X-Git-Url: http://git.onelab.eu/?a=blobdiff_plain;f=dummynet2%2Fip_dummynet.c;fp=dummynet2%2Fip_dummynet.c;h=bb34c044c8323f2000301463b4f3c090285fcffe;hb=4e189c94aef3d3e9a4e8edfd2bb989feeb5d5e26;hp=0000000000000000000000000000000000000000;hpb=fd71c20d7328b71ac47493f9f27925de690980ed;p=ipfw.git diff --git a/dummynet2/ip_dummynet.c b/dummynet2/ip_dummynet.c new file mode 100644 index 0000000..bb34c04 --- /dev/null +++ b/dummynet2/ip_dummynet.c @@ -0,0 +1,2370 @@ +/*- + * Copyright (c) 1998-2002 Luigi Rizzo, Universita` di Pisa + * Portions Copyright (c) 2000 Akamba Corp. + * All rights reserved + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + */ + +#include +__FBSDID("$FreeBSD: head/sys/netinet/ipfw/ip_dummynet.c 200601 2009-12-16 10:48:40Z luigi $"); + +#define DUMMYNET_DEBUG + +#include "opt_inet6.h" + +/* + * This module implements IP dummynet, a bandwidth limiter/delay emulator + * used in conjunction with the ipfw package. + * Description of the data structures used is in ip_dummynet.h + * Here you mainly find the following blocks of code: + * + variable declarations; + * + heap management functions; + * + scheduler and dummynet functions; + * + configuration and initialization. + * + * NOTA BENE: critical sections are protected by the "dummynet lock". + * + * Most important Changes: + * + * 011004: KLDable + * 010124: Fixed WF2Q behaviour + * 010122: Fixed spl protection. + * 000601: WF2Q support + * 000106: large rewrite, use heaps to handle very many pipes. + * 980513: initial release + * + * include files marked with XXX are probably not needed + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include /* IFNAMSIZ, struct ifaddr, ifq head, lock.h mutex.h */ +#include +#include +#include /* ip_len, ip_off */ +#include +#include +#include +#include /* ip_output(), IP_FORWARDING */ + +#include /* various ether_* routines */ + +#include /* for ip6_input, ip6_output prototypes */ +#include + +/* + * We keep a private variable for the simulation time, but we could + * probably use an existing one ("softticks" in sys/kern/kern_timeout.c) + */ +static dn_key curr_time = 0 ; /* current simulation time */ + +static int dn_hash_size = 64 ; /* default hash size */ + +/* statistics on number of queue searches and search steps */ +static long searches, search_steps ; +static int pipe_expire = 1 ; /* expire queue if empty */ +static int dn_max_ratio = 16 ; /* max queues/buckets ratio */ + +static long pipe_slot_limit = 100; /* Foot shooting limit for pipe queues. */ +static long pipe_byte_limit = 1024 * 1024; + +static int red_lookup_depth = 256; /* RED - default lookup table depth */ +static int red_avg_pkt_size = 512; /* RED - default medium packet size */ +static int red_max_pkt_size = 1500; /* RED - default max packet size */ + +static struct timeval prev_t, t; +static long tick_last; /* Last tick duration (usec). */ +static long tick_delta; /* Last vs standard tick diff (usec). */ +static long tick_delta_sum; /* Accumulated tick difference (usec).*/ +static long tick_adjustment; /* Tick adjustments done. */ +static long tick_lost; /* Lost(coalesced) ticks number. */ +/* Adjusted vs non-adjusted curr_time difference (ticks). */ +static long tick_diff; + +static int io_fast; +static unsigned long io_pkt; +static unsigned long io_pkt_fast; +static unsigned long io_pkt_drop; + +/* + * Three heaps contain queues and pipes that the scheduler handles: + * + * ready_heap contains all dn_flow_queue related to fixed-rate pipes. + * + * wfq_ready_heap contains the pipes associated with WF2Q flows + * + * extract_heap contains pipes associated with delay lines. + * + */ + +MALLOC_DEFINE(M_DUMMYNET, "dummynet", "dummynet heap"); + +static struct dn_heap ready_heap, extract_heap, wfq_ready_heap ; + +static int heap_init(struct dn_heap *h, int size); +static int heap_insert (struct dn_heap *h, dn_key key1, void *p); +static void heap_extract(struct dn_heap *h, void *obj); +static void transmit_event(struct dn_pipe *pipe, struct mbuf **head, + struct mbuf **tail); +static void ready_event(struct dn_flow_queue *q, struct mbuf **head, + struct mbuf **tail); +static void ready_event_wfq(struct dn_pipe *p, struct mbuf **head, + struct mbuf **tail); + +#define HASHSIZE 16 +#define HASH(num) ((((num) >> 8) ^ ((num) >> 4) ^ (num)) & 0x0f) +static struct dn_pipe_head pipehash[HASHSIZE]; /* all pipes */ +static struct dn_flow_set_head flowsethash[HASHSIZE]; /* all flowsets */ + +static struct callout dn_timeout; + +extern void (*bridge_dn_p)(struct mbuf *, struct ifnet *); + +#ifdef SYSCTL_NODE +SYSCTL_DECL(_net_inet); +SYSCTL_DECL(_net_inet_ip); + +SYSCTL_NODE(_net_inet_ip, OID_AUTO, dummynet, CTLFLAG_RW, 0, "Dummynet"); +SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, hash_size, + CTLFLAG_RW, &dn_hash_size, 0, "Default hash table size"); +#if 0 /* curr_time is 64 bit */ +SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, curr_time, + CTLFLAG_RD, &curr_time, 0, "Current tick"); +#endif +SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, ready_heap, + CTLFLAG_RD, &ready_heap.size, 0, "Size of ready heap"); +SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, extract_heap, + CTLFLAG_RD, &extract_heap.size, 0, "Size of extract heap"); +SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, searches, + CTLFLAG_RD, &searches, 0, "Number of queue searches"); +SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, search_steps, + CTLFLAG_RD, &search_steps, 0, "Number of queue search steps"); +SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, expire, + CTLFLAG_RW, &pipe_expire, 0, "Expire queue if empty"); +SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, max_chain_len, + CTLFLAG_RW, &dn_max_ratio, 0, + "Max ratio between dynamic queues and buckets"); +SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_lookup_depth, + CTLFLAG_RD, &red_lookup_depth, 0, "Depth of RED lookup table"); +SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_avg_pkt_size, + CTLFLAG_RD, &red_avg_pkt_size, 0, "RED Medium packet size"); +SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_max_pkt_size, + CTLFLAG_RD, &red_max_pkt_size, 0, "RED Max packet size"); +SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_delta, + CTLFLAG_RD, &tick_delta, 0, "Last vs standard tick difference (usec)."); +SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_delta_sum, + CTLFLAG_RD, &tick_delta_sum, 0, "Accumulated tick difference (usec)."); +SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_adjustment, + CTLFLAG_RD, &tick_adjustment, 0, "Tick adjustments done."); +SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_diff, + CTLFLAG_RD, &tick_diff, 0, + "Adjusted vs non-adjusted curr_time difference (ticks)."); +SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_lost, + CTLFLAG_RD, &tick_lost, 0, + "Number of ticks coalesced by dummynet taskqueue."); +SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, io_fast, + CTLFLAG_RW, &io_fast, 0, "Enable fast dummynet io."); +SYSCTL_ULONG(_net_inet_ip_dummynet, OID_AUTO, io_pkt, + CTLFLAG_RD, &io_pkt, 0, + "Number of packets passed to dummynet."); +SYSCTL_ULONG(_net_inet_ip_dummynet, OID_AUTO, io_pkt_fast, + CTLFLAG_RD, &io_pkt_fast, 0, + "Number of packets bypassed dummynet scheduler."); +SYSCTL_ULONG(_net_inet_ip_dummynet, OID_AUTO, io_pkt_drop, + CTLFLAG_RD, &io_pkt_drop, 0, + "Number of packets dropped by dummynet."); +SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, pipe_slot_limit, + CTLFLAG_RW, &pipe_slot_limit, 0, "Upper limit in slots for pipe queue."); +SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, pipe_byte_limit, + CTLFLAG_RW, &pipe_byte_limit, 0, "Upper limit in bytes for pipe queue."); +#endif + +#ifdef DUMMYNET_DEBUG +int dummynet_debug = 0; +#ifdef SYSCTL_NODE +SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, debug, CTLFLAG_RW, &dummynet_debug, + 0, "control debugging printfs"); +#endif +#define DPRINTF(X) if (dummynet_debug) printf X +#else +#define DPRINTF(X) +#endif + +static struct task dn_task; +static struct taskqueue *dn_tq = NULL; +static void dummynet_task(void *, int); + +#if defined( __linux__ ) || defined( _WIN32 ) +static DEFINE_SPINLOCK(dummynet_mtx); +#else +static struct mtx dummynet_mtx; +#endif +#define DUMMYNET_LOCK_INIT() \ + mtx_init(&dummynet_mtx, "dummynet", NULL, MTX_DEF) +#define DUMMYNET_LOCK_DESTROY() mtx_destroy(&dummynet_mtx) +#define DUMMYNET_LOCK() mtx_lock(&dummynet_mtx) +#define DUMMYNET_UNLOCK() mtx_unlock(&dummynet_mtx) +#define DUMMYNET_LOCK_ASSERT() mtx_assert(&dummynet_mtx, MA_OWNED) + +static int config_pipe(struct dn_pipe *p); +static int ip_dn_ctl(struct sockopt *sopt); + +static void dummynet(void *); +static void dummynet_flush(void); +static void dummynet_send(struct mbuf *); +void dummynet_drain(void); +static int dummynet_io(struct mbuf **, int , struct ip_fw_args *); + +/* + * Flow queue is idle if: + * 1) it's empty for at least 1 tick + * 2) it has invalid timestamp (WF2Q case) + * 3) parent pipe has no 'exhausted' burst. + */ +#define QUEUE_IS_IDLE(q) ((q)->head == NULL && (q)->S == (q)->F + 1 && \ + curr_time > (q)->idle_time + 1 && \ + ((q)->numbytes + (curr_time - (q)->idle_time - 1) * \ + (q)->fs->pipe->bandwidth >= (q)->fs->pipe->burst)) + +/* + * Heap management functions. + * + * In the heap, first node is element 0. Children of i are 2i+1 and 2i+2. + * Some macros help finding parent/children so we can optimize them. + * + * heap_init() is called to expand the heap when needed. + * Increment size in blocks of 16 entries. + * XXX failure to allocate a new element is a pretty bad failure + * as we basically stall a whole queue forever!! + * Returns 1 on error, 0 on success + */ +#define HEAP_FATHER(x) ( ( (x) - 1 ) / 2 ) +#define HEAP_LEFT(x) ( 2*(x) + 1 ) +#define HEAP_IS_LEFT(x) ( (x) & 1 ) +#define HEAP_RIGHT(x) ( 2*(x) + 2 ) +#define HEAP_SWAP(a, b, buffer) { buffer = a ; a = b ; b = buffer ; } +#define HEAP_INCREMENT 15 + +static int +heap_init(struct dn_heap *h, int new_size) +{ + struct dn_heap_entry *p; + + if (h->size >= new_size ) { + printf("dummynet: %s, Bogus call, have %d want %d\n", __func__, + h->size, new_size); + return 0 ; + } + new_size = (new_size + HEAP_INCREMENT ) & ~HEAP_INCREMENT ; + p = malloc(new_size * sizeof(*p), M_DUMMYNET, M_NOWAIT); + if (p == NULL) { + printf("dummynet: %s, resize %d failed\n", __func__, new_size ); + return 1 ; /* error */ + } + if (h->size > 0) { + bcopy(h->p, p, h->size * sizeof(*p) ); + free(h->p, M_DUMMYNET); + } + h->p = p ; + h->size = new_size ; + return 0 ; +} + +/* + * Insert element in heap. Normally, p != NULL, we insert p in + * a new position and bubble up. If p == NULL, then the element is + * already in place, and key is the position where to start the + * bubble-up. + * Returns 1 on failure (cannot allocate new heap entry) + * + * If offset > 0 the position (index, int) of the element in the heap is + * also stored in the element itself at the given offset in bytes. + */ +#define SET_OFFSET(heap, node) \ + if (heap->offset > 0) \ + *((int *)((char *)(heap->p[node].object) + heap->offset)) = node ; +/* + * RESET_OFFSET is used for sanity checks. It sets offset to an invalid value. + */ +#define RESET_OFFSET(heap, node) \ + if (heap->offset > 0) \ + *((int *)((char *)(heap->p[node].object) + heap->offset)) = -1 ; +static int +heap_insert(struct dn_heap *h, dn_key key1, void *p) +{ + int son = h->elements ; + + if (p == NULL) /* data already there, set starting point */ + son = key1 ; + else { /* insert new element at the end, possibly resize */ + son = h->elements ; + if (son == h->size) /* need resize... */ + if (heap_init(h, h->elements+1) ) + return 1 ; /* failure... */ + h->p[son].object = p ; + h->p[son].key = key1 ; + h->elements++ ; + } + while (son > 0) { /* bubble up */ + int father = HEAP_FATHER(son) ; + struct dn_heap_entry tmp ; + + if (DN_KEY_LT( h->p[father].key, h->p[son].key ) ) + break ; /* found right position */ + /* son smaller than father, swap and repeat */ + HEAP_SWAP(h->p[son], h->p[father], tmp) ; + SET_OFFSET(h, son); + son = father ; + } + SET_OFFSET(h, son); + return 0 ; +} + +/* + * remove top element from heap, or obj if obj != NULL + */ +static void +heap_extract(struct dn_heap *h, void *obj) +{ + int child, father, max = h->elements - 1 ; + + if (max < 0) { + printf("dummynet: warning, extract from empty heap 0x%p\n", h); + return ; + } + father = 0 ; /* default: move up smallest child */ + if (obj != NULL) { /* extract specific element, index is at offset */ + if (h->offset <= 0) + panic("dummynet: heap_extract from middle not supported on this heap!!!\n"); + father = *((int *)((char *)obj + h->offset)) ; + if (father < 0 || father >= h->elements) { + printf("dummynet: heap_extract, father %d out of bound 0..%d\n", + father, h->elements); + panic("dummynet: heap_extract"); + } + } + RESET_OFFSET(h, father); + child = HEAP_LEFT(father) ; /* left child */ + while (child <= max) { /* valid entry */ + if (child != max && DN_KEY_LT(h->p[child+1].key, h->p[child].key) ) + child = child+1 ; /* take right child, otherwise left */ + h->p[father] = h->p[child] ; + SET_OFFSET(h, father); + father = child ; + child = HEAP_LEFT(child) ; /* left child for next loop */ + } + h->elements-- ; + if (father != max) { + /* + * Fill hole with last entry and bubble up, reusing the insert code + */ + h->p[father] = h->p[max] ; + heap_insert(h, father, NULL); /* this one cannot fail */ + } +} + +#if 0 +/* + * change object position and update references + * XXX this one is never used! + */ +static void +heap_move(struct dn_heap *h, dn_key new_key, void *object) +{ + int temp; + int i ; + int max = h->elements-1 ; + struct dn_heap_entry buf ; + + if (h->offset <= 0) + panic("cannot move items on this heap"); + + i = *((int *)((char *)object + h->offset)); + if (DN_KEY_LT(new_key, h->p[i].key) ) { /* must move up */ + h->p[i].key = new_key ; + for (; i>0 && DN_KEY_LT(new_key, h->p[(temp = HEAP_FATHER(i))].key) ; + i = temp ) { /* bubble up */ + HEAP_SWAP(h->p[i], h->p[temp], buf) ; + SET_OFFSET(h, i); + } + } else { /* must move down */ + h->p[i].key = new_key ; + while ( (temp = HEAP_LEFT(i)) <= max ) { /* found left child */ + if ((temp != max) && DN_KEY_GT(h->p[temp].key, h->p[temp+1].key)) + temp++ ; /* select child with min key */ + if (DN_KEY_GT(new_key, h->p[temp].key)) { /* go down */ + HEAP_SWAP(h->p[i], h->p[temp], buf) ; + SET_OFFSET(h, i); + } else + break ; + i = temp ; + } + } + SET_OFFSET(h, i); +} +#endif /* heap_move, unused */ + +/* + * heapify() will reorganize data inside an array to maintain the + * heap property. It is needed when we delete a bunch of entries. + */ +static void +heapify(struct dn_heap *h) +{ + int i ; + + for (i = 0 ; i < h->elements ; i++ ) + heap_insert(h, i , NULL) ; +} + +/* + * cleanup the heap and free data structure + */ +static void +heap_free(struct dn_heap *h) +{ + if (h->size >0 ) + free(h->p, M_DUMMYNET); + bzero(h, sizeof(*h) ); +} + +/* + * --- end of heap management functions --- + */ + +/* + * Dispose a list of packet. Use an inline functions so if we + * need to free extra state associated to a packet, this is a + * central point to do it. + */ + +static __inline void dn_free_pkts(struct mbuf *mnext) +{ + struct mbuf *m; + + while ((m = mnext) != NULL) { + mnext = m->m_nextpkt; + FREE_PKT(m); + } +} + +/* + * Return the mbuf tag holding the dummynet state. As an optimization + * this is assumed to be the first tag on the list. If this turns out + * wrong we'll need to search the list. + */ +static struct dn_pkt_tag * +dn_tag_get(struct mbuf *m) +{ + struct m_tag *mtag = m_tag_first(m); + KASSERT(mtag != NULL && + mtag->m_tag_cookie == MTAG_ABI_COMPAT && + mtag->m_tag_id == PACKET_TAG_DUMMYNET, + ("packet on dummynet queue w/o dummynet tag!")); + return (struct dn_pkt_tag *)(mtag+1); +} + +/* + * Scheduler functions: + * + * transmit_event() is called when the delay-line needs to enter + * the scheduler, either because of existing pkts getting ready, + * or new packets entering the queue. The event handled is the delivery + * time of the packet. + * + * ready_event() does something similar with fixed-rate queues, and the + * event handled is the finish time of the head pkt. + * + * wfq_ready_event() does something similar with WF2Q queues, and the + * event handled is the start time of the head pkt. + * + * In all cases, we make sure that the data structures are consistent + * before passing pkts out, because this might trigger recursive + * invocations of the procedures. + */ +static void +transmit_event(struct dn_pipe *pipe, struct mbuf **head, struct mbuf **tail) +{ + struct mbuf *m; + struct dn_pkt_tag *pkt; + + DUMMYNET_LOCK_ASSERT(); + + while ((m = pipe->head) != NULL) { + pkt = dn_tag_get(m); + if (!DN_KEY_LEQ(pkt->output_time, curr_time)) + break; + + pipe->head = m->m_nextpkt; + if (*tail != NULL) + (*tail)->m_nextpkt = m; + else + *head = m; + *tail = m; + } + if (*tail != NULL) + (*tail)->m_nextpkt = NULL; + + /* If there are leftover packets, put into the heap for next event. */ + if ((m = pipe->head) != NULL) { + pkt = dn_tag_get(m); + /* + * XXX Should check errors on heap_insert, by draining the + * whole pipe p and hoping in the future we are more successful. + */ + heap_insert(&extract_heap, pkt->output_time, pipe); + } +} + +#ifndef __linux__ +#define div64(a, b) ((int64_t)(a) / (int64_t)(b)) +#endif +/* + * Compute how many ticks we have to wait before being able to send + * a packet. This is computed as the "wire time" for the packet + * (length + extra bits), minus the credit available, scaled to ticks. + * Check that the result is not be negative (it could be if we have + * too much leftover credit in q->numbytes). + */ +static inline dn_key +set_ticks(struct mbuf *m, struct dn_flow_queue *q, struct dn_pipe *p) +{ + int64_t ret; + + ret = div64( (m->m_pkthdr.len * 8 + q->extra_bits) * hz + - q->numbytes + p->bandwidth - 1 , p->bandwidth); + if (ret < 0) + ret = 0; + return ret; +} + +/* + * Convert the additional MAC overheads/delays into an equivalent + * number of bits for the given data rate. The samples are in milliseconds + * so we need to divide by 1000. + */ +static dn_key +compute_extra_bits(struct mbuf *pkt, struct dn_pipe *p) +{ + int index; + dn_key extra_bits; + + if (!p->samples || p->samples_no == 0) + return 0; + index = random() % p->samples_no; + extra_bits = div64((dn_key)p->samples[index] * p->bandwidth, 1000); + if (index >= p->loss_level) { + struct dn_pkt_tag *dt = dn_tag_get(pkt); + if (dt) + dt->dn_dir = DIR_DROP; + } + return extra_bits; +} + +static void +free_pipe(struct dn_pipe *p) +{ + if (p->samples) + free(p->samples, M_DUMMYNET); + free(p, M_DUMMYNET); +} + +/* + * extract pkt from queue, compute output time (could be now) + * and put into delay line (p_queue) + */ +static void +move_pkt(struct mbuf *pkt, struct dn_flow_queue *q, struct dn_pipe *p, + int len) +{ + struct dn_pkt_tag *dt = dn_tag_get(pkt); + + q->head = pkt->m_nextpkt ; + q->len-- ; + q->len_bytes -= len ; + + dt->output_time = curr_time + p->delay ; + + if (p->head == NULL) + p->head = pkt; + else + p->tail->m_nextpkt = pkt; + p->tail = pkt; + p->tail->m_nextpkt = NULL; +} + +/* + * ready_event() is invoked every time the queue must enter the + * scheduler, either because the first packet arrives, or because + * a previously scheduled event fired. + * On invokation, drain as many pkts as possible (could be 0) and then + * if there are leftover packets reinsert the pkt in the scheduler. + */ +static void +ready_event(struct dn_flow_queue *q, struct mbuf **head, struct mbuf **tail) +{ + struct mbuf *pkt; + struct dn_pipe *p = q->fs->pipe; + int p_was_empty; + + DUMMYNET_LOCK_ASSERT(); + + if (p == NULL) { + printf("dummynet: ready_event- pipe is gone\n"); + return; + } + p_was_empty = (p->head == NULL); + + /* + * Schedule fixed-rate queues linked to this pipe: + * account for the bw accumulated since last scheduling, then + * drain as many pkts as allowed by q->numbytes and move to + * the delay line (in p) computing output time. + * bandwidth==0 (no limit) means we can drain the whole queue, + * setting len_scaled = 0 does the job. + */ + q->numbytes += (curr_time - q->sched_time) * p->bandwidth; + while ((pkt = q->head) != NULL) { + int len = pkt->m_pkthdr.len; + dn_key len_scaled = p->bandwidth ? len*8*hz + + q->extra_bits*hz + : 0; + + if (DN_KEY_GT(len_scaled, q->numbytes)) + break; + q->numbytes -= len_scaled; + move_pkt(pkt, q, p, len); + if (q->head) + q->extra_bits = compute_extra_bits(q->head, p); + } + /* + * If we have more packets queued, schedule next ready event + * (can only occur when bandwidth != 0, otherwise we would have + * flushed the whole queue in the previous loop). + * To this purpose we record the current time and compute how many + * ticks to go for the finish time of the packet. + */ + if ((pkt = q->head) != NULL) { /* this implies bandwidth != 0 */ + dn_key t = set_ticks(pkt, q, p); /* ticks i have to wait */ + + q->sched_time = curr_time; + heap_insert(&ready_heap, curr_time + t, (void *)q); + /* + * XXX Should check errors on heap_insert, and drain the whole + * queue on error hoping next time we are luckier. + */ + } else /* RED needs to know when the queue becomes empty. */ + q->idle_time = curr_time; + + /* + * If the delay line was empty call transmit_event() now. + * Otherwise, the scheduler will take care of it. + */ + if (p_was_empty) + transmit_event(p, head, tail); +} + +/* + * Called when we can transmit packets on WF2Q queues. Take pkts out of + * the queues at their start time, and enqueue into the delay line. + * Packets are drained until p->numbytes < 0. As long as + * len_scaled >= p->numbytes, the packet goes into the delay line + * with a deadline p->delay. For the last packet, if p->numbytes < 0, + * there is an additional delay. + */ +static void +ready_event_wfq(struct dn_pipe *p, struct mbuf **head, struct mbuf **tail) +{ + int p_was_empty = (p->head == NULL); + struct dn_heap *sch = &(p->scheduler_heap); + struct dn_heap *neh = &(p->not_eligible_heap); + int64_t p_numbytes = p->numbytes; + + /* + * p->numbytes is only 32bits in FBSD7, but we might need 64 bits. + * Use a local variable for the computations, and write back the + * results when done, saturating if needed. + * The local variable has no impact on performance and helps + * reducing diffs between the various branches. + */ + + DUMMYNET_LOCK_ASSERT(); + + if (p->if_name[0] == 0) /* tx clock is simulated */ + p_numbytes += (curr_time - p->sched_time) * p->bandwidth; + else { /* + * tx clock is for real, + * the ifq must be empty or this is a NOP. + */ +#ifdef __linux__ + return; +#else + if (p->ifp && p->ifp->if_snd.ifq_head != NULL) + return; + else { + DPRINTF(("dummynet: pipe %d ready from %s --\n", + p->pipe_nr, p->if_name)); + } +#endif + } + + /* + * While we have backlogged traffic AND credit, we need to do + * something on the queue. + */ + while (p_numbytes >= 0 && (sch->elements > 0 || neh->elements > 0)) { + if (sch->elements > 0) { + /* Have some eligible pkts to send out. */ + struct dn_flow_queue *q = sch->p[0].object; + struct mbuf *pkt = q->head; + struct dn_flow_set *fs = q->fs; + uint64_t len = pkt->m_pkthdr.len; + int len_scaled = p->bandwidth ? len * 8 * hz : 0; + + heap_extract(sch, NULL); /* Remove queue from heap. */ + p_numbytes -= len_scaled; + move_pkt(pkt, q, p, len); + + p->V += div64((len << MY_M), p->sum); /* Update V. */ + q->S = q->F; /* Update start time. */ + if (q->len == 0) { + /* Flow not backlogged any more. */ + fs->backlogged--; + heap_insert(&(p->idle_heap), q->F, q); + } else { + /* Still backlogged. */ + + /* + * Update F and position in backlogged queue, + * then put flow in not_eligible_heap + * (we will fix this later). + */ + len = (q->head)->m_pkthdr.len; + q->F += div64((len << MY_M), fs->weight); + if (DN_KEY_LEQ(q->S, p->V)) + heap_insert(neh, q->S, q); + else + heap_insert(sch, q->F, q); + } + } + /* + * Now compute V = max(V, min(S_i)). Remember that all elements + * in sch have by definition S_i <= V so if sch is not empty, + * V is surely the max and we must not update it. Conversely, + * if sch is empty we only need to look at neh. + */ + if (sch->elements == 0 && neh->elements > 0) + p->V = MAX64(p->V, neh->p[0].key); + /* Move from neh to sch any packets that have become eligible */ + while (neh->elements > 0 && DN_KEY_LEQ(neh->p[0].key, p->V)) { + struct dn_flow_queue *q = neh->p[0].object; + heap_extract(neh, NULL); + heap_insert(sch, q->F, q); + } + + if (p->if_name[0] != '\0') { /* Tx clock is from a real thing */ + p_numbytes = -1; /* Mark not ready for I/O. */ + break; + } + } + if (sch->elements == 0 && neh->elements == 0 && p_numbytes >= 0) { + p->idle_time = curr_time; + /* + * No traffic and no events scheduled. + * We can get rid of idle-heap. + */ + if (p->idle_heap.elements > 0) { + int i; + + for (i = 0; i < p->idle_heap.elements; i++) { + struct dn_flow_queue *q; + + q = p->idle_heap.p[i].object; + q->F = 0; + q->S = q->F + 1; + } + p->sum = 0; + p->V = 0; + p->idle_heap.elements = 0; + } + } + /* + * If we are getting clocks from dummynet (not a real interface) and + * If we are under credit, schedule the next ready event. + * Also fix the delivery time of the last packet. + */ + if (p->if_name[0]==0 && p_numbytes < 0) { /* This implies bw > 0. */ + dn_key t = 0; /* Number of ticks i have to wait. */ + + if (p->bandwidth > 0) + t = div64(p->bandwidth - 1 - p_numbytes, p->bandwidth); + dn_tag_get(p->tail)->output_time += t; + p->sched_time = curr_time; + heap_insert(&wfq_ready_heap, curr_time + t, (void *)p); + /* + * XXX Should check errors on heap_insert, and drain the whole + * queue on error hoping next time we are luckier. + */ + } + + /* Write back p_numbytes (adjust 64->32bit if necessary). */ + p->numbytes = p_numbytes; + + /* + * If the delay line was empty call transmit_event() now. + * Otherwise, the scheduler will take care of it. + */ + if (p_was_empty) + transmit_event(p, head, tail); +} + +/* + * This is called one tick, after previous run. It is used to + * schedule next run. + */ +static void +dummynet(void * __unused unused) +{ + + taskqueue_enqueue(dn_tq, &dn_task); +} + +/* + * The main dummynet processing function. + */ +static void +dummynet_task(void *context, int pending) +{ + struct mbuf *head = NULL, *tail = NULL; + struct dn_pipe *pipe; + struct dn_heap *heaps[3]; + struct dn_heap *h; + void *p; /* generic parameter to handler */ + int i; + + DUMMYNET_LOCK(); + + heaps[0] = &ready_heap; /* fixed-rate queues */ + heaps[1] = &wfq_ready_heap; /* wfq queues */ + heaps[2] = &extract_heap; /* delay line */ + + /* Update number of lost(coalesced) ticks. */ + tick_lost += pending - 1; + + getmicrouptime(&t); + /* Last tick duration (usec). */ + tick_last = (t.tv_sec - prev_t.tv_sec) * 1000000 + + (t.tv_usec - prev_t.tv_usec); + /* Last tick vs standard tick difference (usec). */ + tick_delta = (tick_last * hz - 1000000) / hz; + /* Accumulated tick difference (usec). */ + tick_delta_sum += tick_delta; + + prev_t = t; + + /* + * Adjust curr_time if accumulated tick difference greater than + * 'standard' tick. Since curr_time should be monotonically increasing, + * we do positive adjustment as required and throttle curr_time in + * case of negative adjustment. + */ + curr_time++; + if (tick_delta_sum - tick >= 0) { + int diff = tick_delta_sum / tick; + + curr_time += diff; + tick_diff += diff; + tick_delta_sum %= tick; + tick_adjustment++; + } else if (tick_delta_sum + tick <= 0) { + curr_time--; + tick_diff--; + tick_delta_sum += tick; + tick_adjustment++; + } + + for (i = 0; i < 3; i++) { + h = heaps[i]; + while (h->elements > 0 && DN_KEY_LEQ(h->p[0].key, curr_time)) { + if (h->p[0].key > curr_time) + printf("dummynet: warning, " + "heap %d is %d ticks late\n", + i, (int)(curr_time - h->p[0].key)); + /* store a copy before heap_extract */ + p = h->p[0].object; + /* need to extract before processing */ + heap_extract(h, NULL); + if (i == 0) + ready_event(p, &head, &tail); + else if (i == 1) { + struct dn_pipe *pipe = p; + if (pipe->if_name[0] != '\0') + printf("dummynet: bad ready_event_wfq " + "for pipe %s\n", pipe->if_name); + else + ready_event_wfq(p, &head, &tail); + } else + transmit_event(p, &head, &tail); + } + } + + /* Sweep pipes trying to expire idle flow_queues. */ + for (i = 0; i < HASHSIZE; i++) { + SLIST_FOREACH(pipe, &pipehash[i], next) { + if (pipe->idle_heap.elements > 0 && + DN_KEY_LT(pipe->idle_heap.p[0].key, pipe->V)) { + struct dn_flow_queue *q = + pipe->idle_heap.p[0].object; + + heap_extract(&(pipe->idle_heap), NULL); + /* Mark timestamp as invalid. */ + q->S = q->F + 1; + pipe->sum -= q->fs->weight; + } + } + } + + DUMMYNET_UNLOCK(); + + if (head != NULL) + dummynet_send(head); + + callout_reset(&dn_timeout, 1, dummynet, NULL); +} + +static void +dummynet_send(struct mbuf *m) +{ + struct mbuf *n; + + for (; m != NULL; m = n) { + struct ifnet *ifp = NULL; + int dst; + struct m_tag *tag; + + n = m->m_nextpkt; + m->m_nextpkt = NULL; + tag = m_tag_first(m); + if (tag == NULL) { + dst = DIR_DROP; + } else { + struct dn_pkt_tag *pkt = dn_tag_get(m); + /* extract the dummynet info, rename the tag */ + dst = pkt->dn_dir; + ifp = pkt->ifp; + /* rename the tag so it carries reinject info */ + tag->m_tag_cookie = MTAG_IPFW_RULE; + tag->m_tag_id = 0; + } + + switch (dst) { + case DIR_OUT: + SET_HOST_IPLEN(mtod(m, struct ip *)); + ip_output(m, NULL, NULL, IP_FORWARDING, NULL, NULL); + break ; + case DIR_IN : + /* put header in network format for ip_input() */ + //SET_NET_IPLEN(mtod(m, struct ip *)); + netisr_dispatch(NETISR_IP, m); + break; +#ifdef INET6 + case DIR_IN | PROTO_IPV6: + netisr_dispatch(NETISR_IPV6, m); + break; + + case DIR_OUT | PROTO_IPV6: + SET_HOST_IPLEN(mtod(m, struct ip *)); + ip6_output(m, NULL, NULL, IPV6_FORWARDING, NULL, NULL, NULL); + break; +#endif + case DIR_FWD | PROTO_IFB: /* DN_TO_IFB_FWD: */ + if (bridge_dn_p != NULL) + ((*bridge_dn_p)(m, ifp)); + else + printf("dummynet: if_bridge not loaded\n"); + + break; + case DIR_IN | PROTO_LAYER2: /* DN_TO_ETH_DEMUX: */ + /* + * The Ethernet code assumes the Ethernet header is + * contiguous in the first mbuf header. + * Insure this is true. + */ + if (m->m_len < ETHER_HDR_LEN && + (m = m_pullup(m, ETHER_HDR_LEN)) == NULL) { + printf("dummynet/ether: pullup failed, " + "dropping packet\n"); + break; + } + ether_demux(m->m_pkthdr.rcvif, m); + break; + case DIR_OUT | PROTO_LAYER2: /* N_TO_ETH_OUT: */ + ether_output_frame(ifp, m); + break; + + case DIR_DROP: + /* drop the packet after some time */ + FREE_PKT(m); + break; + + default: + printf("dummynet: bad switch %d!\n", dst); + FREE_PKT(m); + break; + } + } +} + +/* + * Unconditionally expire empty queues in case of shortage. + * Returns the number of queues freed. + */ +static int +expire_queues(struct dn_flow_set *fs) +{ + struct dn_flow_queue *q, *prev ; + int i, initial_elements = fs->rq_elements ; + + if (fs->last_expired == time_uptime) + return 0 ; + fs->last_expired = time_uptime ; + for (i = 0 ; i <= fs->rq_size ; i++) { /* last one is overflow */ + for (prev=NULL, q = fs->rq[i] ; q != NULL ; ) { + if (!QUEUE_IS_IDLE(q)) { + prev = q ; + q = q->next ; + } else { /* entry is idle, expire it */ + struct dn_flow_queue *old_q = q ; + + if (prev != NULL) + prev->next = q = q->next ; + else + fs->rq[i] = q = q->next ; + fs->rq_elements-- ; + free(old_q, M_DUMMYNET); + } + } + } + return initial_elements - fs->rq_elements ; +} + +/* + * If room, create a new queue and put at head of slot i; + * otherwise, create or use the default queue. + */ +static struct dn_flow_queue * +create_queue(struct dn_flow_set *fs, int i) +{ + struct dn_flow_queue *q; + + if (fs->rq_elements > fs->rq_size * dn_max_ratio && + expire_queues(fs) == 0) { + /* No way to get room, use or create overflow queue. */ + i = fs->rq_size; + if (fs->rq[i] != NULL) + return fs->rq[i]; + } + q = malloc(sizeof(*q), M_DUMMYNET, M_NOWAIT | M_ZERO); + if (q == NULL) { + printf("dummynet: sorry, cannot allocate queue for new flow\n"); + return (NULL); + } + q->fs = fs; + q->hash_slot = i; + q->next = fs->rq[i]; + q->S = q->F + 1; /* hack - mark timestamp as invalid. */ + q->numbytes = fs->pipe->burst + (io_fast ? fs->pipe->bandwidth : 0); + fs->rq[i] = q; + fs->rq_elements++; + return (q); +} + +/* + * Given a flow_set and a pkt in last_pkt, find a matching queue + * after appropriate masking. The queue is moved to front + * so that further searches take less time. + */ +static struct dn_flow_queue * +find_queue(struct dn_flow_set *fs, struct ipfw_flow_id *id) +{ + int i = 0 ; /* we need i and q for new allocations */ + struct dn_flow_queue *q, *prev; + int is_v6 = IS_IP6_FLOW_ID(id); + + if ( !(fs->flags_fs & DN_HAVE_FLOW_MASK) ) + q = fs->rq[0] ; + else { + /* first, do the masking, then hash */ + id->dst_port &= fs->flow_mask.dst_port ; + id->src_port &= fs->flow_mask.src_port ; + id->proto &= fs->flow_mask.proto ; + id->flags = 0 ; /* we don't care about this one */ + if (is_v6) { + APPLY_MASK(&id->dst_ip6, &fs->flow_mask.dst_ip6); + APPLY_MASK(&id->src_ip6, &fs->flow_mask.src_ip6); + id->flow_id6 &= fs->flow_mask.flow_id6; + + i = ((id->dst_ip6.__u6_addr.__u6_addr32[0]) & 0xffff)^ + ((id->dst_ip6.__u6_addr.__u6_addr32[1]) & 0xffff)^ + ((id->dst_ip6.__u6_addr.__u6_addr32[2]) & 0xffff)^ + ((id->dst_ip6.__u6_addr.__u6_addr32[3]) & 0xffff)^ + + ((id->dst_ip6.__u6_addr.__u6_addr32[0] >> 15) & 0xffff)^ + ((id->dst_ip6.__u6_addr.__u6_addr32[1] >> 15) & 0xffff)^ + ((id->dst_ip6.__u6_addr.__u6_addr32[2] >> 15) & 0xffff)^ + ((id->dst_ip6.__u6_addr.__u6_addr32[3] >> 15) & 0xffff)^ + + ((id->src_ip6.__u6_addr.__u6_addr32[0] << 1) & 0xfffff)^ + ((id->src_ip6.__u6_addr.__u6_addr32[1] << 1) & 0xfffff)^ + ((id->src_ip6.__u6_addr.__u6_addr32[2] << 1) & 0xfffff)^ + ((id->src_ip6.__u6_addr.__u6_addr32[3] << 1) & 0xfffff)^ + + ((id->src_ip6.__u6_addr.__u6_addr32[0] << 16) & 0xffff)^ + ((id->src_ip6.__u6_addr.__u6_addr32[1] << 16) & 0xffff)^ + ((id->src_ip6.__u6_addr.__u6_addr32[2] << 16) & 0xffff)^ + ((id->src_ip6.__u6_addr.__u6_addr32[3] << 16) & 0xffff)^ + + (id->dst_port << 1) ^ (id->src_port) ^ + (id->proto ) ^ + (id->flow_id6); + } else { + id->dst_ip &= fs->flow_mask.dst_ip ; + id->src_ip &= fs->flow_mask.src_ip ; + + i = ( (id->dst_ip) & 0xffff ) ^ + ( (id->dst_ip >> 15) & 0xffff ) ^ + ( (id->src_ip << 1) & 0xffff ) ^ + ( (id->src_ip >> 16 ) & 0xffff ) ^ + (id->dst_port << 1) ^ (id->src_port) ^ + (id->proto ); + } + i = i % fs->rq_size ; + /* finally, scan the current list for a match */ + searches++ ; + for (prev=NULL, q = fs->rq[i] ; q ; ) { + search_steps++; + if (is_v6 && + IN6_ARE_ADDR_EQUAL(&id->dst_ip6,&q->id.dst_ip6) && + IN6_ARE_ADDR_EQUAL(&id->src_ip6,&q->id.src_ip6) && + id->dst_port == q->id.dst_port && + id->src_port == q->id.src_port && + id->proto == q->id.proto && + id->flags == q->id.flags && + id->flow_id6 == q->id.flow_id6) + break ; /* found */ + + if (!is_v6 && id->dst_ip == q->id.dst_ip && + id->src_ip == q->id.src_ip && + id->dst_port == q->id.dst_port && + id->src_port == q->id.src_port && + id->proto == q->id.proto && + id->flags == q->id.flags) + break ; /* found */ + + /* No match. Check if we can expire the entry */ + if (pipe_expire && QUEUE_IS_IDLE(q)) { + /* entry is idle and not in any heap, expire it */ + struct dn_flow_queue *old_q = q ; + + if (prev != NULL) + prev->next = q = q->next ; + else + fs->rq[i] = q = q->next ; + fs->rq_elements-- ; + free(old_q, M_DUMMYNET); + continue ; + } + prev = q ; + q = q->next ; + } + if (q && prev != NULL) { /* found and not in front */ + prev->next = q->next ; + q->next = fs->rq[i] ; + fs->rq[i] = q ; + } + } + if (q == NULL) { /* no match, need to allocate a new entry */ + q = create_queue(fs, i); + if (q != NULL) + q->id = *id ; + } + return q ; +} + +static int +red_drops(struct dn_flow_set *fs, struct dn_flow_queue *q, int len) +{ + /* + * RED algorithm + * + * RED calculates the average queue size (avg) using a low-pass filter + * with an exponential weighted (w_q) moving average: + * avg <- (1-w_q) * avg + w_q * q_size + * where q_size is the queue length (measured in bytes or * packets). + * + * If q_size == 0, we compute the idle time for the link, and set + * avg = (1 - w_q)^(idle/s) + * where s is the time needed for transmitting a medium-sized packet. + * + * Now, if avg < min_th the packet is enqueued. + * If avg > max_th the packet is dropped. Otherwise, the packet is + * dropped with probability P function of avg. + */ + + int64_t p_b = 0; + + /* Queue in bytes or packets? */ + u_int q_size = (fs->flags_fs & DN_QSIZE_IS_BYTES) ? + q->len_bytes : q->len; + + DPRINTF(("\ndummynet: %d q: %2u ", (int)curr_time, q_size)); + + /* Average queue size estimation. */ + if (q_size != 0) { + /* Queue is not empty, avg <- avg + (q_size - avg) * w_q */ + int diff = SCALE(q_size) - q->avg; + int64_t v = SCALE_MUL((int64_t)diff, (int64_t)fs->w_q); + + q->avg += (int)v; + } else { + /* + * Queue is empty, find for how long the queue has been + * empty and use a lookup table for computing + * (1 - * w_q)^(idle_time/s) where s is the time to send a + * (small) packet. + * XXX check wraps... + */ + if (q->avg) { + u_int t = div64(curr_time - q->idle_time, + fs->lookup_step); + + q->avg = (t < fs->lookup_depth) ? + SCALE_MUL(q->avg, fs->w_q_lookup[t]) : 0; + } + } + DPRINTF(("dummynet: avg: %u ", SCALE_VAL(q->avg))); + + /* Should i drop? */ + if (q->avg < fs->min_th) { + q->count = -1; + return (0); /* accept packet */ + } + if (q->avg >= fs->max_th) { /* average queue >= max threshold */ + if (fs->flags_fs & DN_IS_GENTLE_RED) { + /* + * According to Gentle-RED, if avg is greater than + * max_th the packet is dropped with a probability + * p_b = c_3 * avg - c_4 + * where c_3 = (1 - max_p) / max_th + * c_4 = 1 - 2 * max_p + */ + p_b = SCALE_MUL((int64_t)fs->c_3, (int64_t)q->avg) - + fs->c_4; + } else { + q->count = -1; + DPRINTF(("dummynet: - drop")); + return (1); + } + } else if (q->avg > fs->min_th) { + /* + * We compute p_b using the linear dropping function + * p_b = c_1 * avg - c_2 + * where c_1 = max_p / (max_th - min_th) + * c_2 = max_p * min_th / (max_th - min_th) + */ + p_b = SCALE_MUL((int64_t)fs->c_1, (int64_t)q->avg) - fs->c_2; + } + + if (fs->flags_fs & DN_QSIZE_IS_BYTES) + p_b = div64(p_b * len, fs->max_pkt_size); + if (++q->count == 0) + q->random = random() & 0xffff; + else { + /* + * q->count counts packets arrived since last drop, so a greater + * value of q->count means a greater packet drop probability. + */ + if (SCALE_MUL(p_b, SCALE((int64_t)q->count)) > q->random) { + q->count = 0; + DPRINTF(("dummynet: - red drop")); + /* After a drop we calculate a new random value. */ + q->random = random() & 0xffff; + return (1); /* drop */ + } + } + /* End of RED algorithm. */ + + return (0); /* accept */ +} + +static __inline struct dn_flow_set * +locate_flowset(int fs_nr) +{ + struct dn_flow_set *fs; + + SLIST_FOREACH(fs, &flowsethash[HASH(fs_nr)], next) + if (fs->fs_nr == fs_nr) + return (fs); + + return (NULL); +} + +static __inline struct dn_pipe * +locate_pipe(int pipe_nr) +{ + struct dn_pipe *pipe; + + SLIST_FOREACH(pipe, &pipehash[HASH(pipe_nr)], next) + if (pipe->pipe_nr == pipe_nr) + return (pipe); + + return (NULL); +} + +/* + * dummynet hook for packets. Below 'pipe' is a pipe or a queue + * depending on whether WF2Q or fixed bw is used. + * + * pipe_nr pipe or queue the packet is destined for. + * dir where shall we send the packet after dummynet. + * m the mbuf with the packet + * ifp the 'ifp' parameter from the caller. + * NULL in ip_input, destination interface in ip_output, + * rule matching rule, in case of multiple passes + */ +static int +dummynet_io(struct mbuf **m0, int dir, struct ip_fw_args *fwa) +{ + struct mbuf *m = *m0, *head = NULL, *tail = NULL; + struct dn_pkt_tag *pkt; + struct m_tag *mtag; + struct dn_flow_set *fs = NULL; + struct dn_pipe *pipe; + uint64_t len = m->m_pkthdr.len; + struct dn_flow_queue *q = NULL; + int is_pipe = fwa->rule.info & IPFW_IS_PIPE; + + KASSERT(m->m_nextpkt == NULL, + ("dummynet_io: mbuf queue passed to dummynet")); + + DUMMYNET_LOCK(); + io_pkt++; + /* + * This is a dummynet rule, so we expect an O_PIPE or O_QUEUE rule. + */ + if (is_pipe) { + pipe = locate_pipe(fwa->rule.info & IPFW_INFO_MASK); + if (pipe != NULL) + fs = &(pipe->fs); + } else + fs = locate_flowset(fwa->rule.info & IPFW_INFO_MASK); + + if (fs == NULL) + goto dropit; /* This queue/pipe does not exist! */ + pipe = fs->pipe; + if (pipe == NULL) { /* Must be a queue, try find a matching pipe. */ + pipe = locate_pipe(fs->parent_nr); + if (pipe != NULL) + fs->pipe = pipe; + else { + printf("dummynet: no pipe %d for queue %d, drop pkt\n", + fs->parent_nr, fs->fs_nr); + goto dropit; + } + } + q = find_queue(fs, &(fwa->f_id)); + if (q == NULL) + goto dropit; /* Cannot allocate queue. */ + + /* Update statistics, then check reasons to drop pkt. */ + q->tot_bytes += len; + q->tot_pkts++; + if (fs->plr && random() < fs->plr) + goto dropit; /* Random pkt drop. */ + if (fs->flags_fs & DN_QSIZE_IS_BYTES) { + if (q->len_bytes > fs->qsize) + goto dropit; /* Queue size overflow. */ + } else { + if (q->len >= fs->qsize) + goto dropit; /* Queue count overflow. */ + } + if (fs->flags_fs & DN_IS_RED && red_drops(fs, q, len)) + goto dropit; + + /* XXX expensive to zero, see if we can remove it. */ + mtag = m_tag_get(PACKET_TAG_DUMMYNET, + sizeof(struct dn_pkt_tag), M_NOWAIT | M_ZERO); + if (mtag == NULL) + goto dropit; /* Cannot allocate packet header. */ + m_tag_prepend(m, mtag); /* Attach to mbuf chain. */ + + pkt = (struct dn_pkt_tag *)(mtag + 1); + /* + * Ok, i can handle the pkt now... + * Build and enqueue packet + parameters. + */ + pkt->rule = fwa->rule; + pkt->rule.info &= IPFW_ONEPASS; /* only keep this info */ + pkt->dn_dir = dir; + pkt->ifp = fwa->oif; + + if (q->head == NULL) + q->head = m; + else + q->tail->m_nextpkt = m; + q->tail = m; + q->len++; + q->len_bytes += len; + + if (q->head != m) /* Flow was not idle, we are done. */ + goto done; + + if (is_pipe) { /* Fixed rate queues. */ + if (q->idle_time < curr_time) { + /* Calculate available burst size. */ + q->numbytes += + (curr_time - q->idle_time - 1) * pipe->bandwidth; + if (q->numbytes > pipe->burst) + q->numbytes = pipe->burst; + if (io_fast) + q->numbytes += pipe->bandwidth; + } + } else { /* WF2Q. */ + if (pipe->idle_time < curr_time && + pipe->scheduler_heap.elements == 0 && + pipe->not_eligible_heap.elements == 0) { + /* Calculate available burst size. */ + pipe->numbytes += + (curr_time - pipe->idle_time - 1) * pipe->bandwidth; + if (pipe->numbytes > 0 && pipe->numbytes > pipe->burst) + pipe->numbytes = pipe->burst; + if (io_fast) + pipe->numbytes += pipe->bandwidth; + } + pipe->idle_time = curr_time; + } + /* Necessary for both: fixed rate & WF2Q queues. */ + q->idle_time = curr_time; + + /* + * If we reach this point the flow was previously idle, so we need + * to schedule it. This involves different actions for fixed-rate or + * WF2Q queues. + */ + if (is_pipe) { + /* Fixed-rate queue: just insert into the ready_heap. */ + dn_key t = 0; + + if (pipe->bandwidth) { + q->extra_bits = compute_extra_bits(m, pipe); + t = set_ticks(m, q, pipe); + } + q->sched_time = curr_time; + if (t == 0) /* Must process it now. */ + ready_event(q, &head, &tail); + else + heap_insert(&ready_heap, curr_time + t , q); + } else { + /* + * WF2Q. First, compute start time S: if the flow was + * idle (S = F + 1) set S to the virtual time V for the + * controlling pipe, and update the sum of weights for the pipe; + * otherwise, remove flow from idle_heap and set S to max(F,V). + * Second, compute finish time F = S + len / weight. + * Third, if pipe was idle, update V = max(S, V). + * Fourth, count one more backlogged flow. + */ + if (DN_KEY_GT(q->S, q->F)) { /* Means timestamps are invalid. */ + q->S = pipe->V; + pipe->sum += fs->weight; /* Add weight of new queue. */ + } else { + heap_extract(&(pipe->idle_heap), q); + q->S = MAX64(q->F, pipe->V); + } + q->F = q->S + div64(len << MY_M, fs->weight); + + if (pipe->not_eligible_heap.elements == 0 && + pipe->scheduler_heap.elements == 0) + pipe->V = MAX64(q->S, pipe->V); + fs->backlogged++; + /* + * Look at eligibility. A flow is not eligibile if S>V (when + * this happens, it means that there is some other flow already + * scheduled for the same pipe, so the scheduler_heap cannot be + * empty). If the flow is not eligible we just store it in the + * not_eligible_heap. Otherwise, we store in the scheduler_heap + * and possibly invoke ready_event_wfq() right now if there is + * leftover credit. + * Note that for all flows in scheduler_heap (SCH), S_i <= V, + * and for all flows in not_eligible_heap (NEH), S_i > V. + * So when we need to compute max(V, min(S_i)) forall i in + * SCH+NEH, we only need to look into NEH. + */ + if (DN_KEY_GT(q->S, pipe->V)) { /* Not eligible. */ + if (pipe->scheduler_heap.elements == 0) + printf("dummynet: ++ ouch! not eligible but empty scheduler!\n"); + heap_insert(&(pipe->not_eligible_heap), q->S, q); + } else { + heap_insert(&(pipe->scheduler_heap), q->F, q); + if (pipe->numbytes >= 0) { /* Pipe is idle. */ + if (pipe->scheduler_heap.elements != 1) + printf("dummynet: OUCH! pipe should have been idle!\n"); + DPRINTF(("dummynet: waking up pipe %d at %d\n", + pipe->pipe_nr, (int)(q->F >> MY_M))); + pipe->sched_time = curr_time; + ready_event_wfq(pipe, &head, &tail); + } + } + } +done: + if (head == m && (dir & PROTO_LAYER2) == 0 ) { + /* Fast io. */ + io_pkt_fast++; + if (m->m_nextpkt != NULL) + printf("dummynet: fast io: pkt chain detected!\n"); + head = m->m_nextpkt = NULL; + } else + *m0 = NULL; /* Normal io. */ + + DUMMYNET_UNLOCK(); + if (head != NULL) + dummynet_send(head); + return (0); + +dropit: + io_pkt_drop++; + if (q) + q->drops++; + DUMMYNET_UNLOCK(); + FREE_PKT(m); + *m0 = NULL; + return ((fs && (fs->flags_fs & DN_NOERROR)) ? 0 : ENOBUFS); +} + +/* + * Dispose all packets and flow_queues on a flow_set. + * If all=1, also remove red lookup table and other storage, + * including the descriptor itself. + * For the one in dn_pipe MUST also cleanup ready_heap... + */ +static void +purge_flow_set(struct dn_flow_set *fs, int all) +{ + struct dn_flow_queue *q, *qn; + int i; + + DUMMYNET_LOCK_ASSERT(); + + for (i = 0; i <= fs->rq_size; i++) { + for (q = fs->rq[i]; q != NULL; q = qn) { + dn_free_pkts(q->head); + qn = q->next; + free(q, M_DUMMYNET); + } + fs->rq[i] = NULL; + } + + fs->rq_elements = 0; + if (all) { + /* RED - free lookup table. */ + if (fs->w_q_lookup != NULL) + free(fs->w_q_lookup, M_DUMMYNET); + if (fs->rq != NULL) + free(fs->rq, M_DUMMYNET); + /* If this fs is not part of a pipe, free it. */ + if (fs->pipe == NULL || fs != &(fs->pipe->fs)) + free(fs, M_DUMMYNET); + } +} + +/* + * Dispose all packets queued on a pipe (not a flow_set). + * Also free all resources associated to a pipe, which is about + * to be deleted. + */ +static void +purge_pipe(struct dn_pipe *pipe) +{ + + purge_flow_set( &(pipe->fs), 1 ); + + dn_free_pkts(pipe->head); + + heap_free( &(pipe->scheduler_heap) ); + heap_free( &(pipe->not_eligible_heap) ); + heap_free( &(pipe->idle_heap) ); +} + +/* + * Delete all pipes and heaps returning memory. Must also + * remove references from all ipfw rules to all pipes. + */ +static void +dummynet_flush(void) +{ + struct dn_pipe *pipe, *pipe1; + struct dn_flow_set *fs, *fs1; + int i; + + DUMMYNET_LOCK(); + /* Free heaps so we don't have unwanted events. */ + heap_free(&ready_heap); + heap_free(&wfq_ready_heap); + heap_free(&extract_heap); + + /* + * Now purge all queued pkts and delete all pipes. + * + * XXXGL: can we merge the for(;;) cycles into one or not? + */ + for (i = 0; i < HASHSIZE; i++) + SLIST_FOREACH_SAFE(fs, &flowsethash[i], next, fs1) { + SLIST_REMOVE(&flowsethash[i], fs, dn_flow_set, next); + purge_flow_set(fs, 1); + } + for (i = 0; i < HASHSIZE; i++) + SLIST_FOREACH_SAFE(pipe, &pipehash[i], next, pipe1) { + SLIST_REMOVE(&pipehash[i], pipe, dn_pipe, next); + purge_pipe(pipe); + free_pipe(pipe); + } + DUMMYNET_UNLOCK(); +} + +/* + * setup RED parameters + */ +static int +config_red(struct dn_flow_set *p, struct dn_flow_set *x) +{ + int i; + + x->w_q = p->w_q; + x->min_th = SCALE(p->min_th); + x->max_th = SCALE(p->max_th); + x->max_p = p->max_p; + + x->c_1 = p->max_p / (p->max_th - p->min_th); + x->c_2 = SCALE_MUL(x->c_1, SCALE(p->min_th)); + + if (x->flags_fs & DN_IS_GENTLE_RED) { + x->c_3 = (SCALE(1) - p->max_p) / p->max_th; + x->c_4 = SCALE(1) - 2 * p->max_p; + } + + /* If the lookup table already exist, free and create it again. */ + if (x->w_q_lookup) { + free(x->w_q_lookup, M_DUMMYNET); + x->w_q_lookup = NULL; + } + if (red_lookup_depth == 0) { + printf("\ndummynet: net.inet.ip.dummynet.red_lookup_depth" + "must be > 0\n"); + free(x, M_DUMMYNET); + return (EINVAL); + } + x->lookup_depth = red_lookup_depth; + x->w_q_lookup = (u_int *)malloc(x->lookup_depth * sizeof(int), + M_DUMMYNET, M_NOWAIT); + if (x->w_q_lookup == NULL) { + printf("dummynet: sorry, cannot allocate red lookup table\n"); + free(x, M_DUMMYNET); + return(ENOSPC); + } + + /* Fill the lookup table with (1 - w_q)^x */ + x->lookup_step = p->lookup_step; + x->lookup_weight = p->lookup_weight; + x->w_q_lookup[0] = SCALE(1) - x->w_q; + + for (i = 1; i < x->lookup_depth; i++) + x->w_q_lookup[i] = + SCALE_MUL(x->w_q_lookup[i - 1], x->lookup_weight); + + if (red_avg_pkt_size < 1) + red_avg_pkt_size = 512; + x->avg_pkt_size = red_avg_pkt_size; + if (red_max_pkt_size < 1) + red_max_pkt_size = 1500; + x->max_pkt_size = red_max_pkt_size; + return (0); +} + +static int +alloc_hash(struct dn_flow_set *x, struct dn_flow_set *pfs) +{ + if (x->flags_fs & DN_HAVE_FLOW_MASK) { /* allocate some slots */ + int l = pfs->rq_size; + + if (l == 0) + l = dn_hash_size; + if (l < 4) + l = 4; + else if (l > DN_MAX_HASH_SIZE) + l = DN_MAX_HASH_SIZE; + x->rq_size = l; + } else /* one is enough for null mask */ + x->rq_size = 1; + x->rq = malloc((1 + x->rq_size) * sizeof(struct dn_flow_queue *), + M_DUMMYNET, M_NOWAIT | M_ZERO); + if (x->rq == NULL) { + printf("dummynet: sorry, cannot allocate queue\n"); + return (ENOMEM); + } + x->rq_elements = 0; + return 0 ; +} + +static void +set_fs_parms(struct dn_flow_set *x, struct dn_flow_set *src) +{ + x->flags_fs = src->flags_fs; + x->qsize = src->qsize; + x->plr = src->plr; + x->flow_mask = src->flow_mask; + if (x->flags_fs & DN_QSIZE_IS_BYTES) { + if (x->qsize > pipe_byte_limit) + x->qsize = 1024 * 1024; + } else { + if (x->qsize == 0) + x->qsize = 50; + if (x->qsize > pipe_slot_limit) + x->qsize = 50; + } + /* Configuring RED. */ + if (x->flags_fs & DN_IS_RED) + config_red(src, x); /* XXX should check errors */ +} + +/* + * Setup pipe or queue parameters. + */ +static int +config_pipe(struct dn_pipe *p) +{ + struct dn_flow_set *pfs = &(p->fs); + struct dn_flow_queue *q; + int i, error; + + /* + * The config program passes parameters as follows: + * bw = bits/second (0 means no limits), + * delay = ms, must be translated into ticks. + * qsize = slots/bytes + */ + p->delay = (p->delay * hz) / 1000; + /* Scale burst size: bytes -> bits * hz */ + p->burst *= 8 * hz; + /* We need either a pipe number or a flow_set number. */ + if (p->pipe_nr == 0 && pfs->fs_nr == 0) + return (EINVAL); + if (p->pipe_nr != 0 && pfs->fs_nr != 0) + return (EINVAL); + if (p->pipe_nr != 0) { /* this is a pipe */ + struct dn_pipe *pipe; + + DUMMYNET_LOCK(); + pipe = locate_pipe(p->pipe_nr); /* locate pipe */ + + if (pipe == NULL) { /* new pipe */ + pipe = malloc(sizeof(struct dn_pipe), M_DUMMYNET, + M_NOWAIT | M_ZERO); + if (pipe == NULL) { + DUMMYNET_UNLOCK(); + printf("dummynet: no memory for new pipe\n"); + return (ENOMEM); + } + pipe->pipe_nr = p->pipe_nr; + pipe->fs.pipe = pipe; + /* + * idle_heap is the only one from which + * we extract from the middle. + */ + pipe->idle_heap.size = pipe->idle_heap.elements = 0; + pipe->idle_heap.offset = + offsetof(struct dn_flow_queue, heap_pos); + } else { + /* Flush accumulated credit for all queues. */ + for (i = 0; i <= pipe->fs.rq_size; i++) { + for (q = pipe->fs.rq[i]; q; q = q->next) { + q->numbytes = p->burst + + (io_fast ? p->bandwidth : 0); + } + } + } + + pipe->bandwidth = p->bandwidth; + pipe->burst = p->burst; + pipe->numbytes = pipe->burst + (io_fast ? pipe->bandwidth : 0); + bcopy(p->if_name, pipe->if_name, sizeof(p->if_name)); + pipe->ifp = NULL; /* reset interface ptr */ + pipe->delay = p->delay; + set_fs_parms(&(pipe->fs), pfs); + + /* Handle changes in the delay profile. */ + if (p->samples_no > 0) { + if (pipe->samples_no != p->samples_no) { + if (pipe->samples != NULL) + free(pipe->samples, M_DUMMYNET); + pipe->samples = + malloc(p->samples_no*sizeof(dn_key), + M_DUMMYNET, M_NOWAIT | M_ZERO); + if (pipe->samples == NULL) { + DUMMYNET_UNLOCK(); + printf("dummynet: no memory " + "for new samples\n"); + return (ENOMEM); + } + pipe->samples_no = p->samples_no; + } + + strncpy(pipe->name,p->name,sizeof(pipe->name)); + pipe->loss_level = p->loss_level; + for (i = 0; isamples_no; ++i) + pipe->samples[i] = p->samples[i]; + } else if (pipe->samples != NULL) { + free(pipe->samples, M_DUMMYNET); + pipe->samples = NULL; + pipe->samples_no = 0; + } + + if (pipe->fs.rq == NULL) { /* a new pipe */ + error = alloc_hash(&(pipe->fs), pfs); + if (error) { + DUMMYNET_UNLOCK(); + free_pipe(pipe); + return (error); + } + SLIST_INSERT_HEAD(&pipehash[HASH(pipe->pipe_nr)], + pipe, next); + } + DUMMYNET_UNLOCK(); + } else { /* config queue */ + struct dn_flow_set *fs; + + DUMMYNET_LOCK(); + fs = locate_flowset(pfs->fs_nr); /* locate flow_set */ + + if (fs == NULL) { /* new */ + if (pfs->parent_nr == 0) { /* need link to a pipe */ + DUMMYNET_UNLOCK(); + return (EINVAL); + } + fs = malloc(sizeof(struct dn_flow_set), M_DUMMYNET, + M_NOWAIT | M_ZERO); + if (fs == NULL) { + DUMMYNET_UNLOCK(); + printf( + "dummynet: no memory for new flow_set\n"); + return (ENOMEM); + } + fs->fs_nr = pfs->fs_nr; + fs->parent_nr = pfs->parent_nr; + fs->weight = pfs->weight; + if (fs->weight == 0) + fs->weight = 1; + else if (fs->weight > 100) + fs->weight = 100; + } else { + /* + * Change parent pipe not allowed; + * must delete and recreate. + */ + if (pfs->parent_nr != 0 && + fs->parent_nr != pfs->parent_nr) { + DUMMYNET_UNLOCK(); + return (EINVAL); + } + } + + set_fs_parms(fs, pfs); + + if (fs->rq == NULL) { /* a new flow_set */ + error = alloc_hash(fs, pfs); + if (error) { + DUMMYNET_UNLOCK(); + free(fs, M_DUMMYNET); + return (error); + } + SLIST_INSERT_HEAD(&flowsethash[HASH(fs->fs_nr)], + fs, next); + } + DUMMYNET_UNLOCK(); + } + return (0); +} + +/* + * Helper function to remove from a heap queues which are linked to + * a flow_set about to be deleted. + */ +static void +fs_remove_from_heap(struct dn_heap *h, struct dn_flow_set *fs) +{ + int i, found; + + for (i = found = 0 ; i < h->elements ;) { + if ( ((struct dn_flow_queue *)h->p[i].object)->fs == fs) { + h->elements-- ; + h->p[i] = h->p[h->elements] ; + found++ ; + } else + i++ ; + } + if (found) + heapify(h); +} + +/* + * helper function to remove a pipe from a heap (can be there at most once) + */ +static void +pipe_remove_from_heap(struct dn_heap *h, struct dn_pipe *p) +{ + int i; + + for (i=0; i < h->elements ; i++ ) { + if (h->p[i].object == p) { /* found it */ + h->elements-- ; + h->p[i] = h->p[h->elements] ; + heapify(h); + break ; + } + } +} + +/* + * drain all queues. Called in case of severe mbuf shortage. + */ +void +dummynet_drain(void) +{ + struct dn_flow_set *fs; + struct dn_pipe *pipe; + int i; + + DUMMYNET_LOCK_ASSERT(); + + heap_free(&ready_heap); + heap_free(&wfq_ready_heap); + heap_free(&extract_heap); + /* remove all references to this pipe from flow_sets */ + for (i = 0; i < HASHSIZE; i++) + SLIST_FOREACH(fs, &flowsethash[i], next) + purge_flow_set(fs, 0); + + for (i = 0; i < HASHSIZE; i++) { + SLIST_FOREACH(pipe, &pipehash[i], next) { + purge_flow_set(&(pipe->fs), 0); + dn_free_pkts(pipe->head); + pipe->head = pipe->tail = NULL; + } + } +} + +/* + * Fully delete a pipe or a queue, cleaning up associated info. + */ +static int +delete_pipe(struct dn_pipe *p) +{ + + if (p->pipe_nr == 0 && p->fs.fs_nr == 0) + return EINVAL ; + if (p->pipe_nr != 0 && p->fs.fs_nr != 0) + return EINVAL ; + if (p->pipe_nr != 0) { /* this is an old-style pipe */ + struct dn_pipe *pipe; + struct dn_flow_set *fs; + int i; + + DUMMYNET_LOCK(); + pipe = locate_pipe(p->pipe_nr); /* locate pipe */ + + if (pipe == NULL) { + DUMMYNET_UNLOCK(); + return (ENOENT); /* not found */ + } + + /* Unlink from list of pipes. */ + SLIST_REMOVE(&pipehash[HASH(pipe->pipe_nr)], pipe, dn_pipe, next); + + /* Remove all references to this pipe from flow_sets. */ + for (i = 0; i < HASHSIZE; i++) { + SLIST_FOREACH(fs, &flowsethash[i], next) { + if (fs->pipe == pipe) { + printf("dummynet: ++ ref to pipe %d from fs %d\n", + p->pipe_nr, fs->fs_nr); + fs->pipe = NULL ; + purge_flow_set(fs, 0); + } + } + } + fs_remove_from_heap(&ready_heap, &(pipe->fs)); + purge_pipe(pipe); /* remove all data associated to this pipe */ + /* remove reference to here from extract_heap and wfq_ready_heap */ + pipe_remove_from_heap(&extract_heap, pipe); + pipe_remove_from_heap(&wfq_ready_heap, pipe); + DUMMYNET_UNLOCK(); + + free_pipe(pipe); + } else { /* this is a WF2Q queue (dn_flow_set) */ + struct dn_flow_set *fs; + + DUMMYNET_LOCK(); + fs = locate_flowset(p->fs.fs_nr); /* locate set */ + + if (fs == NULL) { + DUMMYNET_UNLOCK(); + return (ENOENT); /* not found */ + } + + /* Unlink from list of flowsets. */ + SLIST_REMOVE( &flowsethash[HASH(fs->fs_nr)], fs, dn_flow_set, next); + + if (fs->pipe != NULL) { + /* Update total weight on parent pipe and cleanup parent heaps. */ + fs->pipe->sum -= fs->weight * fs->backlogged ; + fs_remove_from_heap(&(fs->pipe->not_eligible_heap), fs); + fs_remove_from_heap(&(fs->pipe->scheduler_heap), fs); +#if 1 /* XXX should i remove from idle_heap as well ? */ + fs_remove_from_heap(&(fs->pipe->idle_heap), fs); +#endif + } + purge_flow_set(fs, 1); + DUMMYNET_UNLOCK(); + } + return 0 ; +} + +/* + * helper function used to copy data from kernel in DUMMYNET_GET + */ +static char * +dn_copy_set(struct dn_flow_set *set, char *bp) +{ + int i, copied = 0 ; + struct dn_flow_queue *q, *qp = (struct dn_flow_queue *)bp; + + DUMMYNET_LOCK_ASSERT(); + + for (i = 0 ; i <= set->rq_size ; i++) { + for (q = set->rq[i] ; q ; q = q->next, qp++ ) { + if (q->hash_slot != i) + printf("dummynet: ++ at %d: wrong slot (have %d, " + "should be %d)\n", copied, q->hash_slot, i); + if (q->fs != set) + printf("dummynet: ++ at %d: wrong fs ptr (have %p, should be %p)\n", + i, q->fs, set); + copied++ ; + bcopy(q, qp, sizeof( *q ) ); + /* cleanup pointers */ + qp->next = NULL ; + qp->head = qp->tail = NULL ; + qp->fs = NULL ; + } + } + if (copied != set->rq_elements) + printf("dummynet: ++ wrong count, have %d should be %d\n", + copied, set->rq_elements); + return (char *)qp ; +} + +static size_t +dn_calc_size(void) +{ + struct dn_flow_set *fs; + struct dn_pipe *pipe; + size_t size = 0; + int i; + + DUMMYNET_LOCK_ASSERT(); + /* + * Compute size of data structures: list of pipes and flow_sets. + */ + for (i = 0; i < HASHSIZE; i++) { + SLIST_FOREACH(pipe, &pipehash[i], next) + size += sizeof(*pipe) + + pipe->fs.rq_elements * sizeof(struct dn_flow_queue); + SLIST_FOREACH(fs, &flowsethash[i], next) + size += sizeof (*fs) + + fs->rq_elements * sizeof(struct dn_flow_queue); + } + return size; +} + +static int +dummynet_get(struct sockopt *sopt) +{ + char *buf, *bp ; /* bp is the "copy-pointer" */ + size_t size ; + struct dn_flow_set *fs; + struct dn_pipe *pipe; + int error=0, i ; + + /* XXX lock held too long */ + DUMMYNET_LOCK(); + /* + * XXX: Ugly, but we need to allocate memory with M_WAITOK flag and we + * cannot use this flag while holding a mutex. + */ + for (i = 0; i < 10; i++) { + size = dn_calc_size(); + DUMMYNET_UNLOCK(); + buf = malloc(size, M_TEMP, M_WAITOK); + DUMMYNET_LOCK(); + if (size >= dn_calc_size()) + break; + free(buf, M_TEMP); + buf = NULL; + } + if (buf == NULL) { + DUMMYNET_UNLOCK(); + return ENOBUFS ; + } + bp = buf; + for (i = 0; i < HASHSIZE; i++) { + SLIST_FOREACH(pipe, &pipehash[i], next) { + struct dn_pipe *pipe_bp = (struct dn_pipe *)bp; + + /* + * Copy pipe descriptor into *bp, convert delay back to ms, + * then copy the flow_set descriptor(s) one at a time. + * After each flow_set, copy the queue descriptor it owns. + */ + bcopy(pipe, bp, sizeof(*pipe)); + pipe_bp->delay = (pipe_bp->delay * 1000) / hz; + pipe_bp->burst = div64(pipe_bp->burst, 8 * hz); + /* + * XXX the following is a hack based on ->next being the + * first field in dn_pipe and dn_flow_set. The correct + * solution would be to move the dn_flow_set to the beginning + * of struct dn_pipe. + */ + pipe_bp->next.sle_next = (struct dn_pipe *)DN_IS_PIPE; + /* Clean pointers. */ + pipe_bp->head = pipe_bp->tail = NULL; + pipe_bp->fs.next.sle_next = NULL; + pipe_bp->fs.pipe = NULL; + pipe_bp->fs.rq = NULL; + pipe_bp->samples = NULL; + + bp += sizeof(*pipe) ; + bp = dn_copy_set(&(pipe->fs), bp); + } + } + + for (i = 0; i < HASHSIZE; i++) { + SLIST_FOREACH(fs, &flowsethash[i], next) { + struct dn_flow_set *fs_bp = (struct dn_flow_set *)bp; + + bcopy(fs, bp, sizeof(*fs)); + /* XXX same hack as above */ + fs_bp->next.sle_next = (struct dn_flow_set *)DN_IS_QUEUE; + fs_bp->pipe = NULL; + fs_bp->rq = NULL; + bp += sizeof(*fs); + bp = dn_copy_set(fs, bp); + } + } + + DUMMYNET_UNLOCK(); + + error = sooptcopyout(sopt, buf, size); + free(buf, M_TEMP); + return error ; +} + +/* + * Handler for the various dummynet socket options (get, flush, config, del) + */ +static int +ip_dn_ctl(struct sockopt *sopt) +{ + int error; + struct dn_pipe *p = NULL; + + error = priv_check(sopt->sopt_td, PRIV_NETINET_DUMMYNET); + if (error) + return (error); + + /* Disallow sets in really-really secure mode. */ + if (sopt->sopt_dir == SOPT_SET) { +#if __FreeBSD_version >= 500034 + error = securelevel_ge(sopt->sopt_td->td_ucred, 3); + if (error) + return (error); +#else + if (securelevel >= 3) + return (EPERM); +#endif + } + + switch (sopt->sopt_name) { + default : + printf("dummynet: -- unknown option %d", sopt->sopt_name); + error = EINVAL ; + break; + + case IP_DUMMYNET_GET : + error = dummynet_get(sopt); + break ; + + case IP_DUMMYNET_FLUSH : + dummynet_flush() ; + break ; + + case IP_DUMMYNET_CONFIGURE : + p = malloc(sizeof(struct dn_pipe_max), M_TEMP, M_WAITOK); + error = sooptcopyin(sopt, p, sizeof(struct dn_pipe_max), sizeof *p); + if (error) + break ; + if (p->samples_no > 0) + p->samples = &(((struct dn_pipe_max *)p)->samples[0]); + + error = config_pipe(p); + break ; + + case IP_DUMMYNET_DEL : /* remove a pipe or queue */ + p = malloc(sizeof(struct dn_pipe), M_TEMP, M_WAITOK); + error = sooptcopyin(sopt, p, sizeof(struct dn_pipe), sizeof *p); + if (error) + break ; + + error = delete_pipe(p); + break ; + } + + if (p != NULL) + free(p, M_TEMP); + + return error ; +} + +static void +ip_dn_init(void) +{ + int i; + + if (bootverbose) + printf("DUMMYNET with IPv6 initialized (040826)\n"); + + DUMMYNET_LOCK_INIT(); + + for (i = 0; i < HASHSIZE; i++) { + SLIST_INIT(&pipehash[i]); + SLIST_INIT(&flowsethash[i]); + } + ready_heap.size = ready_heap.elements = 0; + ready_heap.offset = 0; + + wfq_ready_heap.size = wfq_ready_heap.elements = 0; + wfq_ready_heap.offset = 0; + + extract_heap.size = extract_heap.elements = 0; + extract_heap.offset = 0; + + ip_dn_ctl_ptr = ip_dn_ctl; + ip_dn_io_ptr = dummynet_io; + + TASK_INIT(&dn_task, 0, dummynet_task, NULL); + dn_tq = taskqueue_create_fast("dummynet", M_NOWAIT, + taskqueue_thread_enqueue, &dn_tq); + taskqueue_start_threads(&dn_tq, 1, PI_NET, "dummynet"); + + callout_init(&dn_timeout, CALLOUT_MPSAFE); + callout_reset(&dn_timeout, 1, dummynet, NULL); + + /* Initialize curr_time adjustment mechanics. */ + getmicrouptime(&prev_t); +} + +#ifdef KLD_MODULE +static void +ip_dn_destroy(void) +{ + ip_dn_ctl_ptr = NULL; + ip_dn_io_ptr = NULL; + + DUMMYNET_LOCK(); + callout_stop(&dn_timeout); + DUMMYNET_UNLOCK(); + taskqueue_drain(dn_tq, &dn_task); + taskqueue_free(dn_tq); + + dummynet_flush(); + + DUMMYNET_LOCK_DESTROY(); +} +#endif /* KLD_MODULE */ + +static int +dummynet_modevent(module_t mod, int type, void *data) +{ + + switch (type) { + case MOD_LOAD: + if (ip_dn_io_ptr) { + printf("DUMMYNET already loaded\n"); + return EEXIST ; + } + ip_dn_init(); + break; + + case MOD_UNLOAD: +#if !defined(KLD_MODULE) + printf("dummynet statically compiled, cannot unload\n"); + return EINVAL ; +#else + ip_dn_destroy(); +#endif + break ; + default: + return EOPNOTSUPP; + break ; + } + return 0 ; +} + +static moduledata_t dummynet_mod = { + "dummynet", + dummynet_modevent, + NULL +}; +DECLARE_MODULE(dummynet, dummynet_mod, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY); +MODULE_DEPEND(dummynet, ipfw, 2, 2, 2); +MODULE_VERSION(dummynet, 1); +/* end of file */