X-Git-Url: http://git.onelab.eu/?a=blobdiff_plain;f=fs%2Fext4%2Finode.c;fp=fs%2Fext4%2Finode.c;h=b37036c43d6833faa558fe11398e6decf041125e;hb=76828883507a47dae78837ab5dec5a5b4513c667;hp=0000000000000000000000000000000000000000;hpb=64ba3f394c830ec48a1c31b53dcae312c56f1604;p=linux-2.6.git diff --git a/fs/ext4/inode.c b/fs/ext4/inode.c new file mode 100644 index 000000000..b37036c43 --- /dev/null +++ b/fs/ext4/inode.c @@ -0,0 +1,3295 @@ +/* + * linux/fs/ext4/inode.c + * + * Copyright (C) 1992, 1993, 1994, 1995 + * Remy Card (card@masi.ibp.fr) + * Laboratoire MASI - Institut Blaise Pascal + * Universite Pierre et Marie Curie (Paris VI) + * + * from + * + * linux/fs/minix/inode.c + * + * Copyright (C) 1991, 1992 Linus Torvalds + * + * Goal-directed block allocation by Stephen Tweedie + * (sct@redhat.com), 1993, 1998 + * Big-endian to little-endian byte-swapping/bitmaps by + * David S. Miller (davem@caip.rutgers.edu), 1995 + * 64-bit file support on 64-bit platforms by Jakub Jelinek + * (jj@sunsite.ms.mff.cuni.cz) + * + * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include "xattr.h" +#include "acl.h" + +/* + * Test whether an inode is a fast symlink. + */ +static int ext4_inode_is_fast_symlink(struct inode *inode) +{ + int ea_blocks = EXT4_I(inode)->i_file_acl ? + (inode->i_sb->s_blocksize >> 9) : 0; + + return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); +} + +/* + * The ext4 forget function must perform a revoke if we are freeing data + * which has been journaled. Metadata (eg. indirect blocks) must be + * revoked in all cases. + * + * "bh" may be NULL: a metadata block may have been freed from memory + * but there may still be a record of it in the journal, and that record + * still needs to be revoked. + */ +int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode, + struct buffer_head *bh, ext4_fsblk_t blocknr) +{ + int err; + + might_sleep(); + + BUFFER_TRACE(bh, "enter"); + + jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, " + "data mode %lx\n", + bh, is_metadata, inode->i_mode, + test_opt(inode->i_sb, DATA_FLAGS)); + + /* Never use the revoke function if we are doing full data + * journaling: there is no need to, and a V1 superblock won't + * support it. Otherwise, only skip the revoke on un-journaled + * data blocks. */ + + if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA || + (!is_metadata && !ext4_should_journal_data(inode))) { + if (bh) { + BUFFER_TRACE(bh, "call jbd2_journal_forget"); + return ext4_journal_forget(handle, bh); + } + return 0; + } + + /* + * data!=journal && (is_metadata || should_journal_data(inode)) + */ + BUFFER_TRACE(bh, "call ext4_journal_revoke"); + err = ext4_journal_revoke(handle, blocknr, bh); + if (err) + ext4_abort(inode->i_sb, __FUNCTION__, + "error %d when attempting revoke", err); + BUFFER_TRACE(bh, "exit"); + return err; +} + +/* + * Work out how many blocks we need to proceed with the next chunk of a + * truncate transaction. + */ +static unsigned long blocks_for_truncate(struct inode *inode) +{ + unsigned long needed; + + needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9); + + /* Give ourselves just enough room to cope with inodes in which + * i_blocks is corrupt: we've seen disk corruptions in the past + * which resulted in random data in an inode which looked enough + * like a regular file for ext4 to try to delete it. Things + * will go a bit crazy if that happens, but at least we should + * try not to panic the whole kernel. */ + if (needed < 2) + needed = 2; + + /* But we need to bound the transaction so we don't overflow the + * journal. */ + if (needed > EXT4_MAX_TRANS_DATA) + needed = EXT4_MAX_TRANS_DATA; + + return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed; +} + +/* + * Truncate transactions can be complex and absolutely huge. So we need to + * be able to restart the transaction at a conventient checkpoint to make + * sure we don't overflow the journal. + * + * start_transaction gets us a new handle for a truncate transaction, + * and extend_transaction tries to extend the existing one a bit. If + * extend fails, we need to propagate the failure up and restart the + * transaction in the top-level truncate loop. --sct + */ +static handle_t *start_transaction(struct inode *inode) +{ + handle_t *result; + + result = ext4_journal_start(inode, blocks_for_truncate(inode)); + if (!IS_ERR(result)) + return result; + + ext4_std_error(inode->i_sb, PTR_ERR(result)); + return result; +} + +/* + * Try to extend this transaction for the purposes of truncation. + * + * Returns 0 if we managed to create more room. If we can't create more + * room, and the transaction must be restarted we return 1. + */ +static int try_to_extend_transaction(handle_t *handle, struct inode *inode) +{ + if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS) + return 0; + if (!ext4_journal_extend(handle, blocks_for_truncate(inode))) + return 0; + return 1; +} + +/* + * Restart the transaction associated with *handle. This does a commit, + * so before we call here everything must be consistently dirtied against + * this transaction. + */ +static int ext4_journal_test_restart(handle_t *handle, struct inode *inode) +{ + jbd_debug(2, "restarting handle %p\n", handle); + return ext4_journal_restart(handle, blocks_for_truncate(inode)); +} + +/* + * Called at the last iput() if i_nlink is zero. + */ +void ext4_delete_inode (struct inode * inode) +{ + handle_t *handle; + + truncate_inode_pages(&inode->i_data, 0); + + if (is_bad_inode(inode)) + goto no_delete; + + handle = start_transaction(inode); + if (IS_ERR(handle)) { + /* + * If we're going to skip the normal cleanup, we still need to + * make sure that the in-core orphan linked list is properly + * cleaned up. + */ + ext4_orphan_del(NULL, inode); + goto no_delete; + } + + if (IS_SYNC(inode)) + handle->h_sync = 1; + inode->i_size = 0; + if (inode->i_blocks) + ext4_truncate(inode); + /* + * Kill off the orphan record which ext4_truncate created. + * AKPM: I think this can be inside the above `if'. + * Note that ext4_orphan_del() has to be able to cope with the + * deletion of a non-existent orphan - this is because we don't + * know if ext4_truncate() actually created an orphan record. + * (Well, we could do this if we need to, but heck - it works) + */ + ext4_orphan_del(handle, inode); + EXT4_I(inode)->i_dtime = get_seconds(); + + /* + * One subtle ordering requirement: if anything has gone wrong + * (transaction abort, IO errors, whatever), then we can still + * do these next steps (the fs will already have been marked as + * having errors), but we can't free the inode if the mark_dirty + * fails. + */ + if (ext4_mark_inode_dirty(handle, inode)) + /* If that failed, just do the required in-core inode clear. */ + clear_inode(inode); + else + ext4_free_inode(handle, inode); + ext4_journal_stop(handle); + return; +no_delete: + clear_inode(inode); /* We must guarantee clearing of inode... */ +} + +typedef struct { + __le32 *p; + __le32 key; + struct buffer_head *bh; +} Indirect; + +static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) +{ + p->key = *(p->p = v); + p->bh = bh; +} + +static int verify_chain(Indirect *from, Indirect *to) +{ + while (from <= to && from->key == *from->p) + from++; + return (from > to); +} + +/** + * ext4_block_to_path - parse the block number into array of offsets + * @inode: inode in question (we are only interested in its superblock) + * @i_block: block number to be parsed + * @offsets: array to store the offsets in + * @boundary: set this non-zero if the referred-to block is likely to be + * followed (on disk) by an indirect block. + * + * To store the locations of file's data ext4 uses a data structure common + * for UNIX filesystems - tree of pointers anchored in the inode, with + * data blocks at leaves and indirect blocks in intermediate nodes. + * This function translates the block number into path in that tree - + * return value is the path length and @offsets[n] is the offset of + * pointer to (n+1)th node in the nth one. If @block is out of range + * (negative or too large) warning is printed and zero returned. + * + * Note: function doesn't find node addresses, so no IO is needed. All + * we need to know is the capacity of indirect blocks (taken from the + * inode->i_sb). + */ + +/* + * Portability note: the last comparison (check that we fit into triple + * indirect block) is spelled differently, because otherwise on an + * architecture with 32-bit longs and 8Kb pages we might get into trouble + * if our filesystem had 8Kb blocks. We might use long long, but that would + * kill us on x86. Oh, well, at least the sign propagation does not matter - + * i_block would have to be negative in the very beginning, so we would not + * get there at all. + */ + +static int ext4_block_to_path(struct inode *inode, + long i_block, int offsets[4], int *boundary) +{ + int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb); + int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb); + const long direct_blocks = EXT4_NDIR_BLOCKS, + indirect_blocks = ptrs, + double_blocks = (1 << (ptrs_bits * 2)); + int n = 0; + int final = 0; + + if (i_block < 0) { + ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0"); + } else if (i_block < direct_blocks) { + offsets[n++] = i_block; + final = direct_blocks; + } else if ( (i_block -= direct_blocks) < indirect_blocks) { + offsets[n++] = EXT4_IND_BLOCK; + offsets[n++] = i_block; + final = ptrs; + } else if ((i_block -= indirect_blocks) < double_blocks) { + offsets[n++] = EXT4_DIND_BLOCK; + offsets[n++] = i_block >> ptrs_bits; + offsets[n++] = i_block & (ptrs - 1); + final = ptrs; + } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { + offsets[n++] = EXT4_TIND_BLOCK; + offsets[n++] = i_block >> (ptrs_bits * 2); + offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); + offsets[n++] = i_block & (ptrs - 1); + final = ptrs; + } else { + ext4_warning(inode->i_sb, "ext4_block_to_path", "block > big"); + } + if (boundary) + *boundary = final - 1 - (i_block & (ptrs - 1)); + return n; +} + +/** + * ext4_get_branch - read the chain of indirect blocks leading to data + * @inode: inode in question + * @depth: depth of the chain (1 - direct pointer, etc.) + * @offsets: offsets of pointers in inode/indirect blocks + * @chain: place to store the result + * @err: here we store the error value + * + * Function fills the array of triples and returns %NULL + * if everything went OK or the pointer to the last filled triple + * (incomplete one) otherwise. Upon the return chain[i].key contains + * the number of (i+1)-th block in the chain (as it is stored in memory, + * i.e. little-endian 32-bit), chain[i].p contains the address of that + * number (it points into struct inode for i==0 and into the bh->b_data + * for i>0) and chain[i].bh points to the buffer_head of i-th indirect + * block for i>0 and NULL for i==0. In other words, it holds the block + * numbers of the chain, addresses they were taken from (and where we can + * verify that chain did not change) and buffer_heads hosting these + * numbers. + * + * Function stops when it stumbles upon zero pointer (absent block) + * (pointer to last triple returned, *@err == 0) + * or when it gets an IO error reading an indirect block + * (ditto, *@err == -EIO) + * or when it notices that chain had been changed while it was reading + * (ditto, *@err == -EAGAIN) + * or when it reads all @depth-1 indirect blocks successfully and finds + * the whole chain, all way to the data (returns %NULL, *err == 0). + */ +static Indirect *ext4_get_branch(struct inode *inode, int depth, int *offsets, + Indirect chain[4], int *err) +{ + struct super_block *sb = inode->i_sb; + Indirect *p = chain; + struct buffer_head *bh; + + *err = 0; + /* i_data is not going away, no lock needed */ + add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets); + if (!p->key) + goto no_block; + while (--depth) { + bh = sb_bread(sb, le32_to_cpu(p->key)); + if (!bh) + goto failure; + /* Reader: pointers */ + if (!verify_chain(chain, p)) + goto changed; + add_chain(++p, bh, (__le32*)bh->b_data + *++offsets); + /* Reader: end */ + if (!p->key) + goto no_block; + } + return NULL; + +changed: + brelse(bh); + *err = -EAGAIN; + goto no_block; +failure: + *err = -EIO; +no_block: + return p; +} + +/** + * ext4_find_near - find a place for allocation with sufficient locality + * @inode: owner + * @ind: descriptor of indirect block. + * + * This function returns the prefered place for block allocation. + * It is used when heuristic for sequential allocation fails. + * Rules are: + * + if there is a block to the left of our position - allocate near it. + * + if pointer will live in indirect block - allocate near that block. + * + if pointer will live in inode - allocate in the same + * cylinder group. + * + * In the latter case we colour the starting block by the callers PID to + * prevent it from clashing with concurrent allocations for a different inode + * in the same block group. The PID is used here so that functionally related + * files will be close-by on-disk. + * + * Caller must make sure that @ind is valid and will stay that way. + */ +static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind) +{ + struct ext4_inode_info *ei = EXT4_I(inode); + __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data; + __le32 *p; + ext4_fsblk_t bg_start; + ext4_grpblk_t colour; + + /* Try to find previous block */ + for (p = ind->p - 1; p >= start; p--) { + if (*p) + return le32_to_cpu(*p); + } + + /* No such thing, so let's try location of indirect block */ + if (ind->bh) + return ind->bh->b_blocknr; + + /* + * It is going to be referred to from the inode itself? OK, just put it + * into the same cylinder group then. + */ + bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group); + colour = (current->pid % 16) * + (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16); + return bg_start + colour; +} + +/** + * ext4_find_goal - find a prefered place for allocation. + * @inode: owner + * @block: block we want + * @chain: chain of indirect blocks + * @partial: pointer to the last triple within a chain + * @goal: place to store the result. + * + * Normally this function find the prefered place for block allocation, + * stores it in *@goal and returns zero. + */ + +static ext4_fsblk_t ext4_find_goal(struct inode *inode, long block, + Indirect chain[4], Indirect *partial) +{ + struct ext4_block_alloc_info *block_i; + + block_i = EXT4_I(inode)->i_block_alloc_info; + + /* + * try the heuristic for sequential allocation, + * failing that at least try to get decent locality. + */ + if (block_i && (block == block_i->last_alloc_logical_block + 1) + && (block_i->last_alloc_physical_block != 0)) { + return block_i->last_alloc_physical_block + 1; + } + + return ext4_find_near(inode, partial); +} + +/** + * ext4_blks_to_allocate: Look up the block map and count the number + * of direct blocks need to be allocated for the given branch. + * + * @branch: chain of indirect blocks + * @k: number of blocks need for indirect blocks + * @blks: number of data blocks to be mapped. + * @blocks_to_boundary: the offset in the indirect block + * + * return the total number of blocks to be allocate, including the + * direct and indirect blocks. + */ +static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks, + int blocks_to_boundary) +{ + unsigned long count = 0; + + /* + * Simple case, [t,d]Indirect block(s) has not allocated yet + * then it's clear blocks on that path have not allocated + */ + if (k > 0) { + /* right now we don't handle cross boundary allocation */ + if (blks < blocks_to_boundary + 1) + count += blks; + else + count += blocks_to_boundary + 1; + return count; + } + + count++; + while (count < blks && count <= blocks_to_boundary && + le32_to_cpu(*(branch[0].p + count)) == 0) { + count++; + } + return count; +} + +/** + * ext4_alloc_blocks: multiple allocate blocks needed for a branch + * @indirect_blks: the number of blocks need to allocate for indirect + * blocks + * + * @new_blocks: on return it will store the new block numbers for + * the indirect blocks(if needed) and the first direct block, + * @blks: on return it will store the total number of allocated + * direct blocks + */ +static int ext4_alloc_blocks(handle_t *handle, struct inode *inode, + ext4_fsblk_t goal, int indirect_blks, int blks, + ext4_fsblk_t new_blocks[4], int *err) +{ + int target, i; + unsigned long count = 0; + int index = 0; + ext4_fsblk_t current_block = 0; + int ret = 0; + + /* + * Here we try to allocate the requested multiple blocks at once, + * on a best-effort basis. + * To build a branch, we should allocate blocks for + * the indirect blocks(if not allocated yet), and at least + * the first direct block of this branch. That's the + * minimum number of blocks need to allocate(required) + */ + target = blks + indirect_blks; + + while (1) { + count = target; + /* allocating blocks for indirect blocks and direct blocks */ + current_block = ext4_new_blocks(handle,inode,goal,&count,err); + if (*err) + goto failed_out; + + target -= count; + /* allocate blocks for indirect blocks */ + while (index < indirect_blks && count) { + new_blocks[index++] = current_block++; + count--; + } + + if (count > 0) + break; + } + + /* save the new block number for the first direct block */ + new_blocks[index] = current_block; + + /* total number of blocks allocated for direct blocks */ + ret = count; + *err = 0; + return ret; +failed_out: + for (i = 0; i key). Upon the exit we have the same + * picture as after the successful ext4_get_block(), except that in one + * place chain is disconnected - *branch->p is still zero (we did not + * set the last link), but branch->key contains the number that should + * be placed into *branch->p to fill that gap. + * + * If allocation fails we free all blocks we've allocated (and forget + * their buffer_heads) and return the error value the from failed + * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain + * as described above and return 0. + */ +static int ext4_alloc_branch(handle_t *handle, struct inode *inode, + int indirect_blks, int *blks, ext4_fsblk_t goal, + int *offsets, Indirect *branch) +{ + int blocksize = inode->i_sb->s_blocksize; + int i, n = 0; + int err = 0; + struct buffer_head *bh; + int num; + ext4_fsblk_t new_blocks[4]; + ext4_fsblk_t current_block; + + num = ext4_alloc_blocks(handle, inode, goal, indirect_blks, + *blks, new_blocks, &err); + if (err) + return err; + + branch[0].key = cpu_to_le32(new_blocks[0]); + /* + * metadata blocks and data blocks are allocated. + */ + for (n = 1; n <= indirect_blks; n++) { + /* + * Get buffer_head for parent block, zero it out + * and set the pointer to new one, then send + * parent to disk. + */ + bh = sb_getblk(inode->i_sb, new_blocks[n-1]); + branch[n].bh = bh; + lock_buffer(bh); + BUFFER_TRACE(bh, "call get_create_access"); + err = ext4_journal_get_create_access(handle, bh); + if (err) { + unlock_buffer(bh); + brelse(bh); + goto failed; + } + + memset(bh->b_data, 0, blocksize); + branch[n].p = (__le32 *) bh->b_data + offsets[n]; + branch[n].key = cpu_to_le32(new_blocks[n]); + *branch[n].p = branch[n].key; + if ( n == indirect_blks) { + current_block = new_blocks[n]; + /* + * End of chain, update the last new metablock of + * the chain to point to the new allocated + * data blocks numbers + */ + for (i=1; i < num; i++) + *(branch[n].p + i) = cpu_to_le32(++current_block); + } + BUFFER_TRACE(bh, "marking uptodate"); + set_buffer_uptodate(bh); + unlock_buffer(bh); + + BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); + err = ext4_journal_dirty_metadata(handle, bh); + if (err) + goto failed; + } + *blks = num; + return err; +failed: + /* Allocation failed, free what we already allocated */ + for (i = 1; i <= n ; i++) { + BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget"); + ext4_journal_forget(handle, branch[i].bh); + } + for (i = 0; i i_blocks, etc.). In case of success we end up with the full + * chain to new block and return 0. + */ +static int ext4_splice_branch(handle_t *handle, struct inode *inode, + long block, Indirect *where, int num, int blks) +{ + int i; + int err = 0; + struct ext4_block_alloc_info *block_i; + ext4_fsblk_t current_block; + + block_i = EXT4_I(inode)->i_block_alloc_info; + /* + * If we're splicing into a [td]indirect block (as opposed to the + * inode) then we need to get write access to the [td]indirect block + * before the splice. + */ + if (where->bh) { + BUFFER_TRACE(where->bh, "get_write_access"); + err = ext4_journal_get_write_access(handle, where->bh); + if (err) + goto err_out; + } + /* That's it */ + + *where->p = where->key; + + /* + * Update the host buffer_head or inode to point to more just allocated + * direct blocks blocks + */ + if (num == 0 && blks > 1) { + current_block = le32_to_cpu(where->key) + 1; + for (i = 1; i < blks; i++) + *(where->p + i ) = cpu_to_le32(current_block++); + } + + /* + * update the most recently allocated logical & physical block + * in i_block_alloc_info, to assist find the proper goal block for next + * allocation + */ + if (block_i) { + block_i->last_alloc_logical_block = block + blks - 1; + block_i->last_alloc_physical_block = + le32_to_cpu(where[num].key) + blks - 1; + } + + /* We are done with atomic stuff, now do the rest of housekeeping */ + + inode->i_ctime = CURRENT_TIME_SEC; + ext4_mark_inode_dirty(handle, inode); + + /* had we spliced it onto indirect block? */ + if (where->bh) { + /* + * If we spliced it onto an indirect block, we haven't + * altered the inode. Note however that if it is being spliced + * onto an indirect block at the very end of the file (the + * file is growing) then we *will* alter the inode to reflect + * the new i_size. But that is not done here - it is done in + * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode. + */ + jbd_debug(5, "splicing indirect only\n"); + BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata"); + err = ext4_journal_dirty_metadata(handle, where->bh); + if (err) + goto err_out; + } else { + /* + * OK, we spliced it into the inode itself on a direct block. + * Inode was dirtied above. + */ + jbd_debug(5, "splicing direct\n"); + } + return err; + +err_out: + for (i = 1; i <= num; i++) { + BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget"); + ext4_journal_forget(handle, where[i].bh); + ext4_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1); + } + ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks); + + return err; +} + +/* + * Allocation strategy is simple: if we have to allocate something, we will + * have to go the whole way to leaf. So let's do it before attaching anything + * to tree, set linkage between the newborn blocks, write them if sync is + * required, recheck the path, free and repeat if check fails, otherwise + * set the last missing link (that will protect us from any truncate-generated + * removals - all blocks on the path are immune now) and possibly force the + * write on the parent block. + * That has a nice additional property: no special recovery from the failed + * allocations is needed - we simply release blocks and do not touch anything + * reachable from inode. + * + * `handle' can be NULL if create == 0. + * + * The BKL may not be held on entry here. Be sure to take it early. + * return > 0, # of blocks mapped or allocated. + * return = 0, if plain lookup failed. + * return < 0, error case. + */ +int ext4_get_blocks_handle(handle_t *handle, struct inode *inode, + sector_t iblock, unsigned long maxblocks, + struct buffer_head *bh_result, + int create, int extend_disksize) +{ + int err = -EIO; + int offsets[4]; + Indirect chain[4]; + Indirect *partial; + ext4_fsblk_t goal; + int indirect_blks; + int blocks_to_boundary = 0; + int depth; + struct ext4_inode_info *ei = EXT4_I(inode); + int count = 0; + ext4_fsblk_t first_block = 0; + + + J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)); + J_ASSERT(handle != NULL || create == 0); + depth = ext4_block_to_path(inode,iblock,offsets,&blocks_to_boundary); + + if (depth == 0) + goto out; + + partial = ext4_get_branch(inode, depth, offsets, chain, &err); + + /* Simplest case - block found, no allocation needed */ + if (!partial) { + first_block = le32_to_cpu(chain[depth - 1].key); + clear_buffer_new(bh_result); + count++; + /*map more blocks*/ + while (count < maxblocks && count <= blocks_to_boundary) { + ext4_fsblk_t blk; + + if (!verify_chain(chain, partial)) { + /* + * Indirect block might be removed by + * truncate while we were reading it. + * Handling of that case: forget what we've + * got now. Flag the err as EAGAIN, so it + * will reread. + */ + err = -EAGAIN; + count = 0; + break; + } + blk = le32_to_cpu(*(chain[depth-1].p + count)); + + if (blk == first_block + count) + count++; + else + break; + } + if (err != -EAGAIN) + goto got_it; + } + + /* Next simple case - plain lookup or failed read of indirect block */ + if (!create || err == -EIO) + goto cleanup; + + mutex_lock(&ei->truncate_mutex); + + /* + * If the indirect block is missing while we are reading + * the chain(ext4_get_branch() returns -EAGAIN err), or + * if the chain has been changed after we grab the semaphore, + * (either because another process truncated this branch, or + * another get_block allocated this branch) re-grab the chain to see if + * the request block has been allocated or not. + * + * Since we already block the truncate/other get_block + * at this point, we will have the current copy of the chain when we + * splice the branch into the tree. + */ + if (err == -EAGAIN || !verify_chain(chain, partial)) { + while (partial > chain) { + brelse(partial->bh); + partial--; + } + partial = ext4_get_branch(inode, depth, offsets, chain, &err); + if (!partial) { + count++; + mutex_unlock(&ei->truncate_mutex); + if (err) + goto cleanup; + clear_buffer_new(bh_result); + goto got_it; + } + } + + /* + * Okay, we need to do block allocation. Lazily initialize the block + * allocation info here if necessary + */ + if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info)) + ext4_init_block_alloc_info(inode); + + goal = ext4_find_goal(inode, iblock, chain, partial); + + /* the number of blocks need to allocate for [d,t]indirect blocks */ + indirect_blks = (chain + depth) - partial - 1; + + /* + * Next look up the indirect map to count the totoal number of + * direct blocks to allocate for this branch. + */ + count = ext4_blks_to_allocate(partial, indirect_blks, + maxblocks, blocks_to_boundary); + /* + * Block out ext4_truncate while we alter the tree + */ + err = ext4_alloc_branch(handle, inode, indirect_blks, &count, goal, + offsets + (partial - chain), partial); + + /* + * The ext4_splice_branch call will free and forget any buffers + * on the new chain if there is a failure, but that risks using + * up transaction credits, especially for bitmaps where the + * credits cannot be returned. Can we handle this somehow? We + * may need to return -EAGAIN upwards in the worst case. --sct + */ + if (!err) + err = ext4_splice_branch(handle, inode, iblock, + partial, indirect_blks, count); + /* + * i_disksize growing is protected by truncate_mutex. Don't forget to + * protect it if you're about to implement concurrent + * ext4_get_block() -bzzz + */ + if (!err && extend_disksize && inode->i_size > ei->i_disksize) + ei->i_disksize = inode->i_size; + mutex_unlock(&ei->truncate_mutex); + if (err) + goto cleanup; + + set_buffer_new(bh_result); +got_it: + map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key)); + if (count > blocks_to_boundary) + set_buffer_boundary(bh_result); + err = count; + /* Clean up and exit */ + partial = chain + depth - 1; /* the whole chain */ +cleanup: + while (partial > chain) { + BUFFER_TRACE(partial->bh, "call brelse"); + brelse(partial->bh); + partial--; + } + BUFFER_TRACE(bh_result, "returned"); +out: + return err; +} + +#define DIO_CREDITS (EXT4_RESERVE_TRANS_BLOCKS + 32) + +static int ext4_get_block(struct inode *inode, sector_t iblock, + struct buffer_head *bh_result, int create) +{ + handle_t *handle = journal_current_handle(); + int ret = 0; + unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; + + if (!create) + goto get_block; /* A read */ + + if (max_blocks == 1) + goto get_block; /* A single block get */ + + if (handle->h_transaction->t_state == T_LOCKED) { + /* + * Huge direct-io writes can hold off commits for long + * periods of time. Let this commit run. + */ + ext4_journal_stop(handle); + handle = ext4_journal_start(inode, DIO_CREDITS); + if (IS_ERR(handle)) + ret = PTR_ERR(handle); + goto get_block; + } + + if (handle->h_buffer_credits <= EXT4_RESERVE_TRANS_BLOCKS) { + /* + * Getting low on buffer credits... + */ + ret = ext4_journal_extend(handle, DIO_CREDITS); + if (ret > 0) { + /* + * Couldn't extend the transaction. Start a new one. + */ + ret = ext4_journal_restart(handle, DIO_CREDITS); + } + } + +get_block: + if (ret == 0) { + ret = ext4_get_blocks_wrap(handle, inode, iblock, + max_blocks, bh_result, create, 0); + if (ret > 0) { + bh_result->b_size = (ret << inode->i_blkbits); + ret = 0; + } + } + return ret; +} + +/* + * `handle' can be NULL if create is zero + */ +struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, + long block, int create, int *errp) +{ + struct buffer_head dummy; + int fatal = 0, err; + + J_ASSERT(handle != NULL || create == 0); + + dummy.b_state = 0; + dummy.b_blocknr = -1000; + buffer_trace_init(&dummy.b_history); + err = ext4_get_blocks_wrap(handle, inode, block, 1, + &dummy, create, 1); + /* + * ext4_get_blocks_handle() returns number of blocks + * mapped. 0 in case of a HOLE. + */ + if (err > 0) { + if (err > 1) + WARN_ON(1); + err = 0; + } + *errp = err; + if (!err && buffer_mapped(&dummy)) { + struct buffer_head *bh; + bh = sb_getblk(inode->i_sb, dummy.b_blocknr); + if (!bh) { + *errp = -EIO; + goto err; + } + if (buffer_new(&dummy)) { + J_ASSERT(create != 0); + J_ASSERT(handle != 0); + + /* + * Now that we do not always journal data, we should + * keep in mind whether this should always journal the + * new buffer as metadata. For now, regular file + * writes use ext4_get_block instead, so it's not a + * problem. + */ + lock_buffer(bh); + BUFFER_TRACE(bh, "call get_create_access"); + fatal = ext4_journal_get_create_access(handle, bh); + if (!fatal && !buffer_uptodate(bh)) { + memset(bh->b_data,0,inode->i_sb->s_blocksize); + set_buffer_uptodate(bh); + } + unlock_buffer(bh); + BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); + err = ext4_journal_dirty_metadata(handle, bh); + if (!fatal) + fatal = err; + } else { + BUFFER_TRACE(bh, "not a new buffer"); + } + if (fatal) { + *errp = fatal; + brelse(bh); + bh = NULL; + } + return bh; + } +err: + return NULL; +} + +struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, + int block, int create, int *err) +{ + struct buffer_head * bh; + + bh = ext4_getblk(handle, inode, block, create, err); + if (!bh) + return bh; + if (buffer_uptodate(bh)) + return bh; + ll_rw_block(READ_META, 1, &bh); + wait_on_buffer(bh); + if (buffer_uptodate(bh)) + return bh; + put_bh(bh); + *err = -EIO; + return NULL; +} + +static int walk_page_buffers( handle_t *handle, + struct buffer_head *head, + unsigned from, + unsigned to, + int *partial, + int (*fn)( handle_t *handle, + struct buffer_head *bh)) +{ + struct buffer_head *bh; + unsigned block_start, block_end; + unsigned blocksize = head->b_size; + int err, ret = 0; + struct buffer_head *next; + + for ( bh = head, block_start = 0; + ret == 0 && (bh != head || !block_start); + block_start = block_end, bh = next) + { + next = bh->b_this_page; + block_end = block_start + blocksize; + if (block_end <= from || block_start >= to) { + if (partial && !buffer_uptodate(bh)) + *partial = 1; + continue; + } + err = (*fn)(handle, bh); + if (!ret) + ret = err; + } + return ret; +} + +/* + * To preserve ordering, it is essential that the hole instantiation and + * the data write be encapsulated in a single transaction. We cannot + * close off a transaction and start a new one between the ext4_get_block() + * and the commit_write(). So doing the jbd2_journal_start at the start of + * prepare_write() is the right place. + * + * Also, this function can nest inside ext4_writepage() -> + * block_write_full_page(). In that case, we *know* that ext4_writepage() + * has generated enough buffer credits to do the whole page. So we won't + * block on the journal in that case, which is good, because the caller may + * be PF_MEMALLOC. + * + * By accident, ext4 can be reentered when a transaction is open via + * quota file writes. If we were to commit the transaction while thus + * reentered, there can be a deadlock - we would be holding a quota + * lock, and the commit would never complete if another thread had a + * transaction open and was blocking on the quota lock - a ranking + * violation. + * + * So what we do is to rely on the fact that jbd2_journal_stop/journal_start + * will _not_ run commit under these circumstances because handle->h_ref + * is elevated. We'll still have enough credits for the tiny quotafile + * write. + */ +static int do_journal_get_write_access(handle_t *handle, + struct buffer_head *bh) +{ + if (!buffer_mapped(bh) || buffer_freed(bh)) + return 0; + return ext4_journal_get_write_access(handle, bh); +} + +static int ext4_prepare_write(struct file *file, struct page *page, + unsigned from, unsigned to) +{ + struct inode *inode = page->mapping->host; + int ret, needed_blocks = ext4_writepage_trans_blocks(inode); + handle_t *handle; + int retries = 0; + +retry: + handle = ext4_journal_start(inode, needed_blocks); + if (IS_ERR(handle)) { + ret = PTR_ERR(handle); + goto out; + } + if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode)) + ret = nobh_prepare_write(page, from, to, ext4_get_block); + else + ret = block_prepare_write(page, from, to, ext4_get_block); + if (ret) + goto prepare_write_failed; + + if (ext4_should_journal_data(inode)) { + ret = walk_page_buffers(handle, page_buffers(page), + from, to, NULL, do_journal_get_write_access); + } +prepare_write_failed: + if (ret) + ext4_journal_stop(handle); + if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) + goto retry; +out: + return ret; +} + +int ext4_journal_dirty_data(handle_t *handle, struct buffer_head *bh) +{ + int err = jbd2_journal_dirty_data(handle, bh); + if (err) + ext4_journal_abort_handle(__FUNCTION__, __FUNCTION__, + bh, handle,err); + return err; +} + +/* For commit_write() in data=journal mode */ +static int commit_write_fn(handle_t *handle, struct buffer_head *bh) +{ + if (!buffer_mapped(bh) || buffer_freed(bh)) + return 0; + set_buffer_uptodate(bh); + return ext4_journal_dirty_metadata(handle, bh); +} + +/* + * We need to pick up the new inode size which generic_commit_write gave us + * `file' can be NULL - eg, when called from page_symlink(). + * + * ext4 never places buffers on inode->i_mapping->private_list. metadata + * buffers are managed internally. + */ +static int ext4_ordered_commit_write(struct file *file, struct page *page, + unsigned from, unsigned to) +{ + handle_t *handle = ext4_journal_current_handle(); + struct inode *inode = page->mapping->host; + int ret = 0, ret2; + + ret = walk_page_buffers(handle, page_buffers(page), + from, to, NULL, ext4_journal_dirty_data); + + if (ret == 0) { + /* + * generic_commit_write() will run mark_inode_dirty() if i_size + * changes. So let's piggyback the i_disksize mark_inode_dirty + * into that. + */ + loff_t new_i_size; + + new_i_size = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to; + if (new_i_size > EXT4_I(inode)->i_disksize) + EXT4_I(inode)->i_disksize = new_i_size; + ret = generic_commit_write(file, page, from, to); + } + ret2 = ext4_journal_stop(handle); + if (!ret) + ret = ret2; + return ret; +} + +static int ext4_writeback_commit_write(struct file *file, struct page *page, + unsigned from, unsigned to) +{ + handle_t *handle = ext4_journal_current_handle(); + struct inode *inode = page->mapping->host; + int ret = 0, ret2; + loff_t new_i_size; + + new_i_size = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to; + if (new_i_size > EXT4_I(inode)->i_disksize) + EXT4_I(inode)->i_disksize = new_i_size; + + if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode)) + ret = nobh_commit_write(file, page, from, to); + else + ret = generic_commit_write(file, page, from, to); + + ret2 = ext4_journal_stop(handle); + if (!ret) + ret = ret2; + return ret; +} + +static int ext4_journalled_commit_write(struct file *file, + struct page *page, unsigned from, unsigned to) +{ + handle_t *handle = ext4_journal_current_handle(); + struct inode *inode = page->mapping->host; + int ret = 0, ret2; + int partial = 0; + loff_t pos; + + /* + * Here we duplicate the generic_commit_write() functionality + */ + pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to; + + ret = walk_page_buffers(handle, page_buffers(page), from, + to, &partial, commit_write_fn); + if (!partial) + SetPageUptodate(page); + if (pos > inode->i_size) + i_size_write(inode, pos); + EXT4_I(inode)->i_state |= EXT4_STATE_JDATA; + if (inode->i_size > EXT4_I(inode)->i_disksize) { + EXT4_I(inode)->i_disksize = inode->i_size; + ret2 = ext4_mark_inode_dirty(handle, inode); + if (!ret) + ret = ret2; + } + ret2 = ext4_journal_stop(handle); + if (!ret) + ret = ret2; + return ret; +} + +/* + * bmap() is special. It gets used by applications such as lilo and by + * the swapper to find the on-disk block of a specific piece of data. + * + * Naturally, this is dangerous if the block concerned is still in the + * journal. If somebody makes a swapfile on an ext4 data-journaling + * filesystem and enables swap, then they may get a nasty shock when the + * data getting swapped to that swapfile suddenly gets overwritten by + * the original zero's written out previously to the journal and + * awaiting writeback in the kernel's buffer cache. + * + * So, if we see any bmap calls here on a modified, data-journaled file, + * take extra steps to flush any blocks which might be in the cache. + */ +static sector_t ext4_bmap(struct address_space *mapping, sector_t block) +{ + struct inode *inode = mapping->host; + journal_t *journal; + int err; + + if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) { + /* + * This is a REALLY heavyweight approach, but the use of + * bmap on dirty files is expected to be extremely rare: + * only if we run lilo or swapon on a freshly made file + * do we expect this to happen. + * + * (bmap requires CAP_SYS_RAWIO so this does not + * represent an unprivileged user DOS attack --- we'd be + * in trouble if mortal users could trigger this path at + * will.) + * + * NB. EXT4_STATE_JDATA is not set on files other than + * regular files. If somebody wants to bmap a directory + * or symlink and gets confused because the buffer + * hasn't yet been flushed to disk, they deserve + * everything they get. + */ + + EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA; + journal = EXT4_JOURNAL(inode); + jbd2_journal_lock_updates(journal); + err = jbd2_journal_flush(journal); + jbd2_journal_unlock_updates(journal); + + if (err) + return 0; + } + + return generic_block_bmap(mapping,block,ext4_get_block); +} + +static int bget_one(handle_t *handle, struct buffer_head *bh) +{ + get_bh(bh); + return 0; +} + +static int bput_one(handle_t *handle, struct buffer_head *bh) +{ + put_bh(bh); + return 0; +} + +static int jbd2_journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh) +{ + if (buffer_mapped(bh)) + return ext4_journal_dirty_data(handle, bh); + return 0; +} + +/* + * Note that we always start a transaction even if we're not journalling + * data. This is to preserve ordering: any hole instantiation within + * __block_write_full_page -> ext4_get_block() should be journalled + * along with the data so we don't crash and then get metadata which + * refers to old data. + * + * In all journalling modes block_write_full_page() will start the I/O. + * + * Problem: + * + * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> + * ext4_writepage() + * + * Similar for: + * + * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ... + * + * Same applies to ext4_get_block(). We will deadlock on various things like + * lock_journal and i_truncate_mutex. + * + * Setting PF_MEMALLOC here doesn't work - too many internal memory + * allocations fail. + * + * 16May01: If we're reentered then journal_current_handle() will be + * non-zero. We simply *return*. + * + * 1 July 2001: @@@ FIXME: + * In journalled data mode, a data buffer may be metadata against the + * current transaction. But the same file is part of a shared mapping + * and someone does a writepage() on it. + * + * We will move the buffer onto the async_data list, but *after* it has + * been dirtied. So there's a small window where we have dirty data on + * BJ_Metadata. + * + * Note that this only applies to the last partial page in the file. The + * bit which block_write_full_page() uses prepare/commit for. (That's + * broken code anyway: it's wrong for msync()). + * + * It's a rare case: affects the final partial page, for journalled data + * where the file is subject to bith write() and writepage() in the same + * transction. To fix it we'll need a custom block_write_full_page(). + * We'll probably need that anyway for journalling writepage() output. + * + * We don't honour synchronous mounts for writepage(). That would be + * disastrous. Any write() or metadata operation will sync the fs for + * us. + * + * AKPM2: if all the page's buffers are mapped to disk and !data=journal, + * we don't need to open a transaction here. + */ +static int ext4_ordered_writepage(struct page *page, + struct writeback_control *wbc) +{ + struct inode *inode = page->mapping->host; + struct buffer_head *page_bufs; + handle_t *handle = NULL; + int ret = 0; + int err; + + J_ASSERT(PageLocked(page)); + + /* + * We give up here if we're reentered, because it might be for a + * different filesystem. + */ + if (ext4_journal_current_handle()) + goto out_fail; + + handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); + + if (IS_ERR(handle)) { + ret = PTR_ERR(handle); + goto out_fail; + } + + if (!page_has_buffers(page)) { + create_empty_buffers(page, inode->i_sb->s_blocksize, + (1 << BH_Dirty)|(1 << BH_Uptodate)); + } + page_bufs = page_buffers(page); + walk_page_buffers(handle, page_bufs, 0, + PAGE_CACHE_SIZE, NULL, bget_one); + + ret = block_write_full_page(page, ext4_get_block, wbc); + + /* + * The page can become unlocked at any point now, and + * truncate can then come in and change things. So we + * can't touch *page from now on. But *page_bufs is + * safe due to elevated refcount. + */ + + /* + * And attach them to the current transaction. But only if + * block_write_full_page() succeeded. Otherwise they are unmapped, + * and generally junk. + */ + if (ret == 0) { + err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, + NULL, jbd2_journal_dirty_data_fn); + if (!ret) + ret = err; + } + walk_page_buffers(handle, page_bufs, 0, + PAGE_CACHE_SIZE, NULL, bput_one); + err = ext4_journal_stop(handle); + if (!ret) + ret = err; + return ret; + +out_fail: + redirty_page_for_writepage(wbc, page); + unlock_page(page); + return ret; +} + +static int ext4_writeback_writepage(struct page *page, + struct writeback_control *wbc) +{ + struct inode *inode = page->mapping->host; + handle_t *handle = NULL; + int ret = 0; + int err; + + if (ext4_journal_current_handle()) + goto out_fail; + + handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); + if (IS_ERR(handle)) { + ret = PTR_ERR(handle); + goto out_fail; + } + + if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode)) + ret = nobh_writepage(page, ext4_get_block, wbc); + else + ret = block_write_full_page(page, ext4_get_block, wbc); + + err = ext4_journal_stop(handle); + if (!ret) + ret = err; + return ret; + +out_fail: + redirty_page_for_writepage(wbc, page); + unlock_page(page); + return ret; +} + +static int ext4_journalled_writepage(struct page *page, + struct writeback_control *wbc) +{ + struct inode *inode = page->mapping->host; + handle_t *handle = NULL; + int ret = 0; + int err; + + if (ext4_journal_current_handle()) + goto no_write; + + handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); + if (IS_ERR(handle)) { + ret = PTR_ERR(handle); + goto no_write; + } + + if (!page_has_buffers(page) || PageChecked(page)) { + /* + * It's mmapped pagecache. Add buffers and journal it. There + * doesn't seem much point in redirtying the page here. + */ + ClearPageChecked(page); + ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE, + ext4_get_block); + if (ret != 0) { + ext4_journal_stop(handle); + goto out_unlock; + } + ret = walk_page_buffers(handle, page_buffers(page), 0, + PAGE_CACHE_SIZE, NULL, do_journal_get_write_access); + + err = walk_page_buffers(handle, page_buffers(page), 0, + PAGE_CACHE_SIZE, NULL, commit_write_fn); + if (ret == 0) + ret = err; + EXT4_I(inode)->i_state |= EXT4_STATE_JDATA; + unlock_page(page); + } else { + /* + * It may be a page full of checkpoint-mode buffers. We don't + * really know unless we go poke around in the buffer_heads. + * But block_write_full_page will do the right thing. + */ + ret = block_write_full_page(page, ext4_get_block, wbc); + } + err = ext4_journal_stop(handle); + if (!ret) + ret = err; +out: + return ret; + +no_write: + redirty_page_for_writepage(wbc, page); +out_unlock: + unlock_page(page); + goto out; +} + +static int ext4_readpage(struct file *file, struct page *page) +{ + return mpage_readpage(page, ext4_get_block); +} + +static int +ext4_readpages(struct file *file, struct address_space *mapping, + struct list_head *pages, unsigned nr_pages) +{ + return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); +} + +static void ext4_invalidatepage(struct page *page, unsigned long offset) +{ + journal_t *journal = EXT4_JOURNAL(page->mapping->host); + + /* + * If it's a full truncate we just forget about the pending dirtying + */ + if (offset == 0) + ClearPageChecked(page); + + jbd2_journal_invalidatepage(journal, page, offset); +} + +static int ext4_releasepage(struct page *page, gfp_t wait) +{ + journal_t *journal = EXT4_JOURNAL(page->mapping->host); + + WARN_ON(PageChecked(page)); + if (!page_has_buffers(page)) + return 0; + return jbd2_journal_try_to_free_buffers(journal, page, wait); +} + +/* + * If the O_DIRECT write will extend the file then add this inode to the + * orphan list. So recovery will truncate it back to the original size + * if the machine crashes during the write. + * + * If the O_DIRECT write is intantiating holes inside i_size and the machine + * crashes then stale disk data _may_ be exposed inside the file. + */ +static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, + const struct iovec *iov, loff_t offset, + unsigned long nr_segs) +{ + struct file *file = iocb->ki_filp; + struct inode *inode = file->f_mapping->host; + struct ext4_inode_info *ei = EXT4_I(inode); + handle_t *handle = NULL; + ssize_t ret; + int orphan = 0; + size_t count = iov_length(iov, nr_segs); + + if (rw == WRITE) { + loff_t final_size = offset + count; + + handle = ext4_journal_start(inode, DIO_CREDITS); + if (IS_ERR(handle)) { + ret = PTR_ERR(handle); + goto out; + } + if (final_size > inode->i_size) { + ret = ext4_orphan_add(handle, inode); + if (ret) + goto out_stop; + orphan = 1; + ei->i_disksize = inode->i_size; + } + } + + ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov, + offset, nr_segs, + ext4_get_block, NULL); + + /* + * Reacquire the handle: ext4_get_block() can restart the transaction + */ + handle = journal_current_handle(); + +out_stop: + if (handle) { + int err; + + if (orphan && inode->i_nlink) + ext4_orphan_del(handle, inode); + if (orphan && ret > 0) { + loff_t end = offset + ret; + if (end > inode->i_size) { + ei->i_disksize = end; + i_size_write(inode, end); + /* + * We're going to return a positive `ret' + * here due to non-zero-length I/O, so there's + * no way of reporting error returns from + * ext4_mark_inode_dirty() to userspace. So + * ignore it. + */ + ext4_mark_inode_dirty(handle, inode); + } + } + err = ext4_journal_stop(handle); + if (ret == 0) + ret = err; + } +out: + return ret; +} + +/* + * Pages can be marked dirty completely asynchronously from ext4's journalling + * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do + * much here because ->set_page_dirty is called under VFS locks. The page is + * not necessarily locked. + * + * We cannot just dirty the page and leave attached buffers clean, because the + * buffers' dirty state is "definitive". We cannot just set the buffers dirty + * or jbddirty because all the journalling code will explode. + * + * So what we do is to mark the page "pending dirty" and next time writepage + * is called, propagate that into the buffers appropriately. + */ +static int ext4_journalled_set_page_dirty(struct page *page) +{ + SetPageChecked(page); + return __set_page_dirty_nobuffers(page); +} + +static const struct address_space_operations ext4_ordered_aops = { + .readpage = ext4_readpage, + .readpages = ext4_readpages, + .writepage = ext4_ordered_writepage, + .sync_page = block_sync_page, + .prepare_write = ext4_prepare_write, + .commit_write = ext4_ordered_commit_write, + .bmap = ext4_bmap, + .invalidatepage = ext4_invalidatepage, + .releasepage = ext4_releasepage, + .direct_IO = ext4_direct_IO, + .migratepage = buffer_migrate_page, +}; + +static const struct address_space_operations ext4_writeback_aops = { + .readpage = ext4_readpage, + .readpages = ext4_readpages, + .writepage = ext4_writeback_writepage, + .sync_page = block_sync_page, + .prepare_write = ext4_prepare_write, + .commit_write = ext4_writeback_commit_write, + .bmap = ext4_bmap, + .invalidatepage = ext4_invalidatepage, + .releasepage = ext4_releasepage, + .direct_IO = ext4_direct_IO, + .migratepage = buffer_migrate_page, +}; + +static const struct address_space_operations ext4_journalled_aops = { + .readpage = ext4_readpage, + .readpages = ext4_readpages, + .writepage = ext4_journalled_writepage, + .sync_page = block_sync_page, + .prepare_write = ext4_prepare_write, + .commit_write = ext4_journalled_commit_write, + .set_page_dirty = ext4_journalled_set_page_dirty, + .bmap = ext4_bmap, + .invalidatepage = ext4_invalidatepage, + .releasepage = ext4_releasepage, +}; + +void ext4_set_aops(struct inode *inode) +{ + if (ext4_should_order_data(inode)) + inode->i_mapping->a_ops = &ext4_ordered_aops; + else if (ext4_should_writeback_data(inode)) + inode->i_mapping->a_ops = &ext4_writeback_aops; + else + inode->i_mapping->a_ops = &ext4_journalled_aops; +} + +/* + * ext4_block_truncate_page() zeroes out a mapping from file offset `from' + * up to the end of the block which corresponds to `from'. + * This required during truncate. We need to physically zero the tail end + * of that block so it doesn't yield old data if the file is later grown. + */ +int ext4_block_truncate_page(handle_t *handle, struct page *page, + struct address_space *mapping, loff_t from) +{ + ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; + unsigned offset = from & (PAGE_CACHE_SIZE-1); + unsigned blocksize, iblock, length, pos; + struct inode *inode = mapping->host; + struct buffer_head *bh; + int err = 0; + void *kaddr; + + blocksize = inode->i_sb->s_blocksize; + length = blocksize - (offset & (blocksize - 1)); + iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); + + /* + * For "nobh" option, we can only work if we don't need to + * read-in the page - otherwise we create buffers to do the IO. + */ + if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) && + ext4_should_writeback_data(inode) && PageUptodate(page)) { + kaddr = kmap_atomic(page, KM_USER0); + memset(kaddr + offset, 0, length); + flush_dcache_page(page); + kunmap_atomic(kaddr, KM_USER0); + set_page_dirty(page); + goto unlock; + } + + if (!page_has_buffers(page)) + create_empty_buffers(page, blocksize, 0); + + /* Find the buffer that contains "offset" */ + bh = page_buffers(page); + pos = blocksize; + while (offset >= pos) { + bh = bh->b_this_page; + iblock++; + pos += blocksize; + } + + err = 0; + if (buffer_freed(bh)) { + BUFFER_TRACE(bh, "freed: skip"); + goto unlock; + } + + if (!buffer_mapped(bh)) { + BUFFER_TRACE(bh, "unmapped"); + ext4_get_block(inode, iblock, bh, 0); + /* unmapped? It's a hole - nothing to do */ + if (!buffer_mapped(bh)) { + BUFFER_TRACE(bh, "still unmapped"); + goto unlock; + } + } + + /* Ok, it's mapped. Make sure it's up-to-date */ + if (PageUptodate(page)) + set_buffer_uptodate(bh); + + if (!buffer_uptodate(bh)) { + err = -EIO; + ll_rw_block(READ, 1, &bh); + wait_on_buffer(bh); + /* Uhhuh. Read error. Complain and punt. */ + if (!buffer_uptodate(bh)) + goto unlock; + } + + if (ext4_should_journal_data(inode)) { + BUFFER_TRACE(bh, "get write access"); + err = ext4_journal_get_write_access(handle, bh); + if (err) + goto unlock; + } + + kaddr = kmap_atomic(page, KM_USER0); + memset(kaddr + offset, 0, length); + flush_dcache_page(page); + kunmap_atomic(kaddr, KM_USER0); + + BUFFER_TRACE(bh, "zeroed end of block"); + + err = 0; + if (ext4_should_journal_data(inode)) { + err = ext4_journal_dirty_metadata(handle, bh); + } else { + if (ext4_should_order_data(inode)) + err = ext4_journal_dirty_data(handle, bh); + mark_buffer_dirty(bh); + } + +unlock: + unlock_page(page); + page_cache_release(page); + return err; +} + +/* + * Probably it should be a library function... search for first non-zero word + * or memcmp with zero_page, whatever is better for particular architecture. + * Linus? + */ +static inline int all_zeroes(__le32 *p, __le32 *q) +{ + while (p < q) + if (*p++) + return 0; + return 1; +} + +/** + * ext4_find_shared - find the indirect blocks for partial truncation. + * @inode: inode in question + * @depth: depth of the affected branch + * @offsets: offsets of pointers in that branch (see ext4_block_to_path) + * @chain: place to store the pointers to partial indirect blocks + * @top: place to the (detached) top of branch + * + * This is a helper function used by ext4_truncate(). + * + * When we do truncate() we may have to clean the ends of several + * indirect blocks but leave the blocks themselves alive. Block is + * partially truncated if some data below the new i_size is refered + * from it (and it is on the path to the first completely truncated + * data block, indeed). We have to free the top of that path along + * with everything to the right of the path. Since no allocation + * past the truncation point is possible until ext4_truncate() + * finishes, we may safely do the latter, but top of branch may + * require special attention - pageout below the truncation point + * might try to populate it. + * + * We atomically detach the top of branch from the tree, store the + * block number of its root in *@top, pointers to buffer_heads of + * partially truncated blocks - in @chain[].bh and pointers to + * their last elements that should not be removed - in + * @chain[].p. Return value is the pointer to last filled element + * of @chain. + * + * The work left to caller to do the actual freeing of subtrees: + * a) free the subtree starting from *@top + * b) free the subtrees whose roots are stored in + * (@chain[i].p+1 .. end of @chain[i].bh->b_data) + * c) free the subtrees growing from the inode past the @chain[0]. + * (no partially truncated stuff there). */ + +static Indirect *ext4_find_shared(struct inode *inode, int depth, + int offsets[4], Indirect chain[4], __le32 *top) +{ + Indirect *partial, *p; + int k, err; + + *top = 0; + /* Make k index the deepest non-null offest + 1 */ + for (k = depth; k > 1 && !offsets[k-1]; k--) + ; + partial = ext4_get_branch(inode, k, offsets, chain, &err); + /* Writer: pointers */ + if (!partial) + partial = chain + k-1; + /* + * If the branch acquired continuation since we've looked at it - + * fine, it should all survive and (new) top doesn't belong to us. + */ + if (!partial->key && *partial->p) + /* Writer: end */ + goto no_top; + for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--) + ; + /* + * OK, we've found the last block that must survive. The rest of our + * branch should be detached before unlocking. However, if that rest + * of branch is all ours and does not grow immediately from the inode + * it's easier to cheat and just decrement partial->p. + */ + if (p == chain + k - 1 && p > chain) { + p->p--; + } else { + *top = *p->p; + /* Nope, don't do this in ext4. Must leave the tree intact */ +#if 0 + *p->p = 0; +#endif + } + /* Writer: end */ + + while(partial > p) { + brelse(partial->bh); + partial--; + } +no_top: + return partial; +} + +/* + * Zero a number of block pointers in either an inode or an indirect block. + * If we restart the transaction we must again get write access to the + * indirect block for further modification. + * + * We release `count' blocks on disk, but (last - first) may be greater + * than `count' because there can be holes in there. + */ +static void ext4_clear_blocks(handle_t *handle, struct inode *inode, + struct buffer_head *bh, ext4_fsblk_t block_to_free, + unsigned long count, __le32 *first, __le32 *last) +{ + __le32 *p; + if (try_to_extend_transaction(handle, inode)) { + if (bh) { + BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); + ext4_journal_dirty_metadata(handle, bh); + } + ext4_mark_inode_dirty(handle, inode); + ext4_journal_test_restart(handle, inode); + if (bh) { + BUFFER_TRACE(bh, "retaking write access"); + ext4_journal_get_write_access(handle, bh); + } + } + + /* + * Any buffers which are on the journal will be in memory. We find + * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget() + * on them. We've already detached each block from the file, so + * bforget() in jbd2_journal_forget() should be safe. + * + * AKPM: turn on bforget in jbd2_journal_forget()!!! + */ + for (p = first; p < last; p++) { + u32 nr = le32_to_cpu(*p); + if (nr) { + struct buffer_head *bh; + + *p = 0; + bh = sb_find_get_block(inode->i_sb, nr); + ext4_forget(handle, 0, inode, bh, nr); + } + } + + ext4_free_blocks(handle, inode, block_to_free, count); +} + +/** + * ext4_free_data - free a list of data blocks + * @handle: handle for this transaction + * @inode: inode we are dealing with + * @this_bh: indirect buffer_head which contains *@first and *@last + * @first: array of block numbers + * @last: points immediately past the end of array + * + * We are freeing all blocks refered from that array (numbers are stored as + * little-endian 32-bit) and updating @inode->i_blocks appropriately. + * + * We accumulate contiguous runs of blocks to free. Conveniently, if these + * blocks are contiguous then releasing them at one time will only affect one + * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't + * actually use a lot of journal space. + * + * @this_bh will be %NULL if @first and @last point into the inode's direct + * block pointers. + */ +static void ext4_free_data(handle_t *handle, struct inode *inode, + struct buffer_head *this_bh, + __le32 *first, __le32 *last) +{ + ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */ + unsigned long count = 0; /* Number of blocks in the run */ + __le32 *block_to_free_p = NULL; /* Pointer into inode/ind + corresponding to + block_to_free */ + ext4_fsblk_t nr; /* Current block # */ + __le32 *p; /* Pointer into inode/ind + for current block */ + int err; + + if (this_bh) { /* For indirect block */ + BUFFER_TRACE(this_bh, "get_write_access"); + err = ext4_journal_get_write_access(handle, this_bh); + /* Important: if we can't update the indirect pointers + * to the blocks, we can't free them. */ + if (err) + return; + } + + for (p = first; p < last; p++) { + nr = le32_to_cpu(*p); + if (nr) { + /* accumulate blocks to free if they're contiguous */ + if (count == 0) { + block_to_free = nr; + block_to_free_p = p; + count = 1; + } else if (nr == block_to_free + count) { + count++; + } else { + ext4_clear_blocks(handle, inode, this_bh, + block_to_free, + count, block_to_free_p, p); + block_to_free = nr; + block_to_free_p = p; + count = 1; + } + } + } + + if (count > 0) + ext4_clear_blocks(handle, inode, this_bh, block_to_free, + count, block_to_free_p, p); + + if (this_bh) { + BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata"); + ext4_journal_dirty_metadata(handle, this_bh); + } +} + +/** + * ext4_free_branches - free an array of branches + * @handle: JBD handle for this transaction + * @inode: inode we are dealing with + * @parent_bh: the buffer_head which contains *@first and *@last + * @first: array of block numbers + * @last: pointer immediately past the end of array + * @depth: depth of the branches to free + * + * We are freeing all blocks refered from these branches (numbers are + * stored as little-endian 32-bit) and updating @inode->i_blocks + * appropriately. + */ +static void ext4_free_branches(handle_t *handle, struct inode *inode, + struct buffer_head *parent_bh, + __le32 *first, __le32 *last, int depth) +{ + ext4_fsblk_t nr; + __le32 *p; + + if (is_handle_aborted(handle)) + return; + + if (depth--) { + struct buffer_head *bh; + int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); + p = last; + while (--p >= first) { + nr = le32_to_cpu(*p); + if (!nr) + continue; /* A hole */ + + /* Go read the buffer for the next level down */ + bh = sb_bread(inode->i_sb, nr); + + /* + * A read failure? Report error and clear slot + * (should be rare). + */ + if (!bh) { + ext4_error(inode->i_sb, "ext4_free_branches", + "Read failure, inode=%lu, block=%llu", + inode->i_ino, nr); + continue; + } + + /* This zaps the entire block. Bottom up. */ + BUFFER_TRACE(bh, "free child branches"); + ext4_free_branches(handle, inode, bh, + (__le32*)bh->b_data, + (__le32*)bh->b_data + addr_per_block, + depth); + + /* + * We've probably journalled the indirect block several + * times during the truncate. But it's no longer + * needed and we now drop it from the transaction via + * jbd2_journal_revoke(). + * + * That's easy if it's exclusively part of this + * transaction. But if it's part of the committing + * transaction then jbd2_journal_forget() will simply + * brelse() it. That means that if the underlying + * block is reallocated in ext4_get_block(), + * unmap_underlying_metadata() will find this block + * and will try to get rid of it. damn, damn. + * + * If this block has already been committed to the + * journal, a revoke record will be written. And + * revoke records must be emitted *before* clearing + * this block's bit in the bitmaps. + */ + ext4_forget(handle, 1, inode, bh, bh->b_blocknr); + + /* + * Everything below this this pointer has been + * released. Now let this top-of-subtree go. + * + * We want the freeing of this indirect block to be + * atomic in the journal with the updating of the + * bitmap block which owns it. So make some room in + * the journal. + * + * We zero the parent pointer *after* freeing its + * pointee in the bitmaps, so if extend_transaction() + * for some reason fails to put the bitmap changes and + * the release into the same transaction, recovery + * will merely complain about releasing a free block, + * rather than leaking blocks. + */ + if (is_handle_aborted(handle)) + return; + if (try_to_extend_transaction(handle, inode)) { + ext4_mark_inode_dirty(handle, inode); + ext4_journal_test_restart(handle, inode); + } + + ext4_free_blocks(handle, inode, nr, 1); + + if (parent_bh) { + /* + * The block which we have just freed is + * pointed to by an indirect block: journal it + */ + BUFFER_TRACE(parent_bh, "get_write_access"); + if (!ext4_journal_get_write_access(handle, + parent_bh)){ + *p = 0; + BUFFER_TRACE(parent_bh, + "call ext4_journal_dirty_metadata"); + ext4_journal_dirty_metadata(handle, + parent_bh); + } + } + } + } else { + /* We have reached the bottom of the tree. */ + BUFFER_TRACE(parent_bh, "free data blocks"); + ext4_free_data(handle, inode, parent_bh, first, last); + } +} + +/* + * ext4_truncate() + * + * We block out ext4_get_block() block instantiations across the entire + * transaction, and VFS/VM ensures that ext4_truncate() cannot run + * simultaneously on behalf of the same inode. + * + * As we work through the truncate and commmit bits of it to the journal there + * is one core, guiding principle: the file's tree must always be consistent on + * disk. We must be able to restart the truncate after a crash. + * + * The file's tree may be transiently inconsistent in memory (although it + * probably isn't), but whenever we close off and commit a journal transaction, + * the contents of (the filesystem + the journal) must be consistent and + * restartable. It's pretty simple, really: bottom up, right to left (although + * left-to-right works OK too). + * + * Note that at recovery time, journal replay occurs *before* the restart of + * truncate against the orphan inode list. + * + * The committed inode has the new, desired i_size (which is the same as + * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see + * that this inode's truncate did not complete and it will again call + * ext4_truncate() to have another go. So there will be instantiated blocks + * to the right of the truncation point in a crashed ext4 filesystem. But + * that's fine - as long as they are linked from the inode, the post-crash + * ext4_truncate() run will find them and release them. + */ +void ext4_truncate(struct inode *inode) +{ + handle_t *handle; + struct ext4_inode_info *ei = EXT4_I(inode); + __le32 *i_data = ei->i_data; + int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); + struct address_space *mapping = inode->i_mapping; + int offsets[4]; + Indirect chain[4]; + Indirect *partial; + __le32 nr = 0; + int n; + long last_block; + unsigned blocksize = inode->i_sb->s_blocksize; + struct page *page; + + if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || + S_ISLNK(inode->i_mode))) + return; + if (ext4_inode_is_fast_symlink(inode)) + return; + if (IS_APPEND(inode) || IS_IXORUNLINK(inode)) + return; + + /* + * We have to lock the EOF page here, because lock_page() nests + * outside jbd2_journal_start(). + */ + if ((inode->i_size & (blocksize - 1)) == 0) { + /* Block boundary? Nothing to do */ + page = NULL; + } else { + page = grab_cache_page(mapping, + inode->i_size >> PAGE_CACHE_SHIFT); + if (!page) + return; + } + + if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) + return ext4_ext_truncate(inode, page); + + handle = start_transaction(inode); + if (IS_ERR(handle)) { + if (page) { + clear_highpage(page); + flush_dcache_page(page); + unlock_page(page); + page_cache_release(page); + } + return; /* AKPM: return what? */ + } + + last_block = (inode->i_size + blocksize-1) + >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); + + if (page) + ext4_block_truncate_page(handle, page, mapping, inode->i_size); + + n = ext4_block_to_path(inode, last_block, offsets, NULL); + if (n == 0) + goto out_stop; /* error */ + + /* + * OK. This truncate is going to happen. We add the inode to the + * orphan list, so that if this truncate spans multiple transactions, + * and we crash, we will resume the truncate when the filesystem + * recovers. It also marks the inode dirty, to catch the new size. + * + * Implication: the file must always be in a sane, consistent + * truncatable state while each transaction commits. + */ + if (ext4_orphan_add(handle, inode)) + goto out_stop; + + /* + * The orphan list entry will now protect us from any crash which + * occurs before the truncate completes, so it is now safe to propagate + * the new, shorter inode size (held for now in i_size) into the + * on-disk inode. We do this via i_disksize, which is the value which + * ext4 *really* writes onto the disk inode. + */ + ei->i_disksize = inode->i_size; + + /* + * From here we block out all ext4_get_block() callers who want to + * modify the block allocation tree. + */ + mutex_lock(&ei->truncate_mutex); + + if (n == 1) { /* direct blocks */ + ext4_free_data(handle, inode, NULL, i_data+offsets[0], + i_data + EXT4_NDIR_BLOCKS); + goto do_indirects; + } + + partial = ext4_find_shared(inode, n, offsets, chain, &nr); + /* Kill the top of shared branch (not detached) */ + if (nr) { + if (partial == chain) { + /* Shared branch grows from the inode */ + ext4_free_branches(handle, inode, NULL, + &nr, &nr+1, (chain+n-1) - partial); + *partial->p = 0; + /* + * We mark the inode dirty prior to restart, + * and prior to stop. No need for it here. + */ + } else { + /* Shared branch grows from an indirect block */ + BUFFER_TRACE(partial->bh, "get_write_access"); + ext4_free_branches(handle, inode, partial->bh, + partial->p, + partial->p+1, (chain+n-1) - partial); + } + } + /* Clear the ends of indirect blocks on the shared branch */ + while (partial > chain) { + ext4_free_branches(handle, inode, partial->bh, partial->p + 1, + (__le32*)partial->bh->b_data+addr_per_block, + (chain+n-1) - partial); + BUFFER_TRACE(partial->bh, "call brelse"); + brelse (partial->bh); + partial--; + } +do_indirects: + /* Kill the remaining (whole) subtrees */ + switch (offsets[0]) { + default: + nr = i_data[EXT4_IND_BLOCK]; + if (nr) { + ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); + i_data[EXT4_IND_BLOCK] = 0; + } + case EXT4_IND_BLOCK: + nr = i_data[EXT4_DIND_BLOCK]; + if (nr) { + ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); + i_data[EXT4_DIND_BLOCK] = 0; + } + case EXT4_DIND_BLOCK: + nr = i_data[EXT4_TIND_BLOCK]; + if (nr) { + ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); + i_data[EXT4_TIND_BLOCK] = 0; + } + case EXT4_TIND_BLOCK: + ; + } + + ext4_discard_reservation(inode); + + mutex_unlock(&ei->truncate_mutex); + inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC; + ext4_mark_inode_dirty(handle, inode); + + /* + * In a multi-transaction truncate, we only make the final transaction + * synchronous + */ + if (IS_SYNC(inode)) + handle->h_sync = 1; +out_stop: + /* + * If this was a simple ftruncate(), and the file will remain alive + * then we need to clear up the orphan record which we created above. + * However, if this was a real unlink then we were called by + * ext4_delete_inode(), and we allow that function to clean up the + * orphan info for us. + */ + if (inode->i_nlink) + ext4_orphan_del(handle, inode); + + ext4_journal_stop(handle); +} + +static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb, + unsigned long ino, struct ext4_iloc *iloc) +{ + unsigned long desc, group_desc, block_group; + unsigned long offset; + ext4_fsblk_t block; + struct buffer_head *bh; + struct ext4_group_desc * gdp; + + if (!ext4_valid_inum(sb, ino)) { + /* + * This error is already checked for in namei.c unless we are + * looking at an NFS filehandle, in which case no error + * report is needed + */ + return 0; + } + + block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); + if (block_group >= EXT4_SB(sb)->s_groups_count) { + ext4_error(sb,"ext4_get_inode_block","group >= groups count"); + return 0; + } + smp_rmb(); + group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb); + desc = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1); + bh = EXT4_SB(sb)->s_group_desc[group_desc]; + if (!bh) { + ext4_error (sb, "ext4_get_inode_block", + "Descriptor not loaded"); + return 0; + } + + gdp = (struct ext4_group_desc *)((__u8 *)bh->b_data + + desc * EXT4_DESC_SIZE(sb)); + /* + * Figure out the offset within the block group inode table + */ + offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) * + EXT4_INODE_SIZE(sb); + block = ext4_inode_table(sb, gdp) + + (offset >> EXT4_BLOCK_SIZE_BITS(sb)); + + iloc->block_group = block_group; + iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1); + return block; +} + +/* + * ext4_get_inode_loc returns with an extra refcount against the inode's + * underlying buffer_head on success. If 'in_mem' is true, we have all + * data in memory that is needed to recreate the on-disk version of this + * inode. + */ +static int __ext4_get_inode_loc(struct inode *inode, + struct ext4_iloc *iloc, int in_mem) +{ + ext4_fsblk_t block; + struct buffer_head *bh; + + block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc); + if (!block) + return -EIO; + + bh = sb_getblk(inode->i_sb, block); + if (!bh) { + ext4_error (inode->i_sb, "ext4_get_inode_loc", + "unable to read inode block - " + "inode=%lu, block=%llu", + inode->i_ino, block); + return -EIO; + } + if (!buffer_uptodate(bh)) { + lock_buffer(bh); + if (buffer_uptodate(bh)) { + /* someone brought it uptodate while we waited */ + unlock_buffer(bh); + goto has_buffer; + } + + /* + * If we have all information of the inode in memory and this + * is the only valid inode in the block, we need not read the + * block. + */ + if (in_mem) { + struct buffer_head *bitmap_bh; + struct ext4_group_desc *desc; + int inodes_per_buffer; + int inode_offset, i; + int block_group; + int start; + + block_group = (inode->i_ino - 1) / + EXT4_INODES_PER_GROUP(inode->i_sb); + inodes_per_buffer = bh->b_size / + EXT4_INODE_SIZE(inode->i_sb); + inode_offset = ((inode->i_ino - 1) % + EXT4_INODES_PER_GROUP(inode->i_sb)); + start = inode_offset & ~(inodes_per_buffer - 1); + + /* Is the inode bitmap in cache? */ + desc = ext4_get_group_desc(inode->i_sb, + block_group, NULL); + if (!desc) + goto make_io; + + bitmap_bh = sb_getblk(inode->i_sb, + ext4_inode_bitmap(inode->i_sb, desc)); + if (!bitmap_bh) + goto make_io; + + /* + * If the inode bitmap isn't in cache then the + * optimisation may end up performing two reads instead + * of one, so skip it. + */ + if (!buffer_uptodate(bitmap_bh)) { + brelse(bitmap_bh); + goto make_io; + } + for (i = start; i < start + inodes_per_buffer; i++) { + if (i == inode_offset) + continue; + if (ext4_test_bit(i, bitmap_bh->b_data)) + break; + } + brelse(bitmap_bh); + if (i == start + inodes_per_buffer) { + /* all other inodes are free, so skip I/O */ + memset(bh->b_data, 0, bh->b_size); + set_buffer_uptodate(bh); + unlock_buffer(bh); + goto has_buffer; + } + } + +make_io: + /* + * There are other valid inodes in the buffer, this inode + * has in-inode xattrs, or we don't have this inode in memory. + * Read the block from disk. + */ + get_bh(bh); + bh->b_end_io = end_buffer_read_sync; + submit_bh(READ_META, bh); + wait_on_buffer(bh); + if (!buffer_uptodate(bh)) { + ext4_error(inode->i_sb, "ext4_get_inode_loc", + "unable to read inode block - " + "inode=%lu, block=%llu", + inode->i_ino, block); + brelse(bh); + return -EIO; + } + } +has_buffer: + iloc->bh = bh; + return 0; +} + +int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) +{ + /* We have all inode data except xattrs in memory here. */ + return __ext4_get_inode_loc(inode, iloc, + !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR)); +} + +void ext4_set_inode_flags(struct inode *inode) +{ + unsigned int flags = EXT4_I(inode)->i_flags; + + inode->i_flags &= ~(S_IMMUTABLE | S_IUNLINK | S_BARRIER | + S_SYNC | S_APPEND | S_NOATIME | S_DIRSYNC); + + if (flags & EXT4_IMMUTABLE_FL) + inode->i_flags |= S_IMMUTABLE; + if (flags & EXT4_IUNLINK_FL) + inode->i_flags |= S_IUNLINK; + if (flags & EXT4_BARRIER_FL) + inode->i_flags |= S_BARRIER; + + if (flags & EXT4_SYNC_FL) + inode->i_flags |= S_SYNC; + if (flags & EXT4_APPEND_FL) + inode->i_flags |= S_APPEND; + if (flags & EXT4_NOATIME_FL) + inode->i_flags |= S_NOATIME; + if (flags & EXT4_DIRSYNC_FL) + inode->i_flags |= S_DIRSYNC; +} + +int ext4_sync_flags(struct inode *inode) +{ + unsigned int oldflags, newflags; + int err = 0; + + oldflags = EXT4_I(inode)->i_flags; + newflags = oldflags & ~(EXT4_IMMUTABLE_FL | + EXT4_IUNLINK_FL | EXT4_BARRIER_FL); + + if (IS_IMMUTABLE(inode)) + newflags |= EXT4_IMMUTABLE_FL; + if (IS_IUNLINK(inode)) + newflags |= EXT4_IUNLINK_FL; + if (IS_BARRIER(inode)) + newflags |= EXT4_BARRIER_FL; + + if (oldflags ^ newflags) { + handle_t *handle; + struct ext4_iloc iloc; + + handle = ext4_journal_start(inode, 1); + if (IS_ERR(handle)) + return PTR_ERR(handle); + if (IS_SYNC(inode)) + handle->h_sync = 1; + err = ext4_reserve_inode_write(handle, inode, &iloc); + if (err) + goto flags_err; + + EXT4_I(inode)->i_flags = newflags; + inode->i_ctime = CURRENT_TIME; + + err = ext4_mark_iloc_dirty(handle, inode, &iloc); + flags_err: + ext4_journal_stop(handle); + } + return err; +} + +void ext4_read_inode(struct inode * inode) +{ + struct ext4_iloc iloc; + struct ext4_inode *raw_inode; + struct ext4_inode_info *ei = EXT4_I(inode); + struct buffer_head *bh; + int block; + uid_t uid; + gid_t gid; + +#ifdef CONFIG_EXT4DEV_FS_POSIX_ACL + ei->i_acl = EXT4_ACL_NOT_CACHED; + ei->i_default_acl = EXT4_ACL_NOT_CACHED; +#endif + ei->i_block_alloc_info = NULL; + + if (__ext4_get_inode_loc(inode, &iloc, 0)) + goto bad_inode; + bh = iloc.bh; + raw_inode = ext4_raw_inode(&iloc); + inode->i_mode = le16_to_cpu(raw_inode->i_mode); + uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); + gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); + if(!(test_opt (inode->i_sb, NO_UID32))) { + uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; + gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; + } + inode->i_uid = INOTAG_UID(DX_TAG(inode), uid, gid); + inode->i_gid = INOTAG_GID(DX_TAG(inode), uid, gid); + inode->i_tag = INOTAG_TAG(DX_TAG(inode), uid, gid, + le16_to_cpu(raw_inode->i_raw_tag)); + + inode->i_nlink = le16_to_cpu(raw_inode->i_links_count); + inode->i_size = le32_to_cpu(raw_inode->i_size); + inode->i_atime.tv_sec = le32_to_cpu(raw_inode->i_atime); + inode->i_ctime.tv_sec = le32_to_cpu(raw_inode->i_ctime); + inode->i_mtime.tv_sec = le32_to_cpu(raw_inode->i_mtime); + inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0; + + ei->i_state = 0; + ei->i_dir_start_lookup = 0; + ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); + /* We now have enough fields to check if the inode was active or not. + * This is needed because nfsd might try to access dead inodes + * the test is that same one that e2fsck uses + * NeilBrown 1999oct15 + */ + if (inode->i_nlink == 0) { + if (inode->i_mode == 0 || + !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) { + /* this inode is deleted */ + brelse (bh); + goto bad_inode; + } + /* The only unlinked inodes we let through here have + * valid i_mode and are being read by the orphan + * recovery code: that's fine, we're about to complete + * the process of deleting those. */ + } + inode->i_blocks = le32_to_cpu(raw_inode->i_blocks); + ei->i_flags = le32_to_cpu(raw_inode->i_flags); +#ifdef EXT4_FRAGMENTS + ei->i_faddr = le32_to_cpu(raw_inode->i_faddr); + ei->i_frag_no = raw_inode->i_frag; + ei->i_frag_size = raw_inode->i_fsize; +#endif + ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl); + if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != + cpu_to_le32(EXT4_OS_HURD)) + ei->i_file_acl |= + ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; + if (!S_ISREG(inode->i_mode)) { + ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl); + } else { + inode->i_size |= + ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32; + } + ei->i_disksize = inode->i_size; + inode->i_generation = le32_to_cpu(raw_inode->i_generation); + ei->i_block_group = iloc.block_group; + /* + * NOTE! The in-memory inode i_data array is in little-endian order + * even on big-endian machines: we do NOT byteswap the block numbers! + */ + for (block = 0; block < EXT4_N_BLOCKS; block++) + ei->i_data[block] = raw_inode->i_block[block]; + INIT_LIST_HEAD(&ei->i_orphan); + + if (inode->i_ino >= EXT4_FIRST_INO(inode->i_sb) + 1 && + EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { + /* + * When mke2fs creates big inodes it does not zero out + * the unused bytes above EXT4_GOOD_OLD_INODE_SIZE, + * so ignore those first few inodes. + */ + ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); + if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > + EXT4_INODE_SIZE(inode->i_sb)) + goto bad_inode; + if (ei->i_extra_isize == 0) { + /* The extra space is currently unused. Use it. */ + ei->i_extra_isize = sizeof(struct ext4_inode) - + EXT4_GOOD_OLD_INODE_SIZE; + } else { + __le32 *magic = (void *)raw_inode + + EXT4_GOOD_OLD_INODE_SIZE + + ei->i_extra_isize; + if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) + ei->i_state |= EXT4_STATE_XATTR; + } + } else + ei->i_extra_isize = 0; + + if (S_ISREG(inode->i_mode)) { + inode->i_op = &ext4_file_inode_operations; + inode->i_fop = &ext4_file_operations; + ext4_set_aops(inode); + } else if (S_ISDIR(inode->i_mode)) { + inode->i_op = &ext4_dir_inode_operations; + inode->i_fop = &ext4_dir_operations; + } else if (S_ISLNK(inode->i_mode)) { + if (ext4_inode_is_fast_symlink(inode)) + inode->i_op = &ext4_fast_symlink_inode_operations; + else { + inode->i_op = &ext4_symlink_inode_operations; + ext4_set_aops(inode); + } + } else { + inode->i_op = &ext4_special_inode_operations; + if (raw_inode->i_block[0]) + init_special_inode(inode, inode->i_mode, + old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); + else + init_special_inode(inode, inode->i_mode, + new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); + } + brelse (iloc.bh); + ext4_set_inode_flags(inode); + return; + +bad_inode: + make_bad_inode(inode); + return; +} + +/* + * Post the struct inode info into an on-disk inode location in the + * buffer-cache. This gobbles the caller's reference to the + * buffer_head in the inode location struct. + * + * The caller must have write access to iloc->bh. + */ +static int ext4_do_update_inode(handle_t *handle, + struct inode *inode, + struct ext4_iloc *iloc) +{ + struct ext4_inode *raw_inode = ext4_raw_inode(iloc); + struct ext4_inode_info *ei = EXT4_I(inode); + struct buffer_head *bh = iloc->bh; + uid_t uid = TAGINO_UID(DX_TAG(inode), inode->i_uid, inode->i_tag); + gid_t gid = TAGINO_GID(DX_TAG(inode), inode->i_gid, inode->i_tag); + int err = 0, rc, block; + + /* For fields not not tracking in the in-memory inode, + * initialise them to zero for new inodes. */ + if (ei->i_state & EXT4_STATE_NEW) + memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); + + raw_inode->i_mode = cpu_to_le16(inode->i_mode); + if(!(test_opt(inode->i_sb, NO_UID32))) { + raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid)); + raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid)); +/* + * Fix up interoperability with old kernels. Otherwise, old inodes get + * re-used with the upper 16 bits of the uid/gid intact + */ + if(!ei->i_dtime) { + raw_inode->i_uid_high = + cpu_to_le16(high_16_bits(uid)); + raw_inode->i_gid_high = + cpu_to_le16(high_16_bits(gid)); + } else { + raw_inode->i_uid_high = 0; + raw_inode->i_gid_high = 0; + } + } else { + raw_inode->i_uid_low = + cpu_to_le16(fs_high2lowuid(uid)); + raw_inode->i_gid_low = + cpu_to_le16(fs_high2lowgid(gid)); + raw_inode->i_uid_high = 0; + raw_inode->i_gid_high = 0; + } +#ifdef CONFIG_TAGGING_INTERN + raw_inode->i_raw_tag = cpu_to_le16(inode->i_tag); +#endif + raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); + raw_inode->i_size = cpu_to_le32(ei->i_disksize); + raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec); + raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec); + raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec); + raw_inode->i_blocks = cpu_to_le32(inode->i_blocks); + raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); + raw_inode->i_flags = cpu_to_le32(ei->i_flags); +#ifdef EXT4_FRAGMENTS + raw_inode->i_faddr = cpu_to_le32(ei->i_faddr); + raw_inode->i_frag = ei->i_frag_no; + raw_inode->i_fsize = ei->i_frag_size; +#endif + if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != + cpu_to_le32(EXT4_OS_HURD)) + raw_inode->i_file_acl_high = + cpu_to_le16(ei->i_file_acl >> 32); + raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl); + if (!S_ISREG(inode->i_mode)) { + raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl); + } else { + raw_inode->i_size_high = + cpu_to_le32(ei->i_disksize >> 32); + if (ei->i_disksize > 0x7fffffffULL) { + struct super_block *sb = inode->i_sb; + if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, + EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || + EXT4_SB(sb)->s_es->s_rev_level == + cpu_to_le32(EXT4_GOOD_OLD_REV)) { + /* If this is the first large file + * created, add a flag to the superblock. + */ + err = ext4_journal_get_write_access(handle, + EXT4_SB(sb)->s_sbh); + if (err) + goto out_brelse; + ext4_update_dynamic_rev(sb); + EXT4_SET_RO_COMPAT_FEATURE(sb, + EXT4_FEATURE_RO_COMPAT_LARGE_FILE); + sb->s_dirt = 1; + handle->h_sync = 1; + err = ext4_journal_dirty_metadata(handle, + EXT4_SB(sb)->s_sbh); + } + } + } + raw_inode->i_generation = cpu_to_le32(inode->i_generation); + if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { + if (old_valid_dev(inode->i_rdev)) { + raw_inode->i_block[0] = + cpu_to_le32(old_encode_dev(inode->i_rdev)); + raw_inode->i_block[1] = 0; + } else { + raw_inode->i_block[0] = 0; + raw_inode->i_block[1] = + cpu_to_le32(new_encode_dev(inode->i_rdev)); + raw_inode->i_block[2] = 0; + } + } else for (block = 0; block < EXT4_N_BLOCKS; block++) + raw_inode->i_block[block] = ei->i_data[block]; + + if (ei->i_extra_isize) + raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); + + BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); + rc = ext4_journal_dirty_metadata(handle, bh); + if (!err) + err = rc; + ei->i_state &= ~EXT4_STATE_NEW; + +out_brelse: + brelse (bh); + ext4_std_error(inode->i_sb, err); + return err; +} + +/* + * ext4_write_inode() + * + * We are called from a few places: + * + * - Within generic_file_write() for O_SYNC files. + * Here, there will be no transaction running. We wait for any running + * trasnaction to commit. + * + * - Within sys_sync(), kupdate and such. + * We wait on commit, if tol to. + * + * - Within prune_icache() (PF_MEMALLOC == true) + * Here we simply return. We can't afford to block kswapd on the + * journal commit. + * + * In all cases it is actually safe for us to return without doing anything, + * because the inode has been copied into a raw inode buffer in + * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for + * knfsd. + * + * Note that we are absolutely dependent upon all inode dirtiers doing the + * right thing: they *must* call mark_inode_dirty() after dirtying info in + * which we are interested. + * + * It would be a bug for them to not do this. The code: + * + * mark_inode_dirty(inode) + * stuff(); + * inode->i_size = expr; + * + * is in error because a kswapd-driven write_inode() could occur while + * `stuff()' is running, and the new i_size will be lost. Plus the inode + * will no longer be on the superblock's dirty inode list. + */ +int ext4_write_inode(struct inode *inode, int wait) +{ + if (current->flags & PF_MEMALLOC) + return 0; + + if (ext4_journal_current_handle()) { + jbd_debug(0, "called recursively, non-PF_MEMALLOC!\n"); + dump_stack(); + return -EIO; + } + + if (!wait) + return 0; + + return ext4_force_commit(inode->i_sb); +} + +/* + * ext4_setattr() + * + * Called from notify_change. + * + * We want to trap VFS attempts to truncate the file as soon as + * possible. In particular, we want to make sure that when the VFS + * shrinks i_size, we put the inode on the orphan list and modify + * i_disksize immediately, so that during the subsequent flushing of + * dirty pages and freeing of disk blocks, we can guarantee that any + * commit will leave the blocks being flushed in an unused state on + * disk. (On recovery, the inode will get truncated and the blocks will + * be freed, so we have a strong guarantee that no future commit will + * leave these blocks visible to the user.) + * + * Called with inode->sem down. + */ +int ext4_setattr(struct dentry *dentry, struct iattr *attr) +{ + struct inode *inode = dentry->d_inode; + int error, rc = 0; + const unsigned int ia_valid = attr->ia_valid; + + error = inode_change_ok(inode, attr); + if (error) + return error; + + if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || + (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid) || + (ia_valid & ATTR_TAG && attr->ia_tag != inode->i_tag)) { + handle_t *handle; + + /* (user+group)*(old+new) structure, inode write (sb, + * inode block, ? - but truncate inode update has it) */ + handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+ + EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3); + if (IS_ERR(handle)) { + error = PTR_ERR(handle); + goto err_out; + } + error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0; + if (error) { + ext4_journal_stop(handle); + return error; + } + /* Update corresponding info in inode so that everything is in + * one transaction */ + if (attr->ia_valid & ATTR_UID) + inode->i_uid = attr->ia_uid; + if (attr->ia_valid & ATTR_GID) + inode->i_gid = attr->ia_gid; + if ((attr->ia_valid & ATTR_TAG) && IS_TAGGED(inode)) + inode->i_tag = attr->ia_tag; + error = ext4_mark_inode_dirty(handle, inode); + ext4_journal_stop(handle); + } + + if (S_ISREG(inode->i_mode) && + attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) { + handle_t *handle; + + handle = ext4_journal_start(inode, 3); + if (IS_ERR(handle)) { + error = PTR_ERR(handle); + goto err_out; + } + + error = ext4_orphan_add(handle, inode); + EXT4_I(inode)->i_disksize = attr->ia_size; + rc = ext4_mark_inode_dirty(handle, inode); + if (!error) + error = rc; + ext4_journal_stop(handle); + } + + rc = inode_setattr(inode, attr); + + /* If inode_setattr's call to ext4_truncate failed to get a + * transaction handle at all, we need to clean up the in-core + * orphan list manually. */ + if (inode->i_nlink) + ext4_orphan_del(NULL, inode); + + if (!rc && (ia_valid & ATTR_MODE)) + rc = ext4_acl_chmod(inode); + +err_out: + ext4_std_error(inode->i_sb, error); + if (!error) + error = rc; + return error; +} + + +/* + * How many blocks doth make a writepage()? + * + * With N blocks per page, it may be: + * N data blocks + * 2 indirect block + * 2 dindirect + * 1 tindirect + * N+5 bitmap blocks (from the above) + * N+5 group descriptor summary blocks + * 1 inode block + * 1 superblock. + * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files + * + * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS + * + * With ordered or writeback data it's the same, less the N data blocks. + * + * If the inode's direct blocks can hold an integral number of pages then a + * page cannot straddle two indirect blocks, and we can only touch one indirect + * and dindirect block, and the "5" above becomes "3". + * + * This still overestimates under most circumstances. If we were to pass the + * start and end offsets in here as well we could do block_to_path() on each + * block and work out the exact number of indirects which are touched. Pah. + */ + +int ext4_writepage_trans_blocks(struct inode *inode) +{ + int bpp = ext4_journal_blocks_per_page(inode); + int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3; + int ret; + + if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) + return ext4_ext_writepage_trans_blocks(inode, bpp); + + if (ext4_should_journal_data(inode)) + ret = 3 * (bpp + indirects) + 2; + else + ret = 2 * (bpp + indirects) + 2; + +#ifdef CONFIG_QUOTA + /* We know that structure was already allocated during DQUOT_INIT so + * we will be updating only the data blocks + inodes */ + ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb); +#endif + + return ret; +} + +/* + * The caller must have previously called ext4_reserve_inode_write(). + * Give this, we know that the caller already has write access to iloc->bh. + */ +int ext4_mark_iloc_dirty(handle_t *handle, + struct inode *inode, struct ext4_iloc *iloc) +{ + int err = 0; + + /* the do_update_inode consumes one bh->b_count */ + get_bh(iloc->bh); + + /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ + err = ext4_do_update_inode(handle, inode, iloc); + put_bh(iloc->bh); + return err; +} + +/* + * On success, We end up with an outstanding reference count against + * iloc->bh. This _must_ be cleaned up later. + */ + +int +ext4_reserve_inode_write(handle_t *handle, struct inode *inode, + struct ext4_iloc *iloc) +{ + int err = 0; + if (handle) { + err = ext4_get_inode_loc(inode, iloc); + if (!err) { + BUFFER_TRACE(iloc->bh, "get_write_access"); + err = ext4_journal_get_write_access(handle, iloc->bh); + if (err) { + brelse(iloc->bh); + iloc->bh = NULL; + } + } + } + ext4_std_error(inode->i_sb, err); + return err; +} + +/* + * What we do here is to mark the in-core inode as clean with respect to inode + * dirtiness (it may still be data-dirty). + * This means that the in-core inode may be reaped by prune_icache + * without having to perform any I/O. This is a very good thing, + * because *any* task may call prune_icache - even ones which + * have a transaction open against a different journal. + * + * Is this cheating? Not really. Sure, we haven't written the + * inode out, but prune_icache isn't a user-visible syncing function. + * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) + * we start and wait on commits. + * + * Is this efficient/effective? Well, we're being nice to the system + * by cleaning up our inodes proactively so they can be reaped + * without I/O. But we are potentially leaving up to five seconds' + * worth of inodes floating about which prune_icache wants us to + * write out. One way to fix that would be to get prune_icache() + * to do a write_super() to free up some memory. It has the desired + * effect. + */ +int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) +{ + struct ext4_iloc iloc; + int err; + + might_sleep(); + err = ext4_reserve_inode_write(handle, inode, &iloc); + if (!err) + err = ext4_mark_iloc_dirty(handle, inode, &iloc); + return err; +} + +/* + * ext4_dirty_inode() is called from __mark_inode_dirty() + * + * We're really interested in the case where a file is being extended. + * i_size has been changed by generic_commit_write() and we thus need + * to include the updated inode in the current transaction. + * + * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks + * are allocated to the file. + * + * If the inode is marked synchronous, we don't honour that here - doing + * so would cause a commit on atime updates, which we don't bother doing. + * We handle synchronous inodes at the highest possible level. + */ +void ext4_dirty_inode(struct inode *inode) +{ + handle_t *current_handle = ext4_journal_current_handle(); + handle_t *handle; + + handle = ext4_journal_start(inode, 2); + if (IS_ERR(handle)) + goto out; + if (current_handle && + current_handle->h_transaction != handle->h_transaction) { + /* This task has a transaction open against a different fs */ + printk(KERN_EMERG "%s: transactions do not match!\n", + __FUNCTION__); + } else { + jbd_debug(5, "marking dirty. outer handle=%p\n", + current_handle); + ext4_mark_inode_dirty(handle, inode); + } + ext4_journal_stop(handle); +out: + return; +} + +#if 0 +/* + * Bind an inode's backing buffer_head into this transaction, to prevent + * it from being flushed to disk early. Unlike + * ext4_reserve_inode_write, this leaves behind no bh reference and + * returns no iloc structure, so the caller needs to repeat the iloc + * lookup to mark the inode dirty later. + */ +static int ext4_pin_inode(handle_t *handle, struct inode *inode) +{ + struct ext4_iloc iloc; + + int err = 0; + if (handle) { + err = ext4_get_inode_loc(inode, &iloc); + if (!err) { + BUFFER_TRACE(iloc.bh, "get_write_access"); + err = jbd2_journal_get_write_access(handle, iloc.bh); + if (!err) + err = ext4_journal_dirty_metadata(handle, + iloc.bh); + brelse(iloc.bh); + } + } + ext4_std_error(inode->i_sb, err); + return err; +} +#endif + +int ext4_change_inode_journal_flag(struct inode *inode, int val) +{ + journal_t *journal; + handle_t *handle; + int err; + + /* + * We have to be very careful here: changing a data block's + * journaling status dynamically is dangerous. If we write a + * data block to the journal, change the status and then delete + * that block, we risk forgetting to revoke the old log record + * from the journal and so a subsequent replay can corrupt data. + * So, first we make sure that the journal is empty and that + * nobody is changing anything. + */ + + journal = EXT4_JOURNAL(inode); + if (is_journal_aborted(journal) || IS_RDONLY(inode)) + return -EROFS; + + jbd2_journal_lock_updates(journal); + jbd2_journal_flush(journal); + + /* + * OK, there are no updates running now, and all cached data is + * synced to disk. We are now in a completely consistent state + * which doesn't have anything in the journal, and we know that + * no filesystem updates are running, so it is safe to modify + * the inode's in-core data-journaling state flag now. + */ + + if (val) + EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL; + else + EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL; + ext4_set_aops(inode); + + jbd2_journal_unlock_updates(journal); + + /* Finally we can mark the inode as dirty. */ + + handle = ext4_journal_start(inode, 1); + if (IS_ERR(handle)) + return PTR_ERR(handle); + + err = ext4_mark_inode_dirty(handle, inode); + handle->h_sync = 1; + ext4_journal_stop(handle); + ext4_std_error(inode->i_sb, err); + + return err; +}