device. */ bool enabled; /* May be chosen for flows? */ bool up; /* Is the interface up? */ const char *type; /* Usually same as cfg->type. */ struct cfm *cfm; /* Connectivity Fault Management */ const struct ovsrec_interface *cfg; /* LACP information. */ enum lacp_status lacp_status; /* LACP status. */ uint16_t lacp_priority; /* LACP port priority. */ struct lacp_info lacp_actor; /* LACP actor information. */ struct lacp_info lacp_partner; /* LACP partner information. */ long long int lacp_tx; /* Next LACP message transmission time. */ long long int lacp_rx; /* Next LACP message receive time. */ }; #define BOND_MASK 0xff struct bond_entry { int iface_idx; /* Index of assigned iface, or -1 if none. */ uint64_t tx_bytes; /* Count of bytes recently transmitted. */ tag_type iface_tag; /* Tag associated with iface_idx. */ }; enum bond_mode { BM_TCP, /* Transport Layer Load Balance. */ BM_SLB, /* Source Load Balance. */ BM_AB /* Active Backup. */ }; #define MAX_MIRRORS 32 typedef uint32_t mirror_mask_t; #define MIRROR_MASK_C(X) UINT32_C(X) BUILD_ASSERT_DECL(sizeof(mirror_mask_t) * CHAR_BIT >= MAX_MIRRORS); struct mirror { struct bridge *bridge; size_t idx; char *name; struct uuid uuid; /* UUID of this "mirror" record in database. */ /* Selection criteria. */ struct shash src_ports; /* Name is port name; data is always NULL. */ struct shash dst_ports; /* Name is port name; data is always NULL. */ int *vlans; size_t n_vlans; /* Output. */ struct port *out_port; int out_vlan; }; /* Flags for a port's lacp member. */ #define LACP_ACTIVE 0x01 /* LACP is in active mode. */ #define LACP_PASSIVE 0x02 /* LACP is in passive mode. */ #define LACP_NEGOTIATED 0x04 /* LACP has successfully negotiated. */ #define FLOOD_PORT ((struct port *) 1) /* The 'flood' output port. */ struct port { struct bridge *bridge; size_t port_idx; int vlan; /* -1=trunk port, else a 12-bit VLAN ID. */ unsigned long *trunks; /* Bitmap of trunked VLANs, if 'vlan' == -1. * NULL if all VLANs are trunked. */ const struct ovsrec_port *cfg; char *name; /* An ordinary bridge port has 1 interface. * A bridge port for bonding has at least 2 interfaces. */ struct iface **ifaces; size_t n_ifaces, allocated_ifaces; /* Bonding info. */ enum bond_mode bond_mode; /* Type of the bond. BM_SLB is the default. */ int active_iface; /* Ifidx on which bcasts accepted, or -1. */ tag_type active_iface_tag; /* Tag for bcast flows. */ tag_type no_ifaces_tag; /* Tag for flows when all ifaces disabled. */ int updelay, downdelay; /* Delay before iface goes up/down, in ms. */ bool bond_fake_iface; /* Fake a bond interface for legacy compat? */ bool miimon; /* Use miimon instead of carrier? */ long long int bond_miimon_interval; /* Miimon status refresh interval. */ long long int bond_miimon_next_update; /* Time of next miimon update. */ long long int bond_next_fake_iface_update; /* Time of next update. */ struct netdev_monitor *monitor; /* Tracks carrier up/down status. */ /* LACP information. */ int lacp; /* LACP status flags. 0 if LACP is off. */ uint16_t lacp_key; /* LACP aggregation key. */ uint16_t lacp_priority; /* LACP system priority. */ bool lacp_need_update; /* Need to update attached interfaces? */ /* SLB specific bonding info. */ struct bond_entry *bond_hash; /* An array of (BOND_MASK + 1) elements. */ int bond_rebalance_interval; /* Interval between rebalances, in ms. */ long long int bond_next_rebalance; /* Next rebalancing time. */ /* Port mirroring info. */ mirror_mask_t src_mirrors; /* Mirrors triggered when packet received. */ mirror_mask_t dst_mirrors; /* Mirrors triggered when packet sent. */ bool is_mirror_output_port; /* Does port mirroring send frames here? */ }; struct bridge { struct list node; /* Node in global list of bridges. */ char *name; /* User-specified arbitrary name. */ struct mac_learning *ml; /* MAC learning table. */ uint8_t ea[ETH_ADDR_LEN]; /* Bridge Ethernet Address. */ uint8_t default_ea[ETH_ADDR_LEN]; /* Default MAC. */ const struct ovsrec_bridge *cfg; /* OpenFlow switch processing. */ struct ofproto *ofproto; /* OpenFlow switch. */ /* Kernel datapath information. */ struct dpif *dpif; /* Datapath. */ struct hmap ifaces; /* Contains "struct iface"s. */ /* Bridge ports. */ struct port **ports; size_t n_ports, allocated_ports; struct shash iface_by_name; /* "struct iface"s indexed by name. */ struct shash port_by_name; /* "struct port"s indexed by name. */ /* Bonding. */ bool has_bonded_ports; /* Flow tracking. */ bool flush; /* Port mirroring. */ struct mirror *mirrors[MAX_MIRRORS]; }; /* List of all bridges. */ static struct list all_bridges = LIST_INITIALIZER(&all_bridges); /* OVSDB IDL used to obtain configuration. */ static struct ovsdb_idl *idl; /* Each time this timer expires, the bridge fetches systems and interface * statistics and pushes them into the database. */ #define STATS_INTERVAL (5 * 1000) /* In milliseconds. */ static long long int stats_timer = LLONG_MIN; static struct bridge *bridge_create(const struct ovsrec_bridge *br_cfg); static void bridge_destroy(struct bridge *); static struct bridge *bridge_lookup(const char *name); static unixctl_cb_func bridge_unixctl_dump_flows; static unixctl_cb_func bridge_unixctl_reconnect; static int bridge_run_one(struct bridge *); static size_t bridge_get_controllers(const struct bridge *br, struct ovsrec_controller ***controllersp); static void bridge_reconfigure_one(struct bridge *); static void bridge_reconfigure_remotes(struct bridge *, const struct sockaddr_in *managers, size_t n_managers); static void bridge_get_all_ifaces(const struct bridge *, struct shash *ifaces); static void bridge_fetch_dp_ifaces(struct bridge *); static void bridge_flush(struct bridge *); static void bridge_pick_local_hw_addr(struct bridge *, uint8_t ea[ETH_ADDR_LEN], struct iface **hw_addr_iface); static uint64_t bridge_pick_datapath_id(struct bridge *, const uint8_t bridge_ea[ETH_ADDR_LEN], struct iface *hw_addr_iface); static struct iface *bridge_get_local_iface(struct bridge *); static uint64_t dpid_from_hash(const void *, size_t nbytes); static unixctl_cb_func bridge_unixctl_fdb_show; static void lacp_run(struct bridge *); static void lacp_wait(struct bridge *); static void lacp_process_packet(const struct ofpbuf *, struct iface *); static void bond_init(void); static void bond_run(struct bridge *); static void bond_wait(struct bridge *); static void bond_rebalance_port(struct port *); static void bond_send_learning_packets(struct port *); static void bond_enable_slave(struct iface *iface, bool enable); static struct port *port_create(struct bridge *, const char *name); static void port_reconfigure(struct port *, const struct ovsrec_port *); static void port_del_ifaces(struct port *, const struct ovsrec_port *); static void port_destroy(struct port *); static struct port *port_lookup(const struct bridge *, const char *name); static struct iface *port_lookup_iface(const struct port *, const char *name); static struct port *port_from_dp_ifidx(const struct bridge *, uint16_t dp_ifidx); static void port_update_bonding(struct port *); static void port_update_lacp(struct port *); static void mirror_create(struct bridge *, struct ovsrec_mirror *); static void mirror_destroy(struct mirror *); static void mirror_reconfigure(struct bridge *); static void mirror_reconfigure_one(struct mirror *, struct ovsrec_mirror *); static bool vlan_is_mirrored(const struct mirror *, int vlan); static struct iface *iface_create(struct port *port, const struct ovsrec_interface *if_cfg); static void iface_destroy(struct iface *); static struct iface *iface_lookup(const struct bridge *, const char *name); static struct iface *iface_from_dp_ifidx(const struct bridge *, uint16_t dp_ifidx); static void iface_set_mac(struct iface *); static void iface_set_ofport(const struct ovsrec_interface *, int64_t ofport); static void iface_update_qos(struct iface *, const struct ovsrec_qos *); static void iface_update_cfm(struct iface *); static void iface_refresh_cfm_stats(struct iface *iface); static void iface_send_packet(struct iface *, struct ofpbuf *packet); static uint8_t iface_get_lacp_state(const struct iface *); static void iface_get_lacp_priority(struct iface *, struct lacp_info *); static void iface_set_lacp_defaulted(struct iface *); static void iface_set_lacp_expired(struct iface *); static void shash_from_ovs_idl_map(char **keys, char **values, size_t n, struct shash *); static void shash_to_ovs_idl_map(struct shash *, char ***keys, char ***values, size_t *n); /* Hooks into ofproto processing. */ static struct ofhooks bridge_ofhooks; /* Public functions. */ /* Initializes the bridge module, configuring it to obtain its configuration * from an OVSDB server accessed over 'remote', which should be a string in a * form acceptable to ovsdb_idl_create(). */ void bridge_init(const char *remote) { /* Create connection to database. */ idl = ovsdb_idl_create(remote, &ovsrec_idl_class, true); ovsdb_idl_omit_alert(idl, &ovsrec_open_vswitch_col_cur_cfg); ovsdb_idl_omit_alert(idl, &ovsrec_open_vswitch_col_statistics); ovsdb_idl_omit(idl, &ovsrec_open_vswitch_col_external_ids); ovsdb_idl_omit(idl, &ovsrec_bridge_col_external_ids); ovsdb_idl_omit(idl, &ovsrec_port_col_external_ids); ovsdb_idl_omit(idl, &ovsrec_port_col_fake_bridge); ovsdb_idl_omit_alert(idl, &ovsrec_interface_col_ofport); ovsdb_idl_omit_alert(idl, &ovsrec_interface_col_statistics); ovsdb_idl_omit(idl, &ovsrec_interface_col_external_ids); /* Register unixctl commands. */ unixctl_command_register("fdb/show", bridge_unixctl_fdb_show, NULL); unixctl_command_register("bridge/dump-flows", bridge_unixctl_dump_flows, NULL); unixctl_command_register("bridge/reconnect", bridge_unixctl_reconnect, NULL); bond_init(); } void bridge_exit(void) { struct bridge *br, *next_br; LIST_FOR_EACH_SAFE (br, next_br, node, &all_bridges) { bridge_destroy(br); } ovsdb_idl_destroy(idl); } /* Performs configuration that is only necessary once at ovs-vswitchd startup, * but for which the ovs-vswitchd configuration 'cfg' is required. */ static void bridge_configure_once(const struct ovsrec_open_vswitch *cfg) { static bool already_configured_once; struct svec bridge_names; struct svec dpif_names, dpif_types; size_t i; /* Only do this once per ovs-vswitchd run. */ if (already_configured_once) { return; } already_configured_once = true; stats_timer = time_msec() + STATS_INTERVAL; /* Get all the configured bridges' names from 'cfg' into 'bridge_names'. */ svec_init(&bridge_names); for (i = 0; i < cfg->n_bridges; i++) { svec_add(&bridge_names, cfg->bridges[i]->name); } svec_sort(&bridge_names); /* Iterate over all system dpifs and delete any of them that do not appear * in 'cfg'. */ svec_init(&dpif_names); svec_init(&dpif_types); dp_enumerate_types(&dpif_types); for (i = 0; i < dpif_types.n; i++) { size_t j; dp_enumerate_names(dpif_types.names[i], &dpif_names); /* Delete each dpif whose name is not in 'bridge_names'. */ for (j = 0; j < dpif_names.n; j++) { if (!svec_contains(&bridge_names, dpif_names.names[j])) { struct dpif *dpif; int retval; retval = dpif_open(dpif_names.names[j], dpif_types.names[i], &dpif); if (!retval) { dpif_delete(dpif); dpif_close(dpif); } } } } svec_destroy(&bridge_names); svec_destroy(&dpif_names); svec_destroy(&dpif_types); } /* Callback for iterate_and_prune_ifaces(). */ static bool check_iface(struct bridge *br, struct iface *iface, void *aux OVS_UNUSED) { if (!iface->netdev) { /* We already reported a related error, don't bother duplicating it. */ return false; } if (iface->dp_ifidx < 0) { VLOG_ERR("%s interface not in %s, dropping", iface->name, dpif_name(br->dpif)); return false; } VLOG_DBG("%s has interface %s on port %d", dpif_name(br->dpif), iface->name, iface->dp_ifidx); return true; } /* Callback for iterate_and_prune_ifaces(). */ static bool set_iface_properties(struct bridge *br OVS_UNUSED, struct iface *iface, void *aux OVS_UNUSED) { /* Set policing attributes. */ netdev_set_policing(iface->netdev, iface->cfg->ingress_policing_rate, iface->cfg->ingress_policing_burst); /* Set MAC address of internal interfaces other than the local * interface. */ if (iface->dp_ifidx != ODPP_LOCAL && !strcmp(iface->type, "internal")) { iface_set_mac(iface); } return true; } /* Calls 'cb' for each interfaces in 'br', passing along the 'aux' argument. * Deletes from 'br' all the interfaces for which 'cb' returns false, and then * deletes from 'br' any ports that no longer have any interfaces. */ static void iterate_and_prune_ifaces(struct bridge *br, bool (*cb)(struct bridge *, struct iface *, void *aux), void *aux) { size_t i, j; for (i = 0; i < br->n_ports; ) { struct port *port = br->ports[i]; for (j = 0; j < port->n_ifaces; ) { struct iface *iface = port->ifaces[j]; if (cb(br, iface, aux)) { j++; } else { iface_set_ofport(iface->cfg, -1); iface_destroy(iface); } } if (port->n_ifaces) { i++; } else { VLOG_WARN("%s port has no interfaces, dropping", port->name); port_destroy(port); } } } /* Looks at the list of managers in 'ovs_cfg' and extracts their remote IP * addresses and ports into '*managersp' and '*n_managersp'. The caller is * responsible for freeing '*managersp' (with free()). * * You may be asking yourself "why does ovs-vswitchd care?", because * ovsdb-server is responsible for connecting to the managers, and ovs-vswitchd * should not be and in fact is not directly involved in that. But * ovs-vswitchd needs to make sure that ovsdb-server can reach the managers, so * it has to tell in-band control where the managers are to enable that. * (Thus, only managers connected in-band are collected.) */ static void collect_in_band_managers(const struct ovsrec_open_vswitch *ovs_cfg, struct sockaddr_in **managersp, size_t *n_managersp) { struct sockaddr_in *managers = NULL; size_t n_managers = 0; struct shash targets; size_t i; /* Collect all of the potential targets from the "targets" columns of the * rows pointed to by "manager_options", excluding any that are * out-of-band. */ shash_init(&targets); for (i = 0; i < ovs_cfg->n_manager_options; i++) { struct ovsrec_manager *m = ovs_cfg->manager_options[i]; if (m->connection_mode && !strcmp(m->connection_mode, "out-of-band")) { shash_find_and_delete(&targets, m->target); } else { shash_add_once(&targets, m->target, NULL); } } /* Now extract the targets' IP addresses. */ if (!shash_is_empty(&targets)) { struct shash_node *node; managers = xmalloc(shash_count(&targets) * sizeof *managers); SHASH_FOR_EACH (node, &targets) { const char *target = node->name; struct sockaddr_in *sin = &managers[n_managers]; if ((!strncmp(target, "tcp:", 4) && inet_parse_active(target + 4, JSONRPC_TCP_PORT, sin)) || (!strncmp(target, "ssl:", 4) && inet_parse_active(target + 4, JSONRPC_SSL_PORT, sin))) { n_managers++; } } } shash_destroy(&targets); *managersp = managers; *n_managersp = n_managers; } static void bridge_reconfigure(const struct ovsrec_open_vswitch *ovs_cfg) { struct shash old_br, new_br; struct shash_node *node; struct bridge *br, *next; struct sockaddr_in *managers; size_t n_managers; size_t i; int sflow_bridge_number; COVERAGE_INC(bridge_reconfigure); collect_in_band_managers(ovs_cfg, &managers, &n_managers); /* Collect old and new bridges. */ shash_init(&old_br); shash_init(&new_br); LIST_FOR_EACH (br, node, &all_bridges) { shash_add(&old_br, br->name, br); } for (i = 0; i < ovs_cfg->n_bridges; i++) { const struct ovsrec_bridge *br_cfg = ovs_cfg->bridges[i]; if (!shash_add_once(&new_br, br_cfg->name, br_cfg)) { VLOG_WARN("more than one bridge named %s", br_cfg->name); } } /* Get rid of deleted bridges and add new bridges. */ LIST_FOR_EACH_SAFE (br, next, node, &all_bridges) { struct ovsrec_bridge *br_cfg = shash_find_data(&new_br, br->name); if (br_cfg) { br->cfg = br_cfg; } else { bridge_destroy(br); } } SHASH_FOR_EACH (node, &new_br) { const char *br_name = node->name; const struct ovsrec_bridge *br_cfg = node->data; br = shash_find_data(&old_br, br_name); if (br) { /* If the bridge datapath type has changed, we need to tear it * down and recreate. */ if (strcmp(br->cfg->datapath_type, br_cfg->datapath_type)) { bridge_destroy(br); bridge_create(br_cfg); } } else { bridge_create(br_cfg); } } shash_destroy(&old_br); shash_destroy(&new_br); /* Reconfigure all bridges. */ LIST_FOR_EACH (br, node, &all_bridges) { bridge_reconfigure_one(br); } /* Add and delete ports on all datapaths. * * The kernel will reject any attempt to add a given port to a datapath if * that port already belongs to a different datapath, so we must do all * port deletions before any port additions. */ LIST_FOR_EACH (br, node, &all_bridges) { struct dpif_port_dump dump; struct shash want_ifaces; struct dpif_port dpif_port; bridge_get_all_ifaces(br, &want_ifaces); DPIF_PORT_FOR_EACH (&dpif_port, &dump, br->dpif) { if (!shash_find(&want_ifaces, dpif_port.name) && strcmp(dpif_port.name, br->name)) { int retval = dpif_port_del(br->dpif, dpif_port.port_no); if (retval) { VLOG_WARN("failed to remove %s interface from %s: %s", dpif_port.name, dpif_name(br->dpif), strerror(retval)); } } } shash_destroy(&want_ifaces); } LIST_FOR_EACH (br, node, &all_bridges) { struct shash cur_ifaces, want_ifaces; struct dpif_port_dump dump; struct dpif_port dpif_port; /* Get the set of interfaces currently in this datapath. */ shash_init(&cur_ifaces); DPIF_PORT_FOR_EACH (&dpif_port, &dump, br->dpif) { struct dpif_port *port_info = xmalloc(sizeof *port_info); dpif_port_clone(port_info, &dpif_port); shash_add(&cur_ifaces, dpif_port.name, port_info); } /* Get the set of interfaces we want on this datapath. */ bridge_get_all_ifaces(br, &want_ifaces); hmap_clear(&br->ifaces); SHASH_FOR_EACH (node, &want_ifaces) { const char *if_name = node->name; struct iface *iface = node->data; struct dpif_port *dpif_port; const char *type; int error; type = iface ? iface->type : "internal"; dpif_port = shash_find_data(&cur_ifaces, if_name); /* If we have a port or a netdev already, and it's not the type we * want, then delete the port (if any) and close the netdev (if * any). */ if ((dpif_port && strcmp(dpif_port->type, type)) || (iface && iface->netdev && strcmp(type, netdev_get_type(iface->netdev)))) { if (dpif_port) { error = ofproto_port_del(br->ofproto, dpif_port->port_no); if (error) { continue; } dpif_port = NULL; } if (iface) { netdev_close(iface->netdev); iface->netdev = NULL; } } /* If the port doesn't exist or we don't have the netdev open, * we need to do more work. */ if (!dpif_port || (iface && !iface->netdev)) { struct netdev_options options; struct netdev *netdev; struct shash args; /* First open the network device. */ options.name = if_name; options.type = type; options.args = &args; options.ethertype = NETDEV_ETH_TYPE_NONE; shash_init(&args); if (iface) { shash_from_ovs_idl_map(iface->cfg->key_options, iface->cfg->value_options, iface->cfg->n_options, &args); } error = netdev_open(&options, &netdev); shash_destroy(&args); if (error) { VLOG_WARN("could not open network device %s (%s)", if_name, strerror(error)); continue; } /* Then add the port if we haven't already. */ if (!dpif_port) { error = dpif_port_add(br->dpif, netdev, NULL); if (error) { netdev_close(netdev); if (error == EFBIG) { VLOG_ERR("ran out of valid port numbers on %s", dpif_name(br->dpif)); break; } else { VLOG_WARN("failed to add %s interface to %s: %s", if_name, dpif_name(br->dpif), strerror(error)); continue; } } } /* Update 'iface'. */ if (iface) { iface->netdev = netdev; iface->enabled = netdev_get_carrier(iface->netdev); iface->up = iface->enabled; } } else if (iface && iface->netdev) { struct shash args; shash_init(&args); shash_from_ovs_idl_map(iface->cfg->key_options, iface->cfg->value_options, iface->cfg->n_options, &args); netdev_set_config(iface->netdev, &args); shash_destroy(&args); } } shash_destroy(&want_ifaces); SHASH_FOR_EACH (node, &cur_ifaces) { struct dpif_port *port_info = node->data; dpif_port_destroy(port_info); free(port_info); } shash_destroy(&cur_ifaces); } sflow_bridge_number = 0; LIST_FOR_EACH (br, node, &all_bridges) { uint8_t ea[8]; uint64_t dpid; struct iface *local_iface; struct iface *hw_addr_iface; char *dpid_string; bridge_fetch_dp_ifaces(br); iterate_and_prune_ifaces(br, check_iface, NULL); /* Pick local port hardware address, datapath ID. */ bridge_pick_local_hw_addr(br, ea, &hw_addr_iface); local_iface = bridge_get_local_iface(br); if (local_iface) { int error = netdev_set_etheraddr(local_iface->netdev, ea); if (error) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_ERR_RL(&rl, "bridge %s: failed to set bridge " "Ethernet address: %s", br->name, strerror(error)); } } memcpy(br->ea, ea, ETH_ADDR_LEN); dpid = bridge_pick_datapath_id(br, ea, hw_addr_iface); ofproto_set_datapath_id(br->ofproto, dpid); dpid_string = xasprintf("%016"PRIx64, dpid); ovsrec_bridge_set_datapath_id(br->cfg, dpid_string); free(dpid_string); /* Set NetFlow configuration on this bridge. */ if (br->cfg->netflow) { struct ovsrec_netflow *nf_cfg = br->cfg->netflow; struct netflow_options opts; memset(&opts, 0, sizeof opts); dpif_get_netflow_ids(br->dpif, &opts.engine_type, &opts.engine_id); if (nf_cfg->engine_type) { opts.engine_type = *nf_cfg->engine_type; } if (nf_cfg->engine_id) { opts.engine_id = *nf_cfg->engine_id; } opts.active_timeout = nf_cfg->active_timeout; if (!opts.active_timeout) { opts.active_timeout = -1; } else if (opts.active_timeout < 0) { VLOG_WARN("bridge %s: active timeout interval set to negative " "value, using default instead (%d seconds)", br->name, NF_ACTIVE_TIMEOUT_DEFAULT); opts.active_timeout = -1; } opts.add_id_to_iface = nf_cfg->add_id_to_interface; if (opts.add_id_to_iface) { if (opts.engine_id > 0x7f) { VLOG_WARN("bridge %s: netflow port mangling may conflict " "with another vswitch, choose an engine id less " "than 128", br->name); } if (br->n_ports > 508) { VLOG_WARN("bridge %s: netflow port mangling will conflict " "with another port when more than 508 ports are " "used", br->name); } } opts.collectors.n = nf_cfg->n_targets; opts.collectors.names = nf_cfg->targets; if (ofproto_set_netflow(br->ofproto, &opts)) { VLOG_ERR("bridge %s: problem setting netflow collectors", br->name); } } else { ofproto_set_netflow(br->ofproto, NULL); } /* Set sFlow configuration on this bridge. */ if (br->cfg->sflow) { const struct ovsrec_sflow *sflow_cfg = br->cfg->sflow; struct ovsrec_controller **controllers; struct ofproto_sflow_options oso; size_t n_controllers; memset(&oso, 0, sizeof oso); oso.targets.n = sflow_cfg->n_targets; oso.targets.names = sflow_cfg->targets; oso.sampling_rate = SFL_DEFAULT_SAMPLING_RATE; if (sflow_cfg->sampling) { oso.sampling_rate = *sflow_cfg->sampling; } oso.polling_interval = SFL_DEFAULT_POLLING_INTERVAL; if (sflow_cfg->polling) { oso.polling_interval = *sflow_cfg->polling; } oso.header_len = SFL_DEFAULT_HEADER_SIZE; if (sflow_cfg->header) { oso.header_len = *sflow_cfg->header; } oso.sub_id = sflow_bridge_number++; oso.agent_device = sflow_cfg->agent; oso.control_ip = NULL; n_controllers = bridge_get_controllers(br, &controllers); for (i = 0; i < n_controllers; i++) { if (controllers[i]->local_ip) { oso.control_ip = controllers[i]->local_ip; break; } } ofproto_set_sflow(br->ofproto, &oso); /* Do not destroy oso.targets because it is owned by sflow_cfg. */ } else { ofproto_set_sflow(br->ofproto, NULL); } /* Update the controller and related settings. It would be more * straightforward to call this from bridge_reconfigure_one(), but we * can't do it there for two reasons. First, and most importantly, at * that point we don't know the dp_ifidx of any interfaces that have * been added to the bridge (because we haven't actually added them to * the datapath). Second, at that point we haven't set the datapath ID * yet; when a controller is configured, resetting the datapath ID will * immediately disconnect from the controller, so it's better to set * the datapath ID before the controller. */ bridge_reconfigure_remotes(br, managers, n_managers); } LIST_FOR_EACH (br, node, &all_bridges) { for (i = 0; i < br->n_ports; i++) { struct port *port = br->ports[i]; int j; port_update_bonding(port); port_update_lacp(port); for (j = 0; j < port->n_ifaces; j++) { iface_update_qos(port->ifaces[j], port->cfg->qos); } } } LIST_FOR_EACH (br, node, &all_bridges) { iterate_and_prune_ifaces(br, set_iface_properties, NULL); } LIST_FOR_EACH (br, node, &all_bridges) { struct iface *iface; HMAP_FOR_EACH (iface, dp_ifidx_node, &br->ifaces) { iface_update_cfm(iface); } } free(managers); /* ovs-vswitchd has completed initialization, so allow the process that * forked us to exit successfully. */ daemonize_complete(); } static const char * get_ovsrec_key_value(const struct ovsdb_idl_row *row, const struct ovsdb_idl_column *column, const char *key) { const struct ovsdb_datum *datum; union ovsdb_atom atom; unsigned int idx; datum = ovsdb_idl_get(row, column, OVSDB_TYPE_STRING, OVSDB_TYPE_STRING); atom.string = (char *) key; idx = ovsdb_datum_find_key(datum, &atom, OVSDB_TYPE_STRING); return idx == UINT_MAX ? NULL : datum->values[idx].string; } static const char * bridge_get_other_config(const struct ovsrec_bridge *br_cfg, const char *key) { return get_ovsrec_key_value(&br_cfg->header_, &ovsrec_bridge_col_other_config, key); } static void bridge_pick_local_hw_addr(struct bridge *br, uint8_t ea[ETH_ADDR_LEN], struct iface **hw_addr_iface) { const char *hwaddr; size_t i, j; int error; *hw_addr_iface = NULL; /* Did the user request a particular MAC? */ hwaddr = bridge_get_other_config(br->cfg, "hwaddr"); if (hwaddr && eth_addr_from_string(hwaddr, ea)) { if (eth_addr_is_multicast(ea)) { VLOG_ERR("bridge %s: cannot set MAC address to multicast " "address "ETH_ADDR_FMT, br->name, ETH_ADDR_ARGS(ea)); } else if (eth_addr_is_zero(ea)) { VLOG_ERR("bridge %s: cannot set MAC address to zero", br->name); } else { return; } } /* Otherwise choose the minimum non-local MAC address among all of the * interfaces. */ memset(ea, 0xff, ETH_ADDR_LEN); for (i = 0; i < br->n_ports; i++) { struct port *port = br->ports[i]; uint8_t iface_ea[ETH_ADDR_LEN]; struct iface *iface; /* Mirror output ports don't participate. */ if (port->is_mirror_output_port) { continue; } /* Choose the MAC address to represent the port. */ if (port->cfg->mac && eth_addr_from_string(port->cfg->mac, iface_ea)) { /* Find the interface with this Ethernet address (if any) so that * we can provide the correct devname to the caller. */ iface = NULL; for (j = 0; j < port->n_ifaces; j++) { struct iface *candidate = port->ifaces[j]; uint8_t candidate_ea[ETH_ADDR_LEN]; if (!netdev_get_etheraddr(candidate->netdev, candidate_ea) && eth_addr_equals(iface_ea, candidate_ea)) { iface = candidate; } } } else { /* Choose the interface whose MAC address will represent the port. * The Linux kernel bonding code always chooses the MAC address of * the first slave added to a bond, and the Fedora networking * scripts always add slaves to a bond in alphabetical order, so * for compatibility we choose the interface with the name that is * first in alphabetical order. */ iface = port->ifaces[0]; for (j = 1; j < port->n_ifaces; j++) { struct iface *candidate = port->ifaces[j]; if (strcmp(candidate->name, iface->name) < 0) { iface = candidate; } } /* The local port doesn't count (since we're trying to choose its * MAC address anyway). */ if (iface->dp_ifidx == ODPP_LOCAL) { continue; } /* Grab MAC. */ error = netdev_get_etheraddr(iface->netdev, iface_ea); if (error) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_ERR_RL(&rl, "failed to obtain Ethernet address of %s: %s", iface->name, strerror(error)); continue; } } /* Compare against our current choice. */ if (!eth_addr_is_multicast(iface_ea) && !eth_addr_is_local(iface_ea) && !eth_addr_is_reserved(iface_ea) && !eth_addr_is_zero(iface_ea) && eth_addr_compare_3way(iface_ea, ea) < 0) { memcpy(ea, iface_ea, ETH_ADDR_LEN); *hw_addr_iface = iface; } } if (eth_addr_is_multicast(ea)) { memcpy(ea, br->default_ea, ETH_ADDR_LEN); *hw_addr_iface = NULL; VLOG_WARN("bridge %s: using default bridge Ethernet " "address "ETH_ADDR_FMT, br->name, ETH_ADDR_ARGS(ea)); } else { VLOG_DBG("bridge %s: using bridge Ethernet address "ETH_ADDR_FMT, br->name, ETH_ADDR_ARGS(ea)); } } /* Choose and returns the datapath ID for bridge 'br' given that the bridge * Ethernet address is 'bridge_ea'. If 'bridge_ea' is the Ethernet address of * an interface on 'br', then that interface must be passed in as * 'hw_addr_iface'; if 'bridge_ea' was derived some other way, then * 'hw_addr_iface' must be passed in as a null pointer. */ static uint64_t bridge_pick_datapath_id(struct bridge *br, const uint8_t bridge_ea[ETH_ADDR_LEN], struct iface *hw_addr_iface) { /* * The procedure for choosing a bridge MAC address will, in the most * ordinary case, also choose a unique MAC that we can use as a datapath * ID. In some special cases, though, multiple bridges will end up with * the same MAC address. This is OK for the bridges, but it will confuse * the OpenFlow controller, because each datapath needs a unique datapath * ID. * * Datapath IDs must be unique. It is also very desirable that they be * stable from one run to the next, so that policy set on a datapath * "sticks". */ const char *datapath_id; uint64_t dpid; datapath_id = bridge_get_other_config(br->cfg, "datapath-id"); if (datapath_id && dpid_from_string(datapath_id, &dpid)) { return dpid; } if (hw_addr_iface) { int vlan; if (!netdev_get_vlan_vid(hw_addr_iface->netdev, &vlan)) { /* * A bridge whose MAC address is taken from a VLAN network device * (that is, a network device created with vconfig(8) or similar * tool) will have the same MAC address as a bridge on the VLAN * device's physical network device. * * Handle this case by hashing the physical network device MAC * along with the VLAN identifier. */ uint8_t buf[ETH_ADDR_LEN + 2]; memcpy(buf, bridge_ea, ETH_ADDR_LEN); buf[ETH_ADDR_LEN] = vlan >> 8; buf[ETH_ADDR_LEN + 1] = vlan; return dpid_from_hash(buf, sizeof buf); } else { /* * Assume that this bridge's MAC address is unique, since it * doesn't fit any of the cases we handle specially. */ } } else { /* * A purely internal bridge, that is, one that has no non-virtual * network devices on it at all, is more difficult because it has no * natural unique identifier at all. * * When the host is a XenServer, we handle this case by hashing the * host's UUID with the name of the bridge. Names of bridges are * persistent across XenServer reboots, although they can be reused if * an internal network is destroyed and then a new one is later * created, so this is fairly effective. * * When the host is not a XenServer, we punt by using a random MAC * address on each run. */ const char *host_uuid = xenserver_get_host_uuid(); if (host_uuid) { char *combined = xasprintf("%s,%s", host_uuid, br->name); dpid = dpid_from_hash(combined, strlen(combined)); free(combined); return dpid; } } return eth_addr_to_uint64(bridge_ea); } static uint64_t dpid_from_hash(const void *data, size_t n) { uint8_t hash[SHA1_DIGEST_SIZE]; BUILD_ASSERT_DECL(sizeof hash >= ETH_ADDR_LEN); sha1_bytes(data, n, hash); eth_addr_mark_random(hash); return eth_addr_to_uint64(hash); } static void iface_refresh_status(struct iface *iface) { struct shash sh; enum netdev_flags flags; uint32_t current; int64_t bps; int mtu; int64_t mtu_64; int error; shash_init(&sh); if (!netdev_get_status(iface->netdev, &sh)) { size_t n; char **keys, **values; shash_to_ovs_idl_map(&sh, &keys, &values, &n); ovsrec_interface_set_status(iface->cfg, keys, values, n); free(keys); free(values); } else { ovsrec_interface_set_status(iface->cfg, NULL, NULL, 0); } shash_destroy_free_data(&sh); error = netdev_get_flags(iface->netdev, &flags); if (!error) { ovsrec_interface_set_admin_state(iface->cfg, flags & NETDEV_UP ? "up" : "down"); } else { ovsrec_interface_set_admin_state(iface->cfg, NULL); } error = netdev_get_features(iface->netdev, ¤t, NULL, NULL, NULL); if (!error) { ovsrec_interface_set_duplex(iface->cfg, netdev_features_is_full_duplex(current) ? "full" : "half"); /* warning: uint64_t -> int64_t conversion */ bps = netdev_features_to_bps(current); ovsrec_interface_set_link_speed(iface->cfg, &bps, 1); } else { ovsrec_interface_set_duplex(iface->cfg, NULL); ovsrec_interface_set_link_speed(iface->cfg, NULL, 0); } ovsrec_interface_set_link_state(iface->cfg, netdev_get_carrier(iface->netdev) ? "up" : "down"); error = netdev_get_mtu(iface->netdev, &mtu); if (!error && mtu != INT_MAX) { mtu_64 = mtu; ovsrec_interface_set_mtu(iface->cfg, &mtu_64, 1); } else { ovsrec_interface_set_mtu(iface->cfg, NULL, 0); } } static void iface_refresh_cfm_stats(struct iface *iface) { size_t i; struct cfm *cfm; const struct ovsrec_monitor *mon; mon = iface->cfg->monitor; cfm = iface->cfm; if (!cfm || !mon) { return; } for (i = 0; i < mon->n_remote_mps; i++) { const struct ovsrec_maintenance_point *mp; const struct remote_mp *rmp; mp = mon->remote_mps[i]; rmp = cfm_get_remote_mp(cfm, mp->mpid); ovsrec_maintenance_point_set_fault(mp, &rmp->fault, 1); } if (hmap_is_empty(&cfm->x_remote_mps)) { ovsrec_monitor_set_unexpected_remote_mpids(mon, NULL, 0); } else { size_t length; struct remote_mp *rmp; int64_t *x_remote_mps; length = hmap_count(&cfm->x_remote_mps); x_remote_mps = xzalloc(length * sizeof *x_remote_mps); i = 0; HMAP_FOR_EACH (rmp, node, &cfm->x_remote_mps) { x_remote_mps[i++] = rmp->mpid; } ovsrec_monitor_set_unexpected_remote_mpids(mon, x_remote_mps, length); free(x_remote_mps); } if (hmap_is_empty(&cfm->x_remote_maids)) { ovsrec_monitor_set_unexpected_remote_maids(mon, NULL, 0); } else { size_t length; char **x_remote_maids; struct remote_maid *rmaid; length = hmap_count(&cfm->x_remote_maids); x_remote_maids = xzalloc(length * sizeof *x_remote_maids); i = 0; HMAP_FOR_EACH (rmaid, node, &cfm->x_remote_maids) { size_t j; x_remote_maids[i] = xzalloc(CCM_MAID_LEN * 2 + 1); for (j = 0; j < CCM_MAID_LEN; j++) { snprintf(&x_remote_maids[i][j * 2], 3, "%02hhx", rmaid->maid[j]); } i++; } ovsrec_monitor_set_unexpected_remote_maids(mon, x_remote_maids, length); for (i = 0; i < length; i++) { free(x_remote_maids[i]); } free(x_remote_maids); } ovsrec_monitor_set_fault(mon, &cfm->fault, 1); } static void iface_refresh_stats(struct iface *iface) { struct iface_stat { char *name; int offset; }; static const struct iface_stat iface_stats[] = { { "rx_packets", offsetof(struct netdev_stats, rx_packets) }, { "tx_packets", offsetof(struct netdev_stats, tx_packets) }, { "rx_bytes", offsetof(struct netdev_stats, rx_bytes) }, { "tx_bytes", offsetof(struct netdev_stats, tx_bytes) }, { "rx_dropped", offsetof(struct netdev_stats, rx_dropped) }, { "tx_dropped", offsetof(struct netdev_stats, tx_dropped) }, { "rx_errors", offsetof(struct netdev_stats, rx_errors) }, { "tx_errors", offsetof(struct netdev_stats, tx_errors) }, { "rx_frame_err", offsetof(struct netdev_stats, rx_frame_errors) }, { "rx_over_err", offsetof(struct netdev_stats, rx_over_errors) }, { "rx_crc_err", offsetof(struct netdev_stats, rx_crc_errors) }, { "collisions", offsetof(struct netdev_stats, collisions) }, }; enum { N_STATS = ARRAY_SIZE(iface_stats) }; const struct iface_stat *s; char *keys[N_STATS]; int64_t values[N_STATS]; int n; struct netdev_stats stats; /* Intentionally ignore return value, since errors will set 'stats' to * all-1s, and we will deal with that correctly below. */ netdev_get_stats(iface->netdev, &stats); n = 0; for (s = iface_stats; s < &iface_stats[N_STATS]; s++) { uint64_t value = *(uint64_t *) (((char *) &stats) + s->offset); if (value != UINT64_MAX) { keys[n] = s->name; values[n] = value; n++; } } ovsrec_interface_set_statistics(iface->cfg, keys, values, n); } static void refresh_system_stats(const struct ovsrec_open_vswitch *cfg) { struct ovsdb_datum datum; struct shash stats; shash_init(&stats); get_system_stats(&stats); ovsdb_datum_from_shash(&datum, &stats); ovsdb_idl_txn_write(&cfg->header_, &ovsrec_open_vswitch_col_statistics, &datum); } static inline const char * nx_role_to_str(enum nx_role role) { switch (role) { case NX_ROLE_OTHER: return "other"; case NX_ROLE_MASTER: return "master"; case NX_ROLE_SLAVE: return "slave"; default: return "*** INVALID ROLE ***"; } } static void bridge_refresh_controller_status(const struct bridge *br) { struct shash info; const struct ovsrec_controller *cfg; ofproto_get_ofproto_controller_info(br->ofproto, &info); OVSREC_CONTROLLER_FOR_EACH(cfg, idl) { struct ofproto_controller_info *cinfo = shash_find_data(&info, cfg->target); if (cinfo) { ovsrec_controller_set_is_connected(cfg, cinfo->is_connected); ovsrec_controller_set_role(cfg, nx_role_to_str(cinfo->role)); ovsrec_controller_set_status(cfg, (char **) cinfo->pairs.keys, (char **) cinfo->pairs.values, cinfo->pairs.n); } else { ovsrec_controller_set_is_connected(cfg, false); ovsrec_controller_set_role(cfg, NULL); ovsrec_controller_set_status(cfg, NULL, NULL, 0); } } ofproto_free_ofproto_controller_info(&info); } void bridge_run(void) { const struct ovsrec_open_vswitch *cfg; bool datapath_destroyed; bool database_changed; struct bridge *br; /* Let each bridge do the work that it needs to do. */ datapath_destroyed = false; LIST_FOR_EACH (br, node, &all_bridges) { int error = bridge_run_one(br); if (error) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_ERR_RL(&rl, "bridge %s: datapath was destroyed externally, " "forcing reconfiguration", br->name); datapath_destroyed = true; } } /* (Re)configure if necessary. */ database_changed = ovsdb_idl_run(idl); cfg = ovsrec_open_vswitch_first(idl); #ifdef HAVE_OPENSSL /* Re-configure SSL. We do this on every trip through the main loop, * instead of just when the database changes, because the contents of the * key and certificate files can change without the database changing. * * We do this before bridge_reconfigure() because that function might * initiate SSL connections and thus requires SSL to be configured. */ if (cfg && cfg->ssl) { const struct ovsrec_ssl *ssl = cfg->ssl; stream_ssl_set_key_and_cert(ssl->private_key, ssl->certificate); stream_ssl_set_ca_cert_file(ssl->ca_cert, ssl->bootstrap_ca_cert); } #endif if (database_changed || datapath_destroyed) { if (cfg) { struct ovsdb_idl_txn *txn = ovsdb_idl_txn_create(idl); bridge_configure_once(cfg); bridge_reconfigure(cfg); ovsrec_open_vswitch_set_cur_cfg(cfg, cfg->next_cfg); ovsdb_idl_txn_commit(txn); ovsdb_idl_txn_destroy(txn); /* XXX */ } else { /* We still need to reconfigure to avoid dangling pointers to * now-destroyed ovsrec structures inside bridge data. */ static const struct ovsrec_open_vswitch null_cfg; bridge_reconfigure(&null_cfg); } } /* Refresh system and interface stats if necessary. */ if (time_msec() >= stats_timer) { if (cfg) { struct ovsdb_idl_txn *txn; txn = ovsdb_idl_txn_create(idl); LIST_FOR_EACH (br, node, &all_bridges) { size_t i; for (i = 0; i < br->n_ports; i++) { struct port *port = br->ports[i]; size_t j; for (j = 0; j < port->n_ifaces; j++) { struct iface *iface = port->ifaces[j]; iface_refresh_stats(iface); iface_refresh_cfm_stats(iface); iface_refresh_status(iface); } } bridge_refresh_controller_status(br); } refresh_system_stats(cfg); ovsdb_idl_txn_commit(txn); ovsdb_idl_txn_destroy(txn); /* XXX */ } stats_timer = time_msec() + STATS_INTERVAL; } } void bridge_wait(void) { struct bridge *br; struct iface *iface; LIST_FOR_EACH (br, node, &all_bridges) { ofproto_wait(br->ofproto); if (ofproto_has_primary_controller(br->ofproto)) { continue; } mac_learning_wait(br->ml); lacp_wait(br); bond_wait(br); HMAP_FOR_EACH (iface, dp_ifidx_node, &br->ifaces) { if (iface->cfm) { cfm_wait(iface->cfm); } } } ovsdb_idl_wait(idl); poll_timer_wait_until(stats_timer); } /* Forces 'br' to revalidate all of its flows. This is appropriate when 'br''s * configuration changes. */ static void bridge_flush(struct bridge *br) { COVERAGE_INC(bridge_flush); br->flush = true; mac_learning_flush(br->ml); } /* Returns the 'br' interface for the ODPP_LOCAL port, or null if 'br' has no * such interface. */ static struct iface * bridge_get_local_iface(struct bridge *br) { size_t i, j; for (i = 0; i < br->n_ports; i++) { struct port *port = br->ports[i]; for (j = 0; j < port->n_ifaces; j++) { struct iface *iface = port->ifaces[j]; if (iface->dp_ifidx == ODPP_LOCAL) { return iface; } } } return NULL; } /* Bridge unixctl user interface functions. */ static void bridge_unixctl_fdb_show(struct unixctl_conn *conn, const char *args, void *aux OVS_UNUSED) { struct ds ds = DS_EMPTY_INITIALIZER; const struct bridge *br; const struct mac_entry *e; br = bridge_lookup(args); if (!br) { unixctl_command_reply(conn, 501, "no such bridge"); return; } ds_put_cstr(&ds, " port VLAN MAC Age\n"); LIST_FOR_EACH (e, lru_node, &br->ml->lrus) { if (e->port < 0 || e->port >= br->n_ports) { continue; } ds_put_format(&ds, "%5d %4d "ETH_ADDR_FMT" %3d\n", br->ports[e->port]->ifaces[0]->dp_ifidx, e->vlan, ETH_ADDR_ARGS(e->mac), mac_entry_age(e)); } unixctl_command_reply(conn, 200, ds_cstr(&ds)); ds_destroy(&ds); } /* Bridge reconfiguration functions. */ static struct bridge * bridge_create(const struct ovsrec_bridge *br_cfg) { struct bridge *br; int error; assert(!bridge_lookup(br_cfg->name)); br = xzalloc(sizeof *br); error = dpif_create_and_open(br_cfg->name, br_cfg->datapath_type, &br->dpif); if (error) { free(br); return NULL; } dpif_flow_flush(br->dpif); error = ofproto_create(br_cfg->name, br_cfg->datapath_type, &bridge_ofhooks, br, &br->ofproto); if (error) { VLOG_ERR("failed to create switch %s: %s", br_cfg->name, strerror(error)); dpif_delete(br->dpif); dpif_close(br->dpif); free(br); return NULL; } br->name = xstrdup(br_cfg->name); br->cfg = br_cfg; br->ml = mac_learning_create(); eth_addr_nicira_random(br->default_ea); hmap_init(&br->ifaces); shash_init(&br->port_by_name); shash_init(&br->iface_by_name); br->flush = false; list_push_back(&all_bridges, &br->node); VLOG_INFO("created bridge %s on %s", br->name, dpif_name(br->dpif)); return br; } static void bridge_destroy(struct bridge *br) { if (br) { int error; while (br->n_ports > 0) { port_destroy(br->ports[br->n_ports - 1]); } list_remove(&br->node); error = dpif_delete(br->dpif); if (error && error != ENOENT) { VLOG_ERR("failed to delete %s: %s", dpif_name(br->dpif), strerror(error)); } dpif_close(br->dpif); ofproto_destroy(br->ofproto); mac_learning_destroy(br->ml); hmap_destroy(&br->ifaces); shash_destroy(&br->port_by_name); shash_destroy(&br->iface_by_name); free(br->ports); free(br->name); free(br); } } static struct bridge * bridge_lookup(const char *name) { struct bridge *br; LIST_FOR_EACH (br, node, &all_bridges) { if (!strcmp(br->name, name)) { return br; } } return NULL; } /* Handle requests for a listing of all flows known by the OpenFlow * stack, including those normally hidden. */ static void bridge_unixctl_dump_flows(struct unixctl_conn *conn, const char *args, void *aux OVS_UNUSED) { struct bridge *br; struct ds results; br = bridge_lookup(args); if (!br) { unixctl_command_reply(conn, 501, "Unknown bridge"); return; } ds_init(&results); ofproto_get_all_flows(br->ofproto, &results); unixctl_command_reply(conn, 200, ds_cstr(&results)); ds_destroy(&results); } /* "bridge/reconnect [BRIDGE]": makes BRIDGE drop all of its controller * connections and reconnect. If BRIDGE is not specified, then all bridges * drop their controller connections and reconnect. */ static void bridge_unixctl_reconnect(struct unixctl_conn *conn, const char *args, void *aux OVS_UNUSED) { struct bridge *br; if (args[0] != '\0') { br = bridge_lookup(args); if (!br) { unixctl_command_reply(conn, 501, "Unknown bridge"); return; } ofproto_reconnect_controllers(br->ofproto); } else { LIST_FOR_EACH (br, node, &all_bridges) { ofproto_reconnect_controllers(br->ofproto); } } unixctl_command_reply(conn, 200, NULL); } static int bridge_run_one(struct bridge *br) { int error; struct iface *iface; error = ofproto_run1(br->ofproto); if (error) { return error; } mac_learning_run(br->ml, ofproto_get_revalidate_set(br->ofproto)); lacp_run(br); bond_run(br); error = ofproto_run2(br->ofproto, br->flush); br->flush = false; HMAP_FOR_EACH (iface, dp_ifidx_node, &br->ifaces) { struct ofpbuf *packet; if (!iface->cfm) { continue; } packet = cfm_run(iface->cfm); if (packet) { iface_send_packet(iface, packet); ofpbuf_uninit(packet); free(packet); } } return error; } static size_t bridge_get_controllers(const struct bridge *br, struct ovsrec_controller ***controllersp) { struct ovsrec_controller **controllers; size_t n_controllers; controllers = br->cfg->controller; n_controllers = br->cfg->n_controller; if (n_controllers == 1 && !strcmp(controllers[0]->target, "none")) { controllers = NULL; n_controllers = 0; } if (controllersp) { *controllersp = controllers; } return n_controllers; } static void bridge_reconfigure_one(struct bridge *br) { struct shash old_ports, new_ports; struct svec snoops, old_snoops; struct shash_node *node; enum ofproto_fail_mode fail_mode; size_t i; /* Collect old ports. */ shash_init(&old_ports); for (i = 0; i < br->n_ports; i++) { shash_add(&old_ports, br->ports[i]->name, br->ports[i]); } /* Collect new ports. */ shash_init(&new_ports); for (i = 0; i < br->cfg->n_ports; i++) { const char *name = br->cfg->ports[i]->name; if (!shash_add_once(&new_ports, name, br->cfg->ports[i])) { VLOG_WARN("bridge %s: %s specified twice as bridge port", br->name, name); } } /* If we have a controller, then we need a local port. Complain if the * user didn't specify one. * * XXX perhaps we should synthesize a port ourselves in this case. */ if (bridge_get_controllers(br, NULL)) { char local_name[IF_NAMESIZE]; int error; error = dpif_port_get_name(br->dpif, ODPP_LOCAL, local_name, sizeof local_name); if (!error && !shash_find(&new_ports, local_name)) { VLOG_WARN("bridge %s: controller specified but no local port " "(port named %s) defined", br->name, local_name); } } /* Get rid of deleted ports. * Get rid of deleted interfaces on ports that still exist. */ SHASH_FOR_EACH (node, &old_ports) { struct port *port = node->data; const struct ovsrec_port *port_cfg; port_cfg = shash_find_data(&new_ports, node->name); if (!port_cfg) { port_destroy(port); } else { port_del_ifaces(port, port_cfg); } } /* Create new ports. * Add new interfaces to existing ports. * Reconfigure existing ports. */ SHASH_FOR_EACH (node, &new_ports) { struct port *port = shash_find_data(&old_ports, node->name); if (!port) { port = port_create(br, node->name); } port_reconfigure(port, node->data); if (!port->n_ifaces) { VLOG_WARN("bridge %s: port %s has no interfaces, dropping", br->name, port->name); port_destroy(port); } } shash_destroy(&old_ports); shash_destroy(&new_ports); /* Set the fail-mode */ fail_mode = !br->cfg->fail_mode || !strcmp(br->cfg->fail_mode, "standalone") ? OFPROTO_FAIL_STANDALONE : OFPROTO_FAIL_SECURE; if (ofproto_get_fail_mode(br->ofproto) != fail_mode && !ofproto_has_primary_controller(br->ofproto)) { ofproto_flush_flows(br->ofproto); } ofproto_set_fail_mode(br->ofproto, fail_mode); /* Delete all flows if we're switching from connected to standalone or vice * versa. (XXX Should we delete all flows if we are switching from one * controller to another?) */ /* Configure OpenFlow controller connection snooping. */ svec_init(&snoops); svec_add_nocopy(&snoops, xasprintf("punix:%s/%s.snoop", ovs_rundir(), br->name)); svec_init(&old_snoops); ofproto_get_snoops(br->ofproto, &old_snoops); if (!svec_equal(&snoops, &old_snoops)) { ofproto_set_snoops(br->ofproto, &snoops); } svec_destroy(&snoops); svec_destroy(&old_snoops); mirror_reconfigure(br); } /* Initializes 'oc' appropriately as a management service controller for * 'br'. * * The caller must free oc->target when it is no longer needed. */ static void bridge_ofproto_controller_for_mgmt(const struct bridge *br, struct ofproto_controller *oc) { oc->target = xasprintf("punix:%s/%s.mgmt", ovs_rundir(), br->name); oc->max_backoff = 0; oc->probe_interval = 60; oc->band = OFPROTO_OUT_OF_BAND; oc->accept_re = NULL; oc->update_resolv_conf = false; oc->rate_limit = 0; oc->burst_limit = 0; } /* Converts ovsrec_controller 'c' into an ofproto_controller in 'oc'. */ static void bridge_ofproto_controller_from_ovsrec(const struct ovsrec_controller *c, struct ofproto_controller *oc) { oc->target = c->target; oc->max_backoff = c->max_backoff ? *c->max_backoff / 1000 : 8; oc->probe_interval = c->inactivity_probe ? *c->inactivity_probe / 1000 : 5; oc->band = (!c->connection_mode || !strcmp(c->connection_mode, "in-band") ? OFPROTO_IN_BAND : OFPROTO_OUT_OF_BAND); oc->accept_re = c->discover_accept_regex; oc->update_resolv_conf = c->discover_update_resolv_conf; oc->rate_limit = c->controller_rate_limit ? *c->controller_rate_limit : 0; oc->burst_limit = (c->controller_burst_limit ? *c->controller_burst_limit : 0); } /* Configures the IP stack for 'br''s local interface properly according to the * configuration in 'c'. */ static void bridge_configure_local_iface_netdev(struct bridge *br, struct ovsrec_controller *c) { struct netdev *netdev; struct in_addr mask, gateway; struct iface *local_iface; struct in_addr ip; /* Controller discovery does its own TCP/IP configuration later. */ if (strcmp(c->target, "discover")) { return; } /* If there's no local interface or no IP address, give up. */ local_iface = bridge_get_local_iface(br); if (!local_iface || !c->local_ip || !inet_aton(c->local_ip, &ip)) { return; } /* Bring up the local interface. */ netdev = local_iface->netdev; netdev_turn_flags_on(netdev, NETDEV_UP, true); /* Configure the IP address and netmask. */ if (!c->local_netmask || !inet_aton(c->local_netmask, &mask) || !mask.s_addr) { mask.s_addr = guess_netmask(ip.s_addr); } if (!netdev_set_in4(netdev, ip, mask)) { VLOG_INFO("bridge %s: configured IP address "IP_FMT", netmask "IP_FMT, br->name, IP_ARGS(&ip.s_addr), IP_ARGS(&mask.s_addr)); } /* Configure the default gateway. */ if (c->local_gateway && inet_aton(c->local_gateway, &gateway) && gateway.s_addr) { if (!netdev_add_router(netdev, gateway)) { VLOG_INFO("bridge %s: configured gateway "IP_FMT, br->name, IP_ARGS(&gateway.s_addr)); } } } static void bridge_reconfigure_remotes(struct bridge *br, const struct sockaddr_in *managers, size_t n_managers) { const char *disable_ib_str, *queue_id_str; bool disable_in_band = false; int queue_id; struct ovsrec_controller **controllers; size_t n_controllers; bool had_primary; struct ofproto_controller *ocs; size_t n_ocs; size_t i; /* Check if we should disable in-band control on this bridge. */ disable_ib_str = bridge_get_other_config(br->cfg, "disable-in-band"); if (disable_ib_str && !strcmp(disable_ib_str, "true")) { disable_in_band = true; } /* Set OpenFlow queue ID for in-band control. */ queue_id_str = bridge_get_other_config(br->cfg, "in-band-queue"); queue_id = queue_id_str ? strtol(queue_id_str, NULL, 10) : -1; ofproto_set_in_band_queue(br->ofproto, queue_id); if (disable_in_band) { ofproto_set_extra_in_band_remotes(br->ofproto, NULL, 0); } else { ofproto_set_extra_in_band_remotes(br->ofproto, managers, n_managers); } had_primary = ofproto_has_primary_controller(br->ofproto); n_controllers = bridge_get_controllers(br, &controllers); ocs = xmalloc((n_controllers + 1) * sizeof *ocs); n_ocs = 0; bridge_ofproto_controller_for_mgmt(br, &ocs[n_ocs++]); for (i = 0; i < n_controllers; i++) { struct ovsrec_controller *c = controllers[i]; if (!strncmp(c->target, "punix:", 6) || !strncmp(c->target, "unix:", 5)) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); /* Prevent remote ovsdb-server users from accessing arbitrary Unix * domain sockets and overwriting arbitrary local files. */ VLOG_ERR_RL(&rl, "%s: not adding Unix domain socket controller " "\"%s\" due to possibility for remote exploit", dpif_name(br->dpif), c->target); continue; } bridge_configure_local_iface_netdev(br, c); bridge_ofproto_controller_from_ovsrec(c, &ocs[n_ocs]); if (disable_in_band) { ocs[n_ocs].band = OFPROTO_OUT_OF_BAND; } n_ocs++; } ofproto_set_controllers(br->ofproto, ocs, n_ocs); free(ocs[0].target); /* From bridge_ofproto_controller_for_mgmt(). */ free(ocs); if (had_primary != ofproto_has_primary_controller(br->ofproto)) { ofproto_flush_flows(br->ofproto); } /* If there are no controllers and the bridge is in standalone * mode, set up a flow that matches every packet and directs * them to OFPP_NORMAL (which goes to us). Otherwise, the * switch is in secure mode and we won't pass any traffic until * a controller has been defined and it tells us to do so. */ if (!n_controllers && ofproto_get_fail_mode(br->ofproto) == OFPROTO_FAIL_STANDALONE) { union ofp_action action; struct cls_rule rule; memset(&action, 0, sizeof action); action.type = htons(OFPAT_OUTPUT); action.output.len = htons(sizeof action); action.output.port = htons(OFPP_NORMAL); cls_rule_init_catchall(&rule, 0); ofproto_add_flow(br->ofproto, &rule, &action, 1); } } static void bridge_get_all_ifaces(const struct bridge *br, struct shash *ifaces) { size_t i, j; shash_init(ifaces); for (i = 0; i < br->n_ports; i++) { struct port *port = br->ports[i]; for (j = 0; j < port->n_ifaces; j++) { struct iface *iface = port->ifaces[j]; shash_add_once(ifaces, iface->name, iface); } if (port->n_ifaces > 1 && port->cfg->bond_fake_iface) { shash_add_once(ifaces, port->name, NULL); } } } /* For robustness, in case the administrator moves around datapath ports behind * our back, we re-check all the datapath port numbers here. * * This function will set the 'dp_ifidx' members of interfaces that have * disappeared to -1, so only call this function from a context where those * 'struct iface's will be removed from the bridge. Otherwise, the -1 * 'dp_ifidx'es will cause trouble later when we try to send them to the * datapath, which doesn't support UINT16_MAX+1 ports. */ static void bridge_fetch_dp_ifaces(struct bridge *br) { struct dpif_port_dump dump; struct dpif_port dpif_port; size_t i, j; /* Reset all interface numbers. */ for (i = 0; i < br->n_ports; i++) { struct port *port = br->ports[i]; for (j = 0; j < port->n_ifaces; j++) { struct iface *iface = port->ifaces[j]; iface->dp_ifidx = -1; } } hmap_clear(&br->ifaces); DPIF_PORT_FOR_EACH (&dpif_port, &dump, br->dpif) { struct iface *iface = iface_lookup(br, dpif_port.name); if (iface) { if (iface->dp_ifidx >= 0) { VLOG_WARN("%s reported interface %s twice", dpif_name(br->dpif), dpif_port.name); } else if (iface_from_dp_ifidx(br, dpif_port.port_no)) { VLOG_WARN("%s reported interface %"PRIu16" twice", dpif_name(br->dpif), dpif_port.port_no); } else { iface->dp_ifidx = dpif_port.port_no; hmap_insert(&br->ifaces, &iface->dp_ifidx_node, hash_int(iface->dp_ifidx, 0)); } iface_set_ofport(iface->cfg, (iface->dp_ifidx >= 0 ? odp_port_to_ofp_port(iface->dp_ifidx) : -1)); } } } /* Bridge packet processing functions. */ static bool bond_is_tcp_hash(const struct port *port) { return port->bond_mode == BM_TCP && port->lacp & LACP_NEGOTIATED; } static int bond_hash_src(const uint8_t mac[ETH_ADDR_LEN], uint16_t vlan) { return hash_bytes(mac, ETH_ADDR_LEN, vlan) & BOND_MASK; } static int bond_hash_tcp(const struct flow *flow, uint16_t vlan) { struct flow hash_flow; memcpy(&hash_flow, flow, sizeof hash_flow); hash_flow.vlan_tci = 0; /* The symmetric quality of this hash function is not required, but * flow_hash_symmetric_l4 already exists, and is sufficient for our * purposes, so we use it out of convenience. */ return flow_hash_symmetric_l4(&hash_flow, vlan) & BOND_MASK; } static struct bond_entry * lookup_bond_entry(const struct port *port, const struct flow *flow, uint16_t vlan) { assert(port->bond_mode != BM_AB); if (bond_is_tcp_hash(port)) { return &port->bond_hash[bond_hash_tcp(flow, vlan)]; } else { return &port->bond_hash[bond_hash_src(flow->dl_src, vlan)]; } } static int bond_choose_iface(const struct port *port) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(5, 20); size_t i, best_down_slave = -1; long long next_delay_expiration = LLONG_MAX; for (i = 0; i < port->n_ifaces; i++) { struct iface *iface = port->ifaces[i]; if (iface->enabled) { return i; } else if (iface->delay_expires < next_delay_expiration && (iface->lacp_status & LACP_ATTACHED || !(port->lacp & LACP_NEGOTIATED))) { best_down_slave = i; next_delay_expiration = iface->delay_expires; } } if (best_down_slave != -1) { struct iface *iface = port->ifaces[best_down_slave]; VLOG_INFO_RL(&rl, "interface %s: skipping remaining %lli ms updelay " "since no other interface is up", iface->name, iface->delay_expires - time_msec()); bond_enable_slave(iface, true); } return best_down_slave; } static bool choose_output_iface(const struct port *port, const struct flow *flow, uint16_t vlan, uint16_t *dp_ifidx, tag_type *tags) { struct iface *iface; assert(port->n_ifaces); if (port->n_ifaces == 1) { iface = port->ifaces[0]; } else if (port->bond_mode == BM_AB) { if (port->active_iface < 0) { *tags |= port->no_ifaces_tag; return false; } iface = port->ifaces[port->active_iface]; } else { struct bond_entry *e = lookup_bond_entry(port, flow, vlan); if (e->iface_idx < 0 || e->iface_idx >= port->n_ifaces || !port->ifaces[e->iface_idx]->enabled) { /* XXX select interface properly. The current interface selection * is only good for testing the rebalancing code. */ e->iface_idx = bond_choose_iface(port); if (e->iface_idx < 0) { *tags |= port->no_ifaces_tag; return false; } e->iface_tag = tag_create_random(); } *tags |= e->iface_tag; iface = port->ifaces[e->iface_idx]; } *dp_ifidx = iface->dp_ifidx; *tags |= iface->tag; /* Currently only used for bonding. */ return true; } static void bond_link_status_update(struct iface *iface) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(5, 20); struct port *port = iface->port; bool up = iface->up; int updelay, downdelay; updelay = port->updelay; downdelay = port->downdelay; if (iface->port->lacp & LACP_NEGOTIATED) { downdelay = 0; updelay = 0; } if (iface->port->lacp && up) { /* The interface is up if it's attached to an aggregator and its * partner is synchronized. The only exception is defaulted links. * They are not required to have synchronized partners because they * have no partners at all. However, they will only be attached if * negotiations failed on all interfaces in the bond. */ up = iface->lacp_status & LACP_ATTACHED && (iface->lacp_partner.state & LACP_STATE_SYNC || iface->lacp_status & LACP_DEFAULTED); } if ((up == iface->enabled) == (iface->delay_expires == LLONG_MAX)) { /* Nothing to do. */ return; } VLOG_INFO_RL(&rl, "interface %s: link state %s", iface->name, up ? "up" : "down"); if (up == iface->enabled) { iface->delay_expires = LLONG_MAX; VLOG_INFO_RL(&rl, "interface %s: will not be %s", iface->name, up ? "disabled" : "enabled"); } else if (up && port->active_iface < 0) { bond_enable_slave(iface, true); if (updelay) { VLOG_INFO_RL(&rl, "interface %s: skipping %d ms updelay since no " "other interface is up", iface->name, updelay); } } else { int delay = up ? updelay : downdelay; iface->delay_expires = time_msec() + delay; if (delay) { VLOG_INFO_RL(&rl, "interface %s: will be %s if it stays %s for %d ms", iface->name, up ? "enabled" : "disabled", up ? "up" : "down", delay); } } } static void bond_choose_active_iface(struct port *port) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(5, 20); port->active_iface = bond_choose_iface(port); port->active_iface_tag = tag_create_random(); if (port->active_iface >= 0) { VLOG_INFO_RL(&rl, "port %s: active interface is now %s", port->name, port->ifaces[port->active_iface]->name); } else { VLOG_WARN_RL(&rl, "port %s: all ports disabled, no active interface", port->name); } } static void bond_enable_slave(struct iface *iface, bool enable) { struct port *port = iface->port; struct bridge *br = port->bridge; /* This acts as a recursion check. If the act of disabling a slave * causes a different slave to be enabled, the flag will allow us to * skip redundant work when we reenter this function. It must be * cleared on exit to keep things safe with multiple bonds. */ static bool moving_active_iface = false; iface->delay_expires = LLONG_MAX; if (enable == iface->enabled) { return; } iface->enabled = enable; if (!iface->enabled) { VLOG_WARN("interface %s: disabled", iface->name); ofproto_revalidate(br->ofproto, iface->tag); if (iface->port_ifidx == port->active_iface) { ofproto_revalidate(br->ofproto, port->active_iface_tag); /* Disabling a slave can lead to another slave being immediately * enabled if there will be no active slaves but one is waiting * on an updelay. In this case we do not need to run most of the * code for the newly enabled slave since there was no period * without an active slave and it is redundant with the disabling * path. */ moving_active_iface = true; bond_choose_active_iface(port); } bond_send_learning_packets(port); } else { VLOG_WARN("interface %s: enabled", iface->name); if (port->active_iface < 0 && !moving_active_iface) { ofproto_revalidate(br->ofproto, port->no_ifaces_tag); bond_choose_active_iface(port); bond_send_learning_packets(port); } iface->tag = tag_create_random(); } moving_active_iface = false; } /* Attempts to make the sum of the bond slaves' statistics appear on the fake * bond interface. */ static void bond_update_fake_iface_stats(struct port *port) { struct netdev_stats bond_stats; struct netdev *bond_dev; size_t i; memset(&bond_stats, 0, sizeof bond_stats); for (i = 0; i < port->n_ifaces; i++) { struct netdev_stats slave_stats; if (!netdev_get_stats(port->ifaces[i]->netdev, &slave_stats)) { /* XXX: We swap the stats here because they are swapped back when * reported by the internal device. The reason for this is * internal devices normally represent packets going into the system * but when used as fake bond device they represent packets leaving * the system. We really should do this in the internal device * itself because changing it here reverses the counts from the * perspective of the switch. However, the internal device doesn't * know what type of device it represents so we have to do it here * for now. */ bond_stats.tx_packets += slave_stats.rx_packets; bond_stats.tx_bytes += slave_stats.rx_bytes; bond_stats.rx_packets += slave_stats.tx_packets; bond_stats.rx_bytes += slave_stats.tx_bytes; } } if (!netdev_open_default(port->name, &bond_dev)) { netdev_set_stats(bond_dev, &bond_stats); netdev_close(bond_dev); } } static void bond_link_carrier_update(struct iface *iface, bool carrier) { if (carrier == iface->up) { return; } if (iface->lacp_status & LACP_CURRENT) { iface_set_lacp_expired(iface); } iface->up = carrier; iface->lacp_tx = 0; } static void bond_run(struct bridge *br) { size_t i, j; for (i = 0; i < br->n_ports; i++) { struct port *port = br->ports[i]; if (port->n_ifaces >= 2) { char *devname; if (port->monitor) { assert(!port->miimon); /* Track carrier going up and down on interfaces. */ while (!netdev_monitor_poll(port->monitor, &devname)) { struct iface *iface; iface = port_lookup_iface(port, devname); if (iface) { bool up = netdev_get_carrier(iface->netdev); bond_link_carrier_update(iface, up); } free(devname); } } else { assert(port->miimon); if (time_msec() >= port->bond_miimon_next_update) { for (j = 0; j < port->n_ifaces; j++) { struct iface *iface = port->ifaces[j]; bool up = netdev_get_miimon(iface->netdev); bond_link_carrier_update(iface, up); } port->bond_miimon_next_update = time_msec() + port->bond_miimon_interval; } } for (j = 0; j < port->n_ifaces; j++) { bond_link_status_update(port->ifaces[j]); } for (j = 0; j < port->n_ifaces; j++) { struct iface *iface = port->ifaces[j]; if (time_msec() >= iface->delay_expires) { bond_enable_slave(iface, !iface->enabled); } } if (port->bond_fake_iface && time_msec() >= port->bond_next_fake_iface_update) { bond_update_fake_iface_stats(port); port->bond_next_fake_iface_update = time_msec() + 1000; } } } } static void bond_wait(struct bridge *br) { size_t i, j; for (i = 0; i < br->n_ports; i++) { struct port *port = br->ports[i]; if (port->n_ifaces < 2) { continue; } if (port->monitor) { netdev_monitor_poll_wait(port->monitor); } if (port->miimon) { poll_timer_wait_until(port->bond_miimon_next_update); } for (j = 0; j < port->n_ifaces; j++) { struct iface *iface = port->ifaces[j]; if (iface->delay_expires != LLONG_MAX) { poll_timer_wait_until(iface->delay_expires); } } if (port->bond_fake_iface) { poll_timer_wait_until(port->bond_next_fake_iface_update); } } } static bool set_dst(struct dst *dst, const struct flow *flow, const struct port *in_port, const struct port *out_port, tag_type *tags) { dst->vlan = (out_port->vlan >= 0 ? OFP_VLAN_NONE : in_port->vlan >= 0 ? in_port->vlan : flow->vlan_tci == 0 ? OFP_VLAN_NONE : vlan_tci_to_vid(flow->vlan_tci)); return choose_output_iface(out_port, flow, dst->vlan, &dst->dp_ifidx, tags); } static void swap_dst(struct dst *p, struct dst *q) { struct dst tmp = *p; *p = *q; *q = tmp; } /* Moves all the dsts with vlan == 'vlan' to the front of the 'n_dsts' in * 'dsts'. (This may help performance by reducing the number of VLAN changes * that we push to the datapath. We could in fact fully sort the array by * vlan, but in most cases there are at most two different vlan tags so that's * possibly overkill.) */ static void partition_dsts(struct dst_set *set, int vlan) { struct dst *first = set->dsts; struct dst *last = set->dsts + set->n; while (first != last) { /* Invariants: * - All dsts < first have vlan == 'vlan'. * - All dsts >= last have vlan != 'vlan'. * - first < last. */ while (first->vlan == vlan) { if (++first == last) { return; } } /* Same invariants, plus one additional: * - first->vlan != vlan. */ while (last[-1].vlan != vlan) { if (--last == first) { return; } } /* Same invariants, plus one additional: * - last[-1].vlan == vlan.*/ swap_dst(first++, --last); } } static int mirror_mask_ffs(mirror_mask_t mask) { BUILD_ASSERT_DECL(sizeof(unsigned int) >= sizeof(mask)); return ffs(mask); } static void dst_set_init(struct dst_set *set) { set->dsts = set->builtin; set->n = 0; set->allocated = ARRAY_SIZE(set->builtin); } static void dst_set_add(struct dst_set *set, const struct dst *dst) { if (set->n >= set->allocated) { size_t new_allocated; struct dst *new_dsts; new_allocated = set->allocated * 2; new_dsts = xmalloc(new_allocated * sizeof *new_dsts); memcpy(new_dsts, set->dsts, set->n * sizeof *new_dsts); dst_set_free(set); set->dsts = new_dsts; set->allocated = new_allocated; } set->dsts[set->n++] = *dst; } static void dst_set_free(struct dst_set *set) { if (set->dsts != set->builtin) { free(set->dsts); } } static bool dst_is_duplicate(const struct dst_set *set, const struct dst *test) { size_t i; for (i = 0; i < set->n; i++) { if (set->dsts[i].vlan == test->vlan && set->dsts[i].dp_ifidx == test->dp_ifidx) { return true; } } return false; } static bool port_trunks_vlan(const struct port *port, uint16_t vlan) { return (port->vlan < 0 && (!port->trunks || bitmap_is_set(port->trunks, vlan))); } static bool port_includes_vlan(const struct port *port, uint16_t vlan) { return vlan == port->vlan || port_trunks_vlan(port, vlan); } static bool port_is_floodable(const struct port *port) { int i; for (i = 0; i < port->n_ifaces; i++) { if (!ofproto_port_is_floodable(port->bridge->ofproto, port->ifaces[i]->dp_ifidx)) { return false; } } return true; } static void compose_dsts(const struct bridge *br, const struct flow *flow, uint16_t vlan, const struct port *in_port, const struct port *out_port, struct dst_set *set, tag_type *tags, uint16_t *nf_output_iface) { mirror_mask_t mirrors = in_port->src_mirrors; struct dst dst; int flow_vlan; size_t i; flow_vlan = vlan_tci_to_vid(flow->vlan_tci); if (flow_vlan == 0) { flow_vlan = OFP_VLAN_NONE; } if (out_port == FLOOD_PORT) { for (i = 0; i < br->n_ports; i++) { struct port *port = br->ports[i]; if (port != in_port && port_is_floodable(port) && port_includes_vlan(port, vlan) && !port->is_mirror_output_port && set_dst(&dst, flow, in_port, port, tags)) { mirrors |= port->dst_mirrors; dst_set_add(set, &dst); } } *nf_output_iface = NF_OUT_FLOOD; } else if (out_port && set_dst(&dst, flow, in_port, out_port, tags)) { dst_set_add(set, &dst); *nf_output_iface = dst.dp_ifidx; mirrors |= out_port->dst_mirrors; } while (mirrors) { struct mirror *m = br->mirrors[mirror_mask_ffs(mirrors) - 1]; if (!m->n_vlans || vlan_is_mirrored(m, vlan)) { if (m->out_port) { if (set_dst(&dst, flow, in_port, m->out_port, tags) && !dst_is_duplicate(set, &dst)) { dst_set_add(set, &dst); } } else { for (i = 0; i < br->n_ports; i++) { struct port *port = br->ports[i]; if (port_includes_vlan(port, m->out_vlan) && set_dst(&dst, flow, in_port, port, tags)) { if (port->vlan < 0) { dst.vlan = m->out_vlan; } if (dst_is_duplicate(set, &dst)) { continue; } /* Use the vlan tag on the original flow instead of * the one passed in the vlan parameter. This ensures * that we compare the vlan from before any implicit * tagging tags place. This is necessary because * dst->vlan is the final vlan, after removing implicit * tags. */ if (port == in_port && dst.vlan == flow_vlan) { /* Don't send out input port on same VLAN. */ continue; } dst_set_add(set, &dst); } } } } mirrors &= mirrors - 1; } partition_dsts(set, flow_vlan); } static void OVS_UNUSED print_dsts(const struct dst_set *set) { size_t i; for (i = 0; i < set->n; i++) { const struct dst *dst = &set->dsts[i]; printf(">p%"PRIu16, dst->dp_ifidx); if (dst->vlan != OFP_VLAN_NONE) { printf("v%"PRIu16, dst->vlan); } } } static void compose_actions(struct bridge *br, const struct flow *flow, uint16_t vlan, const struct port *in_port, const struct port *out_port, tag_type *tags, struct ofpbuf *actions, uint16_t *nf_output_iface) { struct dst_set set; uint16_t cur_vlan; size_t i; dst_set_init(&set); compose_dsts(br, flow, vlan, in_port, out_port, &set, tags, nf_output_iface); cur_vlan = vlan_tci_to_vid(flow->vlan_tci); if (cur_vlan == 0) { cur_vlan = OFP_VLAN_NONE; } for (i = 0; i < set.n; i++) { const struct dst *dst = &set.dsts[i]; if (dst->vlan != cur_vlan) { if (dst->vlan == OFP_VLAN_NONE) { nl_msg_put_flag(actions, ODP_ACTION_ATTR_STRIP_VLAN); } else { ovs_be16 tci; tci = htons(dst->vlan & VLAN_VID_MASK); tci |= flow->vlan_tci & htons(VLAN_PCP_MASK); nl_msg_put_be16(actions, ODP_ACTION_ATTR_SET_DL_TCI, tci); } cur_vlan = dst->vlan; } nl_msg_put_u32(actions, ODP_ACTION_ATTR_OUTPUT, dst->dp_ifidx); } dst_set_free(&set); } /* Returns the effective vlan of a packet, taking into account both the * 802.1Q header and implicitly tagged ports. A value of 0 indicates that * the packet is untagged and -1 indicates it has an invalid header and * should be dropped. */ static int flow_get_vlan(struct bridge *br, const struct flow *flow, struct port *in_port, bool have_packet) { int vlan = vlan_tci_to_vid(flow->vlan_tci); if (in_port->vlan >= 0) { if (vlan) { /* XXX support double tagging? */ if (have_packet) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_WARN_RL(&rl, "bridge %s: dropping VLAN %d tagged " "packet received on port %s configured with " "implicit VLAN %"PRIu16, br->name, vlan, in_port->name, in_port->vlan); } return -1; } vlan = in_port->vlan; } else { if (!port_includes_vlan(in_port, vlan)) { if (have_packet) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_WARN_RL(&rl, "bridge %s: dropping VLAN %d tagged " "packet received on port %s not configured for " "trunking VLAN %d", br->name, vlan, in_port->name, vlan); } return -1; } } return vlan; } /* A VM broadcasts a gratuitous ARP to indicate that it has resumed after * migration. Older Citrix-patched Linux DomU used gratuitous ARP replies to * indicate this; newer upstream kernels use gratuitous ARP requests. */ static bool is_gratuitous_arp(const struct flow *flow) { return (flow->dl_type == htons(ETH_TYPE_ARP) && eth_addr_is_broadcast(flow->dl_dst) && (flow->nw_proto == ARP_OP_REPLY || (flow->nw_proto == ARP_OP_REQUEST && flow->nw_src == flow->nw_dst))); } static void update_learning_table(struct bridge *br, const struct flow *flow, int vlan, struct port *in_port) { enum grat_arp_lock_type lock_type; tag_type rev_tag; /* We don't want to learn from gratuitous ARP packets that are reflected * back over bond slaves so we lock the learning table. */ lock_type = !is_gratuitous_arp(flow) ? GRAT_ARP_LOCK_NONE : (in_port->n_ifaces == 1) ? GRAT_ARP_LOCK_SET : GRAT_ARP_LOCK_CHECK; rev_tag = mac_learning_learn(br->ml, flow->dl_src, vlan, in_port->port_idx, lock_type); if (rev_tag) { /* The log messages here could actually be useful in debugging, * so keep the rate limit relatively high. */ static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(30, 300); VLOG_DBG_RL(&rl, "bridge %s: learned that "ETH_ADDR_FMT" is " "on port %s in VLAN %d", br->name, ETH_ADDR_ARGS(flow->dl_src), in_port->name, vlan); ofproto_revalidate(br->ofproto, rev_tag); } } /* Determines whether packets in 'flow' within 'br' should be forwarded or * dropped. Returns true if they may be forwarded, false if they should be * dropped. * * If 'have_packet' is true, it indicates that the caller is processing a * received packet. If 'have_packet' is false, then the caller is just * revalidating an existing flow because configuration has changed. Either * way, 'have_packet' only affects logging (there is no point in logging errors * during revalidation). * * Sets '*in_portp' to the input port. This will be a null pointer if * flow->in_port does not designate a known input port (in which case * is_admissible() returns false). * * When returning true, sets '*vlanp' to the effective VLAN of the input * packet, as returned by flow_get_vlan(). * * May also add tags to '*tags', although the current implementation only does * so in one special case. */ static bool is_admissible(struct bridge *br, const struct flow *flow, bool have_packet, tag_type *tags, int *vlanp, struct port **in_portp) { struct iface *in_iface; struct port *in_port; int vlan; /* Find the interface and port structure for the received packet. */ in_iface = iface_from_dp_ifidx(br, flow->in_port); if (!in_iface) { /* No interface? Something fishy... */ if (have_packet) { /* Odd. A few possible reasons here: * * - We deleted an interface but there are still a few packets * queued up from it. * * - Someone externally added an interface (e.g. with "ovs-dpctl * add-if") that we don't know about. * * - Packet arrived on the local port but the local port is not * one of our bridge ports. */ static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_WARN_RL(&rl, "bridge %s: received packet on unknown " "interface %"PRIu16, br->name, flow->in_port); } *in_portp = NULL; return false; } *in_portp = in_port = in_iface->port; *vlanp = vlan = flow_get_vlan(br, flow, in_port, have_packet); if (vlan < 0) { return false; } /* Drop frames for reserved multicast addresses. */ if (eth_addr_is_reserved(flow->dl_dst)) { return false; } /* Drop frames on ports reserved for mirroring. */ if (in_port->is_mirror_output_port) { if (have_packet) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_WARN_RL(&rl, "bridge %s: dropping packet received on port " "%s, which is reserved exclusively for mirroring", br->name, in_port->name); } return false; } /* When using LACP, do not accept packets from disabled interfaces. */ if (in_port->lacp & LACP_NEGOTIATED && !in_iface->enabled) { return false; } /* Packets received on non-LACP bonds need special attention to avoid * duplicates. */ if (in_port->n_ifaces > 1 && !(in_port->lacp & LACP_NEGOTIATED)) { int src_idx; bool is_grat_arp_locked; if (eth_addr_is_multicast(flow->dl_dst)) { *tags |= in_port->active_iface_tag; if (in_port->active_iface != in_iface->port_ifidx) { /* Drop all multicast packets on inactive slaves. */ return false; } } /* Drop all packets for which we have learned a different input * port, because we probably sent the packet on one slave and got * it back on the other. Gratuitous ARP packets are an exception * to this rule: the host has moved to another switch. The exception * to the exception is if we locked the learning table to avoid * reflections on bond slaves. If this is the case, just drop the * packet now. */ src_idx = mac_learning_lookup(br->ml, flow->dl_src, vlan, &is_grat_arp_locked); if (src_idx != -1 && src_idx != in_port->port_idx && (!is_gratuitous_arp(flow) || is_grat_arp_locked)) { return false; } } return true; } /* If the composed actions may be applied to any packet in the given 'flow', * returns true. Otherwise, the actions should only be applied to 'packet', or * not at all, if 'packet' was NULL. */ static bool process_flow(struct bridge *br, const struct flow *flow, const struct ofpbuf *packet, struct ofpbuf *actions, tag_type *tags, uint16_t *nf_output_iface) { struct port *in_port; struct port *out_port; int vlan; int out_port_idx; /* Check whether we should drop packets in this flow. */ if (!is_admissible(br, flow, packet != NULL, tags, &vlan, &in_port)) { out_port = NULL; goto done; } /* Learn source MAC (but don't try to learn from revalidation). */ if (packet) { update_learning_table(br, flow, vlan, in_port); } /* Determine output port. */ out_port_idx = mac_learning_lookup_tag(br->ml, flow->dl_dst, vlan, tags, NULL); if (out_port_idx >= 0 && out_port_idx < br->n_ports) { out_port = br->ports[out_port_idx]; } else if (!packet && !eth_addr_is_multicast(flow->dl_dst)) { /* If we are revalidating but don't have a learning entry then * eject the flow. Installing a flow that floods packets opens * up a window of time where we could learn from a packet reflected * on a bond and blackhole packets before the learning table is * updated to reflect the correct port. */ return false; } else { out_port = FLOOD_PORT; } /* Don't send packets out their input ports. */ if (in_port == out_port) { out_port = NULL; } done: if (in_port) { compose_actions(br, flow, vlan, in_port, out_port, tags, actions, nf_output_iface); } return true; } static bool bridge_normal_ofhook_cb(const struct flow *flow, const struct ofpbuf *packet, struct ofpbuf *actions, tag_type *tags, uint16_t *nf_output_iface, void *br_) { struct bridge *br = br_; COVERAGE_INC(bridge_process_flow); return process_flow(br, flow, packet, actions, tags, nf_output_iface); } static bool bridge_special_ofhook_cb(const struct flow *flow, const struct ofpbuf *packet, void *br_) { struct iface *iface; struct bridge *br = br_; iface = iface_from_dp_ifidx(br, flow->in_port); if (cfm_should_process_flow(flow)) { if (iface && packet && iface->cfm) { COVERAGE_INC(bridge_process_cfm); cfm_process_heartbeat(iface->cfm, packet); } return false; } else if (flow->dl_type == htons(ETH_TYPE_LACP)) { if (iface && packet) { COVERAGE_INC(bridge_process_lacp); lacp_process_packet(packet, iface); } return false; } return true; } static void bridge_account_flow_ofhook_cb(const struct flow *flow, tag_type tags, const struct nlattr *actions, size_t actions_len, uint64_t n_bytes, void *br_) { struct bridge *br = br_; const struct nlattr *a; struct port *in_port; tag_type dummy = 0; unsigned int left; int vlan; /* Feed information from the active flows back into the learning table to * ensure that table is always in sync with what is actually flowing * through the datapath. * * We test that 'tags' is nonzero to ensure that only flows that include an * OFPP_NORMAL action are used for learning. This works because * bridge_normal_ofhook_cb() always sets a nonzero tag value. */ if (tags && is_admissible(br, flow, false, &dummy, &vlan, &in_port)) { update_learning_table(br, flow, vlan, in_port); } /* Account for bond slave utilization. */ if (!br->has_bonded_ports) { return; } NL_ATTR_FOR_EACH_UNSAFE (a, left, actions, actions_len) { if (nl_attr_type(a) == ODP_ACTION_ATTR_OUTPUT) { struct port *out_port = port_from_dp_ifidx(br, nl_attr_get_u32(a)); if (out_port && out_port->n_ifaces >= 2 && out_port->bond_mode != BM_AB) { uint16_t vlan = (flow->vlan_tci ? vlan_tci_to_vid(flow->vlan_tci) : OFP_VLAN_NONE); struct bond_entry *e = lookup_bond_entry(out_port, flow, vlan); e->tx_bytes += n_bytes; } } } } static void bridge_account_checkpoint_ofhook_cb(void *br_) { struct bridge *br = br_; long long int now; size_t i; if (!br->has_bonded_ports) { return; } now = time_msec(); for (i = 0; i < br->n_ports; i++) { struct port *port = br->ports[i]; if (port->n_ifaces > 1 && port->bond_mode != BM_AB && now >= port->bond_next_rebalance) { port->bond_next_rebalance = now + port->bond_rebalance_interval; bond_rebalance_port(port); } } } static struct ofhooks bridge_ofhooks = { bridge_normal_ofhook_cb, bridge_special_ofhook_cb, bridge_account_flow_ofhook_cb, bridge_account_checkpoint_ofhook_cb, }; /* LACP functions. */ static void lacp_process_packet(const struct ofpbuf *packet, struct iface *iface) { const struct lacp_pdu *pdu; if (!iface->port->lacp) { return; } pdu = parse_lacp_packet(packet); if (!pdu) { return; } iface->lacp_status |= LACP_CURRENT; iface->lacp_status &= ~(LACP_EXPIRED | LACP_DEFAULTED); iface->lacp_rx = time_msec() + LACP_SLOW_TIME_RX; iface->lacp_actor.state = iface_get_lacp_state(iface); if (memcmp(&iface->lacp_actor, &pdu->partner, sizeof pdu->partner)) { iface->lacp_tx = 0; } if (memcmp(&iface->lacp_partner, &pdu->actor, sizeof pdu->actor)) { iface->port->lacp_need_update = true; iface->lacp_partner = pdu->actor; } } static void lacp_update_ifaces(struct port *port) { size_t i; struct iface *lead; struct lacp_info lead_pri; static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 10); port->lacp_need_update = false; COVERAGE_INC(bridge_lacp_update); if (!port->lacp) { return; } VLOG_DBG_RL(&rl, "port %s: re-evaluating LACP link status", port->name); lead = NULL; for (i = 0; i < port->n_ifaces; i++) { struct iface *iface = port->ifaces[i]; struct lacp_info pri; iface->lacp_status |= LACP_ATTACHED; ofproto_revalidate(port->bridge->ofproto, iface->tag); /* Don't allow loopback interfaces to send traffic or lead. */ if (eth_addr_equals(iface->lacp_partner.sysid, iface->lacp_actor.sysid)) { VLOG_WARN_RL(&rl, "iface %s: Loopback detected. Interface is " "connected to its own bridge", iface->name); iface->lacp_status &= ~LACP_ATTACHED; continue; } if (iface->lacp_status & LACP_DEFAULTED) { continue; } iface_get_lacp_priority(iface, &pri); if (!lead || memcmp(&pri, &lead_pri, sizeof pri) < 0) { lead = iface; lead_pri = pri; } } if (!lead) { port->lacp &= ~LACP_NEGOTIATED; return; } port->lacp |= LACP_NEGOTIATED; for (i = 0; i < port->n_ifaces; i++) { struct iface *iface = port->ifaces[i]; if (iface->lacp_status & LACP_DEFAULTED || lead->lacp_partner.key != iface->lacp_partner.key || !eth_addr_equals(lead->lacp_partner.sysid, iface->lacp_partner.sysid)) { iface->lacp_status &= ~LACP_ATTACHED; } } } static bool lacp_iface_may_tx(const struct iface *iface) { return iface->port->lacp & LACP_ACTIVE || iface->lacp_status & (LACP_CURRENT | LACP_EXPIRED); } static void lacp_run(struct bridge *br) { size_t i, j; struct ofpbuf packet; ofpbuf_init(&packet, ETH_HEADER_LEN + LACP_PDU_LEN); for (i = 0; i < br->n_ports; i++) { struct port *port = br->ports[i]; if (!port->lacp) { continue; } for (j = 0; j < port->n_ifaces; j++) { struct iface *iface = port->ifaces[j]; if (time_msec() > iface->lacp_rx) { if (iface->lacp_status & LACP_CURRENT) { iface_set_lacp_expired(iface); } else if (iface->lacp_status & LACP_EXPIRED) { iface_set_lacp_defaulted(iface); } } } if (port->lacp_need_update) { lacp_update_ifaces(port); } for (j = 0; j < port->n_ifaces; j++) { struct iface *iface = port->ifaces[j]; uint8_t ea[ETH_ADDR_LEN]; int error; if (time_msec() < iface->lacp_tx || !lacp_iface_may_tx(iface)) { continue; } error = netdev_get_etheraddr(iface->netdev, ea); if (!error) { iface->lacp_actor.state = iface_get_lacp_state(iface); compose_lacp_packet(&packet, &iface->lacp_actor, &iface->lacp_partner, ea); iface_send_packet(iface, &packet); } else { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 10); VLOG_ERR_RL(&rl, "iface %s: failed to obtain Ethernet address " "(%s)", iface->name, strerror(error)); } iface->lacp_tx = time_msec() + (iface->lacp_partner.state & LACP_STATE_TIME ? LACP_FAST_TIME_TX : LACP_SLOW_TIME_TX); } } ofpbuf_uninit(&packet); } static void lacp_wait(struct bridge *br) { size_t i, j; for (i = 0; i < br->n_ports; i++) { struct port *port = br->ports[i]; if (!port->lacp) { continue; } for (j = 0; j < port->n_ifaces; j++) { struct iface *iface = port->ifaces[j]; if (lacp_iface_may_tx(iface)) { poll_timer_wait_until(iface->lacp_tx); } if (iface->lacp_status & (LACP_CURRENT | LACP_EXPIRED)) { poll_timer_wait_until(iface->lacp_rx); } } } } /* Bonding functions. */ /* Statistics for a single interface on a bonded port, used for load-based * bond rebalancing. */ struct slave_balance { struct iface *iface; /* The interface. */ uint64_t tx_bytes; /* Sum of hashes[*]->tx_bytes. */ /* All the "bond_entry"s that are assigned to this interface, in order of * increasing tx_bytes. */ struct bond_entry **hashes; size_t n_hashes; }; static const char * bond_mode_to_string(enum bond_mode bm) { static char *bm_slb = "balance-slb"; static char *bm_ab = "active-backup"; static char *bm_tcp = "balance-tcp"; switch (bm) { case BM_SLB: return bm_slb; case BM_AB: return bm_ab; case BM_TCP: return bm_tcp; } NOT_REACHED(); return NULL; } /* Sorts pointers to pointers to bond_entries in ascending order by the * interface to which they are assigned, and within a single interface in * ascending order of bytes transmitted. */ static int compare_bond_entries(const void *a_, const void *b_) { const struct bond_entry *const *ap = a_; const struct bond_entry *const *bp = b_; const struct bond_entry *a = *ap; const struct bond_entry *b = *bp; if (a->iface_idx != b->iface_idx) { return a->iface_idx > b->iface_idx ? 1 : -1; } else if (a->tx_bytes != b->tx_bytes) { return a->tx_bytes > b->tx_bytes ? 1 : -1; } else { return 0; } } /* Sorts slave_balances so that enabled ports come first, and otherwise in * *descending* order by number of bytes transmitted. */ static int compare_slave_balance(const void *a_, const void *b_) { const struct slave_balance *a = a_; const struct slave_balance *b = b_; if (a->iface->enabled != b->iface->enabled) { return a->iface->enabled ? -1 : 1; } else if (a->tx_bytes != b->tx_bytes) { return a->tx_bytes > b->tx_bytes ? -1 : 1; } else { return 0; } } static void swap_bals(struct slave_balance *a, struct slave_balance *b) { struct slave_balance tmp = *a; *a = *b; *b = tmp; } /* Restores the 'n_bals' slave_balance structures in 'bals' to sorted order * given that 'p' (and only 'p') might be in the wrong location. * * This function invalidates 'p', since it might now be in a different memory * location. */ static void resort_bals(struct slave_balance *p, struct slave_balance bals[], size_t n_bals) { if (n_bals > 1) { for (; p > bals && p->tx_bytes > p[-1].tx_bytes; p--) { swap_bals(p, p - 1); } for (; p < &bals[n_bals - 1] && p->tx_bytes < p[1].tx_bytes; p++) { swap_bals(p, p + 1); } } } static void log_bals(const struct slave_balance *bals, size_t n_bals, struct port *port) { if (VLOG_IS_DBG_ENABLED()) { struct ds ds = DS_EMPTY_INITIALIZER; const struct slave_balance *b; for (b = bals; b < bals + n_bals; b++) { size_t i; if (b > bals) { ds_put_char(&ds, ','); } ds_put_format(&ds, " %s %"PRIu64"kB", b->iface->name, b->tx_bytes / 1024); if (!b->iface->enabled) { ds_put_cstr(&ds, " (disabled)"); } if (b->n_hashes > 0) { ds_put_cstr(&ds, " ("); for (i = 0; i < b->n_hashes; i++) { const struct bond_entry *e = b->hashes[i]; if (i > 0) { ds_put_cstr(&ds, " + "); } ds_put_format(&ds, "h%td: %"PRIu64"kB", e - port->bond_hash, e->tx_bytes / 1024); } ds_put_cstr(&ds, ")"); } } VLOG_DBG("bond %s:%s", port->name, ds_cstr(&ds)); ds_destroy(&ds); } } /* Shifts 'hash' from 'from' to 'to' within 'port'. */ static void bond_shift_load(struct slave_balance *from, struct slave_balance *to, int hash_idx) { struct bond_entry *hash = from->hashes[hash_idx]; struct port *port = from->iface->port; uint64_t delta = hash->tx_bytes; assert(port->bond_mode != BM_AB); VLOG_INFO("bond %s: shift %"PRIu64"kB of load (with hash %td) " "from %s to %s (now carrying %"PRIu64"kB and " "%"PRIu64"kB load, respectively)", port->name, delta / 1024, hash - port->bond_hash, from->iface->name, to->iface->name, (from->tx_bytes - delta) / 1024, (to->tx_bytes + delta) / 1024); /* Delete element from from->hashes. * * We don't bother to add the element to to->hashes because not only would * it require more work, the only purpose it would be to allow that hash to * be migrated to another slave in this rebalancing run, and there is no * point in doing that. */ if (hash_idx == 0) { from->hashes++; } else { memmove(from->hashes + hash_idx, from->hashes + hash_idx + 1, (from->n_hashes - (hash_idx + 1)) * sizeof *from->hashes); } from->n_hashes--; /* Shift load away from 'from' to 'to'. */ from->tx_bytes -= delta; to->tx_bytes += delta; /* Arrange for flows to be revalidated. */ ofproto_revalidate(port->bridge->ofproto, hash->iface_tag); hash->iface_idx = to->iface->port_ifidx; hash->iface_tag = tag_create_random(); } static void bond_rebalance_port(struct port *port) { struct slave_balance *bals; size_t n_bals; struct bond_entry *hashes[BOND_MASK + 1]; struct slave_balance *b, *from, *to; struct bond_entry *e; size_t i; assert(port->bond_mode != BM_AB); /* Sets up 'bals' to describe each of the port's interfaces, sorted in * descending order of tx_bytes, so that bals[0] represents the most * heavily loaded slave and bals[n_bals - 1] represents the least heavily * loaded slave. * * The code is a bit tricky: to avoid dynamically allocating a 'hashes' * array for each slave_balance structure, we sort our local array of * hashes in order by slave, so that all of the hashes for a given slave * become contiguous in memory, and then we point each 'hashes' members of * a slave_balance structure to the start of a contiguous group. */ n_bals = port->n_ifaces; bals = xmalloc(n_bals * sizeof *bals); for (b = bals; b < &bals[n_bals]; b++) { b->iface = port->ifaces[b - bals]; b->tx_bytes = 0; b->hashes = NULL; b->n_hashes = 0; } for (i = 0; i <= BOND_MASK; i++) { hashes[i] = &port->bond_hash[i]; } qsort(hashes, BOND_MASK + 1, sizeof *hashes, compare_bond_entries); for (i = 0; i <= BOND_MASK; i++) { e = hashes[i]; if (e->iface_idx >= 0 && e->iface_idx < port->n_ifaces) { b = &bals[e->iface_idx]; b->tx_bytes += e->tx_bytes; if (!b->hashes) { b->hashes = &hashes[i]; } b->n_hashes++; } } qsort(bals, n_bals, sizeof *bals, compare_slave_balance); log_bals(bals, n_bals, port); /* Discard slaves that aren't enabled (which were sorted to the back of the * array earlier). */ while (!bals[n_bals - 1].iface->enabled) { n_bals--; if (!n_bals) { goto exit; } } /* Shift load from the most-loaded slaves to the least-loaded slaves. */ to = &bals[n_bals - 1]; for (from = bals; from < to; ) { uint64_t overload = from->tx_bytes - to->tx_bytes; if (overload < to->tx_bytes >> 5 || overload < 100000) { /* The extra load on 'from' (and all less-loaded slaves), compared * to that of 'to' (the least-loaded slave), is less than ~3%, or * it is less than ~1Mbps. No point in rebalancing. */ break; } else if (from->n_hashes == 1) { /* 'from' only carries a single MAC hash, so we can't shift any * load away from it, even though we want to. */ from++; } else { /* 'from' is carrying significantly more load than 'to', and that * load is split across at least two different hashes. Pick a hash * to migrate to 'to' (the least-loaded slave), given that doing so * must decrease the ratio of the load on the two slaves by at * least 0.1. * * The sort order we use means that we prefer to shift away the * smallest hashes instead of the biggest ones. There is little * reason behind this decision; we could use the opposite sort * order to shift away big hashes ahead of small ones. */ bool order_swapped; for (i = 0; i < from->n_hashes; i++) { double old_ratio, new_ratio; uint64_t delta = from->hashes[i]->tx_bytes; if (delta == 0 || from->tx_bytes - delta == 0) { /* Pointless move. */ continue; } order_swapped = from->tx_bytes - delta < to->tx_bytes + delta; if (to->tx_bytes == 0) { /* Nothing on the new slave, move it. */ break; } old_ratio = (double)from->tx_bytes / to->tx_bytes; new_ratio = (double)(from->tx_bytes - delta) / (to->tx_bytes + delta); if (new_ratio == 0) { /* Should already be covered but check to prevent division * by zero. */ continue; } if (new_ratio < 1) { new_ratio = 1 / new_ratio; } if (old_ratio - new_ratio > 0.1) { /* Would decrease the ratio, move it. */ break; } } if (i < from->n_hashes) { bond_shift_load(from, to, i); /* If the result of the migration changed the relative order of * 'from' and 'to' swap them back to maintain invariants. */ if (order_swapped) { swap_bals(from, to); } /* Re-sort 'bals'. Note that this may make 'from' and 'to' * point to different slave_balance structures. It is only * valid to do these two operations in a row at all because we * know that 'from' will not move past 'to' and vice versa. */ resort_bals(from, bals, n_bals); resort_bals(to, bals, n_bals); } else { from++; } } } /* Implement exponentially weighted moving average. A weight of 1/2 causes * historical data to decay to <1% in 7 rebalancing runs. */ for (e = &port->bond_hash[0]; e <= &port->bond_hash[BOND_MASK]; e++) { e->tx_bytes /= 2; } exit: free(bals); } static void bond_send_learning_packets(struct port *port) { struct bridge *br = port->bridge; struct mac_entry *e; struct ofpbuf packet; int error, n_packets, n_errors; if (!port->n_ifaces || port->active_iface < 0 || bond_is_tcp_hash(port)) { return; } ofpbuf_init(&packet, 128); error = n_packets = n_errors = 0; LIST_FOR_EACH (e, lru_node, &br->ml->lrus) { union ofp_action actions[2], *a; uint16_t dp_ifidx; tag_type tags = 0; struct flow flow; int retval; if (e->port == port->port_idx) { continue; } compose_benign_packet(&packet, "Open vSwitch Bond Failover", 0xf177, e->mac); flow_extract(&packet, 0, ODPP_NONE, &flow); if (!choose_output_iface(port, &flow, e->vlan, &dp_ifidx, &tags)) { continue; } /* Compose actions. */ memset(actions, 0, sizeof actions); a = actions; if (e->vlan) { a->vlan_vid.type = htons(OFPAT_SET_VLAN_VID); a->vlan_vid.len = htons(sizeof *a); a->vlan_vid.vlan_vid = htons(e->vlan); a++; } a->output.type = htons(OFPAT_OUTPUT); a->output.len = htons(sizeof *a); a->output.port = htons(odp_port_to_ofp_port(dp_ifidx)); a++; /* Send packet. */ n_packets++; retval = ofproto_send_packet(br->ofproto, &flow, actions, a - actions, &packet); if (retval) { error = retval; n_errors++; } } ofpbuf_uninit(&packet); if (n_errors) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_WARN_RL(&rl, "bond %s: %d errors sending %d gratuitous learning " "packets, last error was: %s", port->name, n_errors, n_packets, strerror(error)); } else { VLOG_DBG("bond %s: sent %d gratuitous learning packets", port->name, n_packets); } } /* Bonding unixctl user interface functions. */ static void bond_unixctl_list(struct unixctl_conn *conn, const char *args OVS_UNUSED, void *aux OVS_UNUSED) { struct ds ds = DS_EMPTY_INITIALIZER; const struct bridge *br; ds_put_cstr(&ds, "bridge\tbond\ttype\tslaves\n"); LIST_FOR_EACH (br, node, &all_bridges) { size_t i; for (i = 0; i < br->n_ports; i++) { const struct port *port = br->ports[i]; if (port->n_ifaces > 1) { size_t j; ds_put_format(&ds, "%s\t%s\t%s\t", br->name, port->name, bond_mode_to_string(port->bond_mode)); for (j = 0; j < port->n_ifaces; j++) { const struct iface *iface = port->ifaces[j]; if (j) { ds_put_cstr(&ds, ", "); } ds_put_cstr(&ds, iface->name); } ds_put_char(&ds, '\n'); } } } unixctl_command_reply(conn, 200, ds_cstr(&ds)); ds_destroy(&ds); } static struct port * bond_find(const char *name) { const struct bridge *br; LIST_FOR_EACH (br, node, &all_bridges) { size_t i; for (i = 0; i < br->n_ports; i++) { struct port *port = br->ports[i]; if (!strcmp(port->name, name) && port->n_ifaces > 1) { return port; } } } return NULL; } static void ds_put_lacp_state(struct ds *ds, uint8_t state) { if (state & LACP_STATE_ACT) { ds_put_cstr(ds, "activity "); } if (state & LACP_STATE_TIME) { ds_put_cstr(ds, "timeout "); } if (state & LACP_STATE_AGG) { ds_put_cstr(ds, "aggregation "); } if (state & LACP_STATE_SYNC) { ds_put_cstr(ds, "synchronized "); } if (state & LACP_STATE_COL) { ds_put_cstr(ds, "collecting "); } if (state & LACP_STATE_DIST) { ds_put_cstr(ds, "distributing "); } if (state & LACP_STATE_DEF) { ds_put_cstr(ds, "defaulted "); } if (state & LACP_STATE_EXP) { ds_put_cstr(ds, "expired "); } } static void bond_unixctl_show(struct unixctl_conn *conn, const char *args, void *aux OVS_UNUSED) { struct ds ds = DS_EMPTY_INITIALIZER; const struct port *port; size_t j; port = bond_find(args); if (!port) { unixctl_command_reply(conn, 501, "no such bond"); return; } ds_put_format(&ds, "bond_mode: %s\n", bond_mode_to_string(port->bond_mode)); if (port->lacp) { ds_put_format(&ds, "lacp: %s\n", port->lacp & LACP_ACTIVE ? "active" : "passive"); } else { ds_put_cstr(&ds, "lacp: off\n"); } if (port->bond_mode != BM_AB) { ds_put_format(&ds, "bond-hash-algorithm: %s\n", bond_is_tcp_hash(port) ? "balance-tcp" : "balance-slb"); } ds_put_format(&ds, "bond-detect-mode: %s\n", port->miimon ? "miimon" : "carrier"); if (port->miimon) { ds_put_format(&ds, "bond-miimon-interval: %lld\n", port->bond_miimon_interval); } ds_put_format(&ds, "updelay: %d ms\n", port->updelay); ds_put_format(&ds, "downdelay: %d ms\n", port->downdelay); if (port->bond_mode != BM_AB) { ds_put_format(&ds, "next rebalance: %lld ms\n", port->bond_next_rebalance - time_msec()); } for (j = 0; j < port->n_ifaces; j++) { const struct iface *iface = port->ifaces[j]; struct bond_entry *be; struct flow flow; /* Basic info. */ ds_put_format(&ds, "\nslave %s: %s\n", iface->name, iface->enabled ? "enabled" : "disabled"); if (j == port->active_iface) { ds_put_cstr(&ds, "\tactive slave\n"); } if (iface->delay_expires != LLONG_MAX) { ds_put_format(&ds, "\t%s expires in %lld ms\n", iface->enabled ? "downdelay" : "updelay", iface->delay_expires - time_msec()); } if (port->lacp) { ds_put_cstr(&ds, "\tstatus: "); if (iface->lacp_status & LACP_CURRENT) { ds_put_cstr(&ds, "current "); } if (iface->lacp_status & LACP_EXPIRED) { ds_put_cstr(&ds, "expired "); } if (iface->lacp_status & LACP_DEFAULTED) { ds_put_cstr(&ds, "defaulted "); } if (iface->lacp_status & LACP_ATTACHED) { ds_put_cstr(&ds, "attached "); } ds_put_cstr(&ds, "\n"); ds_put_cstr(&ds, "\n\tactor sysid: "); ds_put_format(&ds, ETH_ADDR_FMT, ETH_ADDR_ARGS(iface->lacp_actor.sysid)); ds_put_cstr(&ds, "\n"); ds_put_format(&ds, "\tactor sys_priority: %u\n", ntohs(iface->lacp_actor.sys_priority)); ds_put_format(&ds, "\tactor portid: %u\n", ntohs(iface->lacp_actor.portid)); ds_put_format(&ds, "\tactor port_priority: %u\n", ntohs(iface->lacp_actor.port_priority)); ds_put_format(&ds, "\tactor key: %u\n", ntohs(iface->lacp_actor.key)); ds_put_cstr(&ds, "\tactor state: "); ds_put_lacp_state(&ds, iface_get_lacp_state(iface)); ds_put_cstr(&ds, "\n\n"); ds_put_cstr(&ds, "\tpartner sysid: "); ds_put_format(&ds, ETH_ADDR_FMT, ETH_ADDR_ARGS(iface->lacp_partner.sysid)); ds_put_cstr(&ds, "\n"); ds_put_format(&ds, "\tpartner sys_priority: %u\n", ntohs(iface->lacp_partner.sys_priority)); ds_put_format(&ds, "\tpartner portid: %u\n", ntohs(iface->lacp_partner.portid)); ds_put_format(&ds, "\tpartner port_priority: %u\n", ntohs(iface->lacp_partner.port_priority)); ds_put_format(&ds, "\tpartner key: %u\n", ntohs(iface->lacp_partner.key)); ds_put_cstr(&ds, "\tpartner state: "); ds_put_lacp_state(&ds, iface->lacp_partner.state); ds_put_cstr(&ds, "\n"); } if (port->bond_mode == BM_AB) { continue; } /* Hashes. */ memset(&flow, 0, sizeof flow); for (be = port->bond_hash; be <= &port->bond_hash[BOND_MASK]; be++) { int hash = be - port->bond_hash; struct mac_entry *me; if (be->iface_idx != j) { continue; } ds_put_format(&ds, "\thash %d: %"PRIu64" kB load\n", hash, be->tx_bytes / 1024); if (port->bond_mode != BM_SLB) { continue; } /* MACs. */ LIST_FOR_EACH (me, lru_node, &port->bridge->ml->lrus) { uint16_t dp_ifidx; tag_type tags = 0; memcpy(flow.dl_src, me->mac, ETH_ADDR_LEN); if (bond_hash_src(me->mac, me->vlan) == hash && me->port != port->port_idx && choose_output_iface(port, &flow, me->vlan, &dp_ifidx, &tags) && dp_ifidx == iface->dp_ifidx) { ds_put_format(&ds, "\t\t"ETH_ADDR_FMT"\n", ETH_ADDR_ARGS(me->mac)); } } } } unixctl_command_reply(conn, 200, ds_cstr(&ds)); ds_destroy(&ds); } static void bond_unixctl_migrate(struct unixctl_conn *conn, const char *args_, void *aux OVS_UNUSED) { char *args = (char *) args_; char *save_ptr = NULL; char *bond_s, *hash_s, *slave_s; struct port *port; struct iface *iface; struct bond_entry *entry; int hash; bond_s = strtok_r(args, " ", &save_ptr); hash_s = strtok_r(NULL, " ", &save_ptr); slave_s = strtok_r(NULL, " ", &save_ptr); if (!slave_s) { unixctl_command_reply(conn, 501, "usage: bond/migrate BOND HASH SLAVE"); return; } port = bond_find(bond_s); if (!port) { unixctl_command_reply(conn, 501, "no such bond"); return; } if (port->bond_mode != BM_SLB) { unixctl_command_reply(conn, 501, "not an SLB bond"); return; } if (strspn(hash_s, "0123456789") == strlen(hash_s)) { hash = atoi(hash_s) & BOND_MASK; } else { unixctl_command_reply(conn, 501, "bad hash"); return; } iface = port_lookup_iface(port, slave_s); if (!iface) { unixctl_command_reply(conn, 501, "no such slave"); return; } if (!iface->enabled) { unixctl_command_reply(conn, 501, "cannot migrate to disabled slave"); return; } entry = &port->bond_hash[hash]; ofproto_revalidate(port->bridge->ofproto, entry->iface_tag); entry->iface_idx = iface->port_ifidx; entry->iface_tag = tag_create_random(); unixctl_command_reply(conn, 200, "migrated"); } static void bond_unixctl_set_active_slave(struct unixctl_conn *conn, const char *args_, void *aux OVS_UNUSED) { char *args = (char *) args_; char *save_ptr = NULL; char *bond_s, *slave_s; struct port *port; struct iface *iface; bond_s = strtok_r(args, " ", &save_ptr); slave_s = strtok_r(NULL, " ", &save_ptr); if (!slave_s) { unixctl_command_reply(conn, 501, "usage: bond/set-active-slave BOND SLAVE"); return; } port = bond_find(bond_s); if (!port) { unixctl_command_reply(conn, 501, "no such bond"); return; } iface = port_lookup_iface(port, slave_s); if (!iface) { unixctl_command_reply(conn, 501, "no such slave"); return; } if (!iface->enabled) { unixctl_command_reply(conn, 501, "cannot make disabled slave active"); return; } if (port->active_iface != iface->port_ifidx) { ofproto_revalidate(port->bridge->ofproto, port->active_iface_tag); port->active_iface = iface->port_ifidx; port->active_iface_tag = tag_create_random(); VLOG_INFO("port %s: active interface is now %s", port->name, iface->name); bond_send_learning_packets(port); unixctl_command_reply(conn, 200, "done"); } else { unixctl_command_reply(conn, 200, "no change"); } } static void enable_slave(struct unixctl_conn *conn, const char *args_, bool enable) { char *args = (char *) args_; char *save_ptr = NULL; char *bond_s, *slave_s; struct port *port; struct iface *iface; bond_s = strtok_r(args, " ", &save_ptr); slave_s = strtok_r(NULL, " ", &save_ptr); if (!slave_s) { unixctl_command_reply(conn, 501, "usage: bond/enable/disable-slave BOND SLAVE"); return; } port = bond_find(bond_s); if (!port) { unixctl_command_reply(conn, 501, "no such bond"); return; } iface = port_lookup_iface(port, slave_s); if (!iface) { unixctl_command_reply(conn, 501, "no such slave"); return; } bond_enable_slave(iface, enable); unixctl_command_reply(conn, 501, enable ? "enabled" : "disabled"); } static void bond_unixctl_enable_slave(struct unixctl_conn *conn, const char *args, void *aux OVS_UNUSED) { enable_slave(conn, args, true); } static void bond_unixctl_disable_slave(struct unixctl_conn *conn, const char *args, void *aux OVS_UNUSED) { enable_slave(conn, args, false); } static void bond_unixctl_hash(struct unixctl_conn *conn, const char *args_, void *aux OVS_UNUSED) { char *args = (char *) args_; uint8_t mac[ETH_ADDR_LEN]; uint8_t hash; char *hash_cstr; unsigned int vlan; char *mac_s, *vlan_s; char *save_ptr = NULL; mac_s = strtok_r(args, " ", &save_ptr); vlan_s = strtok_r(NULL, " ", &save_ptr); if (vlan_s) { if (sscanf(vlan_s, "%u", &vlan) != 1) { unixctl_command_reply(conn, 501, "invalid vlan"); return; } } else { vlan = OFP_VLAN_NONE; } if (sscanf(mac_s, ETH_ADDR_SCAN_FMT, ETH_ADDR_SCAN_ARGS(mac)) == ETH_ADDR_SCAN_COUNT) { hash = bond_hash_src(mac, vlan); hash_cstr = xasprintf("%u", hash); unixctl_command_reply(conn, 200, hash_cstr); free(hash_cstr); } else { unixctl_command_reply(conn, 501, "invalid mac"); } } static void bond_init(void) { unixctl_command_register("bond/list", bond_unixctl_list, NULL); unixctl_command_register("bond/show", bond_unixctl_show, NULL); unixctl_command_register("bond/migrate", bond_unixctl_migrate, NULL); unixctl_command_register("bond/set-active-slave", bond_unixctl_set_active_slave, NULL); unixctl_command_register("bond/enable-slave", bond_unixctl_enable_slave, NULL); unixctl_command_register("bond/disable-slave", bond_unixctl_disable_slave, NULL); unixctl_command_register("bond/hash", bond_unixctl_hash, NULL); } /* Port functions. */ static struct port * port_create(struct bridge *br, const char *name) { struct port *port; port = xzalloc(sizeof *port); port->bridge = br; port->port_idx = br->n_ports; port->vlan = -1; port->trunks = NULL; port->name = xstrdup(name); port->active_iface = -1; if (br->n_ports >= br->allocated_ports) { br->ports = x2nrealloc(br->ports, &br->allocated_ports, sizeof *br->ports); } br->ports[br->n_ports++] = port; shash_add_assert(&br->port_by_name, port->name, port); VLOG_INFO("created port %s on bridge %s", port->name, br->name); bridge_flush(br); return port; } static const char * get_port_other_config(const struct ovsrec_port *port, const char *key, const char *default_value) { const char *value; value = get_ovsrec_key_value(&port->header_, &ovsrec_port_col_other_config, key); return value ? value : default_value; } static const char * get_interface_other_config(const struct ovsrec_interface *iface, const char *key, const char *default_value) { const char *value; value = get_ovsrec_key_value(&iface->header_, &ovsrec_interface_col_other_config, key); return value ? value : default_value; } static void port_del_ifaces(struct port *port, const struct ovsrec_port *cfg) { struct shash new_ifaces; size_t i; /* Collect list of new interfaces. */ shash_init(&new_ifaces); for (i = 0; i < cfg->n_interfaces; i++) { const char *name = cfg->interfaces[i]->name; shash_add_once(&new_ifaces, name, NULL); } /* Get rid of deleted interfaces. */ for (i = 0; i < port->n_ifaces; ) { if (!shash_find(&new_ifaces, cfg->interfaces[i]->name)) { iface_destroy(port->ifaces[i]); } else { i++; } } shash_destroy(&new_ifaces); } static void port_reconfigure(struct port *port, const struct ovsrec_port *cfg) { const char *detect_mode; struct shash new_ifaces; long long int next_rebalance, miimon_next_update, lacp_priority; unsigned long *trunks; int vlan; size_t i; port->cfg = cfg; /* Update settings. */ port->updelay = cfg->bond_updelay; if (port->updelay < 0) { port->updelay = 0; } port->downdelay = cfg->bond_downdelay; if (port->downdelay < 0) { port->downdelay = 0; } port->bond_rebalance_interval = atoi( get_port_other_config(cfg, "bond-rebalance-interval", "10000")); if (port->bond_rebalance_interval < 1000) { port->bond_rebalance_interval = 1000; } next_rebalance = time_msec() + port->bond_rebalance_interval; if (port->bond_next_rebalance > next_rebalance) { port->bond_next_rebalance = next_rebalance; } detect_mode = get_port_other_config(cfg, "bond-detect-mode", "carrier"); if (!strcmp(detect_mode, "carrier")) { port->miimon = false; } else if (!strcmp(detect_mode, "miimon")) { port->miimon = true; } else { port->miimon = false; VLOG_WARN("port %s: unsupported bond-detect-mode %s, defaulting to " "carrier", port->name, detect_mode); } port->bond_miimon_interval = atoi( get_port_other_config(cfg, "bond-miimon-interval", "200")); if (port->bond_miimon_interval < 100) { port->bond_miimon_interval = 100; } miimon_next_update = time_msec() + port->bond_miimon_interval; if (port->bond_miimon_next_update > miimon_next_update) { port->bond_miimon_next_update = miimon_next_update; } if (!port->cfg->bond_mode || !strcmp(port->cfg->bond_mode, bond_mode_to_string(BM_SLB))) { port->bond_mode = BM_SLB; } else if (!strcmp(port->cfg->bond_mode, bond_mode_to_string(BM_AB))) { port->bond_mode = BM_AB; } else if (!strcmp(port->cfg->bond_mode, bond_mode_to_string(BM_TCP))) { port->bond_mode = BM_TCP; } else { port->bond_mode = BM_SLB; VLOG_WARN("port %s: unknown bond_mode %s, defaulting to %s", port->name, port->cfg->bond_mode, bond_mode_to_string(port->bond_mode)); } /* Add new interfaces and update 'cfg' member of existing ones. */ shash_init(&new_ifaces); for (i = 0; i < cfg->n_interfaces; i++) { const struct ovsrec_interface *if_cfg = cfg->interfaces[i]; struct iface *iface; if (!shash_add_once(&new_ifaces, if_cfg->name, NULL)) { VLOG_WARN("port %s: %s specified twice as port interface", port->name, if_cfg->name); iface_set_ofport(if_cfg, -1); continue; } iface = iface_lookup(port->bridge, if_cfg->name); if (iface) { if (iface->port != port) { VLOG_ERR("bridge %s: %s interface is on multiple ports, " "removing from %s", port->bridge->name, if_cfg->name, iface->port->name); continue; } iface->cfg = if_cfg; } else { iface = iface_create(port, if_cfg); } /* Determine interface type. The local port always has type * "internal". Other ports take their type from the database and * default to "system" if none is specified. */ iface->type = (!strcmp(if_cfg->name, port->bridge->name) ? "internal" : if_cfg->type[0] ? if_cfg->type : "system"); lacp_priority = atoi(get_interface_other_config(if_cfg, "lacp-port-priority", "0")); if (lacp_priority <= 0 || lacp_priority > UINT16_MAX) { iface->lacp_priority = UINT16_MAX; } else { iface->lacp_priority = lacp_priority; } } shash_destroy(&new_ifaces); lacp_priority = atoi(get_port_other_config(cfg, "lacp-system-priority", "0")); if (lacp_priority <= 0 || lacp_priority > UINT16_MAX) { /* Prefer bondable links if unspecified. */ port->lacp_priority = port->n_ifaces > 1 ? UINT16_MAX - 1 : UINT16_MAX; } else { port->lacp_priority = lacp_priority; } if (!port->cfg->lacp) { /* XXX when LACP implementation has been sufficiently tested, enable by * default and make active on bonded ports. */ port->lacp = 0; } else if (!strcmp(port->cfg->lacp, "off")) { port->lacp = 0; } else if (!strcmp(port->cfg->lacp, "active")) { port->lacp = LACP_ACTIVE; } else if (!strcmp(port->cfg->lacp, "passive")) { port->lacp = LACP_PASSIVE; } else { VLOG_WARN("port %s: unknown LACP mode %s", port->name, port->cfg->lacp); port->lacp = 0; } /* Get VLAN tag. */ vlan = -1; if (cfg->tag) { if (port->n_ifaces < 2) { vlan = *cfg->tag; if (vlan >= 0 && vlan <= 4095) { VLOG_DBG("port %s: assigning VLAN tag %d", port->name, vlan); } else { vlan = -1; } } else { /* It's possible that bonded, VLAN-tagged ports make sense. Maybe * they even work as-is. But they have not been tested. */ VLOG_WARN("port %s: VLAN tags not supported on bonded ports", port->name); } } if (port->vlan != vlan) { port->vlan = vlan; bridge_flush(port->bridge); } /* Get trunked VLANs. */ trunks = NULL; if (vlan < 0 && cfg->n_trunks) { size_t n_errors; trunks = bitmap_allocate(4096); n_errors = 0; for (i = 0; i < cfg->n_trunks; i++) { int trunk = cfg->trunks[i]; if (trunk >= 0) { bitmap_set1(trunks, trunk); } else { n_errors++; } } if (n_errors) { VLOG_ERR("port %s: invalid values for %zu trunk VLANs", port->name, cfg->n_trunks); } if (n_errors == cfg->n_trunks) { VLOG_ERR("port %s: no valid trunks, trunking all VLANs", port->name); bitmap_free(trunks); trunks = NULL; } } else if (vlan >= 0 && cfg->n_trunks) { VLOG_ERR("port %s: ignoring trunks in favor of implicit vlan", port->name); } if (trunks == NULL ? port->trunks != NULL : port->trunks == NULL || !bitmap_equal(trunks, port->trunks, 4096)) { bridge_flush(port->bridge); } bitmap_free(port->trunks); port->trunks = trunks; } static void port_destroy(struct port *port) { if (port) { struct bridge *br = port->bridge; struct port *del; int i; for (i = 0; i < MAX_MIRRORS; i++) { struct mirror *m = br->mirrors[i]; if (m && m->out_port == port) { mirror_destroy(m); } } while (port->n_ifaces > 0) { iface_destroy(port->ifaces[port->n_ifaces - 1]); } shash_find_and_delete_assert(&br->port_by_name, port->name); del = br->ports[port->port_idx] = br->ports[--br->n_ports]; del->port_idx = port->port_idx; VLOG_INFO("destroyed port %s on bridge %s", port->name, br->name); netdev_monitor_destroy(port->monitor); free(port->ifaces); bitmap_free(port->trunks); free(port->name); free(port); bridge_flush(br); } } static struct port * port_from_dp_ifidx(const struct bridge *br, uint16_t dp_ifidx) { struct iface *iface = iface_from_dp_ifidx(br, dp_ifidx); return iface ? iface->port : NULL; } static struct port * port_lookup(const struct bridge *br, const char *name) { return shash_find_data(&br->port_by_name, name); } static struct iface * port_lookup_iface(const struct port *port, const char *name) { struct iface *iface = iface_lookup(port->bridge, name); return iface && iface->port == port ? iface : NULL; } static void port_update_lacp(struct port *port) { size_t i; bool key_changed; if (!port->lacp || port->n_ifaces < 1) { for (i = 0; i < port->n_ifaces; i++) { iface_set_lacp_defaulted(port->ifaces[i]); } return; } key_changed = true; for (i = 0; i < port->n_ifaces; i++) { struct iface *iface = port->ifaces[i]; if (iface->dp_ifidx <= 0 || iface->dp_ifidx > UINT16_MAX) { port->lacp = 0; return; } if (iface->dp_ifidx == port->lacp_key) { key_changed = false; } } if (key_changed) { port->lacp_key = port->ifaces[0]->dp_ifidx; } for (i = 0; i < port->n_ifaces; i++) { struct iface *iface = port->ifaces[i]; iface->lacp_actor.sys_priority = htons(port->lacp_priority); memcpy(&iface->lacp_actor.sysid, port->bridge->ea, ETH_ADDR_LEN); iface->lacp_actor.port_priority = htons(iface->lacp_priority); iface->lacp_actor.portid = htons(iface->dp_ifidx); iface->lacp_actor.key = htons(port->lacp_key); iface->lacp_tx = 0; } port->lacp_need_update = true; } static void port_update_bonding(struct port *port) { if (port->monitor) { netdev_monitor_destroy(port->monitor); port->monitor = NULL; } if (port->n_ifaces < 2) { /* Not a bonded port. */ free(port->bond_hash); port->bond_hash = NULL; port->bond_fake_iface = false; port->active_iface = -1; port->no_ifaces_tag = 0; } else { size_t i; if (port->bond_mode != BM_AB && !port->bond_hash) { port->bond_hash = xcalloc(BOND_MASK + 1, sizeof *port->bond_hash); for (i = 0; i <= BOND_MASK; i++) { struct bond_entry *e = &port->bond_hash[i]; e->iface_idx = -1; e->tx_bytes = 0; } port->bond_next_rebalance = time_msec() + port->bond_rebalance_interval; } else if (port->bond_mode == BM_AB) { free(port->bond_hash); port->bond_hash = NULL; } if (!port->no_ifaces_tag) { port->no_ifaces_tag = tag_create_random(); } if (port->active_iface < 0) { bond_choose_active_iface(port); } port->bond_fake_iface = port->cfg->bond_fake_iface; if (port->bond_fake_iface) { port->bond_next_fake_iface_update = time_msec(); } if (!port->miimon) { port->monitor = netdev_monitor_create(); for (i = 0; i < port->n_ifaces; i++) { netdev_monitor_add(port->monitor, port->ifaces[i]->netdev); } } } } /* Interface functions. */ static void iface_set_lacp_defaulted(struct iface *iface) { memset(&iface->lacp_partner, 0, sizeof iface->lacp_partner); iface->lacp_status |= LACP_DEFAULTED; iface->lacp_status &= ~(LACP_CURRENT | LACP_EXPIRED); iface->lacp_tx = 0; iface->port->lacp_need_update = true; } static void iface_set_lacp_expired(struct iface *iface) { iface->lacp_status &= ~LACP_CURRENT; iface->lacp_status |= LACP_EXPIRED; iface->lacp_partner.state |= LACP_STATE_TIME; iface->lacp_partner.state &= ~LACP_STATE_SYNC; iface->lacp_rx = time_msec() + LACP_FAST_TIME_RX; iface->lacp_tx = 0; } static uint8_t iface_get_lacp_state(const struct iface *iface) { uint8_t state = 0; if (iface->port->lacp & LACP_ACTIVE) { state |= LACP_STATE_ACT; } if (iface->lacp_status & LACP_ATTACHED) { state |= LACP_STATE_SYNC; } if (iface->lacp_status & LACP_DEFAULTED) { state |= LACP_STATE_DEF; } if (iface->lacp_status & LACP_EXPIRED) { state |= LACP_STATE_EXP; } if (iface->port->n_ifaces > 1) { state |= LACP_STATE_AGG; } if (iface->enabled) { state |= LACP_STATE_COL | LACP_STATE_DIST; } return state; } /* Given 'iface', populates 'priority' with data representing its LACP link * priority. If two priority objects populated by this function are compared * using memcmp, the higher priority link will be less than the lower priority * link. */ static void iface_get_lacp_priority(struct iface *iface, struct lacp_info *priority) { uint16_t partner_priority, actor_priority; /* Choose the lacp_info of the higher priority system by comparing their * system priorities and mac addresses. */ actor_priority = ntohs(iface->lacp_actor.sys_priority); partner_priority = ntohs(iface->lacp_partner.sys_priority); if (actor_priority < partner_priority) { *priority = iface->lacp_actor; } else if (partner_priority < actor_priority) { *priority = iface->lacp_partner; } else if (eth_addr_compare_3way(iface->lacp_actor.sysid, iface->lacp_partner.sysid) < 0) { *priority = iface->lacp_actor; } else { *priority = iface->lacp_partner; } /* Key and state are not used in priority comparisons. */ priority->key = 0; priority->state = 0; } static void iface_send_packet(struct iface *iface, struct ofpbuf *packet) { struct flow flow; union ofp_action action; memset(&action, 0, sizeof action); action.output.type = htons(OFPAT_OUTPUT); action.output.len = htons(sizeof action); action.output.port = htons(odp_port_to_ofp_port(iface->dp_ifidx)); flow_extract(packet, 0, ODPP_NONE, &flow); if (ofproto_send_packet(iface->port->bridge->ofproto, &flow, &action, 1, packet)) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_WARN_RL(&rl, "interface %s: Failed to send packet.", iface->name); } } static struct iface * iface_create(struct port *port, const struct ovsrec_interface *if_cfg) { struct bridge *br = port->bridge; struct iface *iface; char *name = if_cfg->name; iface = xzalloc(sizeof *iface); iface->port = port; iface->port_ifidx = port->n_ifaces; iface->name = xstrdup(name); iface->dp_ifidx = -1; iface->tag = tag_create_random(); iface->delay_expires = LLONG_MAX; iface->netdev = NULL; iface->cfg = if_cfg; iface_set_lacp_defaulted(iface); if (port->lacp & LACP_ACTIVE) { iface_set_lacp_expired(iface); } shash_add_assert(&br->iface_by_name, iface->name, iface); if (port->n_ifaces >= port->allocated_ifaces) { port->ifaces = x2nrealloc(port->ifaces, &port->allocated_ifaces, sizeof *port->ifaces); } port->ifaces[port->n_ifaces++] = iface; if (port->n_ifaces > 1) { br->has_bonded_ports = true; } VLOG_DBG("attached network device %s to port %s", iface->name, port->name); bridge_flush(br); return iface; } static void iface_destroy(struct iface *iface) { if (iface) { struct port *port = iface->port; struct bridge *br = port->bridge; bool del_active = port->active_iface == iface->port_ifidx; struct iface *del; if (port->monitor) { netdev_monitor_remove(port->monitor, iface->netdev); } shash_find_and_delete_assert(&br->iface_by_name, iface->name); if (iface->dp_ifidx >= 0) { hmap_remove(&br->ifaces, &iface->dp_ifidx_node); } del = port->ifaces[iface->port_ifidx] = port->ifaces[--port->n_ifaces]; del->port_ifidx = iface->port_ifidx; netdev_close(iface->netdev); if (del_active) { ofproto_revalidate(port->bridge->ofproto, port->active_iface_tag); bond_choose_active_iface(port); bond_send_learning_packets(port); } cfm_destroy(iface->cfm); free(iface->name); free(iface); bridge_flush(port->bridge); } } static struct iface * iface_lookup(const struct bridge *br, const char *name) { return shash_find_data(&br->iface_by_name, name); } static struct iface * iface_from_dp_ifidx(const struct bridge *br, uint16_t dp_ifidx) { struct iface *iface; HMAP_FOR_EACH_IN_BUCKET (iface, dp_ifidx_node, hash_int(dp_ifidx, 0), &br->ifaces) { if (iface->dp_ifidx == dp_ifidx) { return iface; } } return NULL; } /* Set Ethernet address of 'iface', if one is specified in the configuration * file. */ static void iface_set_mac(struct iface *iface) { uint8_t ea[ETH_ADDR_LEN]; if (iface->cfg->mac && eth_addr_from_string(iface->cfg->mac, ea)) { if (eth_addr_is_multicast(ea)) { VLOG_ERR("interface %s: cannot set MAC to multicast address", iface->name); } else if (iface->dp_ifidx == ODPP_LOCAL) { VLOG_ERR("ignoring iface.%s.mac; use bridge.%s.mac instead", iface->name, iface->name); } else { int error = netdev_set_etheraddr(iface->netdev, ea); if (error) { VLOG_ERR("interface %s: setting MAC failed (%s)", iface->name, strerror(error)); } } } } /* Sets the ofport column of 'if_cfg' to 'ofport'. */ static void iface_set_ofport(const struct ovsrec_interface *if_cfg, int64_t ofport) { if (if_cfg) { ovsrec_interface_set_ofport(if_cfg, &ofport, 1); } } /* Adds the 'n' key-value pairs in 'keys' in 'values' to 'shash'. * * The value strings in '*shash' are taken directly from values[], not copied, * so the caller should not modify or free them. */ static void shash_from_ovs_idl_map(char **keys, char **values, size_t n, struct shash *shash) { size_t i; shash_init(shash); for (i = 0; i < n; i++) { shash_add(shash, keys[i], values[i]); } } /* Creates 'keys' and 'values' arrays from 'shash'. * * Sets 'keys' and 'values' to heap allocated arrays representing the key-value * pairs in 'shash'. The caller takes ownership of 'keys' and 'values'. They * are populated with with strings taken directly from 'shash' and thus have * the same ownership of the key-value pairs in shash. */ static void shash_to_ovs_idl_map(struct shash *shash, char ***keys, char ***values, size_t *n) { size_t i, count; char **k, **v; struct shash_node *sn; count = shash_count(shash); k = xmalloc(count * sizeof *k); v = xmalloc(count * sizeof *v); i = 0; SHASH_FOR_EACH(sn, shash) { k[i] = sn->name; v[i] = sn->data; i++; } *n = count; *keys = k; *values = v; } struct iface_delete_queues_cbdata { struct netdev *netdev; const struct ovsdb_datum *queues; }; static bool queue_ids_include(const struct ovsdb_datum *queues, int64_t target) { union ovsdb_atom atom; atom.integer = target; return ovsdb_datum_find_key(queues, &atom, OVSDB_TYPE_INTEGER) != UINT_MAX; } static void iface_delete_queues(unsigned int queue_id, const struct shash *details OVS_UNUSED, void *cbdata_) { struct iface_delete_queues_cbdata *cbdata = cbdata_; if (!queue_ids_include(cbdata->queues, queue_id)) { netdev_delete_queue(cbdata->netdev, queue_id); } } static void iface_update_qos(struct iface *iface, const struct ovsrec_qos *qos) { if (!qos || qos->type[0] == '\0') { netdev_set_qos(iface->netdev, NULL, NULL); } else { struct iface_delete_queues_cbdata cbdata; struct shash details; size_t i; /* Configure top-level Qos for 'iface'. */ shash_from_ovs_idl_map(qos->key_other_config, qos->value_other_config, qos->n_other_config, &details); netdev_set_qos(iface->netdev, qos->type, &details); shash_destroy(&details); /* Deconfigure queues that were deleted. */ cbdata.netdev = iface->netdev; cbdata.queues = ovsrec_qos_get_queues(qos, OVSDB_TYPE_INTEGER, OVSDB_TYPE_UUID); netdev_dump_queues(iface->netdev, iface_delete_queues, &cbdata); /* Configure queues for 'iface'. */ for (i = 0; i < qos->n_queues; i++) { const struct ovsrec_queue *queue = qos->value_queues[i]; unsigned int queue_id = qos->key_queues[i]; shash_from_ovs_idl_map(queue->key_other_config, queue->value_other_config, queue->n_other_config, &details); netdev_set_queue(iface->netdev, queue_id, &details); shash_destroy(&details); } } } static void iface_update_cfm(struct iface *iface) { size_t i; struct cfm *cfm; uint16_t *remote_mps; struct ovsrec_monitor *mon; uint8_t ea[ETH_ADDR_LEN], maid[CCM_MAID_LEN]; mon = iface->cfg->monitor; if (!mon) { cfm_destroy(iface->cfm); iface->cfm = NULL; return; } if (netdev_get_etheraddr(iface->netdev, ea)) { VLOG_WARN("interface %s: Failed to get ethernet address. " "Skipping Monitor.", iface->name); return; } if (!cfm_generate_maid(mon->md_name, mon->ma_name, maid)) { VLOG_WARN("interface %s: Failed to generate MAID.", iface->name); return; } if (!iface->cfm) { iface->cfm = cfm_create(); } cfm = iface->cfm; cfm->mpid = mon->mpid; cfm->interval = mon->interval ? *mon->interval : 1000; memcpy(cfm->eth_src, ea, sizeof cfm->eth_src); memcpy(cfm->maid, maid, sizeof cfm->maid); remote_mps = xzalloc(mon->n_remote_mps * sizeof *remote_mps); for(i = 0; i < mon->n_remote_mps; i++) { remote_mps[i] = mon->remote_mps[i]->mpid; } cfm_update_remote_mps(cfm, remote_mps, mon->n_remote_mps); free(remote_mps); if (!cfm_configure(iface->cfm)) { cfm_destroy(iface->cfm); iface->cfm = NULL; } } /* Port mirroring. */ static struct mirror * mirror_find_by_uuid(struct bridge *br, const struct uuid *uuid) { int i; for (i = 0; i < MAX_MIRRORS; i++) { struct mirror *m = br->mirrors[i]; if (m && uuid_equals(uuid, &m->uuid)) { return m; } } return NULL; } static void mirror_reconfigure(struct bridge *br) { unsigned long *rspan_vlans; int i; /* Get rid of deleted mirrors. */ for (i = 0; i < MAX_MIRRORS; i++) { struct mirror *m = br->mirrors[i]; if (m) { const struct ovsdb_datum *mc; union ovsdb_atom atom; mc = ovsrec_bridge_get_mirrors(br->cfg, OVSDB_TYPE_UUID); atom.uuid = br->mirrors[i]->uuid; if (ovsdb_datum_find_key(mc, &atom, OVSDB_TYPE_UUID) == UINT_MAX) { mirror_destroy(m); } } } /* Add new mirrors and reconfigure existing ones. */ for (i = 0; i < br->cfg->n_mirrors; i++) { struct ovsrec_mirror *cfg = br->cfg->mirrors[i]; struct mirror *m = mirror_find_by_uuid(br, &cfg->header_.uuid); if (m) { mirror_reconfigure_one(m, cfg); } else { mirror_create(br, cfg); } } /* Update port reserved status. */ for (i = 0; i < br->n_ports; i++) { br->ports[i]->is_mirror_output_port = false; } for (i = 0; i < MAX_MIRRORS; i++) { struct mirror *m = br->mirrors[i]; if (m && m->out_port) { m->out_port->is_mirror_output_port = true; } } /* Update flooded vlans (for RSPAN). */ rspan_vlans = NULL; if (br->cfg->n_flood_vlans) { rspan_vlans = bitmap_allocate(4096); for (i = 0; i < br->cfg->n_flood_vlans; i++) { int64_t vlan = br->cfg->flood_vlans[i]; if (vlan >= 0 && vlan < 4096) { bitmap_set1(rspan_vlans, vlan); VLOG_INFO("bridge %s: disabling learning on vlan %"PRId64, br->name, vlan); } else { VLOG_ERR("bridge %s: invalid value %"PRId64 "for flood VLAN", br->name, vlan); } } } if (mac_learning_set_flood_vlans(br->ml, rspan_vlans)) { bridge_flush(br); } } static void mirror_create(struct bridge *br, struct ovsrec_mirror *cfg) { struct mirror *m; size_t i; for (i = 0; ; i++) { if (i >= MAX_MIRRORS) { VLOG_WARN("bridge %s: maximum of %d port mirrors reached, " "cannot create %s", br->name, MAX_MIRRORS, cfg->name); return; } if (!br->mirrors[i]) { break; } } VLOG_INFO("created port mirror %s on bridge %s", cfg->name, br->name); bridge_flush(br); br->mirrors[i] = m = xzalloc(sizeof *m); m->bridge = br; m->idx = i; m->name = xstrdup(cfg->name); shash_init(&m->src_ports); shash_init(&m->dst_ports); m->vlans = NULL; m->n_vlans = 0; m->out_vlan = -1; m->out_port = NULL; mirror_reconfigure_one(m, cfg); } static void mirror_destroy(struct mirror *m) { if (m) { struct bridge *br = m->bridge; size_t i; for (i = 0; i < br->n_ports; i++) { br->ports[i]->src_mirrors &= ~(MIRROR_MASK_C(1) << m->idx); br->ports[i]->dst_mirrors &= ~(MIRROR_MASK_C(1) << m->idx); } shash_destroy(&m->src_ports); shash_destroy(&m->dst_ports); free(m->vlans); m->bridge->mirrors[m->idx] = NULL; free(m->name); free(m); bridge_flush(br); } } static void mirror_collect_ports(struct mirror *m, struct ovsrec_port **ports, int n_ports, struct shash *names) { size_t i; for (i = 0; i < n_ports; i++) { const char *name = ports[i]->name; if (port_lookup(m->bridge, name)) { shash_add_once(names, name, NULL); } else { VLOG_WARN("bridge %s: mirror %s cannot match on nonexistent " "port %s", m->bridge->name, m->name, name); } } } static size_t mirror_collect_vlans(struct mirror *m, const struct ovsrec_mirror *cfg, int **vlans) { size_t n_vlans; size_t i; *vlans = xmalloc(sizeof **vlans * cfg->n_select_vlan); n_vlans = 0; for (i = 0; i < cfg->n_select_vlan; i++) { int64_t vlan = cfg->select_vlan[i]; if (vlan < 0 || vlan > 4095) { VLOG_WARN("bridge %s: mirror %s selects invalid VLAN %"PRId64, m->bridge->name, m->name, vlan); } else { (*vlans)[n_vlans++] = vlan; } } return n_vlans; } static bool vlan_is_mirrored(const struct mirror *m, int vlan) { size_t i; for (i = 0; i < m->n_vlans; i++) { if (m->vlans[i] == vlan) { return true; } } return false; } static bool port_trunks_any_mirrored_vlan(const struct mirror *m, const struct port *p) { size_t i; for (i = 0; i < m->n_vlans; i++) { if (port_trunks_vlan(p, m->vlans[i])) { return true; } } return false; } static void mirror_reconfigure_one(struct mirror *m, struct ovsrec_mirror *cfg) { struct shash src_ports, dst_ports; mirror_mask_t mirror_bit; struct port *out_port; int out_vlan; size_t n_vlans; int *vlans; size_t i; /* Set name. */ if (strcmp(cfg->name, m->name)) { free(m->name); m->name = xstrdup(cfg->name); } /* Get output port. */ if (cfg->output_port) { out_port = port_lookup(m->bridge, cfg->output_port->name); if (!out_port) { VLOG_ERR("bridge %s: mirror %s outputs to port not on bridge", m->bridge->name, m->name); mirror_destroy(m); return; } out_vlan = -1; if (cfg->output_vlan) { VLOG_ERR("bridge %s: mirror %s specifies both output port and " "output vlan; ignoring output vlan", m->bridge->name, m->name); } } else if (cfg->output_vlan) { out_port = NULL; out_vlan = *cfg->output_vlan; } else { VLOG_ERR("bridge %s: mirror %s does not specify output; ignoring", m->bridge->name, m->name); mirror_destroy(m); return; } shash_init(&src_ports); shash_init(&dst_ports); if (cfg->select_all) { for (i = 0; i < m->bridge->n_ports; i++) { const char *name = m->bridge->ports[i]->name; shash_add_once(&src_ports, name, NULL); shash_add_once(&dst_ports, name, NULL); } vlans = NULL; n_vlans = 0; } else { /* Get ports, and drop duplicates and ports that don't exist. */ mirror_collect_ports(m, cfg->select_src_port, cfg->n_select_src_port, &src_ports); mirror_collect_ports(m, cfg->select_dst_port, cfg->n_select_dst_port, &dst_ports); /* Get all the vlans, and drop duplicate and invalid vlans. */ n_vlans = mirror_collect_vlans(m, cfg, &vlans); } /* Update mirror data. */ if (!shash_equal_keys(&m->src_ports, &src_ports) || !shash_equal_keys(&m->dst_ports, &dst_ports) || m->n_vlans != n_vlans || memcmp(m->vlans, vlans, sizeof *vlans * n_vlans) || m->out_port != out_port || m->out_vlan != out_vlan) { bridge_flush(m->bridge); } shash_swap(&m->src_ports, &src_ports); shash_swap(&m->dst_ports, &dst_ports); free(m->vlans); m->vlans = vlans; m->n_vlans = n_vlans; m->out_port = out_port; m->out_vlan = out_vlan; /* Update ports. */ mirror_bit = MIRROR_MASK_C(1) << m->idx; for (i = 0; i < m->bridge->n_ports; i++) { struct port *port = m->bridge->ports[i]; if (shash_find(&m->src_ports, port->name) || (m->n_vlans && (!port->vlan ? port_trunks_any_mirrored_vlan(m, port) : vlan_is_mirrored(m, port->vlan)))) { port->src_mirrors |= mirror_bit; } else { port->src_mirrors &= ~mirror_bit; } if (shash_find(&m->dst_ports, port->name)) { port->dst_mirrors |= mirror_bit; } else { port->dst_mirrors &= ~mirror_bit; } } /* Clean up. */ shash_destroy(&src_ports); shash_destroy(&dst_ports); }