X-Git-Url: http://git.onelab.eu/?a=blobdiff_plain;f=include%2Flinux%2Ffutex.h;h=3f153b4e156c4e9be16c70570276c02d3aecba8c;hb=97bf2856c6014879bd04983a3e9dfcdac1e7fe85;hp=10f96c31971ea30daf38c9226d656c0e993af3c0;hpb=76828883507a47dae78837ab5dec5a5b4513c667;p=linux-2.6.git diff --git a/include/linux/futex.h b/include/linux/futex.h index 10f96c319..3f153b4e1 100644 --- a/include/linux/futex.h +++ b/include/linux/futex.h @@ -1,6 +1,8 @@ #ifndef _LINUX_FUTEX_H #define _LINUX_FUTEX_H +#include + /* Second argument to futex syscall */ @@ -10,10 +12,106 @@ #define FUTEX_REQUEUE 3 #define FUTEX_CMP_REQUEUE 4 #define FUTEX_WAKE_OP 5 +#define FUTEX_LOCK_PI 6 +#define FUTEX_UNLOCK_PI 7 +#define FUTEX_TRYLOCK_PI 8 + +/* + * Support for robust futexes: the kernel cleans up held futexes at + * thread exit time. + */ + +/* + * Per-lock list entry - embedded in user-space locks, somewhere close + * to the futex field. (Note: user-space uses a double-linked list to + * achieve O(1) list add and remove, but the kernel only needs to know + * about the forward link) + * + * NOTE: this structure is part of the syscall ABI, and must not be + * changed. + */ +struct robust_list { + struct robust_list __user *next; +}; + +/* + * Per-thread list head: + * + * NOTE: this structure is part of the syscall ABI, and must only be + * changed if the change is first communicated with the glibc folks. + * (When an incompatible change is done, we'll increase the structure + * size, which glibc will detect) + */ +struct robust_list_head { + /* + * The head of the list. Points back to itself if empty: + */ + struct robust_list list; + + /* + * This relative offset is set by user-space, it gives the kernel + * the relative position of the futex field to examine. This way + * we keep userspace flexible, to freely shape its data-structure, + * without hardcoding any particular offset into the kernel: + */ + long futex_offset; + + /* + * The death of the thread may race with userspace setting + * up a lock's links. So to handle this race, userspace first + * sets this field to the address of the to-be-taken lock, + * then does the lock acquire, and then adds itself to the + * list, and then clears this field. Hence the kernel will + * always have full knowledge of all locks that the thread + * _might_ have taken. We check the owner TID in any case, + * so only truly owned locks will be handled. + */ + struct robust_list __user *list_op_pending; +}; + +/* + * Are there any waiters for this robust futex: + */ +#define FUTEX_WAITERS 0x80000000 -long do_futex(unsigned long uaddr, int op, int val, - unsigned long timeout, unsigned long uaddr2, int val2, - int val3); +/* + * The kernel signals via this bit that a thread holding a futex + * has exited without unlocking the futex. The kernel also does + * a FUTEX_WAKE on such futexes, after setting the bit, to wake + * up any possible waiters: + */ +#define FUTEX_OWNER_DIED 0x40000000 + +/* + * The rest of the robust-futex field is for the TID: + */ +#define FUTEX_TID_MASK 0x3fffffff + +/* + * This limit protects against a deliberately circular list. + * (Not worth introducing an rlimit for it) + */ +#define ROBUST_LIST_LIMIT 2048 + +#ifdef __KERNEL__ +long do_futex(u32 __user *uaddr, int op, u32 val, unsigned long timeout, + u32 __user *uaddr2, u32 val2, u32 val3); + +extern int +handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi); + +#ifdef CONFIG_FUTEX +extern void exit_robust_list(struct task_struct *curr); +extern void exit_pi_state_list(struct task_struct *curr); +#else +static inline void exit_robust_list(struct task_struct *curr) +{ +} +static inline void exit_pi_state_list(struct task_struct *curr) +{ +} +#endif +#endif /* __KERNEL__ */ #define FUTEX_OP_SET 0 /* *(int *)UADDR2 = OPARG; */ #define FUTEX_OP_ADD 1 /* *(int *)UADDR2 += OPARG; */