X-Git-Url: http://git.onelab.eu/?a=blobdiff_plain;f=include%2Fasm-v850%2Fbitops.h;h=609b9e87222a41c3594014e4f585d6a88333af79;hb=987b0145d94eecf292d8b301228356f44611ab7c;hp=1f6fd5ab4177badda30517f04e339b84a471c144;hpb=f7ed79d23a47594e7834d66a8f14449796d4f3e6;p=linux-2.6.git diff --git a/include/asm-v850/bitops.h b/include/asm-v850/bitops.h index 1f6fd5ab4..609b9e872 100644 --- a/include/asm-v850/bitops.h +++ b/include/asm-v850/bitops.h @@ -22,12 +22,26 @@ #ifdef __KERNEL__ -#include - /* * The __ functions are not atomic */ +/* + * ffz = Find First Zero in word. Undefined if no zero exists, + * so code should check against ~0UL first.. + */ +static inline unsigned long ffz (unsigned long word) +{ + unsigned long result = 0; + + while (word & 1) { + result++; + word >>= 1; + } + return result; +} + + /* In the following constant-bit-op macros, a "g" constraint is used when we really need an integer ("i" constraint). This is to avoid warnings/errors from the compiler in the case where the associated @@ -139,19 +153,203 @@ static inline int __test_bit (int nr, const void *addr) #define smp_mb__before_clear_bit() barrier () #define smp_mb__after_clear_bit() barrier () -#include -#include -#include -#include -#include -#include -#include -#include +#define find_first_zero_bit(addr, size) \ + find_next_zero_bit ((addr), (size), 0) + +static inline int find_next_zero_bit(const void *addr, int size, int offset) +{ + unsigned long *p = ((unsigned long *) addr) + (offset >> 5); + unsigned long result = offset & ~31UL; + unsigned long tmp; + + if (offset >= size) + return size; + size -= result; + offset &= 31UL; + if (offset) { + tmp = * (p++); + tmp |= ~0UL >> (32-offset); + if (size < 32) + goto found_first; + if (~tmp) + goto found_middle; + size -= 32; + result += 32; + } + while (size & ~31UL) { + if (~ (tmp = * (p++))) + goto found_middle; + result += 32; + size -= 32; + } + if (!size) + return result; + tmp = *p; + + found_first: + tmp |= ~0UL << size; + found_middle: + return result + ffz (tmp); +} + + +/* This is the same as generic_ffs, but we can't use that because it's + inline and the #include order mucks things up. */ +static inline int generic_ffs_for_find_next_bit(int x) +{ + int r = 1; + + if (!x) + return 0; + if (!(x & 0xffff)) { + x >>= 16; + r += 16; + } + if (!(x & 0xff)) { + x >>= 8; + r += 8; + } + if (!(x & 0xf)) { + x >>= 4; + r += 4; + } + if (!(x & 3)) { + x >>= 2; + r += 2; + } + if (!(x & 1)) { + x >>= 1; + r += 1; + } + return r; +} + +/* + * Find next one bit in a bitmap reasonably efficiently. + */ +static __inline__ unsigned long find_next_bit(const unsigned long *addr, + unsigned long size, unsigned long offset) +{ + unsigned int *p = ((unsigned int *) addr) + (offset >> 5); + unsigned int result = offset & ~31UL; + unsigned int tmp; + + if (offset >= size) + return size; + size -= result; + offset &= 31UL; + if (offset) { + tmp = *p++; + tmp &= ~0UL << offset; + if (size < 32) + goto found_first; + if (tmp) + goto found_middle; + size -= 32; + result += 32; + } + while (size >= 32) { + if ((tmp = *p++) != 0) + goto found_middle; + result += 32; + size -= 32; + } + if (!size) + return result; + tmp = *p; + +found_first: + tmp &= ~0UL >> (32 - size); + if (tmp == 0UL) /* Are any bits set? */ + return result + size; /* Nope. */ +found_middle: + return result + generic_ffs_for_find_next_bit(tmp); +} + +/* + * find_first_bit - find the first set bit in a memory region + */ +#define find_first_bit(addr, size) \ + find_next_bit((addr), (size), 0) + + +#define ffs(x) generic_ffs (x) +#define fls(x) generic_fls (x) +#define fls64(x) generic_fls64(x) +#define __ffs(x) ffs(x) + + +/* + * This is just `generic_ffs' from , except that it assumes + * that at least one bit is set, and returns the real index of the bit + * (rather than the bit index + 1, like ffs does). + */ +static inline int sched_ffs(int x) +{ + int r = 0; + + if (!(x & 0xffff)) { + x >>= 16; + r += 16; + } + if (!(x & 0xff)) { + x >>= 8; + r += 8; + } + if (!(x & 0xf)) { + x >>= 4; + r += 4; + } + if (!(x & 3)) { + x >>= 2; + r += 2; + } + if (!(x & 1)) { + x >>= 1; + r += 1; + } + return r; +} + +/* + * Every architecture must define this function. It's the fastest + * way of searching a 140-bit bitmap where the first 100 bits are + * unlikely to be set. It's guaranteed that at least one of the 140 + * bits is set. + */ +static inline int sched_find_first_bit(unsigned long *b) +{ + unsigned offs = 0; + while (! *b) { + b++; + offs += 32; + } + return sched_ffs (*b) + offs; +} + +/* + * hweightN: returns the hamming weight (i.e. the number + * of bits set) of a N-bit word + */ +#define hweight32(x) generic_hweight32 (x) +#define hweight16(x) generic_hweight16 (x) +#define hweight8(x) generic_hweight8 (x) + +#define ext2_set_bit test_and_set_bit #define ext2_set_bit_atomic(l,n,a) test_and_set_bit(n,a) +#define ext2_clear_bit test_and_clear_bit #define ext2_clear_bit_atomic(l,n,a) test_and_clear_bit(n,a) +#define ext2_test_bit test_bit +#define ext2_find_first_zero_bit find_first_zero_bit +#define ext2_find_next_zero_bit find_next_zero_bit -#include +/* Bitmap functions for the minix filesystem. */ +#define minix_test_and_set_bit test_and_set_bit +#define minix_set_bit set_bit +#define minix_test_and_clear_bit test_and_clear_bit +#define minix_test_bit test_bit +#define minix_find_first_zero_bit find_first_zero_bit #endif /* __KERNEL__ */