This commit was manufactured by cvs2svn to create branch 'vserver'.
[linux-2.6.git] / kernel / kexec.c
diff --git a/kernel/kexec.c b/kernel/kexec.c
new file mode 100644 (file)
index 0000000..b59023f
--- /dev/null
@@ -0,0 +1,640 @@
+/*
+ * kexec.c - kexec system call
+ * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
+ *
+ * This source code is licensed under the GNU General Public License,
+ * Version 2.  See the file COPYING for more details.
+ */
+
+#include <linux/mm.h>
+#include <linux/file.h>
+#include <linux/slab.h>
+#include <linux/fs.h>
+#include <linux/kexec.h>
+#include <linux/spinlock.h>
+#include <linux/list.h>
+#include <linux/highmem.h>
+#include <net/checksum.h>
+#include <asm/page.h>
+#include <asm/uaccess.h>
+#include <asm/io.h>
+#include <asm/system.h>
+
+/*
+ * When kexec transitions to the new kernel there is a one-to-one
+ * mapping between physical and virtual addresses.  On processors
+ * where you can disable the MMU this is trivial, and easy.  For
+ * others it is still a simple predictable page table to setup.
+ *
+ * In that environment kexec copies the new kernel to its final
+ * resting place.  This means I can only support memory whose
+ * physical address can fit in an unsigned long.  In particular
+ * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
+ * If the assembly stub has more restrictive requirements
+ * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
+ * defined more restrictively in <asm/kexec.h>.
+ *
+ * The code for the transition from the current kernel to the
+ * the new kernel is placed in the control_code_buffer, whose size
+ * is given by KEXEC_CONTROL_CODE_SIZE.  In the best case only a single
+ * page of memory is necessary, but some architectures require more.
+ * Because this memory must be identity mapped in the transition from
+ * virtual to physical addresses it must live in the range
+ * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
+ * modifiable.
+ *
+ * The assembly stub in the control code buffer is passed a linked list
+ * of descriptor pages detailing the source pages of the new kernel,
+ * and the destination addresses of those source pages.  As this data
+ * structure is not used in the context of the current OS, it must
+ * be self-contained.
+ *
+ * The code has been made to work with highmem pages and will use a
+ * destination page in its final resting place (if it happens
+ * to allocate it).  The end product of this is that most of the
+ * physical address space, and most of RAM can be used.
+ *
+ * Future directions include:
+ *  - allocating a page table with the control code buffer identity
+ *    mapped, to simplify machine_kexec and make kexec_on_panic more
+ *    reliable.
+ */
+
+/*
+ * KIMAGE_NO_DEST is an impossible destination address..., for
+ * allocating pages whose destination address we do not care about.
+ */
+#define KIMAGE_NO_DEST (-1UL)
+
+static int kimage_is_destination_range(
+       struct kimage *image, unsigned long start, unsigned long end);
+static struct page *kimage_alloc_page(struct kimage *image, unsigned int gfp_mask, unsigned long dest);
+
+
+static int kimage_alloc(struct kimage **rimage,
+       unsigned long nr_segments, struct kexec_segment *segments)
+{
+       int result;
+       struct kimage *image;
+       size_t segment_bytes;
+       unsigned long i;
+
+       /* Allocate a controlling structure */
+       result = -ENOMEM;
+       image = kmalloc(sizeof(*image), GFP_KERNEL);
+       if (!image) {
+               goto out;
+       }
+       memset(image, 0, sizeof(*image));
+       image->head = 0;
+       image->entry = &image->head;
+       image->last_entry = &image->head;
+
+       /* Initialize the list of control pages */
+       INIT_LIST_HEAD(&image->control_pages);
+
+       /* Initialize the list of destination pages */
+       INIT_LIST_HEAD(&image->dest_pages);
+
+       /* Initialize the list of unuseable pages */
+       INIT_LIST_HEAD(&image->unuseable_pages);
+
+       /* Read in the segments */
+       image->nr_segments = nr_segments;
+       segment_bytes = nr_segments * sizeof*segments;
+       result = copy_from_user(image->segment, segments, segment_bytes);
+       if (result)
+               goto out;
+
+       /*
+        * Verify we have good destination addresses.  The caller is
+        * responsible for making certain we don't attempt to load
+        * the new image into invalid or reserved areas of RAM.  This
+        * just verifies it is an address we can use.
+        */
+       result = -EADDRNOTAVAIL;
+       for (i = 0; i < nr_segments; i++) {
+               unsigned long mend;
+               mend = ((unsigned long)(image->segment[i].mem)) +
+                       image->segment[i].memsz;
+               if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
+                       goto out;
+       }
+
+       /*
+        * Find a location for the control code buffer, and add it
+        * the vector of segments so that it's pages will also be
+        * counted as destination pages.
+        */
+       result = -ENOMEM;
+       image->control_code_page = kimage_alloc_control_pages(image,
+               get_order(KEXEC_CONTROL_CODE_SIZE));
+       if (!image->control_code_page) {
+               printk(KERN_ERR "Could not allocate control_code_buffer\n");
+               goto out;
+       }
+
+       result = 0;
+ out:
+       if (result == 0) {
+               *rimage = image;
+       } else {
+               kfree(image);
+       }
+       return result;
+}
+
+static int kimage_is_destination_range(
+       struct kimage *image, unsigned long start, unsigned long end)
+{
+       unsigned long i;
+
+       for (i = 0; i < image->nr_segments; i++) {
+               unsigned long mstart, mend;
+               mstart = (unsigned long)image->segment[i].mem;
+               mend   = mstart + image->segment[i].memsz;
+               if ((end > mstart) && (start < mend)) {
+                       return 1;
+               }
+       }
+       return 0;
+}
+
+static struct page *kimage_alloc_pages(unsigned int gfp_mask, unsigned int order)
+{
+       struct page *pages;
+       pages = alloc_pages(gfp_mask, order);
+       if (pages) {
+               unsigned int count, i;
+               pages->mapping = NULL;
+               pages->private = order;
+               count = 1 << order;
+               for(i = 0; i < count; i++) {
+                       SetPageReserved(pages + i);
+               }
+       }
+       return pages;
+}
+
+static void kimage_free_pages(struct page *page)
+{
+       unsigned int order, count, i;
+       order = page->private;
+       count = 1 << order;
+       for(i = 0; i < count; i++) {
+               ClearPageReserved(page + i);
+       }
+       __free_pages(page, order);
+}
+
+static void kimage_free_page_list(struct list_head *list)
+{
+       struct list_head *pos, *next;
+       list_for_each_safe(pos, next, list) {
+               struct page *page;
+
+               page = list_entry(pos, struct page, lru);
+               list_del(&page->lru);
+
+               kimage_free_pages(page);
+       }
+}
+
+struct page *kimage_alloc_control_pages(struct kimage *image, unsigned int order)
+{
+       /* Control pages are special, they are the intermediaries
+        * that are needed while we copy the rest of the pages
+        * to their final resting place.  As such they must
+        * not conflict with either the destination addresses
+        * or memory the kernel is already using.
+        *
+        * The only case where we really need more than one of
+        * these are for architectures where we cannot disable
+        * the MMU and must instead generate an identity mapped
+        * page table for all of the memory.
+        *
+        * At worst this runs in O(N) of the image size.
+        */
+       struct list_head extra_pages;
+       struct page *pages;
+       unsigned int count;
+
+       count = 1 << order;
+       INIT_LIST_HEAD(&extra_pages);
+
+       /* Loop while I can allocate a page and the page allocated
+        * is a destination page.
+        */
+       do {
+               unsigned long pfn, epfn, addr, eaddr;
+               pages = kimage_alloc_pages(GFP_KERNEL, order);
+               if (!pages)
+                       break;
+               pfn   = page_to_pfn(pages);
+               epfn  = pfn + count;
+               addr  = pfn << PAGE_SHIFT;
+               eaddr = epfn << PAGE_SHIFT;
+               if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
+                       kimage_is_destination_range(image, addr, eaddr))
+               {
+                       list_add(&pages->lru, &extra_pages);
+                       pages = NULL;
+               }
+       } while(!pages);
+       if (pages) {
+               /* Remember the allocated page... */
+               list_add(&pages->lru, &image->control_pages);
+
+               /* Because the page is already in it's destination
+                * location we will never allocate another page at
+                * that address.  Therefore kimage_alloc_pages
+                * will not return it (again) and we don't need
+                * to give it an entry in image->segment[].
+                */
+       }
+       /* Deal with the destination pages I have inadvertently allocated.
+        *
+        * Ideally I would convert multi-page allocations into single
+        * page allocations, and add everyting to image->dest_pages.
+        *
+        * For now it is simpler to just free the pages.
+        */
+       kimage_free_page_list(&extra_pages);
+       return pages;
+
+}
+
+static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
+{
+       if (*image->entry != 0) {
+               image->entry++;
+       }
+       if (image->entry == image->last_entry) {
+               kimage_entry_t *ind_page;
+               struct page *page;
+               page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
+               if (!page) {
+                       return -ENOMEM;
+               }
+               ind_page = page_address(page);
+               *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
+               image->entry = ind_page;
+               image->last_entry =
+                       ind_page + ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
+       }
+       *image->entry = entry;
+       image->entry++;
+       *image->entry = 0;
+       return 0;
+}
+
+static int kimage_set_destination(
+       struct kimage *image, unsigned long destination)
+{
+       int result;
+
+       destination &= PAGE_MASK;
+       result = kimage_add_entry(image, destination | IND_DESTINATION);
+       if (result == 0) {
+               image->destination = destination;
+       }
+       return result;
+}
+
+
+static int kimage_add_page(struct kimage *image, unsigned long page)
+{
+       int result;
+
+       page &= PAGE_MASK;
+       result = kimage_add_entry(image, page | IND_SOURCE);
+       if (result == 0) {
+               image->destination += PAGE_SIZE;
+       }
+       return result;
+}
+
+
+static void kimage_free_extra_pages(struct kimage *image)
+{
+       /* Walk through and free any extra destination pages I may have */
+       kimage_free_page_list(&image->dest_pages);
+
+       /* Walk through and free any unuseable pages I have cached */
+       kimage_free_page_list(&image->unuseable_pages);
+
+}
+static int kimage_terminate(struct kimage *image)
+{
+       int result;
+
+       result = kimage_add_entry(image, IND_DONE);
+       if (result == 0) {
+               /* Point at the terminating element */
+               image->entry--;
+               kimage_free_extra_pages(image);
+       }
+       return result;
+}
+
+#define for_each_kimage_entry(image, ptr, entry) \
+       for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
+               ptr = (entry & IND_INDIRECTION)? \
+                       phys_to_virt((entry & PAGE_MASK)): ptr +1)
+
+static void kimage_free_entry(kimage_entry_t entry)
+{
+       struct page *page;
+
+       page = pfn_to_page(entry >> PAGE_SHIFT);
+       kimage_free_pages(page);
+}
+
+static void kimage_free(struct kimage *image)
+{
+       kimage_entry_t *ptr, entry;
+       kimage_entry_t ind = 0;
+
+       if (!image)
+               return;
+       kimage_free_extra_pages(image);
+       for_each_kimage_entry(image, ptr, entry) {
+               if (entry & IND_INDIRECTION) {
+                       /* Free the previous indirection page */
+                       if (ind & IND_INDIRECTION) {
+                               kimage_free_entry(ind);
+                       }
+                       /* Save this indirection page until we are
+                        * done with it.
+                        */
+                       ind = entry;
+               }
+               else if (entry & IND_SOURCE) {
+                       kimage_free_entry(entry);
+               }
+       }
+       /* Free the final indirection page */
+       if (ind & IND_INDIRECTION) {
+               kimage_free_entry(ind);
+       }
+
+       /* Handle any machine specific cleanup */
+       machine_kexec_cleanup(image);
+
+       /* Free the kexec control pages... */
+       kimage_free_page_list(&image->control_pages);
+       kfree(image);
+}
+
+static kimage_entry_t *kimage_dst_used(struct kimage *image, unsigned long page)
+{
+       kimage_entry_t *ptr, entry;
+       unsigned long destination = 0;
+
+       for_each_kimage_entry(image, ptr, entry) {
+               if (entry & IND_DESTINATION) {
+                       destination = entry & PAGE_MASK;
+               }
+               else if (entry & IND_SOURCE) {
+                       if (page == destination) {
+                               return ptr;
+                       }
+                       destination += PAGE_SIZE;
+               }
+       }
+       return 0;
+}
+
+static struct page *kimage_alloc_page(struct kimage *image, unsigned int gfp_mask, unsigned long destination)
+{
+       /*
+        * Here we implement safeguards to ensure that a source page
+        * is not copied to its destination page before the data on
+        * the destination page is no longer useful.
+        *
+        * To do this we maintain the invariant that a source page is
+        * either its own destination page, or it is not a
+        * destination page at all.
+        *
+        * That is slightly stronger than required, but the proof
+        * that no problems will not occur is trivial, and the
+        * implementation is simply to verify.
+        *
+        * When allocating all pages normally this algorithm will run
+        * in O(N) time, but in the worst case it will run in O(N^2)
+        * time.   If the runtime is a problem the data structures can
+        * be fixed.
+        */
+       struct page *page;
+       unsigned long addr;
+
+       /*
+        * Walk through the list of destination pages, and see if I
+        * have a match.
+        */
+       list_for_each_entry(page, &image->dest_pages, lru) {
+               addr = page_to_pfn(page) << PAGE_SHIFT;
+               if (addr == destination) {
+                       list_del(&page->lru);
+                       return page;
+               }
+       }
+       page = NULL;
+       while (1) {
+               kimage_entry_t *old;
+
+               /* Allocate a page, if we run out of memory give up */
+               page = kimage_alloc_pages(gfp_mask, 0);
+               if (!page) {
+                       return 0;
+               }
+               /* If the page cannot be used file it away */
+               if (page_to_pfn(page) > (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
+                       list_add(&page->lru, &image->unuseable_pages);
+                       continue;
+               }
+               addr = page_to_pfn(page) << PAGE_SHIFT;
+
+               /* If it is the destination page we want use it */
+               if (addr == destination)
+                       break;
+
+               /* If the page is not a destination page use it */
+               if (!kimage_is_destination_range(image, addr, addr + PAGE_SIZE))
+                       break;
+
+               /*
+                * I know that the page is someones destination page.
+                * See if there is already a source page for this
+                * destination page.  And if so swap the source pages.
+                */
+               old = kimage_dst_used(image, addr);
+               if (old) {
+                       /* If so move it */
+                       unsigned long old_addr;
+                       struct page *old_page;
+
+                       old_addr = *old & PAGE_MASK;
+                       old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
+                       copy_highpage(page, old_page);
+                       *old = addr | (*old & ~PAGE_MASK);
+
+                       /* The old page I have found cannot be a
+                        * destination page, so return it.
+                        */
+                       addr = old_addr;
+                       page = old_page;
+                       break;
+               }
+               else {
+                       /* Place the page on the destination list I
+                        * will use it later.
+                        */
+                       list_add(&page->lru, &image->dest_pages);
+               }
+       }
+       return page;
+}
+
+static int kimage_load_segment(struct kimage *image,
+       struct kexec_segment *segment)
+{
+       unsigned long mstart;
+       int result;
+       unsigned long offset;
+       unsigned long offset_end;
+       unsigned char *buf;
+
+       result = 0;
+       buf = segment->buf;
+       mstart = (unsigned long)segment->mem;
+
+       offset_end = segment->memsz;
+
+       result = kimage_set_destination(image, mstart);
+       if (result < 0) {
+               goto out;
+       }
+       for (offset = 0;  offset < segment->memsz; offset += PAGE_SIZE) {
+               struct page *page;
+               char *ptr;
+               size_t size, leader;
+               page = kimage_alloc_page(image, GFP_HIGHUSER, mstart + offset);
+               if (page == 0) {
+                       result  = -ENOMEM;
+                       goto out;
+               }
+               result = kimage_add_page(image, page_to_pfn(page) << PAGE_SHIFT);
+               if (result < 0) {
+                       goto out;
+               }
+               ptr = kmap(page);
+               if (segment->bufsz < offset) {
+                       /* We are past the end zero the whole page */
+                       memset(ptr, 0, PAGE_SIZE);
+                       kunmap(page);
+                       continue;
+               }
+               size = PAGE_SIZE;
+               leader = 0;
+               if ((offset == 0)) {
+                       leader = mstart & ~PAGE_MASK;
+               }
+               if (leader) {
+                       /* We are on the first page zero the unused portion */
+                       memset(ptr, 0, leader);
+                       size -= leader;
+                       ptr += leader;
+               }
+               if (size > (segment->bufsz - offset)) {
+                       size = segment->bufsz - offset;
+               }
+               if (size < (PAGE_SIZE - leader)) {
+                       /* zero the trailing part of the page */
+                       memset(ptr + size, 0, (PAGE_SIZE - leader) - size);
+               }
+               result = copy_from_user(ptr, buf + offset, size);
+               kunmap(page);
+               if (result) {
+                       result = (result < 0) ? result : -EIO;
+                       goto out;
+               }
+       }
+ out:
+       return result;
+}
+
+/*
+ * Exec Kernel system call: for obvious reasons only root may call it.
+ *
+ * This call breaks up into three pieces.
+ * - A generic part which loads the new kernel from the current
+ *   address space, and very carefully places the data in the
+ *   allocated pages.
+ *
+ * - A generic part that interacts with the kernel and tells all of
+ *   the devices to shut down.  Preventing on-going dmas, and placing
+ *   the devices in a consistent state so a later kernel can
+ *   reinitialize them.
+ *
+ * - A machine specific part that includes the syscall number
+ *   and the copies the image to it's final destination.  And
+ *   jumps into the image at entry.
+ *
+ * kexec does not sync, or unmount filesystems so if you need
+ * that to happen you need to do that yourself.
+ */
+struct kimage *kexec_image = NULL;
+
+asmlinkage long sys_kexec_load(unsigned long entry, unsigned long nr_segments,
+       struct kexec_segment *segments, unsigned long flags)
+{
+       struct kimage *image;
+       int result;
+
+       /* We only trust the superuser with rebooting the system. */
+       if (!capable(CAP_SYS_BOOT))
+               return -EPERM;
+
+       /*
+        * In case we need just a little bit of special behavior for
+        * reboot on panic.
+        */
+       if (flags != 0)
+               return -EINVAL;
+
+       if (nr_segments > KEXEC_SEGMENT_MAX)
+               return -EINVAL;
+
+       image = NULL;
+       result = 0;
+
+       if (nr_segments > 0) {
+               unsigned long i;
+               result = kimage_alloc(&image, nr_segments, segments);
+               if (result) {
+                       goto out;
+               }
+               result = machine_kexec_prepare(image);
+               if (result) {
+                       goto out;
+               }
+               image->start = entry;
+               for (i = 0; i < nr_segments; i++) {
+                       result = kimage_load_segment(image, &image->segment[i]);
+                       if (result) {
+                               goto out;
+                       }
+               }
+               result = kimage_terminate(image);
+               if (result) {
+                       goto out;
+               }
+       }
+
+       image = xchg(&kexec_image, image);
+
+ out:
+       kimage_free(image);
+       return result;
+}