X-Git-Url: http://git.onelab.eu/?a=blobdiff_plain;f=include%2Fasm-parisc%2Fpgalloc.h;h=3122fad38a1b766417ac8dd38f510ff181424f71;hb=43bc926fffd92024b46cafaf7350d669ba9ca884;hp=eb97d25ff3534ae513a08b4ed2bb7ab0dd06b01f;hpb=5273a3df6485dc2ad6aa7ddd441b9a21970f003b;p=linux-2.6.git diff --git a/include/asm-parisc/pgalloc.h b/include/asm-parisc/pgalloc.h index eb97d25ff..3122fad38 100644 --- a/include/asm-parisc/pgalloc.h +++ b/include/asm-parisc/pgalloc.h @@ -7,42 +7,78 @@ #include #include -#include #include +/* Allocate the top level pgd (page directory) + * + * Here (for 64 bit kernels) we implement a Hybrid L2/L3 scheme: we + * allocate the first pmd adjacent to the pgd. This means that we can + * subtract a constant offset to get to it. The pmd and pgd sizes are + * arranged so that a single pmd covers 4GB (giving a full LP64 + * process access to 8TB) so our lookups are effectively L2 for the + * first 4GB of the kernel (i.e. for all ILP32 processes and all the + * kernel for machines with under 4GB of memory) */ static inline pgd_t *pgd_alloc(struct mm_struct *mm) { - pgd_t *pgd = (pgd_t *)__get_free_page(GFP_KERNEL); - if (likely(pgd != NULL)) - clear_page(pgd); - return pgd; + pgd_t *pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, + PGD_ALLOC_ORDER); + pgd_t *actual_pgd = pgd; + + if (likely(pgd != NULL)) { + memset(pgd, 0, PAGE_SIZE<> PxD_VALUE_SHIFT)); + /* The first pmd entry also is marked with _PAGE_GATEWAY as + * a signal that this pmd may not be freed */ + __pgd_val_set(*pgd, PxD_FLAG_ATTACHED); +#endif + } + return actual_pgd; } static inline void pgd_free(pgd_t *pgd) { - free_page((unsigned long)pgd); +#ifdef __LP64__ + pgd -= PTRS_PER_PGD; +#endif + free_pages((unsigned long)pgd, PGD_ALLOC_ORDER); } -#ifdef __LP64__ +#if PT_NLEVELS == 3 /* Three Level Page Table Support for pmd's */ static inline void pgd_populate(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmd) { - pgd_val(*pgd) = _PAGE_TABLE + __pa((unsigned long)pmd); + __pgd_val_set(*pgd, (PxD_FLAG_PRESENT | PxD_FLAG_VALID) + + (__u32)(__pa((unsigned long)pmd) >> PxD_VALUE_SHIFT)); } static inline pmd_t *pmd_alloc_one(struct mm_struct *mm, unsigned long address) { - pmd_t *pmd = (pmd_t *)__get_free_page(GFP_KERNEL|__GFP_REPEAT); + pmd_t *pmd = (pmd_t *)__get_free_pages(GFP_KERNEL|__GFP_REPEAT, + PMD_ORDER); if (pmd) - clear_page(pmd); + memset(pmd, 0, PAGE_SIZE<> PxD_VALUE_SHIFT)); + else +#endif + __pmd_val_set(*pmd, (PxD_FLAG_PRESENT | PxD_FLAG_VALID) + + (__u32)(__pa((unsigned long)pte) >> PxD_VALUE_SHIFT)); } #define pmd_populate(mm, pmd, pte_page) \ @@ -72,18 +119,14 @@ pmd_populate_kernel(struct mm_struct *mm, pmd_t *pmd, pte_t *pte) static inline struct page * pte_alloc_one(struct mm_struct *mm, unsigned long address) { - struct page *page = alloc_page(GFP_KERNEL|__GFP_REPEAT); - if (likely(page != NULL)) - clear_page(page_address(page)); + struct page *page = alloc_page(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO); return page; } static inline pte_t * pte_alloc_one_kernel(struct mm_struct *mm, unsigned long addr) { - pte_t *pte = (pte_t *)__get_free_page(GFP_KERNEL|__GFP_REPEAT); - if (likely(pte != NULL)) - clear_page(pte); + pte_t *pte = (pte_t *)__get_free_page(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO); return pte; } @@ -94,7 +137,6 @@ static inline void pte_free_kernel(pte_t *pte) #define pte_free(page) pte_free_kernel(page_address(page)) -extern int do_check_pgt_cache(int, int); #define check_pgt_cache() do { } while (0) #endif