X-Git-Url: http://git.onelab.eu/?a=blobdiff_plain;f=mm%2Fslab.c;h=31ea409b8e6dc66e8ffd4e7278eacf710b04f7dc;hb=97bf2856c6014879bd04983a3e9dfcdac1e7fe85;hp=34d9e5b5ebfa40f762f038f693231d51151b6508;hpb=9bf4aaab3e101692164d49b7ca357651eb691cb6;p=linux-2.6.git diff --git a/mm/slab.c b/mm/slab.c index 34d9e5b5e..31ea409b8 100644 --- a/mm/slab.c +++ b/mm/slab.c @@ -50,12 +50,12 @@ * The head array is strictly LIFO and should improve the cache hit rates. * On SMP, it additionally reduces the spinlock operations. * - * The c_cpuarray may not be read with enabled local interrupts - + * The c_cpuarray may not be read with enabled local interrupts - * it's changed with a smp_call_function(). * * SMP synchronization: * constructors and destructors are called without any locking. - * Several members in kmem_cache_t and struct slab never change, they + * Several members in struct kmem_cache and struct slab never change, they * are accessed without any locking. * The per-cpu arrays are never accessed from the wrong cpu, no locking, * and local interrupts are disabled so slab code is preempt-safe. @@ -68,33 +68,52 @@ * Further notes from the original documentation: * * 11 April '97. Started multi-threading - markhe - * The global cache-chain is protected by the semaphore 'cache_chain_sem'. + * The global cache-chain is protected by the mutex 'cache_chain_mutex'. * The sem is only needed when accessing/extending the cache-chain, which * can never happen inside an interrupt (kmem_cache_create(), * kmem_cache_shrink() and kmem_cache_reap()). * * At present, each engine can be growing a cache. This should be blocked. * + * 15 March 2005. NUMA slab allocator. + * Shai Fultheim . + * Shobhit Dayal + * Alok N Kataria + * Christoph Lameter + * + * Modified the slab allocator to be node aware on NUMA systems. + * Each node has its own list of partial, free and full slabs. + * All object allocations for a node occur from node specific slab lists. */ -#include #include #include +#include #include #include #include #include #include +#include #include #include #include #include #include #include +#include +#include +#include +#include +#include +#include +#include +#include +#include -#include #include #include +#include /* * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL, @@ -117,7 +136,6 @@ #define FORCED_DEBUG 0 #endif - /* Shouldn't this be in a header file somewhere? */ #define BYTES_PER_WORD sizeof(void *) @@ -126,9 +144,28 @@ #endif #ifndef ARCH_KMALLOC_MINALIGN +/* + * Enforce a minimum alignment for the kmalloc caches. + * Usually, the kmalloc caches are cache_line_size() aligned, except when + * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned. + * Some archs want to perform DMA into kmalloc caches and need a guaranteed + * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that. + * Note that this flag disables some debug features. + */ #define ARCH_KMALLOC_MINALIGN 0 #endif +#ifndef ARCH_SLAB_MINALIGN +/* + * Enforce a minimum alignment for all caches. + * Intended for archs that get misalignment faults even for BYTES_PER_WORD + * aligned buffers. Includes ARCH_KMALLOC_MINALIGN. + * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables + * some debug features. + */ +#define ARCH_SLAB_MINALIGN 0 +#endif + #ifndef ARCH_KMALLOC_FLAGS #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN #endif @@ -137,13 +174,15 @@ #if DEBUG # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \ SLAB_POISON | SLAB_HWCACHE_ALIGN | \ - SLAB_NO_REAP | SLAB_CACHE_DMA | \ + SLAB_CACHE_DMA | \ SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \ - SLAB_RECLAIM_ACCOUNT | SLAB_PANIC) + SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \ + SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD) #else -# define CREATE_MASK (SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \ +# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \ SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \ - SLAB_RECLAIM_ACCOUNT | SLAB_PANIC) + SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \ + SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD) #endif /* @@ -165,14 +204,11 @@ * is less than 512 (PAGE_SIZE<<3), but greater than 256. */ +typedef unsigned int kmem_bufctl_t; #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0) #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1) -#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-2) - -/* Max number of objs-per-slab for caches which use off-slab slabs. - * Needed to avoid a possible looping condition in cache_grow(). - */ -static unsigned long offslab_limit; +#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2) +#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3) /* * struct slab @@ -182,17 +218,39 @@ static unsigned long offslab_limit; * Slabs are chained into three list: fully used, partial, fully free slabs. */ struct slab { - struct list_head list; - unsigned long colouroff; - void *s_mem; /* including colour offset */ - unsigned int inuse; /* num of objs active in slab */ - kmem_bufctl_t free; + struct list_head list; + unsigned long colouroff; + void *s_mem; /* including colour offset */ + unsigned int inuse; /* num of objs active in slab */ + kmem_bufctl_t free; + unsigned short nodeid; +}; + +/* + * struct slab_rcu + * + * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to + * arrange for kmem_freepages to be called via RCU. This is useful if + * we need to approach a kernel structure obliquely, from its address + * obtained without the usual locking. We can lock the structure to + * stabilize it and check it's still at the given address, only if we + * can be sure that the memory has not been meanwhile reused for some + * other kind of object (which our subsystem's lock might corrupt). + * + * rcu_read_lock before reading the address, then rcu_read_unlock after + * taking the spinlock within the structure expected at that address. + * + * We assume struct slab_rcu can overlay struct slab when destroying. + */ +struct slab_rcu { + struct rcu_head head; + struct kmem_cache *cachep; + void *addr; }; /* * struct array_cache * - * Per cpu structures * Purpose: * - LIFO ordering, to hand out cache-warm objects from _alloc * - reduce the number of linked list operations @@ -207,108 +265,184 @@ struct array_cache { unsigned int limit; unsigned int batchcount; unsigned int touched; + spinlock_t lock; + void *entry[0]; /* + * Must have this definition in here for the proper + * alignment of array_cache. Also simplifies accessing + * the entries. + * [0] is for gcc 2.95. It should really be []. + */ }; -/* bootstrap: The caches do not work without cpuarrays anymore, - * but the cpuarrays are allocated from the generic caches... +/* + * bootstrap: The caches do not work without cpuarrays anymore, but the + * cpuarrays are allocated from the generic caches... */ #define BOOT_CPUCACHE_ENTRIES 1 struct arraycache_init { struct array_cache cache; - void * entries[BOOT_CPUCACHE_ENTRIES]; + void *entries[BOOT_CPUCACHE_ENTRIES]; }; /* - * The slab lists of all objects. - * Hopefully reduce the internal fragmentation - * NUMA: The spinlock could be moved from the kmem_cache_t - * into this structure, too. Figure out what causes - * fewer cross-node spinlock operations. + * The slab lists for all objects. */ struct kmem_list3 { - struct list_head slabs_partial; /* partial list first, better asm code */ - struct list_head slabs_full; - struct list_head slabs_free; - unsigned long free_objects; - int free_touched; - unsigned long next_reap; - struct array_cache *shared; + struct list_head slabs_partial; /* partial list first, better asm code */ + struct list_head slabs_full; + struct list_head slabs_free; + unsigned long free_objects; + unsigned int free_limit; + unsigned int colour_next; /* Per-node cache coloring */ + spinlock_t list_lock; + struct array_cache *shared; /* shared per node */ + struct array_cache **alien; /* on other nodes */ + unsigned long next_reap; /* updated without locking */ + int free_touched; /* updated without locking */ }; -#define LIST3_INIT(parent) \ - { \ - .slabs_full = LIST_HEAD_INIT(parent.slabs_full), \ - .slabs_partial = LIST_HEAD_INIT(parent.slabs_partial), \ - .slabs_free = LIST_HEAD_INIT(parent.slabs_free) \ - } -#define list3_data(cachep) \ - (&(cachep)->lists) +/* + * Need this for bootstrapping a per node allocator. + */ +#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1) +struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS]; +#define CACHE_CACHE 0 +#define SIZE_AC 1 +#define SIZE_L3 (1 + MAX_NUMNODES) + +static int drain_freelist(struct kmem_cache *cache, + struct kmem_list3 *l3, int tofree); +static void free_block(struct kmem_cache *cachep, void **objpp, int len, + int node); +static int enable_cpucache(struct kmem_cache *cachep); +static void cache_reap(struct work_struct *unused); + +/* + * This function must be completely optimized away if a constant is passed to + * it. Mostly the same as what is in linux/slab.h except it returns an index. + */ +static __always_inline int index_of(const size_t size) +{ + extern void __bad_size(void); + + if (__builtin_constant_p(size)) { + int i = 0; + +#define CACHE(x) \ + if (size <=x) \ + return i; \ + else \ + i++; +#include "linux/kmalloc_sizes.h" +#undef CACHE + __bad_size(); + } else + __bad_size(); + return 0; +} + +static int slab_early_init = 1; + +#define INDEX_AC index_of(sizeof(struct arraycache_init)) +#define INDEX_L3 index_of(sizeof(struct kmem_list3)) + +static void kmem_list3_init(struct kmem_list3 *parent) +{ + INIT_LIST_HEAD(&parent->slabs_full); + INIT_LIST_HEAD(&parent->slabs_partial); + INIT_LIST_HEAD(&parent->slabs_free); + parent->shared = NULL; + parent->alien = NULL; + parent->colour_next = 0; + spin_lock_init(&parent->list_lock); + parent->free_objects = 0; + parent->free_touched = 0; +} + +#define MAKE_LIST(cachep, listp, slab, nodeid) \ + do { \ + INIT_LIST_HEAD(listp); \ + list_splice(&(cachep->nodelists[nodeid]->slab), listp); \ + } while (0) -/* NUMA: per-node */ -#define list3_data_ptr(cachep, ptr) \ - list3_data(cachep) +#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ + do { \ + MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ + MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ + MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ + } while (0) /* - * kmem_cache_t + * struct kmem_cache * * manages a cache. */ - -struct kmem_cache_s { + +struct kmem_cache { /* 1) per-cpu data, touched during every alloc/free */ - struct array_cache *array[NR_CPUS]; - unsigned int batchcount; - unsigned int limit; -/* 2) touched by every alloc & free from the backend */ - struct kmem_list3 lists; - /* NUMA: kmem_3list_t *nodelists[MAX_NUMNODES] */ - unsigned int objsize; - unsigned int flags; /* constant flags */ - unsigned int num; /* # of objs per slab */ - unsigned int free_limit; /* upper limit of objects in the lists */ - spinlock_t spinlock; - -/* 3) cache_grow/shrink */ + struct array_cache *array[NR_CPUS]; +/* 2) Cache tunables. Protected by cache_chain_mutex */ + unsigned int batchcount; + unsigned int limit; + unsigned int shared; + + unsigned int buffer_size; + u32 reciprocal_buffer_size; +/* 3) touched by every alloc & free from the backend */ + struct kmem_list3 *nodelists[MAX_NUMNODES]; + + unsigned int flags; /* constant flags */ + unsigned int num; /* # of objs per slab */ + +/* 4) cache_grow/shrink */ /* order of pgs per slab (2^n) */ - unsigned int gfporder; + unsigned int gfporder; /* force GFP flags, e.g. GFP_DMA */ - unsigned int gfpflags; + gfp_t gfpflags; - size_t colour; /* cache colouring range */ - unsigned int colour_off; /* colour offset */ - unsigned int colour_next; /* cache colouring */ - kmem_cache_t *slabp_cache; - unsigned int slab_size; - unsigned int dflags; /* dynamic flags */ + size_t colour; /* cache colouring range */ + unsigned int colour_off; /* colour offset */ + struct kmem_cache *slabp_cache; + unsigned int slab_size; + unsigned int dflags; /* dynamic flags */ /* constructor func */ - void (*ctor)(void *, kmem_cache_t *, unsigned long); + void (*ctor) (void *, struct kmem_cache *, unsigned long); /* de-constructor func */ - void (*dtor)(void *, kmem_cache_t *, unsigned long); + void (*dtor) (void *, struct kmem_cache *, unsigned long); -/* 4) cache creation/removal */ - const char *name; - struct list_head next; +/* 5) cache creation/removal */ + const char *name; + struct list_head next; -/* 5) statistics */ +/* 6) statistics */ #if STATS - unsigned long num_active; - unsigned long num_allocations; - unsigned long high_mark; - unsigned long grown; - unsigned long reaped; - unsigned long errors; - unsigned long max_freeable; - atomic_t allochit; - atomic_t allocmiss; - atomic_t freehit; - atomic_t freemiss; + unsigned long num_active; + unsigned long num_allocations; + unsigned long high_mark; + unsigned long grown; + unsigned long reaped; + unsigned long errors; + unsigned long max_freeable; + unsigned long node_allocs; + unsigned long node_frees; + unsigned long node_overflow; + atomic_t allochit; + atomic_t allocmiss; + atomic_t freehit; + atomic_t freemiss; #endif #if DEBUG - int dbghead; - int reallen; + /* + * If debugging is enabled, then the allocator can add additional + * fields and/or padding to every object. buffer_size contains the total + * object size including these internal fields, the following two + * variables contain the offset to the user object and its size. + */ + int obj_offset; + int obj_size; #endif }; @@ -316,10 +450,11 @@ struct kmem_cache_s { #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) #define BATCHREFILL_LIMIT 16 -/* Optimization question: fewer reaps means less - * probability for unnessary cpucache drain/refill cycles. +/* + * Optimization question: fewer reaps means less probability for unnessary + * cpucache drain/refill cycles. * - * OTHO the cpuarrays can contain lots of objects, + * OTOH the cpuarrays can contain lots of objects, * which could lock up otherwise freeable slabs. */ #define REAPTIMEOUT_CPUC (2*HZ) @@ -330,16 +465,21 @@ struct kmem_cache_s { #define STATS_DEC_ACTIVE(x) ((x)->num_active--) #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) #define STATS_INC_GROWN(x) ((x)->grown++) -#define STATS_INC_REAPED(x) ((x)->reaped++) -#define STATS_SET_HIGH(x) do { if ((x)->num_active > (x)->high_mark) \ - (x)->high_mark = (x)->num_active; \ - } while (0) +#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y)) +#define STATS_SET_HIGH(x) \ + do { \ + if ((x)->num_active > (x)->high_mark) \ + (x)->high_mark = (x)->num_active; \ + } while (0) #define STATS_INC_ERR(x) ((x)->errors++) -#define STATS_SET_FREEABLE(x, i) \ - do { if ((x)->max_freeable < i) \ - (x)->max_freeable = i; \ - } while (0) - +#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) +#define STATS_INC_NODEFREES(x) ((x)->node_frees++) +#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) +#define STATS_SET_FREEABLE(x, i) \ + do { \ + if ((x)->max_freeable < i) \ + (x)->max_freeable = i; \ + } while (0) #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) @@ -349,75 +489,71 @@ struct kmem_cache_s { #define STATS_DEC_ACTIVE(x) do { } while (0) #define STATS_INC_ALLOCED(x) do { } while (0) #define STATS_INC_GROWN(x) do { } while (0) -#define STATS_INC_REAPED(x) do { } while (0) +#define STATS_ADD_REAPED(x,y) do { } while (0) #define STATS_SET_HIGH(x) do { } while (0) #define STATS_INC_ERR(x) do { } while (0) -#define STATS_SET_FREEABLE(x, i) \ - do { } while (0) - +#define STATS_INC_NODEALLOCS(x) do { } while (0) +#define STATS_INC_NODEFREES(x) do { } while (0) +#define STATS_INC_ACOVERFLOW(x) do { } while (0) +#define STATS_SET_FREEABLE(x, i) do { } while (0) #define STATS_INC_ALLOCHIT(x) do { } while (0) #define STATS_INC_ALLOCMISS(x) do { } while (0) #define STATS_INC_FREEHIT(x) do { } while (0) #define STATS_INC_FREEMISS(x) do { } while (0) #endif -#if DEBUG -/* Magic nums for obj red zoning. - * Placed in the first word before and the first word after an obj. - */ -#define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */ -#define RED_ACTIVE 0x170FC2A5UL /* when obj is active */ +#include "slab_vs.h" -/* ...and for poisoning */ -#define POISON_INUSE 0x5a /* for use-uninitialised poisoning */ -#define POISON_FREE 0x6b /* for use-after-free poisoning */ -#define POISON_END 0xa5 /* end-byte of poisoning */ +#if DEBUG -/* memory layout of objects: +/* + * memory layout of objects: * 0 : objp - * 0 .. cachep->dbghead - BYTES_PER_WORD - 1: padding. This ensures that + * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that * the end of an object is aligned with the end of the real * allocation. Catches writes behind the end of the allocation. - * cachep->dbghead - BYTES_PER_WORD .. cachep->dbghead - 1: + * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: * redzone word. - * cachep->dbghead: The real object. - * cachep->objsize - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] - * cachep->objsize - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long] + * cachep->obj_offset: The real object. + * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] + * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address + * [BYTES_PER_WORD long] */ -static int obj_dbghead(kmem_cache_t *cachep) +static int obj_offset(struct kmem_cache *cachep) { - return cachep->dbghead; + return cachep->obj_offset; } -static int obj_reallen(kmem_cache_t *cachep) +static int obj_size(struct kmem_cache *cachep) { - return cachep->reallen; + return cachep->obj_size; } -static unsigned long *dbg_redzone1(kmem_cache_t *cachep, void *objp) +static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp) { BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); - return (unsigned long*) (objp+obj_dbghead(cachep)-BYTES_PER_WORD); + return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD); } -static unsigned long *dbg_redzone2(kmem_cache_t *cachep, void *objp) +static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp) { BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); if (cachep->flags & SLAB_STORE_USER) - return (unsigned long*) (objp+cachep->objsize-2*BYTES_PER_WORD); - return (unsigned long*) (objp+cachep->objsize-BYTES_PER_WORD); + return (unsigned long *)(objp + cachep->buffer_size - + 2 * BYTES_PER_WORD); + return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD); } -static void **dbg_userword(kmem_cache_t *cachep, void *objp) +static void **dbg_userword(struct kmem_cache *cachep, void *objp) { BUG_ON(!(cachep->flags & SLAB_STORE_USER)); - return (void**)(objp+cachep->objsize-BYTES_PER_WORD); + return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD); } #else -#define obj_dbghead(x) 0 -#define obj_reallen(cachep) (cachep->objsize) +#define obj_offset(x) 0 +#define obj_size(cachep) (cachep->buffer_size) #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;}) #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;}) #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) @@ -425,8 +561,8 @@ static void **dbg_userword(kmem_cache_t *cachep, void *objp) #endif /* - * Maximum size of an obj (in 2^order pages) - * and absolute limit for the gfp order. + * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp + * order. */ #if defined(CONFIG_LARGE_ALLOCS) #define MAX_OBJ_ORDER 13 /* up to 32Mb */ @@ -446,23 +582,77 @@ static void **dbg_userword(kmem_cache_t *cachep, void *objp) #define BREAK_GFP_ORDER_LO 0 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO; -/* Macros for storing/retrieving the cachep and or slab from the - * global 'mem_map'. These are used to find the slab an obj belongs to. - * With kfree(), these are used to find the cache which an obj belongs to. +/* + * Functions for storing/retrieving the cachep and or slab from the page + * allocator. These are used to find the slab an obj belongs to. With kfree(), + * these are used to find the cache which an obj belongs to. + */ +static inline void page_set_cache(struct page *page, struct kmem_cache *cache) +{ + page->lru.next = (struct list_head *)cache; +} + +static inline struct kmem_cache *page_get_cache(struct page *page) +{ + if (unlikely(PageCompound(page))) + page = (struct page *)page_private(page); + BUG_ON(!PageSlab(page)); + return (struct kmem_cache *)page->lru.next; +} + +static inline void page_set_slab(struct page *page, struct slab *slab) +{ + page->lru.prev = (struct list_head *)slab; +} + +static inline struct slab *page_get_slab(struct page *page) +{ + if (unlikely(PageCompound(page))) + page = (struct page *)page_private(page); + BUG_ON(!PageSlab(page)); + return (struct slab *)page->lru.prev; +} + +static inline struct kmem_cache *virt_to_cache(const void *obj) +{ + struct page *page = virt_to_page(obj); + return page_get_cache(page); +} + +static inline struct slab *virt_to_slab(const void *obj) +{ + struct page *page = virt_to_page(obj); + return page_get_slab(page); +} + +static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab, + unsigned int idx) +{ + return slab->s_mem + cache->buffer_size * idx; +} + +/* + * We want to avoid an expensive divide : (offset / cache->buffer_size) + * Using the fact that buffer_size is a constant for a particular cache, + * we can replace (offset / cache->buffer_size) by + * reciprocal_divide(offset, cache->reciprocal_buffer_size) */ -#define SET_PAGE_CACHE(pg,x) ((pg)->lru.next = (struct list_head *)(x)) -#define GET_PAGE_CACHE(pg) ((kmem_cache_t *)(pg)->lru.next) -#define SET_PAGE_SLAB(pg,x) ((pg)->lru.prev = (struct list_head *)(x)) -#define GET_PAGE_SLAB(pg) ((struct slab *)(pg)->lru.prev) +static inline unsigned int obj_to_index(const struct kmem_cache *cache, + const struct slab *slab, void *obj) +{ + u32 offset = (obj - slab->s_mem); + return reciprocal_divide(offset, cache->reciprocal_buffer_size); +} -/* These are the default caches for kmalloc. Custom caches can have other sizes. */ +/* + * These are the default caches for kmalloc. Custom caches can have other sizes. + */ struct cache_sizes malloc_sizes[] = { #define CACHE(x) { .cs_size = (x) }, #include - { 0, } + CACHE(ULONG_MAX) #undef CACHE }; - EXPORT_SYMBOL(malloc_sizes); /* Must match cache_sizes above. Out of line to keep cache footprint low. */ @@ -474,354 +664,939 @@ struct cache_names { static struct cache_names __initdata cache_names[] = { #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" }, #include - { NULL, } + {NULL,} #undef CACHE }; -struct arraycache_init initarray_cache __initdata = { { 0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; -struct arraycache_init initarray_generic __initdata = { { 0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; +static struct arraycache_init initarray_cache __initdata = + { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; +static struct arraycache_init initarray_generic = + { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; /* internal cache of cache description objs */ -static kmem_cache_t cache_cache = { - .lists = LIST3_INIT(cache_cache.lists), - .batchcount = 1, - .limit = BOOT_CPUCACHE_ENTRIES, - .objsize = sizeof(kmem_cache_t), - .flags = SLAB_NO_REAP, - .spinlock = SPIN_LOCK_UNLOCKED, - .name = "kmem_cache", +static struct kmem_cache cache_cache = { + .batchcount = 1, + .limit = BOOT_CPUCACHE_ENTRIES, + .shared = 1, + .buffer_size = sizeof(struct kmem_cache), + .name = "kmem_cache", #if DEBUG - .reallen = sizeof(kmem_cache_t), + .obj_size = sizeof(struct kmem_cache), #endif }; -/* Guard access to the cache-chain. */ -static struct semaphore cache_chain_sem; +#define BAD_ALIEN_MAGIC 0x01020304ul -struct list_head cache_chain; +#ifdef CONFIG_LOCKDEP /* - * vm_enough_memory() looks at this to determine how many - * slab-allocated pages are possibly freeable under pressure + * Slab sometimes uses the kmalloc slabs to store the slab headers + * for other slabs "off slab". + * The locking for this is tricky in that it nests within the locks + * of all other slabs in a few places; to deal with this special + * locking we put on-slab caches into a separate lock-class. * - * SLAB_RECLAIM_ACCOUNT turns this on per-slab + * We set lock class for alien array caches which are up during init. + * The lock annotation will be lost if all cpus of a node goes down and + * then comes back up during hotplug + */ +static struct lock_class_key on_slab_l3_key; +static struct lock_class_key on_slab_alc_key; + +static inline void init_lock_keys(void) + +{ + int q; + struct cache_sizes *s = malloc_sizes; + + while (s->cs_size != ULONG_MAX) { + for_each_node(q) { + struct array_cache **alc; + int r; + struct kmem_list3 *l3 = s->cs_cachep->nodelists[q]; + if (!l3 || OFF_SLAB(s->cs_cachep)) + continue; + lockdep_set_class(&l3->list_lock, &on_slab_l3_key); + alc = l3->alien; + /* + * FIXME: This check for BAD_ALIEN_MAGIC + * should go away when common slab code is taught to + * work even without alien caches. + * Currently, non NUMA code returns BAD_ALIEN_MAGIC + * for alloc_alien_cache, + */ + if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC) + continue; + for_each_node(r) { + if (alc[r]) + lockdep_set_class(&alc[r]->lock, + &on_slab_alc_key); + } + } + s++; + } +} +#else +static inline void init_lock_keys(void) +{ +} +#endif + +/* + * 1. Guard access to the cache-chain. + * 2. Protect sanity of cpu_online_map against cpu hotplug events */ -atomic_t slab_reclaim_pages; -EXPORT_SYMBOL(slab_reclaim_pages); +static DEFINE_MUTEX(cache_chain_mutex); +static struct list_head cache_chain; /* * chicken and egg problem: delay the per-cpu array allocation * until the general caches are up. */ -enum { +static enum { NONE, - PARTIAL, + PARTIAL_AC, + PARTIAL_L3, FULL } g_cpucache_up; -static DEFINE_PER_CPU(struct timer_list, reap_timers); +/* + * used by boot code to determine if it can use slab based allocator + */ +int slab_is_available(void) +{ + return g_cpucache_up == FULL; +} -static void reap_timer_fnc(unsigned long data); -static void free_block(kmem_cache_t* cachep, void** objpp, int len); -static void enable_cpucache (kmem_cache_t *cachep); +static DEFINE_PER_CPU(struct delayed_work, reap_work); -static inline void ** ac_entry(struct array_cache *ac) +static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) { - return (void**)(ac+1); + return cachep->array[smp_processor_id()]; } -static inline struct array_cache *ac_data(kmem_cache_t *cachep) +static inline struct kmem_cache *__find_general_cachep(size_t size, + gfp_t gfpflags) { - return cachep->array[smp_processor_id()]; + struct cache_sizes *csizep = malloc_sizes; + +#if DEBUG + /* This happens if someone tries to call + * kmem_cache_create(), or __kmalloc(), before + * the generic caches are initialized. + */ + BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL); +#endif + while (size > csizep->cs_size) + csizep++; + + /* + * Really subtle: The last entry with cs->cs_size==ULONG_MAX + * has cs_{dma,}cachep==NULL. Thus no special case + * for large kmalloc calls required. + */ + if (unlikely(gfpflags & GFP_DMA)) + return csizep->cs_dmacachep; + return csizep->cs_cachep; } -/* Cal the num objs, wastage, and bytes left over for a given slab size. */ -static void cache_estimate (unsigned long gfporder, size_t size, size_t align, - int flags, size_t *left_over, unsigned int *num) +static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags) { - int i; - size_t wastage = PAGE_SIZE< 0) - i--; +static size_t slab_mgmt_size(size_t nr_objs, size_t align) +{ + return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align); +} + +/* + * Calculate the number of objects and left-over bytes for a given buffer size. + */ +static void cache_estimate(unsigned long gfporder, size_t buffer_size, + size_t align, int flags, size_t *left_over, + unsigned int *num) +{ + int nr_objs; + size_t mgmt_size; + size_t slab_size = PAGE_SIZE << gfporder; + + /* + * The slab management structure can be either off the slab or + * on it. For the latter case, the memory allocated for a + * slab is used for: + * + * - The struct slab + * - One kmem_bufctl_t for each object + * - Padding to respect alignment of @align + * - @buffer_size bytes for each object + * + * If the slab management structure is off the slab, then the + * alignment will already be calculated into the size. Because + * the slabs are all pages aligned, the objects will be at the + * correct alignment when allocated. + */ + if (flags & CFLGS_OFF_SLAB) { + mgmt_size = 0; + nr_objs = slab_size / buffer_size; - if (i > SLAB_LIMIT) - i = SLAB_LIMIT; + if (nr_objs > SLAB_LIMIT) + nr_objs = SLAB_LIMIT; + } else { + /* + * Ignore padding for the initial guess. The padding + * is at most @align-1 bytes, and @buffer_size is at + * least @align. In the worst case, this result will + * be one greater than the number of objects that fit + * into the memory allocation when taking the padding + * into account. + */ + nr_objs = (slab_size - sizeof(struct slab)) / + (buffer_size + sizeof(kmem_bufctl_t)); + + /* + * This calculated number will be either the right + * amount, or one greater than what we want. + */ + if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size + > slab_size) + nr_objs--; - *num = i; - wastage -= i*size; - wastage -= ALIGN(base+i*extra, align); - *left_over = wastage; + if (nr_objs > SLAB_LIMIT) + nr_objs = SLAB_LIMIT; + + mgmt_size = slab_mgmt_size(nr_objs, align); + } + *num = nr_objs; + *left_over = slab_size - nr_objs*buffer_size - mgmt_size; } #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg) -static void __slab_error(const char *function, kmem_cache_t *cachep, char *msg) +static void __slab_error(const char *function, struct kmem_cache *cachep, + char *msg) { printk(KERN_ERR "slab error in %s(): cache `%s': %s\n", - function, cachep->name, msg); + function, cachep->name, msg); dump_stack(); } /* - * Start the reap timer running on the target CPU. We run at around 1 to 2Hz. - * Add the CPU number into the expiry time to minimize the possibility of the - * CPUs getting into lockstep and contending for the global cache chain lock. + * By default on NUMA we use alien caches to stage the freeing of + * objects allocated from other nodes. This causes massive memory + * inefficiencies when using fake NUMA setup to split memory into a + * large number of small nodes, so it can be disabled on the command + * line + */ + +static int use_alien_caches __read_mostly = 1; +static int __init noaliencache_setup(char *s) +{ + use_alien_caches = 0; + return 1; +} +__setup("noaliencache", noaliencache_setup); + +#ifdef CONFIG_NUMA +/* + * Special reaping functions for NUMA systems called from cache_reap(). + * These take care of doing round robin flushing of alien caches (containing + * objects freed on different nodes from which they were allocated) and the + * flushing of remote pcps by calling drain_node_pages. */ -static void __devinit start_cpu_timer(int cpu) +static DEFINE_PER_CPU(unsigned long, reap_node); + +static void init_reap_node(int cpu) { - struct timer_list *rt = &per_cpu(reap_timers, cpu); + int node; - if (rt->function == NULL) { - init_timer(rt); - rt->expires = jiffies + HZ + 3*cpu; - rt->data = cpu; - rt->function = reap_timer_fnc; - add_timer_on(rt, cpu); - } + node = next_node(cpu_to_node(cpu), node_online_map); + if (node == MAX_NUMNODES) + node = first_node(node_online_map); + + per_cpu(reap_node, cpu) = node; } -#ifdef CONFIG_HOTPLUG_CPU -static void stop_cpu_timer(int cpu) +static void next_reap_node(void) { - struct timer_list *rt = &per_cpu(reap_timers, cpu); + int node = __get_cpu_var(reap_node); - if (rt->function) { - del_timer_sync(rt); - WARN_ON(timer_pending(rt)); - rt->function = NULL; - } + /* + * Also drain per cpu pages on remote zones + */ + if (node != numa_node_id()) + drain_node_pages(node); + + node = next_node(node, node_online_map); + if (unlikely(node >= MAX_NUMNODES)) + node = first_node(node_online_map); + __get_cpu_var(reap_node) = node; } + +#else +#define init_reap_node(cpu) do { } while (0) +#define next_reap_node(void) do { } while (0) #endif -static struct array_cache *alloc_arraycache(int cpu, int entries, int batchcount) +/* + * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz + * via the workqueue/eventd. + * Add the CPU number into the expiration time to minimize the possibility of + * the CPUs getting into lockstep and contending for the global cache chain + * lock. + */ +static void __devinit start_cpu_timer(int cpu) { - int memsize = sizeof(void*)*entries+sizeof(struct array_cache); - struct array_cache *nc = NULL; + struct delayed_work *reap_work = &per_cpu(reap_work, cpu); - if (cpu != -1) { - nc = kmem_cache_alloc_node(kmem_find_general_cachep(memsize, - GFP_KERNEL), cpu_to_node(cpu)); + /* + * When this gets called from do_initcalls via cpucache_init(), + * init_workqueues() has already run, so keventd will be setup + * at that time. + */ + if (keventd_up() && reap_work->work.func == NULL) { + init_reap_node(cpu); + INIT_DELAYED_WORK(reap_work, cache_reap); + schedule_delayed_work_on(cpu, reap_work, + __round_jiffies_relative(HZ, cpu)); } - if (!nc) - nc = kmalloc(memsize, GFP_KERNEL); +} + +static struct array_cache *alloc_arraycache(int node, int entries, + int batchcount) +{ + int memsize = sizeof(void *) * entries + sizeof(struct array_cache); + struct array_cache *nc = NULL; + + nc = kmalloc_node(memsize, GFP_KERNEL, node); if (nc) { nc->avail = 0; nc->limit = entries; nc->batchcount = batchcount; nc->touched = 0; + spin_lock_init(&nc->lock); } return nc; } -static int __devinit cpuup_callback(struct notifier_block *nfb, - unsigned long action, - void *hcpu) +/* + * Transfer objects in one arraycache to another. + * Locking must be handled by the caller. + * + * Return the number of entries transferred. + */ +static int transfer_objects(struct array_cache *to, + struct array_cache *from, unsigned int max) { - long cpu = (long)hcpu; - kmem_cache_t* cachep; + /* Figure out how many entries to transfer */ + int nr = min(min(from->avail, max), to->limit - to->avail); - switch (action) { - case CPU_UP_PREPARE: - down(&cache_chain_sem); - list_for_each_entry(cachep, &cache_chain, next) { - struct array_cache *nc; + if (!nr) + return 0; - nc = alloc_arraycache(cpu, cachep->limit, cachep->batchcount); - if (!nc) - goto bad; + memcpy(to->entry + to->avail, from->entry + from->avail -nr, + sizeof(void *) *nr); - spin_lock_irq(&cachep->spinlock); - cachep->array[cpu] = nc; - cachep->free_limit = (1+num_online_cpus())*cachep->batchcount - + cachep->num; - spin_unlock_irq(&cachep->spinlock); + from->avail -= nr; + to->avail += nr; + to->touched = 1; + return nr; +} - } - up(&cache_chain_sem); - break; - case CPU_ONLINE: - start_cpu_timer(cpu); - break; -#ifdef CONFIG_HOTPLUG_CPU - case CPU_DEAD: - stop_cpu_timer(cpu); - /* fall thru */ - case CPU_UP_CANCELED: - down(&cache_chain_sem); +#ifndef CONFIG_NUMA - list_for_each_entry(cachep, &cache_chain, next) { - struct array_cache *nc; +#define drain_alien_cache(cachep, alien) do { } while (0) +#define reap_alien(cachep, l3) do { } while (0) - spin_lock_irq(&cachep->spinlock); - /* cpu is dead; no one can alloc from it. */ - nc = cachep->array[cpu]; - cachep->array[cpu] = NULL; - cachep->free_limit -= cachep->batchcount; - free_block(cachep, ac_entry(nc), nc->avail); - spin_unlock_irq(&cachep->spinlock); - kfree(nc); - } - up(&cache_chain_sem); - break; -#endif - } - return NOTIFY_OK; -bad: - up(&cache_chain_sem); - return NOTIFY_BAD; +static inline struct array_cache **alloc_alien_cache(int node, int limit) +{ + return (struct array_cache **)BAD_ALIEN_MAGIC; } -static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 }; +static inline void free_alien_cache(struct array_cache **ac_ptr) +{ +} -/* Initialisation. - * Called after the gfp() functions have been enabled, and before smp_init(). - */ -void __init kmem_cache_init(void) +static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) { - size_t left_over; - struct cache_sizes *sizes; - struct cache_names *names; + return 0; +} - /* - * Fragmentation resistance on low memory - only use bigger - * page orders on machines with more than 32MB of memory. - */ - if (num_physpages > (32 << 20) >> PAGE_SHIFT) - slab_break_gfp_order = BREAK_GFP_ORDER_HI; +static inline void *alternate_node_alloc(struct kmem_cache *cachep, + gfp_t flags) +{ + return NULL; +} - - /* Bootstrap is tricky, because several objects are allocated - * from caches that do not exist yet: - * 1) initialize the cache_cache cache: it contains the kmem_cache_t - * structures of all caches, except cache_cache itself: cache_cache - * is statically allocated. - * Initially an __init data area is used for the head array, it's - * replaced with a kmalloc allocated array at the end of the bootstrap. - * 2) Create the first kmalloc cache. - * The kmem_cache_t for the new cache is allocated normally. An __init - * data area is used for the head array. - * 3) Create the remaining kmalloc caches, with minimally sized head arrays. - * 4) Replace the __init data head arrays for cache_cache and the first - * kmalloc cache with kmalloc allocated arrays. - * 5) Resize the head arrays of the kmalloc caches to their final sizes. - */ +static inline void *____cache_alloc_node(struct kmem_cache *cachep, + gfp_t flags, int nodeid) +{ + return NULL; +} - /* 1) create the cache_cache */ - init_MUTEX(&cache_chain_sem); - INIT_LIST_HEAD(&cache_chain); - list_add(&cache_cache.next, &cache_chain); - cache_cache.colour_off = cache_line_size(); - cache_cache.array[smp_processor_id()] = &initarray_cache.cache; +#else /* CONFIG_NUMA */ - cache_cache.objsize = ALIGN(cache_cache.objsize, cache_line_size()); +static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); +static void *alternate_node_alloc(struct kmem_cache *, gfp_t); - cache_estimate(0, cache_cache.objsize, cache_line_size(), 0, - &left_over, &cache_cache.num); - if (!cache_cache.num) - BUG(); +static struct array_cache **alloc_alien_cache(int node, int limit) +{ + struct array_cache **ac_ptr; + int memsize = sizeof(void *) * MAX_NUMNODES; + int i; - cache_cache.colour = left_over/cache_cache.colour_off; - cache_cache.colour_next = 0; - cache_cache.slab_size = ALIGN(cache_cache.num*sizeof(kmem_bufctl_t) + - sizeof(struct slab), cache_line_size()); + if (limit > 1) + limit = 12; + ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node); + if (ac_ptr) { + for_each_node(i) { + if (i == node || !node_online(i)) { + ac_ptr[i] = NULL; + continue; + } + ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d); + if (!ac_ptr[i]) { + for (i--; i <= 0; i--) + kfree(ac_ptr[i]); + kfree(ac_ptr); + return NULL; + } + } + } + return ac_ptr; +} - /* 2+3) create the kmalloc caches */ - sizes = malloc_sizes; - names = cache_names; +static void free_alien_cache(struct array_cache **ac_ptr) +{ + int i; - while (sizes->cs_size) { - /* For performance, all the general caches are L1 aligned. - * This should be particularly beneficial on SMP boxes, as it - * eliminates "false sharing". - * Note for systems short on memory removing the alignment will - * allow tighter packing of the smaller caches. */ - sizes->cs_cachep = kmem_cache_create(names->name, - sizes->cs_size, ARCH_KMALLOC_MINALIGN, - (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, NULL); - - /* Inc off-slab bufctl limit until the ceiling is hit. */ - if (!(OFF_SLAB(sizes->cs_cachep))) { - offslab_limit = sizes->cs_size-sizeof(struct slab); - offslab_limit /= sizeof(kmem_bufctl_t); - } + if (!ac_ptr) + return; + for_each_node(i) + kfree(ac_ptr[i]); + kfree(ac_ptr); +} - sizes->cs_dmacachep = kmem_cache_create(names->name_dma, - sizes->cs_size, ARCH_KMALLOC_MINALIGN, - (ARCH_KMALLOC_FLAGS | SLAB_CACHE_DMA | SLAB_PANIC), - NULL, NULL); +static void __drain_alien_cache(struct kmem_cache *cachep, + struct array_cache *ac, int node) +{ + struct kmem_list3 *rl3 = cachep->nodelists[node]; - sizes++; - names++; - } + if (ac->avail) { + spin_lock(&rl3->list_lock); + /* + * Stuff objects into the remote nodes shared array first. + * That way we could avoid the overhead of putting the objects + * into the free lists and getting them back later. + */ + if (rl3->shared) + transfer_objects(rl3->shared, ac, ac->limit); + + free_block(cachep, ac->entry, ac->avail, node); + ac->avail = 0; + spin_unlock(&rl3->list_lock); + } +} + +/* + * Called from cache_reap() to regularly drain alien caches round robin. + */ +static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3) +{ + int node = __get_cpu_var(reap_node); + + if (l3->alien) { + struct array_cache *ac = l3->alien[node]; + + if (ac && ac->avail && spin_trylock_irq(&ac->lock)) { + __drain_alien_cache(cachep, ac, node); + spin_unlock_irq(&ac->lock); + } + } +} + +static void drain_alien_cache(struct kmem_cache *cachep, + struct array_cache **alien) +{ + int i = 0; + struct array_cache *ac; + unsigned long flags; + + for_each_online_node(i) { + ac = alien[i]; + if (ac) { + spin_lock_irqsave(&ac->lock, flags); + __drain_alien_cache(cachep, ac, i); + spin_unlock_irqrestore(&ac->lock, flags); + } + } +} + +static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) +{ + struct slab *slabp = virt_to_slab(objp); + int nodeid = slabp->nodeid; + struct kmem_list3 *l3; + struct array_cache *alien = NULL; + int node; + + node = numa_node_id(); + + /* + * Make sure we are not freeing a object from another node to the array + * cache on this cpu. + */ + if (likely(slabp->nodeid == node) || unlikely(!use_alien_caches)) + return 0; + + l3 = cachep->nodelists[node]; + STATS_INC_NODEFREES(cachep); + if (l3->alien && l3->alien[nodeid]) { + alien = l3->alien[nodeid]; + spin_lock(&alien->lock); + if (unlikely(alien->avail == alien->limit)) { + STATS_INC_ACOVERFLOW(cachep); + __drain_alien_cache(cachep, alien, nodeid); + } + alien->entry[alien->avail++] = objp; + spin_unlock(&alien->lock); + } else { + spin_lock(&(cachep->nodelists[nodeid])->list_lock); + free_block(cachep, &objp, 1, nodeid); + spin_unlock(&(cachep->nodelists[nodeid])->list_lock); + } + return 1; +} +#endif + +static int __cpuinit cpuup_callback(struct notifier_block *nfb, + unsigned long action, void *hcpu) +{ + long cpu = (long)hcpu; + struct kmem_cache *cachep; + struct kmem_list3 *l3 = NULL; + int node = cpu_to_node(cpu); + int memsize = sizeof(struct kmem_list3); + + switch (action) { + case CPU_UP_PREPARE: + mutex_lock(&cache_chain_mutex); + /* + * We need to do this right in the beginning since + * alloc_arraycache's are going to use this list. + * kmalloc_node allows us to add the slab to the right + * kmem_list3 and not this cpu's kmem_list3 + */ + + list_for_each_entry(cachep, &cache_chain, next) { + /* + * Set up the size64 kmemlist for cpu before we can + * begin anything. Make sure some other cpu on this + * node has not already allocated this + */ + if (!cachep->nodelists[node]) { + l3 = kmalloc_node(memsize, GFP_KERNEL, node); + if (!l3) + goto bad; + kmem_list3_init(l3); + l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + + ((unsigned long)cachep) % REAPTIMEOUT_LIST3; + + /* + * The l3s don't come and go as CPUs come and + * go. cache_chain_mutex is sufficient + * protection here. + */ + cachep->nodelists[node] = l3; + } + + spin_lock_irq(&cachep->nodelists[node]->list_lock); + cachep->nodelists[node]->free_limit = + (1 + nr_cpus_node(node)) * + cachep->batchcount + cachep->num; + spin_unlock_irq(&cachep->nodelists[node]->list_lock); + } + + /* + * Now we can go ahead with allocating the shared arrays and + * array caches + */ + list_for_each_entry(cachep, &cache_chain, next) { + struct array_cache *nc; + struct array_cache *shared; + struct array_cache **alien = NULL; + + nc = alloc_arraycache(node, cachep->limit, + cachep->batchcount); + if (!nc) + goto bad; + shared = alloc_arraycache(node, + cachep->shared * cachep->batchcount, + 0xbaadf00d); + if (!shared) + goto bad; + + if (use_alien_caches) { + alien = alloc_alien_cache(node, cachep->limit); + if (!alien) + goto bad; + } + cachep->array[cpu] = nc; + l3 = cachep->nodelists[node]; + BUG_ON(!l3); + + spin_lock_irq(&l3->list_lock); + if (!l3->shared) { + /* + * We are serialised from CPU_DEAD or + * CPU_UP_CANCELLED by the cpucontrol lock + */ + l3->shared = shared; + shared = NULL; + } +#ifdef CONFIG_NUMA + if (!l3->alien) { + l3->alien = alien; + alien = NULL; + } +#endif + spin_unlock_irq(&l3->list_lock); + kfree(shared); + free_alien_cache(alien); + } + break; + case CPU_ONLINE: + mutex_unlock(&cache_chain_mutex); + start_cpu_timer(cpu); + break; +#ifdef CONFIG_HOTPLUG_CPU + case CPU_DOWN_PREPARE: + mutex_lock(&cache_chain_mutex); + break; + case CPU_DOWN_FAILED: + mutex_unlock(&cache_chain_mutex); + break; + case CPU_DEAD: + /* + * Even if all the cpus of a node are down, we don't free the + * kmem_list3 of any cache. This to avoid a race between + * cpu_down, and a kmalloc allocation from another cpu for + * memory from the node of the cpu going down. The list3 + * structure is usually allocated from kmem_cache_create() and + * gets destroyed at kmem_cache_destroy(). + */ + /* fall thru */ +#endif + case CPU_UP_CANCELED: + list_for_each_entry(cachep, &cache_chain, next) { + struct array_cache *nc; + struct array_cache *shared; + struct array_cache **alien; + cpumask_t mask; + + mask = node_to_cpumask(node); + /* cpu is dead; no one can alloc from it. */ + nc = cachep->array[cpu]; + cachep->array[cpu] = NULL; + l3 = cachep->nodelists[node]; + + if (!l3) + goto free_array_cache; + + spin_lock_irq(&l3->list_lock); + + /* Free limit for this kmem_list3 */ + l3->free_limit -= cachep->batchcount; + if (nc) + free_block(cachep, nc->entry, nc->avail, node); + + if (!cpus_empty(mask)) { + spin_unlock_irq(&l3->list_lock); + goto free_array_cache; + } + + shared = l3->shared; + if (shared) { + free_block(cachep, l3->shared->entry, + l3->shared->avail, node); + l3->shared = NULL; + } + + alien = l3->alien; + l3->alien = NULL; + + spin_unlock_irq(&l3->list_lock); + + kfree(shared); + if (alien) { + drain_alien_cache(cachep, alien); + free_alien_cache(alien); + } +free_array_cache: + kfree(nc); + } + /* + * In the previous loop, all the objects were freed to + * the respective cache's slabs, now we can go ahead and + * shrink each nodelist to its limit. + */ + list_for_each_entry(cachep, &cache_chain, next) { + l3 = cachep->nodelists[node]; + if (!l3) + continue; + drain_freelist(cachep, l3, l3->free_objects); + } + mutex_unlock(&cache_chain_mutex); + break; + } + return NOTIFY_OK; +bad: + return NOTIFY_BAD; +} + +static struct notifier_block __cpuinitdata cpucache_notifier = { + &cpuup_callback, NULL, 0 +}; + +/* + * swap the static kmem_list3 with kmalloced memory + */ +static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list, + int nodeid) +{ + struct kmem_list3 *ptr; + + ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid); + BUG_ON(!ptr); + + local_irq_disable(); + memcpy(ptr, list, sizeof(struct kmem_list3)); + /* + * Do not assume that spinlocks can be initialized via memcpy: + */ + spin_lock_init(&ptr->list_lock); + + MAKE_ALL_LISTS(cachep, ptr, nodeid); + cachep->nodelists[nodeid] = ptr; + local_irq_enable(); +} + +/* + * Initialisation. Called after the page allocator have been initialised and + * before smp_init(). + */ +void __init kmem_cache_init(void) +{ + size_t left_over; + struct cache_sizes *sizes; + struct cache_names *names; + int i; + int order; + int node; + + for (i = 0; i < NUM_INIT_LISTS; i++) { + kmem_list3_init(&initkmem_list3[i]); + if (i < MAX_NUMNODES) + cache_cache.nodelists[i] = NULL; + } + + /* + * Fragmentation resistance on low memory - only use bigger + * page orders on machines with more than 32MB of memory. + */ + if (num_physpages > (32 << 20) >> PAGE_SHIFT) + slab_break_gfp_order = BREAK_GFP_ORDER_HI; + + /* Bootstrap is tricky, because several objects are allocated + * from caches that do not exist yet: + * 1) initialize the cache_cache cache: it contains the struct + * kmem_cache structures of all caches, except cache_cache itself: + * cache_cache is statically allocated. + * Initially an __init data area is used for the head array and the + * kmem_list3 structures, it's replaced with a kmalloc allocated + * array at the end of the bootstrap. + * 2) Create the first kmalloc cache. + * The struct kmem_cache for the new cache is allocated normally. + * An __init data area is used for the head array. + * 3) Create the remaining kmalloc caches, with minimally sized + * head arrays. + * 4) Replace the __init data head arrays for cache_cache and the first + * kmalloc cache with kmalloc allocated arrays. + * 5) Replace the __init data for kmem_list3 for cache_cache and + * the other cache's with kmalloc allocated memory. + * 6) Resize the head arrays of the kmalloc caches to their final sizes. + */ + + node = numa_node_id(); + + /* 1) create the cache_cache */ + INIT_LIST_HEAD(&cache_chain); + list_add(&cache_cache.next, &cache_chain); + cache_cache.colour_off = cache_line_size(); + cache_cache.array[smp_processor_id()] = &initarray_cache.cache; + cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE]; + + cache_cache.buffer_size = ALIGN(cache_cache.buffer_size, + cache_line_size()); + cache_cache.reciprocal_buffer_size = + reciprocal_value(cache_cache.buffer_size); + + for (order = 0; order < MAX_ORDER; order++) { + cache_estimate(order, cache_cache.buffer_size, + cache_line_size(), 0, &left_over, &cache_cache.num); + if (cache_cache.num) + break; + } + BUG_ON(!cache_cache.num); + cache_cache.gfporder = order; + cache_cache.colour = left_over / cache_cache.colour_off; + cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) + + sizeof(struct slab), cache_line_size()); + + /* 2+3) create the kmalloc caches */ + sizes = malloc_sizes; + names = cache_names; + + /* + * Initialize the caches that provide memory for the array cache and the + * kmem_list3 structures first. Without this, further allocations will + * bug. + */ + + sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name, + sizes[INDEX_AC].cs_size, + ARCH_KMALLOC_MINALIGN, + ARCH_KMALLOC_FLAGS|SLAB_PANIC, + NULL, NULL); + + if (INDEX_AC != INDEX_L3) { + sizes[INDEX_L3].cs_cachep = + kmem_cache_create(names[INDEX_L3].name, + sizes[INDEX_L3].cs_size, + ARCH_KMALLOC_MINALIGN, + ARCH_KMALLOC_FLAGS|SLAB_PANIC, + NULL, NULL); + } + + slab_early_init = 0; + + while (sizes->cs_size != ULONG_MAX) { + /* + * For performance, all the general caches are L1 aligned. + * This should be particularly beneficial on SMP boxes, as it + * eliminates "false sharing". + * Note for systems short on memory removing the alignment will + * allow tighter packing of the smaller caches. + */ + if (!sizes->cs_cachep) { + sizes->cs_cachep = kmem_cache_create(names->name, + sizes->cs_size, + ARCH_KMALLOC_MINALIGN, + ARCH_KMALLOC_FLAGS|SLAB_PANIC, + NULL, NULL); + } + + sizes->cs_dmacachep = kmem_cache_create(names->name_dma, + sizes->cs_size, + ARCH_KMALLOC_MINALIGN, + ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA| + SLAB_PANIC, + NULL, NULL); + sizes++; + names++; + } /* 4) Replace the bootstrap head arrays */ { - void * ptr; - + struct array_cache *ptr; + ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); + local_irq_disable(); - BUG_ON(ac_data(&cache_cache) != &initarray_cache.cache); - memcpy(ptr, ac_data(&cache_cache), sizeof(struct arraycache_init)); + BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache); + memcpy(ptr, cpu_cache_get(&cache_cache), + sizeof(struct arraycache_init)); + /* + * Do not assume that spinlocks can be initialized via memcpy: + */ + spin_lock_init(&ptr->lock); + cache_cache.array[smp_processor_id()] = ptr; local_irq_enable(); - + ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); + local_irq_disable(); - BUG_ON(ac_data(malloc_sizes[0].cs_cachep) != &initarray_generic.cache); - memcpy(ptr, ac_data(malloc_sizes[0].cs_cachep), - sizeof(struct arraycache_init)); - malloc_sizes[0].cs_cachep->array[smp_processor_id()] = ptr; + BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep) + != &initarray_generic.cache); + memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep), + sizeof(struct arraycache_init)); + /* + * Do not assume that spinlocks can be initialized via memcpy: + */ + spin_lock_init(&ptr->lock); + + malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] = + ptr; local_irq_enable(); } + /* 5) Replace the bootstrap kmem_list3's */ + { + int nid; + + /* Replace the static kmem_list3 structures for the boot cpu */ + init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node); + + for_each_online_node(nid) { + init_list(malloc_sizes[INDEX_AC].cs_cachep, + &initkmem_list3[SIZE_AC + nid], nid); + + if (INDEX_AC != INDEX_L3) { + init_list(malloc_sizes[INDEX_L3].cs_cachep, + &initkmem_list3[SIZE_L3 + nid], nid); + } + } + } - /* 5) resize the head arrays to their final sizes */ + /* 6) resize the head arrays to their final sizes */ { - kmem_cache_t *cachep; - down(&cache_chain_sem); + struct kmem_cache *cachep; + mutex_lock(&cache_chain_mutex); list_for_each_entry(cachep, &cache_chain, next) - enable_cpucache(cachep); - up(&cache_chain_sem); + if (enable_cpucache(cachep)) + BUG(); + mutex_unlock(&cache_chain_mutex); } + /* Annotate slab for lockdep -- annotate the malloc caches */ + init_lock_keys(); + + /* Done! */ g_cpucache_up = FULL; - /* Register a cpu startup notifier callback - * that initializes ac_data for all new cpus + /* + * Register a cpu startup notifier callback that initializes + * cpu_cache_get for all new cpus */ register_cpu_notifier(&cpucache_notifier); - - /* The reap timers are started later, with a module init call: - * That part of the kernel is not yet operational. + /* + * The reap timers are started later, with a module init call: That part + * of the kernel is not yet operational. */ } -int __init cpucache_init(void) +static int __init cpucache_init(void) { int cpu; - /* - * Register the timers that return unneeded - * pages to gfp. + /* + * Register the timers that return unneeded pages to the page allocator */ - for (cpu = 0; cpu < NR_CPUS; cpu++) { - if (cpu_online(cpu)) - start_cpu_timer(cpu); - } - + for_each_online_cpu(cpu) + start_cpu_timer(cpu); return 0; } - __initcall(cpucache_init); /* @@ -831,74 +1606,90 @@ __initcall(cpucache_init); * did not request dmaable memory, we might get it, but that * would be relatively rare and ignorable. */ -static void *kmem_getpages(kmem_cache_t *cachep, int flags, int nodeid) +static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid) { struct page *page; - void *addr; + int nr_pages; int i; +#ifndef CONFIG_MMU + /* + * Nommu uses slab's for process anonymous memory allocations, and thus + * requires __GFP_COMP to properly refcount higher order allocations + */ + flags |= __GFP_COMP; +#endif + flags |= cachep->gfpflags; - if (likely(nodeid == -1)) { - addr = (void*)__get_free_pages(flags, cachep->gfporder); - if (!addr) - return NULL; - page = virt_to_page(addr); - } else { - page = alloc_pages_node(nodeid, flags, cachep->gfporder); - if (!page) - return NULL; - addr = page_address(page); - } - i = (1 << cachep->gfporder); + page = alloc_pages_node(nodeid, flags, cachep->gfporder); + if (!page) + return NULL; + + nr_pages = (1 << cachep->gfporder); if (cachep->flags & SLAB_RECLAIM_ACCOUNT) - atomic_add(i, &slab_reclaim_pages); - add_page_state(nr_slab, i); - while (i--) { - SetPageSlab(page); - page++; - } - return addr; + add_zone_page_state(page_zone(page), + NR_SLAB_RECLAIMABLE, nr_pages); + else + add_zone_page_state(page_zone(page), + NR_SLAB_UNRECLAIMABLE, nr_pages); + for (i = 0; i < nr_pages; i++) + __SetPageSlab(page + i); + return page_address(page); } /* * Interface to system's page release. */ -static void kmem_freepages(kmem_cache_t *cachep, void *addr) +static void kmem_freepages(struct kmem_cache *cachep, void *addr) { - unsigned long i = (1<gfporder); + unsigned long i = (1 << cachep->gfporder); struct page *page = virt_to_page(addr); const unsigned long nr_freed = i; + if (cachep->flags & SLAB_RECLAIM_ACCOUNT) + sub_zone_page_state(page_zone(page), + NR_SLAB_RECLAIMABLE, nr_freed); + else + sub_zone_page_state(page_zone(page), + NR_SLAB_UNRECLAIMABLE, nr_freed); while (i--) { - if (!TestClearPageSlab(page)) - BUG(); + BUG_ON(!PageSlab(page)); + __ClearPageSlab(page); page++; } - sub_page_state(nr_slab, nr_freed); if (current->reclaim_state) current->reclaim_state->reclaimed_slab += nr_freed; free_pages((unsigned long)addr, cachep->gfporder); - if (cachep->flags & SLAB_RECLAIM_ACCOUNT) - atomic_sub(1<gfporder, &slab_reclaim_pages); +} + +static void kmem_rcu_free(struct rcu_head *head) +{ + struct slab_rcu *slab_rcu = (struct slab_rcu *)head; + struct kmem_cache *cachep = slab_rcu->cachep; + + kmem_freepages(cachep, slab_rcu->addr); + if (OFF_SLAB(cachep)) + kmem_cache_free(cachep->slabp_cache, slab_rcu); } #if DEBUG #ifdef CONFIG_DEBUG_PAGEALLOC -static void store_stackinfo(kmem_cache_t *cachep, unsigned long *addr, unsigned long caller) +static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr, + unsigned long caller) { - int size = obj_reallen(cachep); + int size = obj_size(cachep); - addr = (unsigned long *)&((char*)addr)[obj_dbghead(cachep)]; + addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)]; - if (size < 5*sizeof(unsigned long)) + if (size < 5 * sizeof(unsigned long)) return; - *addr++=0x12345678; - *addr++=caller; - *addr++=smp_processor_id(); - size -= 3*sizeof(unsigned long); + *addr++ = 0x12345678; + *addr++ = caller; + *addr++ = smp_processor_id(); + size -= 3 * sizeof(unsigned long); { unsigned long *sptr = &caller; unsigned long svalue; @@ -906,7 +1697,7 @@ static void store_stackinfo(kmem_cache_t *cachep, unsigned long *addr, unsigned while (!kstack_end(sptr)) { svalue = *sptr++; if (kernel_text_address(svalue)) { - *addr++=svalue; + *addr++ = svalue; size -= sizeof(unsigned long); if (size <= sizeof(unsigned long)) break; @@ -914,33 +1705,55 @@ static void store_stackinfo(kmem_cache_t *cachep, unsigned long *addr, unsigned } } - *addr++=0x87654321; + *addr++ = 0x87654321; } #endif -static void poison_obj(kmem_cache_t *cachep, void *addr, unsigned char val) +static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) { - int size = obj_reallen(cachep); - addr = &((char*)addr)[obj_dbghead(cachep)]; + int size = obj_size(cachep); + addr = &((char *)addr)[obj_offset(cachep)]; memset(addr, val, size); - *(unsigned char *)(addr+size-1) = POISON_END; + *(unsigned char *)(addr + size - 1) = POISON_END; } static void dump_line(char *data, int offset, int limit) { int i; + unsigned char error = 0; + int bad_count = 0; + printk(KERN_ERR "%03x:", offset); - for (i=0;iflags & SLAB_STORE_USER) { - printk(KERN_ERR "Last user: [<%p>]", *dbg_userword(cachep, objp)); - print_symbol("(%s)", (unsigned long)*dbg_userword(cachep, objp)); + printk(KERN_ERR "Last user: [<%p>]", + *dbg_userword(cachep, objp)); + print_symbol("(%s)", + (unsigned long)*dbg_userword(cachep, objp)); printk("\n"); } - realobj = (char*)objp+obj_dbghead(cachep); - size = obj_reallen(cachep); - for (i=0; i size) - limit = size-i; + if (i + limit > size) + limit = size - i; dump_line(realobj, i, limit); } -#endif } -#if DEBUG - -static void check_poison_obj(kmem_cache_t *cachep, void *objp) +static void check_poison_obj(struct kmem_cache *cachep, void *objp) { char *realobj; int size, i; int lines = 0; - realobj = (char*)objp+obj_dbghead(cachep); - size = obj_reallen(cachep); + realobj = (char *)objp + obj_offset(cachep); + size = obj_size(cachep); - for (i=0;i size) - limit = size-i; + if (i + limit > size) + limit = size - i; dump_line(realobj, i, limit); i += 16; lines++; @@ -1008,43 +1822,49 @@ static void check_poison_obj(kmem_cache_t *cachep, void *objp) /* Print some data about the neighboring objects, if they * exist: */ - struct slab *slabp = GET_PAGE_SLAB(virt_to_page(objp)); - int objnr; + struct slab *slabp = virt_to_slab(objp); + unsigned int objnr; - objnr = (objp-slabp->s_mem)/cachep->objsize; + objnr = obj_to_index(cachep, slabp, objp); if (objnr) { - objp = slabp->s_mem+(objnr-1)*cachep->objsize; - realobj = (char*)objp+obj_dbghead(cachep); + objp = index_to_obj(cachep, slabp, objnr - 1); + realobj = (char *)objp + obj_offset(cachep); printk(KERN_ERR "Prev obj: start=%p, len=%d\n", - realobj, size); + realobj, size); print_objinfo(cachep, objp, 2); } - if (objnr+1 < cachep->num) { - objp = slabp->s_mem+(objnr+1)*cachep->objsize; - realobj = (char*)objp+obj_dbghead(cachep); + if (objnr + 1 < cachep->num) { + objp = index_to_obj(cachep, slabp, objnr + 1); + realobj = (char *)objp + obj_offset(cachep); printk(KERN_ERR "Next obj: start=%p, len=%d\n", - realobj, size); + realobj, size); print_objinfo(cachep, objp, 2); } } } #endif -/* Destroy all the objs in a slab, and release the mem back to the system. - * Before calling the slab must have been unlinked from the cache. - * The cache-lock is not held/needed. +#if DEBUG +/** + * slab_destroy_objs - destroy a slab and its objects + * @cachep: cache pointer being destroyed + * @slabp: slab pointer being destroyed + * + * Call the registered destructor for each object in a slab that is being + * destroyed. */ -static void slab_destroy (kmem_cache_t *cachep, struct slab *slabp) +static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp) { -#if DEBUG int i; for (i = 0; i < cachep->num; i++) { - void *objp = slabp->s_mem + cachep->objsize * i; + void *objp = index_to_obj(cachep, slabp, i); if (cachep->flags & SLAB_POISON) { #ifdef CONFIG_DEBUG_PAGEALLOC - if ((cachep->objsize%PAGE_SIZE)==0 && OFF_SLAB(cachep)) - kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE,1); + if (cachep->buffer_size % PAGE_SIZE == 0 && + OFF_SLAB(cachep)) + kernel_map_pages(virt_to_page(objp), + cachep->buffer_size / PAGE_SIZE, 1); else check_poison_obj(cachep, objp); #else @@ -1054,27 +1874,215 @@ static void slab_destroy (kmem_cache_t *cachep, struct slab *slabp) if (cachep->flags & SLAB_RED_ZONE) { if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) slab_error(cachep, "start of a freed object " - "was overwritten"); + "was overwritten"); if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) slab_error(cachep, "end of a freed object " - "was overwritten"); + "was overwritten"); } if (cachep->dtor && !(cachep->flags & SLAB_POISON)) - (cachep->dtor)(objp+obj_dbghead(cachep), cachep, 0); + (cachep->dtor) (objp + obj_offset(cachep), cachep, 0); } +} #else +static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp) +{ if (cachep->dtor) { int i; for (i = 0; i < cachep->num; i++) { - void* objp = slabp->s_mem+cachep->objsize*i; - (cachep->dtor)(objp, cachep, 0); + void *objp = index_to_obj(cachep, slabp, i); + (cachep->dtor) (objp, cachep, 0); } } +} #endif - - kmem_freepages(cachep, slabp->s_mem-slabp->colouroff); - if (OFF_SLAB(cachep)) - kmem_cache_free(cachep->slabp_cache, slabp); + +/** + * slab_destroy - destroy and release all objects in a slab + * @cachep: cache pointer being destroyed + * @slabp: slab pointer being destroyed + * + * Destroy all the objs in a slab, and release the mem back to the system. + * Before calling the slab must have been unlinked from the cache. The + * cache-lock is not held/needed. + */ +static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp) +{ + void *addr = slabp->s_mem - slabp->colouroff; + + slab_destroy_objs(cachep, slabp); + if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) { + struct slab_rcu *slab_rcu; + + slab_rcu = (struct slab_rcu *)slabp; + slab_rcu->cachep = cachep; + slab_rcu->addr = addr; + call_rcu(&slab_rcu->head, kmem_rcu_free); + } else { + kmem_freepages(cachep, addr); + if (OFF_SLAB(cachep)) + kmem_cache_free(cachep->slabp_cache, slabp); + } +} + +/* + * For setting up all the kmem_list3s for cache whose buffer_size is same as + * size of kmem_list3. + */ +static void set_up_list3s(struct kmem_cache *cachep, int index) +{ + int node; + + for_each_online_node(node) { + cachep->nodelists[node] = &initkmem_list3[index + node]; + cachep->nodelists[node]->next_reap = jiffies + + REAPTIMEOUT_LIST3 + + ((unsigned long)cachep) % REAPTIMEOUT_LIST3; + } +} + +static void __kmem_cache_destroy(struct kmem_cache *cachep) +{ + int i; + struct kmem_list3 *l3; + + for_each_online_cpu(i) + kfree(cachep->array[i]); + + /* NUMA: free the list3 structures */ + for_each_online_node(i) { + l3 = cachep->nodelists[i]; + if (l3) { + kfree(l3->shared); + free_alien_cache(l3->alien); + kfree(l3); + } + } + kmem_cache_free(&cache_cache, cachep); +} + + +/** + * calculate_slab_order - calculate size (page order) of slabs + * @cachep: pointer to the cache that is being created + * @size: size of objects to be created in this cache. + * @align: required alignment for the objects. + * @flags: slab allocation flags + * + * Also calculates the number of objects per slab. + * + * This could be made much more intelligent. For now, try to avoid using + * high order pages for slabs. When the gfp() functions are more friendly + * towards high-order requests, this should be changed. + */ +static size_t calculate_slab_order(struct kmem_cache *cachep, + size_t size, size_t align, unsigned long flags) +{ + unsigned long offslab_limit; + size_t left_over = 0; + int gfporder; + + for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) { + unsigned int num; + size_t remainder; + + cache_estimate(gfporder, size, align, flags, &remainder, &num); + if (!num) + continue; + + if (flags & CFLGS_OFF_SLAB) { + /* + * Max number of objs-per-slab for caches which + * use off-slab slabs. Needed to avoid a possible + * looping condition in cache_grow(). + */ + offslab_limit = size - sizeof(struct slab); + offslab_limit /= sizeof(kmem_bufctl_t); + + if (num > offslab_limit) + break; + } + + /* Found something acceptable - save it away */ + cachep->num = num; + cachep->gfporder = gfporder; + left_over = remainder; + + /* + * A VFS-reclaimable slab tends to have most allocations + * as GFP_NOFS and we really don't want to have to be allocating + * higher-order pages when we are unable to shrink dcache. + */ + if (flags & SLAB_RECLAIM_ACCOUNT) + break; + + /* + * Large number of objects is good, but very large slabs are + * currently bad for the gfp()s. + */ + if (gfporder >= slab_break_gfp_order) + break; + + /* + * Acceptable internal fragmentation? + */ + if (left_over * 8 <= (PAGE_SIZE << gfporder)) + break; + } + return left_over; +} + +static int setup_cpu_cache(struct kmem_cache *cachep) +{ + if (g_cpucache_up == FULL) + return enable_cpucache(cachep); + + if (g_cpucache_up == NONE) { + /* + * Note: the first kmem_cache_create must create the cache + * that's used by kmalloc(24), otherwise the creation of + * further caches will BUG(). + */ + cachep->array[smp_processor_id()] = &initarray_generic.cache; + + /* + * If the cache that's used by kmalloc(sizeof(kmem_list3)) is + * the first cache, then we need to set up all its list3s, + * otherwise the creation of further caches will BUG(). + */ + set_up_list3s(cachep, SIZE_AC); + if (INDEX_AC == INDEX_L3) + g_cpucache_up = PARTIAL_L3; + else + g_cpucache_up = PARTIAL_AC; + } else { + cachep->array[smp_processor_id()] = + kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); + + if (g_cpucache_up == PARTIAL_AC) { + set_up_list3s(cachep, SIZE_L3); + g_cpucache_up = PARTIAL_L3; + } else { + int node; + for_each_online_node(node) { + cachep->nodelists[node] = + kmalloc_node(sizeof(struct kmem_list3), + GFP_KERNEL, node); + BUG_ON(!cachep->nodelists[node]); + kmem_list3_init(cachep->nodelists[node]); + } + } + } + cachep->nodelists[numa_node_id()]->next_reap = + jiffies + REAPTIMEOUT_LIST3 + + ((unsigned long)cachep) % REAPTIMEOUT_LIST3; + + cpu_cache_get(cachep)->avail = 0; + cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; + cpu_cache_get(cachep)->batchcount = 1; + cpu_cache_get(cachep)->touched = 0; + cachep->batchcount = 1; + cachep->limit = BOOT_CPUCACHE_ENTRIES; + return 0; } /** @@ -1092,9 +2100,8 @@ static void slab_destroy (kmem_cache_t *cachep, struct slab *slabp) * and the @dtor is run before the pages are handed back. * * @name must be valid until the cache is destroyed. This implies that - * the module calling this has to destroy the cache before getting - * unloaded. - * + * the module calling this has to destroy the cache before getting unloaded. + * * The flags are * * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) @@ -1103,43 +2110,66 @@ static void slab_destroy (kmem_cache_t *cachep, struct slab *slabp) * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check * for buffer overruns. * - * %SLAB_NO_REAP - Don't automatically reap this cache when we're under - * memory pressure. - * * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware * cacheline. This can be beneficial if you're counting cycles as closely * as davem. */ -kmem_cache_t * +struct kmem_cache * kmem_cache_create (const char *name, size_t size, size_t align, - unsigned long flags, void (*ctor)(void*, kmem_cache_t *, unsigned long), - void (*dtor)(void*, kmem_cache_t *, unsigned long)) + unsigned long flags, + void (*ctor)(void*, struct kmem_cache *, unsigned long), + void (*dtor)(void*, struct kmem_cache *, unsigned long)) { - size_t left_over, slab_size; - kmem_cache_t *cachep = NULL; + size_t left_over, slab_size, ralign; + struct kmem_cache *cachep = NULL, *pc; /* * Sanity checks... these are all serious usage bugs. */ - if ((!name) || - in_interrupt() || - (size < BYTES_PER_WORD) || - (size > (1< (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) { + printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__, + name); + BUG(); + } + + /* + * We use cache_chain_mutex to ensure a consistent view of + * cpu_online_map as well. Please see cpuup_callback + */ + mutex_lock(&cache_chain_mutex); + + list_for_each_entry(pc, &cache_chain, next) { + char tmp; + int res; + + /* + * This happens when the module gets unloaded and doesn't + * destroy its slab cache and no-one else reuses the vmalloc + * area of the module. Print a warning. + */ + res = probe_kernel_address(pc->name, tmp); + if (res) { + printk("SLAB: cache with size %d has lost its name\n", + pc->buffer_size); + continue; } + if (!strcmp(pc->name, name)) { + printk("kmem_cache_create: duplicate cache %s\n", name); + dump_stack(); + goto oops; + } + } + #if DEBUG WARN_ON(strchr(name, ' ')); /* It confuses parsers */ if ((flags & SLAB_DEBUG_INITIAL) && !ctor) { /* No constructor, but inital state check requested */ printk(KERN_ERR "%s: No con, but init state check " - "requested - %s\n", __FUNCTION__, name); + "requested - %s\n", __FUNCTION__, name); flags &= ~SLAB_DEBUG_INITIAL; } - #if FORCED_DEBUG /* * Enable redzoning and last user accounting, except for caches with @@ -1147,81 +2177,111 @@ kmem_cache_create (const char *name, size_t size, size_t align, * above the next power of two: caches with object sizes just above a * power of two have a significant amount of internal fragmentation. */ - if ((size < 4096 || fls(size-1) == fls(size-1+3*BYTES_PER_WORD))) - flags |= SLAB_RED_ZONE|SLAB_STORE_USER; - flags |= SLAB_POISON; + if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD)) + flags |= SLAB_RED_ZONE | SLAB_STORE_USER; + if (!(flags & SLAB_DESTROY_BY_RCU)) + flags |= SLAB_POISON; #endif + if (flags & SLAB_DESTROY_BY_RCU) + BUG_ON(flags & SLAB_POISON); #endif + if (flags & SLAB_DESTROY_BY_RCU) + BUG_ON(dtor); + /* - * Always checks flags, a caller might be expecting debug - * support which isn't available. + * Always checks flags, a caller might be expecting debug support which + * isn't available. */ - if (flags & ~CREATE_MASK) - BUG(); + BUG_ON(flags & ~CREATE_MASK); + + /* + * Check that size is in terms of words. This is needed to avoid + * unaligned accesses for some archs when redzoning is used, and makes + * sure any on-slab bufctl's are also correctly aligned. + */ + if (size & (BYTES_PER_WORD - 1)) { + size += (BYTES_PER_WORD - 1); + size &= ~(BYTES_PER_WORD - 1); + } + + /* calculate the final buffer alignment: */ - if (align) { - /* combinations of forced alignment and advanced debugging is - * not yet implemented. + /* 1) arch recommendation: can be overridden for debug */ + if (flags & SLAB_HWCACHE_ALIGN) { + /* + * Default alignment: as specified by the arch code. Except if + * an object is really small, then squeeze multiple objects into + * one cacheline. */ - flags &= ~(SLAB_RED_ZONE|SLAB_STORE_USER); + ralign = cache_line_size(); + while (size <= ralign / 2) + ralign /= 2; } else { - if (flags & SLAB_HWCACHE_ALIGN) { - /* Default alignment: as specified by the arch code. - * Except if an object is really small, then squeeze multiple - * into one cacheline. - */ - align = cache_line_size(); - while (size <= align/2) - align /= 2; - } else { - align = BYTES_PER_WORD; - } + ralign = BYTES_PER_WORD; } + /* + * Redzoning and user store require word alignment. Note this will be + * overridden by architecture or caller mandated alignment if either + * is greater than BYTES_PER_WORD. + */ + if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER) + ralign = BYTES_PER_WORD; + + /* 2) arch mandated alignment */ + if (ralign < ARCH_SLAB_MINALIGN) { + ralign = ARCH_SLAB_MINALIGN; + } + /* 3) caller mandated alignment */ + if (ralign < align) { + ralign = align; + } + /* disable debug if necessary */ + if (ralign > BYTES_PER_WORD) + flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); + /* + * 4) Store it. + */ + align = ralign; + /* Get cache's description obj. */ - cachep = (kmem_cache_t *) kmem_cache_alloc(&cache_cache, SLAB_KERNEL); + cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL); if (!cachep) - goto opps; - memset(cachep, 0, sizeof(kmem_cache_t)); + goto oops; - /* Check that size is in terms of words. This is needed to avoid - * unaligned accesses for some archs when redzoning is used, and makes - * sure any on-slab bufctl's are also correctly aligned. - */ - if (size & (BYTES_PER_WORD-1)) { - size += (BYTES_PER_WORD-1); - size &= ~(BYTES_PER_WORD-1); - } - #if DEBUG - cachep->reallen = size; + cachep->obj_size = size; + /* + * Both debugging options require word-alignment which is calculated + * into align above. + */ if (flags & SLAB_RED_ZONE) { - /* redzoning only works with word aligned caches */ - align = BYTES_PER_WORD; - /* add space for red zone words */ - cachep->dbghead += BYTES_PER_WORD; - size += 2*BYTES_PER_WORD; + cachep->obj_offset += BYTES_PER_WORD; + size += 2 * BYTES_PER_WORD; } if (flags & SLAB_STORE_USER) { - /* user store requires word alignment and - * one word storage behind the end of the real - * object. + /* user store requires one word storage behind the end of + * the real object. */ - align = BYTES_PER_WORD; size += BYTES_PER_WORD; } #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC) - if (size > 128 && cachep->reallen > cache_line_size() && size < PAGE_SIZE) { - cachep->dbghead += PAGE_SIZE - size; + if (size >= malloc_sizes[INDEX_L3 + 1].cs_size + && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) { + cachep->obj_offset += PAGE_SIZE - size; size = PAGE_SIZE; } #endif #endif - /* Determine if the slab management is 'on' or 'off' slab. */ - if (size >= (PAGE_SIZE>>3)) + /* + * Determine if the slab management is 'on' or 'off' slab. + * (bootstrapping cannot cope with offslab caches so don't do + * it too early on.) + */ + if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init) /* * Size is large, assume best to place the slab management obj * off-slab (should allow better packing of objs). @@ -1230,64 +2290,16 @@ kmem_cache_create (const char *name, size_t size, size_t align, size = ALIGN(size, align); - if ((flags & SLAB_RECLAIM_ACCOUNT) && size <= PAGE_SIZE) { - /* - * A VFS-reclaimable slab tends to have most allocations - * as GFP_NOFS and we really don't want to have to be allocating - * higher-order pages when we are unable to shrink dcache. - */ - cachep->gfporder = 0; - cache_estimate(cachep->gfporder, size, align, flags, - &left_over, &cachep->num); - } else { - /* - * Calculate size (in pages) of slabs, and the num of objs per - * slab. This could be made much more intelligent. For now, - * try to avoid using high page-orders for slabs. When the - * gfp() funcs are more friendly towards high-order requests, - * this should be changed. - */ - do { - unsigned int break_flag = 0; -cal_wastage: - cache_estimate(cachep->gfporder, size, align, flags, - &left_over, &cachep->num); - if (break_flag) - break; - if (cachep->gfporder >= MAX_GFP_ORDER) - break; - if (!cachep->num) - goto next; - if (flags & CFLGS_OFF_SLAB && - cachep->num > offslab_limit) { - /* This num of objs will cause problems. */ - cachep->gfporder--; - break_flag++; - goto cal_wastage; - } - - /* - * Large num of objs is good, but v. large slabs are - * currently bad for the gfp()s. - */ - if (cachep->gfporder >= slab_break_gfp_order) - break; - - if ((left_over*8) <= (PAGE_SIZE<gfporder)) - break; /* Acceptable internal fragmentation. */ -next: - cachep->gfporder++; - } while (1); - } + left_over = calculate_slab_order(cachep, size, align, flags); if (!cachep->num) { printk("kmem_cache_create: couldn't create cache %s.\n", name); kmem_cache_free(&cache_cache, cachep); cachep = NULL; - goto opps; + goto oops; } - slab_size = ALIGN(cachep->num*sizeof(kmem_bufctl_t) - + sizeof(struct slab), align); + slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t) + + sizeof(struct slab), align); /* * If the slab has been placed off-slab, and we have enough space then @@ -1300,99 +2312,51 @@ next: if (flags & CFLGS_OFF_SLAB) { /* really off slab. No need for manual alignment */ - slab_size = cachep->num*sizeof(kmem_bufctl_t)+sizeof(struct slab); + slab_size = + cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab); } cachep->colour_off = cache_line_size(); /* Offset must be a multiple of the alignment. */ if (cachep->colour_off < align) cachep->colour_off = align; - cachep->colour = left_over/cachep->colour_off; + cachep->colour = left_over / cachep->colour_off; cachep->slab_size = slab_size; cachep->flags = flags; cachep->gfpflags = 0; if (flags & SLAB_CACHE_DMA) cachep->gfpflags |= GFP_DMA; - spin_lock_init(&cachep->spinlock); - cachep->objsize = size; - /* NUMA */ - INIT_LIST_HEAD(&cachep->lists.slabs_full); - INIT_LIST_HEAD(&cachep->lists.slabs_partial); - INIT_LIST_HEAD(&cachep->lists.slabs_free); - - if (flags & CFLGS_OFF_SLAB) - cachep->slabp_cache = kmem_find_general_cachep(slab_size,0); + cachep->buffer_size = size; + cachep->reciprocal_buffer_size = reciprocal_value(size); + + if (flags & CFLGS_OFF_SLAB) { + cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u); + /* + * This is a possibility for one of the malloc_sizes caches. + * But since we go off slab only for object size greater than + * PAGE_SIZE/8, and malloc_sizes gets created in ascending order, + * this should not happen at all. + * But leave a BUG_ON for some lucky dude. + */ + BUG_ON(!cachep->slabp_cache); + } cachep->ctor = ctor; cachep->dtor = dtor; cachep->name = name; - /* Don't let CPUs to come and go */ - lock_cpu_hotplug(); - - if (g_cpucache_up == FULL) { - enable_cpucache(cachep); - } else { - if (g_cpucache_up == NONE) { - /* Note: the first kmem_cache_create must create - * the cache that's used by kmalloc(24), otherwise - * the creation of further caches will BUG(). - */ - cachep->array[smp_processor_id()] = &initarray_generic.cache; - g_cpucache_up = PARTIAL; - } else { - cachep->array[smp_processor_id()] = kmalloc(sizeof(struct arraycache_init),GFP_KERNEL); - } - BUG_ON(!ac_data(cachep)); - ac_data(cachep)->avail = 0; - ac_data(cachep)->limit = BOOT_CPUCACHE_ENTRIES; - ac_data(cachep)->batchcount = 1; - ac_data(cachep)->touched = 0; - cachep->batchcount = 1; - cachep->limit = BOOT_CPUCACHE_ENTRIES; - cachep->free_limit = (1+num_online_cpus())*cachep->batchcount - + cachep->num; - } - - cachep->lists.next_reap = jiffies + REAPTIMEOUT_LIST3 + - ((unsigned long)cachep)%REAPTIMEOUT_LIST3; - - /* Need the semaphore to access the chain. */ - down(&cache_chain_sem); - { - struct list_head *p; - mm_segment_t old_fs; - - old_fs = get_fs(); - set_fs(KERNEL_DS); - list_for_each(p, &cache_chain) { - kmem_cache_t *pc = list_entry(p, kmem_cache_t, next); - char tmp; - /* This happens when the module gets unloaded and doesn't - destroy its slab cache and noone else reuses the vmalloc - area of the module. Print a warning. */ - if (__get_user(tmp,pc->name)) { - printk("SLAB: cache with size %d has lost its name\n", - pc->objsize); - continue; - } - if (!strcmp(pc->name,name)) { - printk("kmem_cache_create: duplicate cache %s\n",name); - up(&cache_chain_sem); - unlock_cpu_hotplug(); - BUG(); - } - } - set_fs(old_fs); + if (setup_cpu_cache(cachep)) { + __kmem_cache_destroy(cachep); + cachep = NULL; + goto oops; } /* cache setup completed, link it into the list */ list_add(&cachep->next, &cache_chain); - up(&cache_chain_sem); - unlock_cpu_hotplug(); -opps: +oops: if (!cachep && (flags & SLAB_PANIC)) panic("kmem_cache_create(): failed to create slab `%s'\n", - name); + name); + mutex_unlock(&cache_chain_mutex); return cachep; } EXPORT_SYMBOL(kmem_cache_create); @@ -1408,98 +2372,128 @@ static void check_irq_on(void) BUG_ON(irqs_disabled()); } -static void check_spinlock_acquired(kmem_cache_t *cachep) +static void check_spinlock_acquired(struct kmem_cache *cachep) +{ +#ifdef CONFIG_SMP + check_irq_off(); + assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock); +#endif +} + +static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) { #ifdef CONFIG_SMP check_irq_off(); - BUG_ON(spin_trylock(&cachep->spinlock)); + assert_spin_locked(&cachep->nodelists[node]->list_lock); #endif } + #else #define check_irq_off() do { } while(0) #define check_irq_on() do { } while(0) #define check_spinlock_acquired(x) do { } while(0) +#define check_spinlock_acquired_node(x, y) do { } while(0) #endif -/* - * Waits for all CPUs to execute func(). - */ -static void smp_call_function_all_cpus(void (*func) (void *arg), void *arg) -{ - check_irq_on(); - preempt_disable(); - - local_irq_disable(); - func(arg); - local_irq_enable(); - - if (smp_call_function(func, arg, 1, 1)) - BUG(); - - preempt_enable(); -} - -static void drain_array_locked(kmem_cache_t* cachep, - struct array_cache *ac, int force); +static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3, + struct array_cache *ac, + int force, int node); static void do_drain(void *arg) { - kmem_cache_t *cachep = (kmem_cache_t*)arg; + struct kmem_cache *cachep = arg; struct array_cache *ac; + int node = numa_node_id(); check_irq_off(); - ac = ac_data(cachep); - spin_lock(&cachep->spinlock); - free_block(cachep, &ac_entry(ac)[0], ac->avail); - spin_unlock(&cachep->spinlock); + ac = cpu_cache_get(cachep); + spin_lock(&cachep->nodelists[node]->list_lock); + free_block(cachep, ac->entry, ac->avail, node); + spin_unlock(&cachep->nodelists[node]->list_lock); ac->avail = 0; } -static void drain_cpu_caches(kmem_cache_t *cachep) +static void drain_cpu_caches(struct kmem_cache *cachep) { - smp_call_function_all_cpus(do_drain, cachep); + struct kmem_list3 *l3; + int node; + + on_each_cpu(do_drain, cachep, 1, 1); check_irq_on(); - spin_lock_irq(&cachep->spinlock); - if (cachep->lists.shared) - drain_array_locked(cachep, cachep->lists.shared, 1); - spin_unlock_irq(&cachep->spinlock); -} + for_each_online_node(node) { + l3 = cachep->nodelists[node]; + if (l3 && l3->alien) + drain_alien_cache(cachep, l3->alien); + } + for_each_online_node(node) { + l3 = cachep->nodelists[node]; + if (l3) + drain_array(cachep, l3, l3->shared, 1, node); + } +} -/* NUMA shrink all list3s */ -static int __cache_shrink(kmem_cache_t *cachep) +/* + * Remove slabs from the list of free slabs. + * Specify the number of slabs to drain in tofree. + * + * Returns the actual number of slabs released. + */ +static int drain_freelist(struct kmem_cache *cache, + struct kmem_list3 *l3, int tofree) { + struct list_head *p; + int nr_freed; struct slab *slabp; - int ret; - - drain_cpu_caches(cachep); - - check_irq_on(); - spin_lock_irq(&cachep->spinlock); - for(;;) { - struct list_head *p; + nr_freed = 0; + while (nr_freed < tofree && !list_empty(&l3->slabs_free)) { - p = cachep->lists.slabs_free.prev; - if (p == &cachep->lists.slabs_free) - break; + spin_lock_irq(&l3->list_lock); + p = l3->slabs_free.prev; + if (p == &l3->slabs_free) { + spin_unlock_irq(&l3->list_lock); + goto out; + } - slabp = list_entry(cachep->lists.slabs_free.prev, struct slab, list); + slabp = list_entry(p, struct slab, list); #if DEBUG - if (slabp->inuse) - BUG(); + BUG_ON(slabp->inuse); #endif list_del(&slabp->list); + /* + * Safe to drop the lock. The slab is no longer linked + * to the cache. + */ + l3->free_objects -= cache->num; + spin_unlock_irq(&l3->list_lock); + slab_destroy(cache, slabp); + nr_freed++; + } +out: + return nr_freed; +} + +/* Called with cache_chain_mutex held to protect against cpu hotplug */ +static int __cache_shrink(struct kmem_cache *cachep) +{ + int ret = 0, i = 0; + struct kmem_list3 *l3; + + drain_cpu_caches(cachep); + + check_irq_on(); + for_each_online_node(i) { + l3 = cachep->nodelists[i]; + if (!l3) + continue; - cachep->lists.free_objects -= cachep->num; - spin_unlock_irq(&cachep->spinlock); - slab_destroy(cachep, slabp); - spin_lock_irq(&cachep->spinlock); + drain_freelist(cachep, l3, l3->free_objects); + + ret += !list_empty(&l3->slabs_full) || + !list_empty(&l3->slabs_partial); } - ret = !list_empty(&cachep->lists.slabs_full) || - !list_empty(&cachep->lists.slabs_partial); - spin_unlock_irq(&cachep->spinlock); - return ret; + return (ret ? 1 : 0); } /** @@ -1509,22 +2503,23 @@ static int __cache_shrink(kmem_cache_t *cachep) * Releases as many slabs as possible for a cache. * To help debugging, a zero exit status indicates all slabs were released. */ -int kmem_cache_shrink(kmem_cache_t *cachep) +int kmem_cache_shrink(struct kmem_cache *cachep) { - if (!cachep || in_interrupt()) - BUG(); + int ret; + BUG_ON(!cachep || in_interrupt()); - return __cache_shrink(cachep); + mutex_lock(&cache_chain_mutex); + ret = __cache_shrink(cachep); + mutex_unlock(&cache_chain_mutex); + return ret; } - EXPORT_SYMBOL(kmem_cache_shrink); /** * kmem_cache_destroy - delete a cache * @cachep: the cache to destroy * - * Remove a kmem_cache_t object from the slab cache. - * Returns 0 on success. + * Remove a struct kmem_cache object from the slab cache. * * It is expected this function will be called by a module when it is * unloaded. This will remove the cache completely, and avoid a duplicate @@ -1536,85 +2531,77 @@ EXPORT_SYMBOL(kmem_cache_shrink); * The caller must guarantee that noone will allocate memory from the cache * during the kmem_cache_destroy(). */ -int kmem_cache_destroy (kmem_cache_t * cachep) +void kmem_cache_destroy(struct kmem_cache *cachep) { - int i; - - if (!cachep || in_interrupt()) - BUG(); - - /* Don't let CPUs to come and go */ - lock_cpu_hotplug(); + BUG_ON(!cachep || in_interrupt()); /* Find the cache in the chain of caches. */ - down(&cache_chain_sem); + mutex_lock(&cache_chain_mutex); /* * the chain is never empty, cache_cache is never destroyed */ list_del(&cachep->next); - up(&cache_chain_sem); - if (__cache_shrink(cachep)) { slab_error(cachep, "Can't free all objects"); - down(&cache_chain_sem); - list_add(&cachep->next,&cache_chain); - up(&cache_chain_sem); - unlock_cpu_hotplug(); - return 1; + list_add(&cachep->next, &cache_chain); + mutex_unlock(&cache_chain_mutex); + return; } - /* no cpu_online check required here since we clear the percpu - * array on cpu offline and set this to NULL. - */ - for (i = 0; i < NR_CPUS; i++) - kfree(cachep->array[i]); - - /* NUMA: free the list3 structures */ - kfree(cachep->lists.shared); - cachep->lists.shared = NULL; - kmem_cache_free(&cache_cache, cachep); + if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) + synchronize_rcu(); - unlock_cpu_hotplug(); - - return 0; + __kmem_cache_destroy(cachep); + mutex_unlock(&cache_chain_mutex); } - EXPORT_SYMBOL(kmem_cache_destroy); -/* Get the memory for a slab management obj. */ -static struct slab* alloc_slabmgmt (kmem_cache_t *cachep, - void *objp, int colour_off, int local_flags) +/* + * Get the memory for a slab management obj. + * For a slab cache when the slab descriptor is off-slab, slab descriptors + * always come from malloc_sizes caches. The slab descriptor cannot + * come from the same cache which is getting created because, + * when we are searching for an appropriate cache for these + * descriptors in kmem_cache_create, we search through the malloc_sizes array. + * If we are creating a malloc_sizes cache here it would not be visible to + * kmem_find_general_cachep till the initialization is complete. + * Hence we cannot have slabp_cache same as the original cache. + */ +static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp, + int colour_off, gfp_t local_flags, + int nodeid) { struct slab *slabp; - + if (OFF_SLAB(cachep)) { /* Slab management obj is off-slab. */ - slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags); + slabp = kmem_cache_alloc_node(cachep->slabp_cache, + local_flags & ~GFP_THISNODE, nodeid); if (!slabp) return NULL; } else { - slabp = objp+colour_off; + slabp = objp + colour_off; colour_off += cachep->slab_size; } slabp->inuse = 0; slabp->colouroff = colour_off; - slabp->s_mem = objp+colour_off; - + slabp->s_mem = objp + colour_off; + slabp->nodeid = nodeid; return slabp; } static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp) { - return (kmem_bufctl_t *)(slabp+1); + return (kmem_bufctl_t *) (slabp + 1); } -static void cache_init_objs (kmem_cache_t * cachep, - struct slab * slabp, unsigned long ctor_flags) +static void cache_init_objs(struct kmem_cache *cachep, + struct slab *slabp, unsigned long ctor_flags) { int i; for (i = 0; i < cachep->num; i++) { - void* objp = slabp->s_mem+cachep->objsize*i; + void *objp = index_to_obj(cachep, slabp, i); #if DEBUG /* need to poison the objs? */ if (cachep->flags & SLAB_POISON) @@ -1627,81 +2614,128 @@ static void cache_init_objs (kmem_cache_t * cachep, *dbg_redzone2(cachep, objp) = RED_INACTIVE; } /* - * Constructors are not allowed to allocate memory from - * the same cache which they are a constructor for. - * Otherwise, deadlock. They must also be threaded. + * Constructors are not allowed to allocate memory from the same + * cache which they are a constructor for. Otherwise, deadlock. + * They must also be threaded. */ if (cachep->ctor && !(cachep->flags & SLAB_POISON)) - cachep->ctor(objp+obj_dbghead(cachep), cachep, ctor_flags); + cachep->ctor(objp + obj_offset(cachep), cachep, + ctor_flags); if (cachep->flags & SLAB_RED_ZONE) { if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) slab_error(cachep, "constructor overwrote the" - " end of an object"); + " end of an object"); if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) slab_error(cachep, "constructor overwrote the" - " start of an object"); + " start of an object"); } - if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep) && cachep->flags & SLAB_POISON) - kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 0); + if ((cachep->buffer_size % PAGE_SIZE) == 0 && + OFF_SLAB(cachep) && cachep->flags & SLAB_POISON) + kernel_map_pages(virt_to_page(objp), + cachep->buffer_size / PAGE_SIZE, 0); #else if (cachep->ctor) cachep->ctor(objp, cachep, ctor_flags); #endif - slab_bufctl(slabp)[i] = i+1; + slab_bufctl(slabp)[i] = i + 1; } - slab_bufctl(slabp)[i-1] = BUFCTL_END; + slab_bufctl(slabp)[i - 1] = BUFCTL_END; slabp->free = 0; } -static void kmem_flagcheck(kmem_cache_t *cachep, int flags) +static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags) { - if (flags & SLAB_DMA) { - if (!(cachep->gfpflags & GFP_DMA)) - BUG(); - } else { - if (cachep->gfpflags & GFP_DMA) - BUG(); + if (flags & GFP_DMA) + BUG_ON(!(cachep->gfpflags & GFP_DMA)); + else + BUG_ON(cachep->gfpflags & GFP_DMA); +} + +static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp, + int nodeid) +{ + void *objp = index_to_obj(cachep, slabp, slabp->free); + kmem_bufctl_t next; + + slabp->inuse++; + next = slab_bufctl(slabp)[slabp->free]; +#if DEBUG + slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE; + WARN_ON(slabp->nodeid != nodeid); +#endif + slabp->free = next; + + return objp; +} + +static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp, + void *objp, int nodeid) +{ + unsigned int objnr = obj_to_index(cachep, slabp, objp); + +#if DEBUG + /* Verify that the slab belongs to the intended node */ + WARN_ON(slabp->nodeid != nodeid); + + if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) { + printk(KERN_ERR "slab: double free detected in cache " + "'%s', objp %p\n", cachep->name, objp); + BUG(); } +#endif + slab_bufctl(slabp)[objnr] = slabp->free; + slabp->free = objnr; + slabp->inuse--; } -static void set_slab_attr(kmem_cache_t *cachep, struct slab *slabp, void *objp) +/* + * Map pages beginning at addr to the given cache and slab. This is required + * for the slab allocator to be able to lookup the cache and slab of a + * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging. + */ +static void slab_map_pages(struct kmem_cache *cache, struct slab *slab, + void *addr) { - int i; + int nr_pages; struct page *page; - /* Nasty!!!!!! I hope this is OK. */ - i = 1 << cachep->gfporder; - page = virt_to_page(objp); + page = virt_to_page(addr); + + nr_pages = 1; + if (likely(!PageCompound(page))) + nr_pages <<= cache->gfporder; + do { - SET_PAGE_CACHE(page, cachep); - SET_PAGE_SLAB(page, slabp); + page_set_cache(page, cache); + page_set_slab(page, slab); page++; - } while (--i); + } while (--nr_pages); } /* * Grow (by 1) the number of slabs within a cache. This is called by * kmem_cache_alloc() when there are no active objs left in a cache. */ -static int cache_grow (kmem_cache_t * cachep, int flags) +static int cache_grow(struct kmem_cache *cachep, + gfp_t flags, int nodeid, void *objp) { - struct slab *slabp; - void *objp; - size_t offset; - int local_flags; - unsigned long ctor_flags; + struct slab *slabp; + size_t offset; + gfp_t local_flags; + unsigned long ctor_flags; + struct kmem_list3 *l3; - /* Be lazy and only check for valid flags here, - * keeping it out of the critical path in kmem_cache_alloc(). + /* + * Be lazy and only check for valid flags here, keeping it out of the + * critical path in kmem_cache_alloc(). */ - if (flags & ~(SLAB_DMA|SLAB_LEVEL_MASK|SLAB_NO_GROW)) - BUG(); - if (flags & SLAB_NO_GROW) + BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK | __GFP_NO_GROW)); + if (flags & __GFP_NO_GROW) return 0; ctor_flags = SLAB_CTOR_CONSTRUCTOR; - local_flags = (flags & SLAB_LEVEL_MASK); + local_flags = (flags & GFP_LEVEL_MASK); if (!(local_flags & __GFP_WAIT)) /* * Not allowed to sleep. Need to tell a constructor about @@ -1709,18 +2743,19 @@ static int cache_grow (kmem_cache_t * cachep, int flags) */ ctor_flags |= SLAB_CTOR_ATOMIC; - /* About to mess with non-constant members - lock. */ + /* Take the l3 list lock to change the colour_next on this node */ check_irq_off(); - spin_lock(&cachep->spinlock); + l3 = cachep->nodelists[nodeid]; + spin_lock(&l3->list_lock); /* Get colour for the slab, and cal the next value. */ - offset = cachep->colour_next; - cachep->colour_next++; - if (cachep->colour_next >= cachep->colour) - cachep->colour_next = 0; - offset *= cachep->colour_off; + offset = l3->colour_next; + l3->colour_next++; + if (l3->colour_next >= cachep->colour) + l3->colour_next = 0; + spin_unlock(&l3->list_lock); - spin_unlock(&cachep->spinlock); + offset *= cachep->colour_off; if (local_flags & __GFP_WAIT) local_irq_enable(); @@ -1733,29 +2768,36 @@ static int cache_grow (kmem_cache_t * cachep, int flags) */ kmem_flagcheck(cachep, flags); - - /* Get mem for the objs. */ - if (!(objp = kmem_getpages(cachep, flags, -1))) + /* + * Get mem for the objs. Attempt to allocate a physical page from + * 'nodeid'. + */ + if (!objp) + objp = kmem_getpages(cachep, flags, nodeid); + if (!objp) goto failed; /* Get slab management. */ - if (!(slabp = alloc_slabmgmt(cachep, objp, offset, local_flags))) + slabp = alloc_slabmgmt(cachep, objp, offset, + local_flags & ~GFP_THISNODE, nodeid); + if (!slabp) goto opps1; - set_slab_attr(cachep, slabp, objp); + slabp->nodeid = nodeid; + slab_map_pages(cachep, slabp, objp); cache_init_objs(cachep, slabp, ctor_flags); if (local_flags & __GFP_WAIT) local_irq_disable(); check_irq_off(); - spin_lock(&cachep->spinlock); + spin_lock(&l3->list_lock); /* Make slab active. */ - list_add_tail(&slabp->list, &(list3_data(cachep)->slabs_free)); + list_add_tail(&slabp->list, &(l3->slabs_free)); STATS_INC_GROWN(cachep); - list3_data(cachep)->free_objects += cachep->num; - spin_unlock(&cachep->spinlock); + l3->free_objects += cachep->num; + spin_unlock(&l3->list_lock); return 1; opps1: kmem_freepages(cachep, objp); @@ -1779,72 +2821,89 @@ static void kfree_debugcheck(const void *objp) if (!virt_addr_valid(objp)) { printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n", - (unsigned long)objp); - BUG(); + (unsigned long)objp); + BUG(); } page = virt_to_page(objp); if (!PageSlab(page)) { - printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n", (unsigned long)objp); + printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n", + (unsigned long)objp); BUG(); } } -static void *cache_free_debugcheck (kmem_cache_t * cachep, void * objp, void *caller) +static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) +{ + unsigned long redzone1, redzone2; + + redzone1 = *dbg_redzone1(cache, obj); + redzone2 = *dbg_redzone2(cache, obj); + + /* + * Redzone is ok. + */ + if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) + return; + + if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) + slab_error(cache, "double free detected"); + else + slab_error(cache, "memory outside object was overwritten"); + + printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n", + obj, redzone1, redzone2); +} + +static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, + void *caller) { struct page *page; unsigned int objnr; struct slab *slabp; - objp -= obj_dbghead(cachep); + objp -= obj_offset(cachep); kfree_debugcheck(objp); page = virt_to_page(objp); - if (GET_PAGE_CACHE(page) != cachep) { - printk(KERN_ERR "mismatch in kmem_cache_free: expected cache %p, got %p\n", - GET_PAGE_CACHE(page),cachep); - printk(KERN_ERR "%p is %s.\n", cachep, cachep->name); - printk(KERN_ERR "%p is %s.\n", GET_PAGE_CACHE(page), GET_PAGE_CACHE(page)->name); - WARN_ON(1); - } - slabp = GET_PAGE_SLAB(page); + slabp = page_get_slab(page); if (cachep->flags & SLAB_RED_ZONE) { - if (*dbg_redzone1(cachep, objp) != RED_ACTIVE || *dbg_redzone2(cachep, objp) != RED_ACTIVE) { - slab_error(cachep, "double free, or memory outside" - " object was overwritten"); - printk(KERN_ERR "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n", - objp, *dbg_redzone1(cachep, objp), *dbg_redzone2(cachep, objp)); - } + verify_redzone_free(cachep, objp); *dbg_redzone1(cachep, objp) = RED_INACTIVE; *dbg_redzone2(cachep, objp) = RED_INACTIVE; } if (cachep->flags & SLAB_STORE_USER) *dbg_userword(cachep, objp) = caller; - objnr = (objp-slabp->s_mem)/cachep->objsize; + objnr = obj_to_index(cachep, slabp, objp); BUG_ON(objnr >= cachep->num); - BUG_ON(objp != slabp->s_mem + objnr*cachep->objsize); + BUG_ON(objp != index_to_obj(cachep, slabp, objnr)); if (cachep->flags & SLAB_DEBUG_INITIAL) { - /* Need to call the slab's constructor so the - * caller can perform a verify of its state (debugging). - * Called without the cache-lock held. + /* + * Need to call the slab's constructor so the caller can + * perform a verify of its state (debugging). Called without + * the cache-lock held. */ - cachep->ctor(objp+obj_dbghead(cachep), - cachep, SLAB_CTOR_CONSTRUCTOR|SLAB_CTOR_VERIFY); + cachep->ctor(objp + obj_offset(cachep), + cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY); } if (cachep->flags & SLAB_POISON && cachep->dtor) { /* we want to cache poison the object, * call the destruction callback */ - cachep->dtor(objp+obj_dbghead(cachep), cachep, 0); + cachep->dtor(objp + obj_offset(cachep), cachep, 0); } +#ifdef CONFIG_DEBUG_SLAB_LEAK + slab_bufctl(slabp)[objnr] = BUFCTL_FREE; +#endif if (cachep->flags & SLAB_POISON) { #ifdef CONFIG_DEBUG_PAGEALLOC - if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) { + if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) { store_stackinfo(cachep, objp, (unsigned long)caller); - kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 0); + kernel_map_pages(virt_to_page(objp), + cachep->buffer_size / PAGE_SIZE, 0); } else { poison_obj(cachep, objp, POISON_FREE); } @@ -1855,27 +2914,28 @@ static void *cache_free_debugcheck (kmem_cache_t * cachep, void * objp, void *ca return objp; } -static void check_slabp(kmem_cache_t *cachep, struct slab *slabp) +static void check_slabp(struct kmem_cache *cachep, struct slab *slabp) { - int i; + kmem_bufctl_t i; int entries = 0; - - check_spinlock_acquired(cachep); + /* Check slab's freelist to see if this obj is there. */ for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) { entries++; - if (entries > cachep->num || i < 0 || i >= cachep->num) + if (entries > cachep->num || i >= cachep->num) goto bad; } if (entries != cachep->num - slabp->inuse) { - int i; bad: - printk(KERN_ERR "slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n", - cachep->name, cachep->num, slabp, slabp->inuse); - for (i=0;inum*sizeof(kmem_bufctl_t);i++) { - if ((i%16)==0) + printk(KERN_ERR "slab: Internal list corruption detected in " + "cache '%s'(%d), slabp %p(%d). Hexdump:\n", + cachep->name, cachep->num, slabp, slabp->inuse); + for (i = 0; + i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t); + i++) { + if (i % 16 == 0) printk("\n%03x:", i); - printk(" %02x", ((unsigned char*)slabp)[i]); + printk(" %02x", ((unsigned char *)slabp)[i]); } printk("\n"); BUG(); @@ -1887,40 +2947,36 @@ bad: #define check_slabp(x,y) do { } while(0) #endif -static void* cache_alloc_refill(kmem_cache_t* cachep, int flags) +static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags) { int batchcount; struct kmem_list3 *l3; struct array_cache *ac; + int node; + + node = numa_node_id(); check_irq_off(); - ac = ac_data(cachep); + ac = cpu_cache_get(cachep); retry: batchcount = ac->batchcount; if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { - /* if there was little recent activity on this - * cache, then perform only a partial refill. - * Otherwise we could generate refill bouncing. + /* + * If there was little recent activity on this cache, then + * perform only a partial refill. Otherwise we could generate + * refill bouncing. */ batchcount = BATCHREFILL_LIMIT; } - l3 = list3_data(cachep); + l3 = cachep->nodelists[node]; + + BUG_ON(ac->avail > 0 || !l3); + spin_lock(&l3->list_lock); + + /* See if we can refill from the shared array */ + if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) + goto alloc_done; - BUG_ON(ac->avail > 0); - spin_lock(&cachep->spinlock); - if (l3->shared) { - struct array_cache *shared_array = l3->shared; - if (shared_array->avail) { - if (batchcount > shared_array->avail) - batchcount = shared_array->avail; - shared_array->avail -= batchcount; - ac->avail = batchcount; - memcpy(ac_entry(ac), &ac_entry(shared_array)[shared_array->avail], - sizeof(void*)*batchcount); - shared_array->touched = 1; - goto alloc_done; - } - } while (batchcount > 0) { struct list_head *entry; struct slab *slabp; @@ -1937,20 +2993,12 @@ retry: check_slabp(cachep, slabp); check_spinlock_acquired(cachep); while (slabp->inuse < cachep->num && batchcount--) { - kmem_bufctl_t next; STATS_INC_ALLOCED(cachep); STATS_INC_ACTIVE(cachep); STATS_SET_HIGH(cachep); - /* get obj pointer */ - ac_entry(ac)[ac->avail++] = slabp->s_mem + slabp->free*cachep->objsize; - - slabp->inuse++; - next = slab_bufctl(slabp)[slabp->free]; -#if DEBUG - slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE; -#endif - slabp->free = next; + ac->entry[ac->avail++] = slab_get_obj(cachep, slabp, + node); } check_slabp(cachep, slabp); @@ -1965,26 +3013,26 @@ retry: must_grow: l3->free_objects -= ac->avail; alloc_done: - spin_unlock(&cachep->spinlock); + spin_unlock(&l3->list_lock); if (unlikely(!ac->avail)) { int x; - x = cache_grow(cachep, flags); - - // cache_grow can reenable interrupts, then ac could change. - ac = ac_data(cachep); - if (!x && ac->avail == 0) // no objects in sight? abort + x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL); + + /* cache_grow can reenable interrupts, then ac could change. */ + ac = cpu_cache_get(cachep); + if (!x && ac->avail == 0) /* no objects in sight? abort */ return NULL; - if (!ac->avail) // objects refilled by interrupt? + if (!ac->avail) /* objects refilled by interrupt? */ goto retry; } ac->touched = 1; - return ac_entry(ac)[--ac->avail]; + return ac->entry[--ac->avail]; } -static inline void -cache_alloc_debugcheck_before(kmem_cache_t *cachep, int flags) +static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep, + gfp_t flags) { might_sleep_if(flags & __GFP_WAIT); #if DEBUG @@ -1993,16 +3041,16 @@ cache_alloc_debugcheck_before(kmem_cache_t *cachep, int flags) } #if DEBUG -static void * -cache_alloc_debugcheck_after(kmem_cache_t *cachep, - unsigned long flags, void *objp, void *caller) +static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, + gfp_t flags, void *objp, void *caller) { - if (!objp) + if (!objp) return objp; - if (cachep->flags & SLAB_POISON) { + if (cachep->flags & SLAB_POISON) { #ifdef CONFIG_DEBUG_PAGEALLOC - if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) - kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 1); + if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) + kernel_map_pages(virt_to_page(objp), + cachep->buffer_size / PAGE_SIZE, 1); else check_poison_obj(cachep, objp); #else @@ -2014,143 +3062,417 @@ cache_alloc_debugcheck_after(kmem_cache_t *cachep, *dbg_userword(cachep, objp) = caller; if (cachep->flags & SLAB_RED_ZONE) { - if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || *dbg_redzone2(cachep, objp) != RED_INACTIVE) { + if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || + *dbg_redzone2(cachep, objp) != RED_INACTIVE) { slab_error(cachep, "double free, or memory outside" " object was overwritten"); - printk(KERN_ERR "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n", - objp, *dbg_redzone1(cachep, objp), *dbg_redzone2(cachep, objp)); + printk(KERN_ERR + "%p: redzone 1:0x%lx, redzone 2:0x%lx\n", + objp, *dbg_redzone1(cachep, objp), + *dbg_redzone2(cachep, objp)); } *dbg_redzone1(cachep, objp) = RED_ACTIVE; *dbg_redzone2(cachep, objp) = RED_ACTIVE; } - objp += obj_dbghead(cachep); +#ifdef CONFIG_DEBUG_SLAB_LEAK + { + struct slab *slabp; + unsigned objnr; + + slabp = page_get_slab(virt_to_page(objp)); + objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size; + slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE; + } +#endif + objp += obj_offset(cachep); if (cachep->ctor && cachep->flags & SLAB_POISON) { - unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR; + unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR; if (!(flags & __GFP_WAIT)) ctor_flags |= SLAB_CTOR_ATOMIC; cachep->ctor(objp, cachep, ctor_flags); - } + } +#if ARCH_SLAB_MINALIGN + if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) { + printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n", + objp, ARCH_SLAB_MINALIGN); + } +#endif return objp; } #else #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) #endif +#ifdef CONFIG_FAILSLAB + +static struct failslab_attr { + + struct fault_attr attr; + + u32 ignore_gfp_wait; +#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS + struct dentry *ignore_gfp_wait_file; +#endif + +} failslab = { + .attr = FAULT_ATTR_INITIALIZER, + .ignore_gfp_wait = 1, +}; -static inline void * __cache_alloc (kmem_cache_t *cachep, int flags) +static int __init setup_failslab(char *str) { - unsigned long save_flags; - void* objp; + return setup_fault_attr(&failslab.attr, str); +} +__setup("failslab=", setup_failslab); + +static int should_failslab(struct kmem_cache *cachep, gfp_t flags) +{ + if (cachep == &cache_cache) + return 0; + if (flags & __GFP_NOFAIL) + return 0; + if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT)) + return 0; + + return should_fail(&failslab.attr, obj_size(cachep)); +} + +#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS + +static int __init failslab_debugfs(void) +{ + mode_t mode = S_IFREG | S_IRUSR | S_IWUSR; + struct dentry *dir; + int err; + + err = init_fault_attr_dentries(&failslab.attr, "failslab"); + if (err) + return err; + dir = failslab.attr.dentries.dir; + + failslab.ignore_gfp_wait_file = + debugfs_create_bool("ignore-gfp-wait", mode, dir, + &failslab.ignore_gfp_wait); + + if (!failslab.ignore_gfp_wait_file) { + err = -ENOMEM; + debugfs_remove(failslab.ignore_gfp_wait_file); + cleanup_fault_attr_dentries(&failslab.attr); + } + + return err; +} + +late_initcall(failslab_debugfs); + +#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ + +#else /* CONFIG_FAILSLAB */ + +static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags) +{ + return 0; +} + +#endif /* CONFIG_FAILSLAB */ + +static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) +{ + void *objp; struct array_cache *ac; - cache_alloc_debugcheck_before(cachep, flags); + check_irq_off(); - local_irq_save(save_flags); - ac = ac_data(cachep); + if (should_failslab(cachep, flags)) + return NULL; + + ac = cpu_cache_get(cachep); if (likely(ac->avail)) { STATS_INC_ALLOCHIT(cachep); ac->touched = 1; - objp = ac_entry(ac)[--ac->avail]; + objp = ac->entry[--ac->avail]; } else { STATS_INC_ALLOCMISS(cachep); objp = cache_alloc_refill(cachep, flags); } + return objp; +} + +static __always_inline void *__cache_alloc(struct kmem_cache *cachep, + gfp_t flags, void *caller) +{ + unsigned long save_flags; + void *objp = NULL; + + cache_alloc_debugcheck_before(cachep, flags); + + local_irq_save(save_flags); + + if (unlikely(NUMA_BUILD && + current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) + objp = alternate_node_alloc(cachep, flags); + + if (!objp) + objp = ____cache_alloc(cachep, flags); + /* + * We may just have run out of memory on the local node. + * ____cache_alloc_node() knows how to locate memory on other nodes + */ + if (NUMA_BUILD && !objp) + objp = ____cache_alloc_node(cachep, flags, numa_node_id()); + + vx_slab_alloc(cachep, flags); local_irq_restore(save_flags); - objp = cache_alloc_debugcheck_after(cachep, flags, objp, __builtin_return_address(0)); + objp = cache_alloc_debugcheck_after(cachep, flags, objp, + caller); + prefetchw(objp); return objp; } -/* - * NUMA: different approach needed if the spinlock is moved into - * the l3 structure +#ifdef CONFIG_NUMA +/* + * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY. + * + * If we are in_interrupt, then process context, including cpusets and + * mempolicy, may not apply and should not be used for allocation policy. */ +static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) +{ + int nid_alloc, nid_here; + + if (in_interrupt() || (flags & __GFP_THISNODE)) + return NULL; + nid_alloc = nid_here = numa_node_id(); + if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) + nid_alloc = cpuset_mem_spread_node(); + else if (current->mempolicy) + nid_alloc = slab_node(current->mempolicy); + if (nid_alloc != nid_here) + return ____cache_alloc_node(cachep, flags, nid_alloc); + return NULL; +} -static void free_block(kmem_cache_t *cachep, void **objpp, int nr_objects) +/* + * Fallback function if there was no memory available and no objects on a + * certain node and fall back is permitted. First we scan all the + * available nodelists for available objects. If that fails then we + * perform an allocation without specifying a node. This allows the page + * allocator to do its reclaim / fallback magic. We then insert the + * slab into the proper nodelist and then allocate from it. + */ +void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) { - int i; + struct zonelist *zonelist = &NODE_DATA(slab_node(current->mempolicy)) + ->node_zonelists[gfp_zone(flags)]; + struct zone **z; + void *obj = NULL; + int nid; + gfp_t local_flags = (flags & GFP_LEVEL_MASK); + +retry: + /* + * Look through allowed nodes for objects available + * from existing per node queues. + */ + for (z = zonelist->zones; *z && !obj; z++) { + nid = zone_to_nid(*z); + + if (cpuset_zone_allowed_hardwall(*z, flags) && + cache->nodelists[nid] && + cache->nodelists[nid]->free_objects) + obj = ____cache_alloc_node(cache, + flags | GFP_THISNODE, nid); + } + + if (!obj && !(flags & __GFP_NO_GROW)) { + /* + * This allocation will be performed within the constraints + * of the current cpuset / memory policy requirements. + * We may trigger various forms of reclaim on the allowed + * set and go into memory reserves if necessary. + */ + if (local_flags & __GFP_WAIT) + local_irq_enable(); + kmem_flagcheck(cache, flags); + obj = kmem_getpages(cache, flags, -1); + if (local_flags & __GFP_WAIT) + local_irq_disable(); + if (obj) { + /* + * Insert into the appropriate per node queues + */ + nid = page_to_nid(virt_to_page(obj)); + if (cache_grow(cache, flags, nid, obj)) { + obj = ____cache_alloc_node(cache, + flags | GFP_THISNODE, nid); + if (!obj) + /* + * Another processor may allocate the + * objects in the slab since we are + * not holding any locks. + */ + goto retry; + } else { + /* cache_grow already freed obj */ + obj = NULL; + } + } + } + return obj; +} + +/* + * A interface to enable slab creation on nodeid + */ +static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, + int nodeid) +{ + struct list_head *entry; + struct slab *slabp; + struct kmem_list3 *l3; + void *obj; + int x; + + l3 = cachep->nodelists[nodeid]; + BUG_ON(!l3); + +retry: + check_irq_off(); + spin_lock(&l3->list_lock); + entry = l3->slabs_partial.next; + if (entry == &l3->slabs_partial) { + l3->free_touched = 1; + entry = l3->slabs_free.next; + if (entry == &l3->slabs_free) + goto must_grow; + } + + slabp = list_entry(entry, struct slab, list); + check_spinlock_acquired_node(cachep, nodeid); + check_slabp(cachep, slabp); + + STATS_INC_NODEALLOCS(cachep); + STATS_INC_ACTIVE(cachep); + STATS_SET_HIGH(cachep); + + BUG_ON(slabp->inuse == cachep->num); + + obj = slab_get_obj(cachep, slabp, nodeid); + check_slabp(cachep, slabp); + vx_slab_alloc(cachep, flags); + l3->free_objects--; + /* move slabp to correct slabp list: */ + list_del(&slabp->list); + + if (slabp->free == BUFCTL_END) + list_add(&slabp->list, &l3->slabs_full); + else + list_add(&slabp->list, &l3->slabs_partial); + + spin_unlock(&l3->list_lock); + goto done; + +must_grow: + spin_unlock(&l3->list_lock); + x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL); + if (x) + goto retry; + + if (!(flags & __GFP_THISNODE)) + /* Unable to grow the cache. Fall back to other nodes. */ + return fallback_alloc(cachep, flags); - check_spinlock_acquired(cachep); + return NULL; + +done: + return obj; +} +#endif - /* NUMA: move add into loop */ - cachep->lists.free_objects += nr_objects; +/* + * Caller needs to acquire correct kmem_list's list_lock + */ +static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects, + int node) +{ + int i; + struct kmem_list3 *l3; for (i = 0; i < nr_objects; i++) { void *objp = objpp[i]; struct slab *slabp; - unsigned int objnr; - slabp = GET_PAGE_SLAB(virt_to_page(objp)); + slabp = virt_to_slab(objp); + l3 = cachep->nodelists[node]; list_del(&slabp->list); - objnr = (objp - slabp->s_mem) / cachep->objsize; + check_spinlock_acquired_node(cachep, node); check_slabp(cachep, slabp); -#if DEBUG - if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) { - printk(KERN_ERR "slab: double free detected in cache '%s', objp %p.\n", - cachep->name, objp); - BUG(); - } -#endif - slab_bufctl(slabp)[objnr] = slabp->free; - slabp->free = objnr; + slab_put_obj(cachep, slabp, objp, node); STATS_DEC_ACTIVE(cachep); - slabp->inuse--; + l3->free_objects++; check_slabp(cachep, slabp); /* fixup slab chains */ if (slabp->inuse == 0) { - if (cachep->lists.free_objects > cachep->free_limit) { - cachep->lists.free_objects -= cachep->num; + if (l3->free_objects > l3->free_limit) { + l3->free_objects -= cachep->num; + /* No need to drop any previously held + * lock here, even if we have a off-slab slab + * descriptor it is guaranteed to come from + * a different cache, refer to comments before + * alloc_slabmgmt. + */ slab_destroy(cachep, slabp); } else { - list_add(&slabp->list, - &list3_data_ptr(cachep, objp)->slabs_free); + list_add(&slabp->list, &l3->slabs_free); } } else { /* Unconditionally move a slab to the end of the * partial list on free - maximum time for the * other objects to be freed, too. */ - list_add_tail(&slabp->list, - &list3_data_ptr(cachep, objp)->slabs_partial); + list_add_tail(&slabp->list, &l3->slabs_partial); } } } -static void cache_flusharray (kmem_cache_t* cachep, struct array_cache *ac) +static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) { int batchcount; + struct kmem_list3 *l3; + int node = numa_node_id(); batchcount = ac->batchcount; #if DEBUG BUG_ON(!batchcount || batchcount > ac->avail); #endif check_irq_off(); - spin_lock(&cachep->spinlock); - if (cachep->lists.shared) { - struct array_cache *shared_array = cachep->lists.shared; - int max = shared_array->limit-shared_array->avail; + l3 = cachep->nodelists[node]; + spin_lock(&l3->list_lock); + if (l3->shared) { + struct array_cache *shared_array = l3->shared; + int max = shared_array->limit - shared_array->avail; if (max) { if (batchcount > max) batchcount = max; - memcpy(&ac_entry(shared_array)[shared_array->avail], - &ac_entry(ac)[0], - sizeof(void*)*batchcount); + memcpy(&(shared_array->entry[shared_array->avail]), + ac->entry, sizeof(void *) * batchcount); shared_array->avail += batchcount; goto free_done; } } - free_block(cachep, &ac_entry(ac)[0], batchcount); + free_block(cachep, ac->entry, batchcount, node); free_done: #if STATS { int i = 0; struct list_head *p; - p = list3_data(cachep)->slabs_free.next; - while (p != &(list3_data(cachep)->slabs_free)) { + p = l3->slabs_free.next; + while (p != &(l3->slabs_free)) { struct slab *slabp; slabp = list_entry(p, struct slab, list); @@ -2162,34 +3484,34 @@ free_done: STATS_SET_FREEABLE(cachep, i); } #endif - spin_unlock(&cachep->spinlock); + spin_unlock(&l3->list_lock); ac->avail -= batchcount; - memmove(&ac_entry(ac)[0], &ac_entry(ac)[batchcount], - sizeof(void*)*ac->avail); + memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); } /* - * __cache_free - * Release an obj back to its cache. If the obj has a constructed - * state, it must be in this state _before_ it is released. - * - * Called with disabled ints. + * Release an obj back to its cache. If the obj has a constructed state, it must + * be in this state _before_ it is released. Called with disabled ints. */ -static inline void __cache_free (kmem_cache_t *cachep, void* objp) +static inline void __cache_free(struct kmem_cache *cachep, void *objp) { - struct array_cache *ac = ac_data(cachep); + struct array_cache *ac = cpu_cache_get(cachep); check_irq_off(); objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0)); + vx_slab_free(cachep); + + if (cache_free_alien(cachep, objp)) + return; if (likely(ac->avail < ac->limit)) { STATS_INC_FREEHIT(cachep); - ac_entry(ac)[ac->avail++] = objp; + ac->entry[ac->avail++] = objp; return; } else { STATS_INC_FREEMISS(cachep); cache_flusharray(cachep, ac); - ac_entry(ac)[ac->avail++] = objp; + ac->entry[ac->avail++] = objp; } } @@ -2201,13 +3523,29 @@ static inline void __cache_free (kmem_cache_t *cachep, void* objp) * Allocate an object from this cache. The flags are only relevant * if the cache has no available objects. */ -void * kmem_cache_alloc (kmem_cache_t *cachep, int flags) +void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) { - return __cache_alloc(cachep, flags); + return __cache_alloc(cachep, flags, __builtin_return_address(0)); } - EXPORT_SYMBOL(kmem_cache_alloc); +/** + * kmem_cache_zalloc - Allocate an object. The memory is set to zero. + * @cache: The cache to allocate from. + * @flags: See kmalloc(). + * + * Allocate an object from this cache and set the allocated memory to zero. + * The flags are only relevant if the cache has no available objects. + */ +void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags) +{ + void *ret = __cache_alloc(cache, flags, __builtin_return_address(0)); + if (ret) + memset(ret, 0, obj_size(cache)); + return ret; +} +EXPORT_SYMBOL(kmem_cache_zalloc); + /** * kmem_ptr_validate - check if an untrusted pointer might * be a slab entry. @@ -2222,12 +3560,12 @@ EXPORT_SYMBOL(kmem_cache_alloc); * * Currently only used for dentry validation. */ -int fastcall kmem_ptr_validate(kmem_cache_t *cachep, void *ptr) +int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr) { - unsigned long addr = (unsigned long) ptr; + unsigned long addr = (unsigned long)ptr; unsigned long min_addr = PAGE_OFFSET; - unsigned long align_mask = BYTES_PER_WORD-1; - unsigned long size = cachep->objsize; + unsigned long align_mask = BYTES_PER_WORD - 1; + unsigned long size = cachep->buffer_size; struct page *page; if (unlikely(addr < min_addr)) @@ -2243,175 +3581,148 @@ int fastcall kmem_ptr_validate(kmem_cache_t *cachep, void *ptr) page = virt_to_page(ptr); if (unlikely(!PageSlab(page))) goto out; - if (unlikely(GET_PAGE_CACHE(page) != cachep)) + if (unlikely(page_get_cache(page) != cachep)) goto out; return 1; out: return 0; } +#ifdef CONFIG_NUMA /** * kmem_cache_alloc_node - Allocate an object on the specified node * @cachep: The cache to allocate from. * @flags: See kmalloc(). * @nodeid: node number of the target node. + * @caller: return address of caller, used for debug information * - * Identical to kmem_cache_alloc, except that this function is slow - * and can sleep. And it will allocate memory on the given node, which - * can improve the performance for cpu bound structures. + * Identical to kmem_cache_alloc but it will allocate memory on the given + * node, which can improve the performance for cpu bound structures. + * + * Fallback to other node is possible if __GFP_THISNODE is not set. */ -void *kmem_cache_alloc_node(kmem_cache_t *cachep, int nodeid) +static __always_inline void * +__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, + int nodeid, void *caller) { - size_t offset; - void *objp; - struct slab *slabp; - kmem_bufctl_t next; - - /* The main algorithms are not node aware, thus we have to cheat: - * We bypass all caches and allocate a new slab. - * The following code is a streamlined copy of cache_grow(). - */ - - /* Get colour for the slab, and update the next value. */ - spin_lock_irq(&cachep->spinlock); - offset = cachep->colour_next; - cachep->colour_next++; - if (cachep->colour_next >= cachep->colour) - cachep->colour_next = 0; - offset *= cachep->colour_off; - spin_unlock_irq(&cachep->spinlock); - - /* Get mem for the objs. */ - if (!(objp = kmem_getpages(cachep, GFP_KERNEL, nodeid))) - goto failed; - - /* Get slab management. */ - if (!(slabp = alloc_slabmgmt(cachep, objp, offset, GFP_KERNEL))) - goto opps1; + unsigned long save_flags; + void *ptr = NULL; - set_slab_attr(cachep, slabp, objp); - cache_init_objs(cachep, slabp, SLAB_CTOR_CONSTRUCTOR); + cache_alloc_debugcheck_before(cachep, flags); + local_irq_save(save_flags); - /* The first object is ours: */ - objp = slabp->s_mem + slabp->free*cachep->objsize; - slabp->inuse++; - next = slab_bufctl(slabp)[slabp->free]; -#if DEBUG - slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE; -#endif - slabp->free = next; + if (unlikely(nodeid == -1)) + nodeid = numa_node_id(); - /* add the remaining objects into the cache */ - spin_lock_irq(&cachep->spinlock); - check_slabp(cachep, slabp); - STATS_INC_GROWN(cachep); - /* Make slab active. */ - if (slabp->free == BUFCTL_END) { - list_add_tail(&slabp->list, &(list3_data(cachep)->slabs_full)); + if (likely(cachep->nodelists[nodeid])) { + if (nodeid == numa_node_id()) { + /* + * Use the locally cached objects if possible. + * However ____cache_alloc does not allow fallback + * to other nodes. It may fail while we still have + * objects on other nodes available. + */ + ptr = ____cache_alloc(cachep, flags); + } + if (!ptr) { + /* ___cache_alloc_node can fall back to other nodes */ + ptr = ____cache_alloc_node(cachep, flags, nodeid); + } } else { - list_add_tail(&slabp->list, - &(list3_data(cachep)->slabs_partial)); - list3_data(cachep)->free_objects += cachep->num-1; - } - spin_unlock_irq(&cachep->spinlock); - objp = cache_alloc_debugcheck_after(cachep, GFP_KERNEL, objp, - __builtin_return_address(0)); - return objp; -opps1: - kmem_freepages(cachep, objp); -failed: - return NULL; + /* Node not bootstrapped yet */ + if (!(flags & __GFP_THISNODE)) + ptr = fallback_alloc(cachep, flags); + } + + local_irq_restore(save_flags); + ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller); + + return ptr; +} +void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) +{ + return __cache_alloc_node(cachep, flags, nodeid, + __builtin_return_address(0)); } EXPORT_SYMBOL(kmem_cache_alloc_node); -/** - * kmalloc - allocate memory - * @size: how many bytes of memory are required. - * @flags: the type of memory to allocate. - * - * kmalloc is the normal method of allocating memory - * in the kernel. - * - * The @flags argument may be one of: - * - * %GFP_USER - Allocate memory on behalf of user. May sleep. - * - * %GFP_KERNEL - Allocate normal kernel ram. May sleep. - * - * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers. - * - * Additionally, the %GFP_DMA flag may be set to indicate the memory - * must be suitable for DMA. This can mean different things on different - * platforms. For example, on i386, it means that the memory must come - * from the first 16MB. - */ -void * __kmalloc (size_t size, int flags) +static __always_inline void * +__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller) { - struct cache_sizes *csizep = malloc_sizes; + struct kmem_cache *cachep; - for (; csizep->cs_size; csizep++) { - if (size > csizep->cs_size) - continue; -#if DEBUG - /* This happens if someone tries to call - * kmem_cache_create(), or kmalloc(), before - * the generic caches are initialized. - */ - BUG_ON(csizep->cs_cachep == NULL); -#endif - return __cache_alloc(flags & GFP_DMA ? - csizep->cs_dmacachep : csizep->cs_cachep, flags); - } - return NULL; + cachep = kmem_find_general_cachep(size, flags); + if (unlikely(cachep == NULL)) + return NULL; + return kmem_cache_alloc_node(cachep, flags, node); } -EXPORT_SYMBOL(__kmalloc); +#ifdef CONFIG_DEBUG_SLAB +void *__kmalloc_node(size_t size, gfp_t flags, int node) +{ + return __do_kmalloc_node(size, flags, node, + __builtin_return_address(0)); +} +EXPORT_SYMBOL(__kmalloc_node); + +void *__kmalloc_node_track_caller(size_t size, gfp_t flags, + int node, void *caller) +{ + return __do_kmalloc_node(size, flags, node, caller); +} +EXPORT_SYMBOL(__kmalloc_node_track_caller); +#else +void *__kmalloc_node(size_t size, gfp_t flags, int node) +{ + return __do_kmalloc_node(size, flags, node, NULL); +} +EXPORT_SYMBOL(__kmalloc_node); +#endif /* CONFIG_DEBUG_SLAB */ +#endif /* CONFIG_NUMA */ -#ifdef CONFIG_SMP /** - * __alloc_percpu - allocate one copy of the object for every present - * cpu in the system, zeroing them. - * Objects should be dereferenced using per_cpu_ptr/get_cpu_ptr - * macros only. - * + * __do_kmalloc - allocate memory * @size: how many bytes of memory are required. - * @align: the alignment, which can't be greater than SMP_CACHE_BYTES. + * @flags: the type of memory to allocate (see kmalloc). + * @caller: function caller for debug tracking of the caller */ -void *__alloc_percpu(size_t size, size_t align) +static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, + void *caller) { - int i; - struct percpu_data *pdata = kmalloc(sizeof (*pdata), GFP_KERNEL); + struct kmem_cache *cachep; - if (!pdata) + /* If you want to save a few bytes .text space: replace + * __ with kmem_. + * Then kmalloc uses the uninlined functions instead of the inline + * functions. + */ + cachep = __find_general_cachep(size, flags); + if (unlikely(cachep == NULL)) return NULL; + return __cache_alloc(cachep, flags, caller); +} - for (i = 0; i < NR_CPUS; i++) { - if (!cpu_possible(i)) - continue; - pdata->ptrs[i] = kmem_cache_alloc_node( - kmem_find_general_cachep(size, GFP_KERNEL), - cpu_to_node(i)); - - if (!pdata->ptrs[i]) - goto unwind_oom; - memset(pdata->ptrs[i], 0, size); - } - /* Catch derefs w/o wrappers */ - return (void *) (~(unsigned long) pdata); +#ifdef CONFIG_DEBUG_SLAB +void *__kmalloc(size_t size, gfp_t flags) +{ + return __do_kmalloc(size, flags, __builtin_return_address(0)); +} +EXPORT_SYMBOL(__kmalloc); -unwind_oom: - while (--i >= 0) { - if (!cpu_possible(i)) - continue; - kfree(pdata->ptrs[i]); - } - kfree(pdata); - return NULL; +void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller) +{ + return __do_kmalloc(size, flags, caller); } +EXPORT_SYMBOL(__kmalloc_track_caller); -EXPORT_SYMBOL(__alloc_percpu); +#else +void *__kmalloc(size_t size, gfp_t flags) +{ + return __do_kmalloc(size, flags, NULL); +} +EXPORT_SYMBOL(__kmalloc); #endif /** @@ -2422,187 +3733,228 @@ EXPORT_SYMBOL(__alloc_percpu); * Free an object which was previously allocated from this * cache. */ -void kmem_cache_free (kmem_cache_t *cachep, void *objp) +void kmem_cache_free(struct kmem_cache *cachep, void *objp) { unsigned long flags; + BUG_ON(virt_to_cache(objp) != cachep); + local_irq_save(flags); __cache_free(cachep, objp); local_irq_restore(flags); } - EXPORT_SYMBOL(kmem_cache_free); /** * kfree - free previously allocated memory * @objp: pointer returned by kmalloc. * + * If @objp is NULL, no operation is performed. + * * Don't free memory not originally allocated by kmalloc() * or you will run into trouble. */ -void kfree (const void *objp) +void kfree(const void *objp) { - kmem_cache_t *c; + struct kmem_cache *c; unsigned long flags; - if (!objp) + if (unlikely(!objp)) return; local_irq_save(flags); kfree_debugcheck(objp); - c = GET_PAGE_CACHE(virt_to_page(objp)); - __cache_free(c, (void*)objp); + c = virt_to_cache(objp); + debug_check_no_locks_freed(objp, obj_size(c)); + __cache_free(c, (void *)objp); local_irq_restore(flags); } - EXPORT_SYMBOL(kfree); -#ifdef CONFIG_SMP -/** - * free_percpu - free previously allocated percpu memory - * @objp: pointer returned by alloc_percpu. - * - * Don't free memory not originally allocated by alloc_percpu() - * The complemented objp is to check for that. - */ -void -free_percpu(const void *objp) +unsigned int kmem_cache_size(struct kmem_cache *cachep) { - int i; - struct percpu_data *p = (struct percpu_data *) (~(unsigned long) objp); - - for (i = 0; i < NR_CPUS; i++) { - if (!cpu_possible(i)) - continue; - kfree(p->ptrs[i]); - } + return obj_size(cachep); } +EXPORT_SYMBOL(kmem_cache_size); -EXPORT_SYMBOL(free_percpu); -#endif - -unsigned int kmem_cache_size(kmem_cache_t *cachep) +const char *kmem_cache_name(struct kmem_cache *cachep) { - return obj_reallen(cachep); + return cachep->name; } +EXPORT_SYMBOL_GPL(kmem_cache_name); -EXPORT_SYMBOL(kmem_cache_size); - -kmem_cache_t * kmem_find_general_cachep (size_t size, int gfpflags) +/* + * This initializes kmem_list3 or resizes varioius caches for all nodes. + */ +static int alloc_kmemlist(struct kmem_cache *cachep) { - struct cache_sizes *csizep = malloc_sizes; + int node; + struct kmem_list3 *l3; + struct array_cache *new_shared; + struct array_cache **new_alien = NULL; + + for_each_online_node(node) { + + if (use_alien_caches) { + new_alien = alloc_alien_cache(node, cachep->limit); + if (!new_alien) + goto fail; + } + + new_shared = alloc_arraycache(node, + cachep->shared*cachep->batchcount, + 0xbaadf00d); + if (!new_shared) { + free_alien_cache(new_alien); + goto fail; + } - /* This function could be moved to the header file, and - * made inline so consumers can quickly determine what - * cache pointer they require. - */ - for ( ; csizep->cs_size; csizep++) { - if (size > csizep->cs_size) + l3 = cachep->nodelists[node]; + if (l3) { + struct array_cache *shared = l3->shared; + + spin_lock_irq(&l3->list_lock); + + if (shared) + free_block(cachep, shared->entry, + shared->avail, node); + + l3->shared = new_shared; + if (!l3->alien) { + l3->alien = new_alien; + new_alien = NULL; + } + l3->free_limit = (1 + nr_cpus_node(node)) * + cachep->batchcount + cachep->num; + spin_unlock_irq(&l3->list_lock); + kfree(shared); + free_alien_cache(new_alien); continue; - break; + } + l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node); + if (!l3) { + free_alien_cache(new_alien); + kfree(new_shared); + goto fail; + } + + kmem_list3_init(l3); + l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + + ((unsigned long)cachep) % REAPTIMEOUT_LIST3; + l3->shared = new_shared; + l3->alien = new_alien; + l3->free_limit = (1 + nr_cpus_node(node)) * + cachep->batchcount + cachep->num; + cachep->nodelists[node] = l3; } - return (gfpflags & GFP_DMA) ? csizep->cs_dmacachep : csizep->cs_cachep; -} + return 0; -EXPORT_SYMBOL(kmem_find_general_cachep); +fail: + if (!cachep->next.next) { + /* Cache is not active yet. Roll back what we did */ + node--; + while (node >= 0) { + if (cachep->nodelists[node]) { + l3 = cachep->nodelists[node]; + + kfree(l3->shared); + free_alien_cache(l3->alien); + kfree(l3); + cachep->nodelists[node] = NULL; + } + node--; + } + } + return -ENOMEM; +} struct ccupdate_struct { - kmem_cache_t *cachep; + struct kmem_cache *cachep; struct array_cache *new[NR_CPUS]; }; static void do_ccupdate_local(void *info) { - struct ccupdate_struct *new = (struct ccupdate_struct *)info; + struct ccupdate_struct *new = info; struct array_cache *old; check_irq_off(); - old = ac_data(new->cachep); - + old = cpu_cache_get(new->cachep); + new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()]; new->new[smp_processor_id()] = old; } - -static int do_tune_cpucache (kmem_cache_t* cachep, int limit, int batchcount, int shared) +/* Always called with the cache_chain_mutex held */ +static int do_tune_cpucache(struct kmem_cache *cachep, int limit, + int batchcount, int shared) { - struct ccupdate_struct new; - struct array_cache *new_shared; + struct ccupdate_struct *new; int i; - memset(&new.new,0,sizeof(new.new)); - for (i = 0; i < NR_CPUS; i++) { - if (cpu_online(i)) { - new.new[i] = alloc_arraycache(i, limit, batchcount); - if (!new.new[i]) { - for (i--; i >= 0; i--) kfree(new.new[i]); - return -ENOMEM; - } - } else { - new.new[i] = NULL; + new = kzalloc(sizeof(*new), GFP_KERNEL); + if (!new) + return -ENOMEM; + + for_each_online_cpu(i) { + new->new[i] = alloc_arraycache(cpu_to_node(i), limit, + batchcount); + if (!new->new[i]) { + for (i--; i >= 0; i--) + kfree(new->new[i]); + kfree(new); + return -ENOMEM; } } - new.cachep = cachep; + new->cachep = cachep; + + on_each_cpu(do_ccupdate_local, (void *)new, 1, 1); - smp_call_function_all_cpus(do_ccupdate_local, (void *)&new); - check_irq_on(); - spin_lock_irq(&cachep->spinlock); cachep->batchcount = batchcount; cachep->limit = limit; - cachep->free_limit = (1+num_online_cpus())*cachep->batchcount + cachep->num; - spin_unlock_irq(&cachep->spinlock); + cachep->shared = shared; - for (i = 0; i < NR_CPUS; i++) { - struct array_cache *ccold = new.new[i]; + for_each_online_cpu(i) { + struct array_cache *ccold = new->new[i]; if (!ccold) continue; - spin_lock_irq(&cachep->spinlock); - free_block(cachep, ac_entry(ccold), ccold->avail); - spin_unlock_irq(&cachep->spinlock); + spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock); + free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i)); + spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock); kfree(ccold); } - new_shared = alloc_arraycache(-1, batchcount*shared, 0xbaadf00d); - if (new_shared) { - struct array_cache *old; - - spin_lock_irq(&cachep->spinlock); - old = cachep->lists.shared; - cachep->lists.shared = new_shared; - if (old) - free_block(cachep, ac_entry(old), old->avail); - spin_unlock_irq(&cachep->spinlock); - kfree(old); - } - - return 0; + kfree(new); + return alloc_kmemlist(cachep); } - -static void enable_cpucache (kmem_cache_t *cachep) +/* Called with cache_chain_mutex held always */ +static int enable_cpucache(struct kmem_cache *cachep) { int err; int limit, shared; - /* The head array serves three purposes: + /* + * The head array serves three purposes: * - create a LIFO ordering, i.e. return objects that are cache-warm * - reduce the number of spinlock operations. - * - reduce the number of linked list operations on the slab and + * - reduce the number of linked list operations on the slab and * bufctl chains: array operations are cheaper. * The numbers are guessed, we should auto-tune as described by * Bonwick. */ - if (cachep->objsize > 131072) + if (cachep->buffer_size > 131072) limit = 1; - else if (cachep->objsize > PAGE_SIZE) + else if (cachep->buffer_size > PAGE_SIZE) limit = 8; - else if (cachep->objsize > 1024) + else if (cachep->buffer_size > 1024) limit = 24; - else if (cachep->objsize > 256) + else if (cachep->buffer_size > 256) limit = 54; else limit = 120; - /* Cpu bound tasks (e.g. network routing) can exhibit cpu bound + /* + * CPU bound tasks (e.g. network routing) can exhibit cpu bound * allocation behaviour: Most allocs on one cpu, most free operations * on another cpu. For these cases, an efficient object passing between * cpus is necessary. This is provided by a shared array. The array @@ -2612,284 +3964,260 @@ static void enable_cpucache (kmem_cache_t *cachep) */ shared = 0; #ifdef CONFIG_SMP - if (cachep->objsize <= PAGE_SIZE) + if (cachep->buffer_size <= PAGE_SIZE) shared = 8; #endif #if DEBUG - /* With debugging enabled, large batchcount lead to excessively - * long periods with disabled local interrupts. Limit the - * batchcount + /* + * With debugging enabled, large batchcount lead to excessively long + * periods with disabled local interrupts. Limit the batchcount */ if (limit > 32) limit = 32; #endif - err = do_tune_cpucache(cachep, limit, (limit+1)/2, shared); + err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared); if (err) printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n", - cachep->name, -err); -} - -static void drain_array(kmem_cache_t *cachep, struct array_cache *ac) -{ - int tofree; - - check_irq_off(); - if (ac->touched) { - ac->touched = 0; - } else if (ac->avail) { - tofree = (ac->limit+4)/5; - if (tofree > ac->avail) { - tofree = (ac->avail+1)/2; - } - spin_lock(&cachep->spinlock); - free_block(cachep, ac_entry(ac), tofree); - spin_unlock(&cachep->spinlock); - ac->avail -= tofree; - memmove(&ac_entry(ac)[0], &ac_entry(ac)[tofree], - sizeof(void*)*ac->avail); - } + cachep->name, -err); + return err; } -static void drain_array_locked(kmem_cache_t *cachep, - struct array_cache *ac, int force) +/* + * Drain an array if it contains any elements taking the l3 lock only if + * necessary. Note that the l3 listlock also protects the array_cache + * if drain_array() is used on the shared array. + */ +void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3, + struct array_cache *ac, int force, int node) { int tofree; - check_spinlock_acquired(cachep); + if (!ac || !ac->avail) + return; if (ac->touched && !force) { ac->touched = 0; - } else if (ac->avail) { - tofree = force ? ac->avail : (ac->limit+4)/5; - if (tofree > ac->avail) { - tofree = (ac->avail+1)/2; + } else { + spin_lock_irq(&l3->list_lock); + if (ac->avail) { + tofree = force ? ac->avail : (ac->limit + 4) / 5; + if (tofree > ac->avail) + tofree = (ac->avail + 1) / 2; + free_block(cachep, ac->entry, tofree, node); + ac->avail -= tofree; + memmove(ac->entry, &(ac->entry[tofree]), + sizeof(void *) * ac->avail); } - free_block(cachep, ac_entry(ac), tofree); - ac->avail -= tofree; - memmove(&ac_entry(ac)[0], &ac_entry(ac)[tofree], - sizeof(void*)*ac->avail); + spin_unlock_irq(&l3->list_lock); } } /** * cache_reap - Reclaim memory from caches. + * @unused: unused parameter * - * Called from a timer, every few seconds + * Called from workqueue/eventd every few seconds. * Purpose: * - clear the per-cpu caches for this CPU. * - return freeable pages to the main free memory pool. * - * If we cannot acquire the cache chain semaphore then just give up - we'll - * try again next timer interrupt. + * If we cannot acquire the cache chain mutex then just give up - we'll try + * again on the next iteration. */ -static void cache_reap (void) +static void cache_reap(struct work_struct *unused) { - struct list_head *walk; + struct kmem_cache *searchp; + struct kmem_list3 *l3; + int node = numa_node_id(); -#if DEBUG - BUG_ON(!in_interrupt()); - BUG_ON(in_irq()); -#endif - if (down_trylock(&cache_chain_sem)) + if (!mutex_trylock(&cache_chain_mutex)) { + /* Give up. Setup the next iteration. */ + schedule_delayed_work(&__get_cpu_var(reap_work), + round_jiffies_relative(REAPTIMEOUT_CPUC)); return; + } - list_for_each(walk, &cache_chain) { - kmem_cache_t *searchp; - struct list_head* p; - int tofree; - struct slab *slabp; - - searchp = list_entry(walk, kmem_cache_t, next); - - if (searchp->flags & SLAB_NO_REAP) - goto next; - + list_for_each_entry(searchp, &cache_chain, next) { check_irq_on(); - local_irq_disable(); - drain_array(searchp, ac_data(searchp)); - if(time_after(searchp->lists.next_reap, jiffies)) - goto next_irqon; + /* + * We only take the l3 lock if absolutely necessary and we + * have established with reasonable certainty that + * we can do some work if the lock was obtained. + */ + l3 = searchp->nodelists[node]; - spin_lock(&searchp->spinlock); - if(time_after(searchp->lists.next_reap, jiffies)) { - goto next_unlock; - } - searchp->lists.next_reap = jiffies + REAPTIMEOUT_LIST3; + reap_alien(searchp, l3); - if (searchp->lists.shared) - drain_array_locked(searchp, searchp->lists.shared, 0); + drain_array(searchp, l3, cpu_cache_get(searchp), 0, node); - if (searchp->lists.free_touched) { - searchp->lists.free_touched = 0; - goto next_unlock; - } + /* + * These are racy checks but it does not matter + * if we skip one check or scan twice. + */ + if (time_after(l3->next_reap, jiffies)) + goto next; - tofree = (searchp->free_limit+5*searchp->num-1)/(5*searchp->num); - do { - p = list3_data(searchp)->slabs_free.next; - if (p == &(list3_data(searchp)->slabs_free)) - break; + l3->next_reap = jiffies + REAPTIMEOUT_LIST3; - slabp = list_entry(p, struct slab, list); - BUG_ON(slabp->inuse); - list_del(&slabp->list); - STATS_INC_REAPED(searchp); + drain_array(searchp, l3, l3->shared, 0, node); - /* Safe to drop the lock. The slab is no longer - * linked to the cache. - * searchp cannot disappear, we hold - * cache_chain_lock - */ - searchp->lists.free_objects -= searchp->num; - spin_unlock_irq(&searchp->spinlock); - slab_destroy(searchp, slabp); - spin_lock_irq(&searchp->spinlock); - } while(--tofree > 0); -next_unlock: - spin_unlock(&searchp->spinlock); -next_irqon: - local_irq_enable(); + if (l3->free_touched) + l3->free_touched = 0; + else { + int freed; + + freed = drain_freelist(searchp, l3, (l3->free_limit + + 5 * searchp->num - 1) / (5 * searchp->num)); + STATS_ADD_REAPED(searchp, freed); + } next: - ; + cond_resched(); } check_irq_on(); - up(&cache_chain_sem); -} - -/* - * This is a timer handler. There is one per CPU. It is called periodially - * to shrink this CPU's caches. Otherwise there could be memory tied up - * for long periods (or for ever) due to load changes. - */ -static void reap_timer_fnc(unsigned long cpu) -{ - struct timer_list *rt = &__get_cpu_var(reap_timers); - - /* CPU hotplug can drag us off cpu: don't run on wrong CPU */ - if (!cpu_is_offline(cpu)) { - cache_reap(); - mod_timer(rt, jiffies + REAPTIMEOUT_CPUC + cpu); - } + mutex_unlock(&cache_chain_mutex); + next_reap_node(); + refresh_cpu_vm_stats(smp_processor_id()); + /* Set up the next iteration */ + schedule_delayed_work(&__get_cpu_var(reap_work), + round_jiffies_relative(REAPTIMEOUT_CPUC)); } #ifdef CONFIG_PROC_FS -static void *s_start(struct seq_file *m, loff_t *pos) +static void print_slabinfo_header(struct seq_file *m) { - loff_t n = *pos; - struct list_head *p; - - down(&cache_chain_sem); - if (!n) { - /* - * Output format version, so at least we can change it - * without _too_ many complaints. - */ + /* + * Output format version, so at least we can change it + * without _too_ many complaints. + */ #if STATS - seq_puts(m, "slabinfo - version: 2.0 (statistics)\n"); + seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); #else - seq_puts(m, "slabinfo - version: 2.0\n"); + seq_puts(m, "slabinfo - version: 2.1\n"); #endif - seq_puts(m, "# name "); - seq_puts(m, " : tunables "); - seq_puts(m, " : slabdata "); + seq_puts(m, "# name " + " "); + seq_puts(m, " : tunables "); + seq_puts(m, " : slabdata "); #if STATS - seq_puts(m, " : globalstat "); - seq_puts(m, " : cpustat "); + seq_puts(m, " : globalstat " + " "); + seq_puts(m, " : cpustat "); #endif - seq_putc(m, '\n'); - } + seq_putc(m, '\n'); +} + +static void *s_start(struct seq_file *m, loff_t *pos) +{ + loff_t n = *pos; + struct list_head *p; + + mutex_lock(&cache_chain_mutex); + if (!n) + print_slabinfo_header(m); p = cache_chain.next; while (n--) { p = p->next; if (p == &cache_chain) return NULL; } - return list_entry(p, kmem_cache_t, next); + return list_entry(p, struct kmem_cache, next); } static void *s_next(struct seq_file *m, void *p, loff_t *pos) { - kmem_cache_t *cachep = p; + struct kmem_cache *cachep = p; ++*pos; - return cachep->next.next == &cache_chain ? NULL - : list_entry(cachep->next.next, kmem_cache_t, next); + return cachep->next.next == &cache_chain ? + NULL : list_entry(cachep->next.next, struct kmem_cache, next); } static void s_stop(struct seq_file *m, void *p) { - up(&cache_chain_sem); + mutex_unlock(&cache_chain_mutex); } static int s_show(struct seq_file *m, void *p) { - kmem_cache_t *cachep = p; - struct list_head *q; - struct slab *slabp; - unsigned long active_objs; - unsigned long num_objs; - unsigned long active_slabs = 0; - unsigned long num_slabs; - const char *name; + struct kmem_cache *cachep = p; + struct slab *slabp; + unsigned long active_objs; + unsigned long num_objs; + unsigned long active_slabs = 0; + unsigned long num_slabs, free_objects = 0, shared_avail = 0; + const char *name; char *error = NULL; + int node; + struct kmem_list3 *l3; - check_irq_on(); - spin_lock_irq(&cachep->spinlock); active_objs = 0; num_slabs = 0; - list_for_each(q,&cachep->lists.slabs_full) { - slabp = list_entry(q, struct slab, list); - if (slabp->inuse != cachep->num && !error) - error = "slabs_full accounting error"; - active_objs += cachep->num; - active_slabs++; - } - list_for_each(q,&cachep->lists.slabs_partial) { - slabp = list_entry(q, struct slab, list); - if (slabp->inuse == cachep->num && !error) - error = "slabs_partial inuse accounting error"; - if (!slabp->inuse && !error) - error = "slabs_partial/inuse accounting error"; - active_objs += slabp->inuse; - active_slabs++; - } - list_for_each(q,&cachep->lists.slabs_free) { - slabp = list_entry(q, struct slab, list); - if (slabp->inuse && !error) - error = "slabs_free/inuse accounting error"; - num_slabs++; - } - num_slabs+=active_slabs; - num_objs = num_slabs*cachep->num; - if (num_objs - active_objs != cachep->lists.free_objects && !error) + for_each_online_node(node) { + l3 = cachep->nodelists[node]; + if (!l3) + continue; + + check_irq_on(); + spin_lock_irq(&l3->list_lock); + + list_for_each_entry(slabp, &l3->slabs_full, list) { + if (slabp->inuse != cachep->num && !error) + error = "slabs_full accounting error"; + active_objs += cachep->num; + active_slabs++; + } + list_for_each_entry(slabp, &l3->slabs_partial, list) { + if (slabp->inuse == cachep->num && !error) + error = "slabs_partial inuse accounting error"; + if (!slabp->inuse && !error) + error = "slabs_partial/inuse accounting error"; + active_objs += slabp->inuse; + active_slabs++; + } + list_for_each_entry(slabp, &l3->slabs_free, list) { + if (slabp->inuse && !error) + error = "slabs_free/inuse accounting error"; + num_slabs++; + } + free_objects += l3->free_objects; + if (l3->shared) + shared_avail += l3->shared->avail; + + spin_unlock_irq(&l3->list_lock); + } + num_slabs += active_slabs; + num_objs = num_slabs * cachep->num; + if (num_objs - active_objs != free_objects && !error) error = "free_objects accounting error"; - name = cachep->name; + name = cachep->name; if (error) printk(KERN_ERR "slab: cache %s error: %s\n", name, error); seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", - name, active_objs, num_objs, cachep->objsize, - cachep->num, (1<gfporder)); + name, active_objs, num_objs, cachep->buffer_size, + cachep->num, (1 << cachep->gfporder)); seq_printf(m, " : tunables %4u %4u %4u", - cachep->limit, cachep->batchcount, - cachep->lists.shared->limit/cachep->batchcount); - seq_printf(m, " : slabdata %6lu %6lu %6u", - active_slabs, num_slabs, cachep->lists.shared->avail); + cachep->limit, cachep->batchcount, cachep->shared); + seq_printf(m, " : slabdata %6lu %6lu %6lu", + active_slabs, num_slabs, shared_avail); #if STATS - { /* list3 stats */ + { /* list3 stats */ unsigned long high = cachep->high_mark; unsigned long allocs = cachep->num_allocations; unsigned long grown = cachep->grown; unsigned long reaped = cachep->reaped; unsigned long errors = cachep->errors; unsigned long max_freeable = cachep->max_freeable; - unsigned long free_limit = cachep->free_limit; - - seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu", - allocs, high, grown, reaped, errors, - max_freeable, free_limit); + unsigned long node_allocs = cachep->node_allocs; + unsigned long node_frees = cachep->node_frees; + unsigned long overflows = cachep->node_overflow; + + seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \ + %4lu %4lu %4lu %4lu %4lu", allocs, high, grown, + reaped, errors, max_freeable, node_allocs, + node_frees, overflows); } /* cpu stats */ { @@ -2899,11 +4227,10 @@ static int s_show(struct seq_file *m, void *p) unsigned long freemiss = atomic_read(&cachep->freemiss); seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", - allochit, allocmiss, freehit, freemiss); + allochit, allocmiss, freehit, freemiss); } #endif seq_putc(m, '\n'); - spin_unlock_irq(&cachep->spinlock); return 0; } @@ -2921,11 +4248,11 @@ static int s_show(struct seq_file *m, void *p) * + further values on SMP and with statistics enabled */ -struct seq_operations slabinfo_op = { - .start = s_start, - .next = s_next, - .stop = s_stop, - .show = s_show, +const struct seq_operations slabinfo_op = { + .start = s_start, + .next = s_next, + .stop = s_stop, + .show = s_show, }; #define MAX_SLABINFO_WRITE 128 @@ -2936,18 +4263,18 @@ struct seq_operations slabinfo_op = { * @count: data length * @ppos: unused */ -ssize_t slabinfo_write(struct file *file, const char __user *buffer, - size_t count, loff_t *ppos) +ssize_t slabinfo_write(struct file *file, const char __user * buffer, + size_t count, loff_t *ppos) { - char kbuf[MAX_SLABINFO_WRITE+1], *tmp; + char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; int limit, batchcount, shared, res; - struct list_head *p; - + struct kmem_cache *cachep; + if (count > MAX_SLABINFO_WRITE) return -EINVAL; if (copy_from_user(&kbuf, buffer, count)) return -EFAULT; - kbuf[MAX_SLABINFO_WRITE] = '\0'; + kbuf[MAX_SLABINFO_WRITE] = '\0'; tmp = strchr(kbuf, ' '); if (!tmp) @@ -2958,111 +4285,192 @@ ssize_t slabinfo_write(struct file *file, const char __user *buffer, return -EINVAL; /* Find the cache in the chain of caches. */ - down(&cache_chain_sem); + mutex_lock(&cache_chain_mutex); res = -EINVAL; - list_for_each(p,&cache_chain) { - kmem_cache_t *cachep = list_entry(p, kmem_cache_t, next); - + list_for_each_entry(cachep, &cache_chain, next) { if (!strcmp(cachep->name, kbuf)) { - if (limit < 1 || - batchcount < 1 || - batchcount > limit || - shared < 0) { - res = -EINVAL; + if (limit < 1 || batchcount < 1 || + batchcount > limit || shared < 0) { + res = 0; } else { - res = do_tune_cpucache(cachep, limit, batchcount, shared); + res = do_tune_cpucache(cachep, limit, + batchcount, shared); } break; } } - up(&cache_chain_sem); + mutex_unlock(&cache_chain_mutex); if (res >= 0) res = count; return res; } -#endif -unsigned int ksize(const void *objp) +#ifdef CONFIG_DEBUG_SLAB_LEAK + +static void *leaks_start(struct seq_file *m, loff_t *pos) { - kmem_cache_t *c; - unsigned long flags; - unsigned int size = 0; + loff_t n = *pos; + struct list_head *p; - if (likely(objp != NULL)) { - local_irq_save(flags); - c = GET_PAGE_CACHE(virt_to_page(objp)); - size = kmem_cache_size(c); - local_irq_restore(flags); + mutex_lock(&cache_chain_mutex); + p = cache_chain.next; + while (n--) { + p = p->next; + if (p == &cache_chain) + return NULL; } + return list_entry(p, struct kmem_cache, next); +} - return size; +static inline int add_caller(unsigned long *n, unsigned long v) +{ + unsigned long *p; + int l; + if (!v) + return 1; + l = n[1]; + p = n + 2; + while (l) { + int i = l/2; + unsigned long *q = p + 2 * i; + if (*q == v) { + q[1]++; + return 1; + } + if (*q > v) { + l = i; + } else { + p = q + 2; + l -= i + 1; + } + } + if (++n[1] == n[0]) + return 0; + memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n)); + p[0] = v; + p[1] = 1; + return 1; } -void ptrinfo(unsigned long addr) +static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s) { - struct page *page; + void *p; + int i; + if (n[0] == n[1]) + return; + for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) { + if (slab_bufctl(s)[i] != BUFCTL_ACTIVE) + continue; + if (!add_caller(n, (unsigned long)*dbg_userword(c, p))) + return; + } +} - printk("Dumping data about address %p.\n", (void*)addr); - if (!virt_addr_valid((void*)addr)) { - printk("virt addr invalid.\n"); +static void show_symbol(struct seq_file *m, unsigned long address) +{ +#ifdef CONFIG_KALLSYMS + char *modname; + const char *name; + unsigned long offset, size; + char namebuf[KSYM_NAME_LEN+1]; + + name = kallsyms_lookup(address, &size, &offset, &modname, namebuf); + + if (name) { + seq_printf(m, "%s+%#lx/%#lx", name, offset, size); + if (modname) + seq_printf(m, " [%s]", modname); return; } -#ifdef CONFIG_MMU - do { - pgd_t *pgd = pgd_offset_k(addr); - pmd_t *pmd; - if (pgd_none(*pgd)) { - printk("No pgd.\n"); - break; - } - pmd = pmd_offset(pgd, addr); - if (pmd_none(*pmd)) { - printk("No pmd.\n"); - break; - } -#ifdef CONFIG_X86 - if (pmd_large(*pmd)) { - printk("Large page.\n"); - break; - } -#endif - printk("normal page, pte_val 0x%llx\n", - (unsigned long long)pte_val(*pte_offset_kernel(pmd, addr))); - } while(0); #endif + seq_printf(m, "%p", (void *)address); +} - page = virt_to_page((void*)addr); - printk("struct page at %p, flags %08lx\n", - page, (unsigned long)page->flags); - if (PageSlab(page)) { - kmem_cache_t *c; - struct slab *s; - unsigned long flags; - int objnr; - void *objp; - - c = GET_PAGE_CACHE(page); - printk("belongs to cache %s.\n",c->name); - - spin_lock_irqsave(&c->spinlock, flags); - s = GET_PAGE_SLAB(page); - printk("slabp %p with %d inuse objects (from %d).\n", - s, s->inuse, c->num); - check_slabp(c,s); - - objnr = (addr-(unsigned long)s->s_mem)/c->objsize; - objp = s->s_mem+c->objsize*objnr; - printk("points into object no %d, starting at %p, len %d.\n", - objnr, objp, c->objsize); - if (objnr >= c->num) { - printk("Bad obj number.\n"); - } else { - kernel_map_pages(virt_to_page(objp), - c->objsize/PAGE_SIZE, 1); +static int leaks_show(struct seq_file *m, void *p) +{ + struct kmem_cache *cachep = p; + struct slab *slabp; + struct kmem_list3 *l3; + const char *name; + unsigned long *n = m->private; + int node; + int i; - print_objinfo(c, objp, 2); - } - spin_unlock_irqrestore(&c->spinlock, flags); + if (!(cachep->flags & SLAB_STORE_USER)) + return 0; + if (!(cachep->flags & SLAB_RED_ZONE)) + return 0; + + /* OK, we can do it */ + + n[1] = 0; + for_each_online_node(node) { + l3 = cachep->nodelists[node]; + if (!l3) + continue; + + check_irq_on(); + spin_lock_irq(&l3->list_lock); + + list_for_each_entry(slabp, &l3->slabs_full, list) + handle_slab(n, cachep, slabp); + list_for_each_entry(slabp, &l3->slabs_partial, list) + handle_slab(n, cachep, slabp); + spin_unlock_irq(&l3->list_lock); + } + name = cachep->name; + if (n[0] == n[1]) { + /* Increase the buffer size */ + mutex_unlock(&cache_chain_mutex); + m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL); + if (!m->private) { + /* Too bad, we are really out */ + m->private = n; + mutex_lock(&cache_chain_mutex); + return -ENOMEM; + } + *(unsigned long *)m->private = n[0] * 2; + kfree(n); + mutex_lock(&cache_chain_mutex); + /* Now make sure this entry will be retried */ + m->count = m->size; + return 0; + } + for (i = 0; i < n[1]; i++) { + seq_printf(m, "%s: %lu ", name, n[2*i+3]); + show_symbol(m, n[2*i+2]); + seq_putc(m, '\n'); } + + return 0; +} + +const struct seq_operations slabstats_op = { + .start = leaks_start, + .next = s_next, + .stop = s_stop, + .show = leaks_show, +}; +#endif +#endif + +/** + * ksize - get the actual amount of memory allocated for a given object + * @objp: Pointer to the object + * + * kmalloc may internally round up allocations and return more memory + * than requested. ksize() can be used to determine the actual amount of + * memory allocated. The caller may use this additional memory, even though + * a smaller amount of memory was initially specified with the kmalloc call. + * The caller must guarantee that objp points to a valid object previously + * allocated with either kmalloc() or kmem_cache_alloc(). The object + * must not be freed during the duration of the call. + */ +unsigned int ksize(const void *objp) +{ + if (unlikely(objp == NULL)) + return 0; + + return obj_size(virt_to_cache(objp)); }