X-Git-Url: http://git.onelab.eu/?a=blobdiff_plain;f=ofproto%2Fin-band.c;h=42b3efbed43c367efa561599842dd8f22fc797f8;hb=HEAD;hp=adf89d123e224d3b07b2372136ce4d647143713b;hpb=a35801789a04c3c2abfdccb8afe9b21289bf190a;p=sliver-openvswitch.git diff --git a/ofproto/in-band.c b/ofproto/in-band.c index adf89d123..42b3efbed 100644 --- a/ofproto/in-band.c +++ b/ofproto/in-band.c @@ -1,5 +1,5 @@ /* - * Copyright (c) 2008, 2009, 2010 Nicira Networks. + * Copyright (c) 2008, 2009, 2010, 2011, 2012, 2013 Nicira, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. @@ -19,622 +19,421 @@ #include #include #include +#include #include #include #include +#include "classifier.h" #include "dhcp.h" -#include "dpif.h" #include "flow.h" -#include "mac-learning.h" #include "netdev.h" +#include "netlink.h" #include "odp-util.h" -#include "ofp-print.h" +#include "ofp-actions.h" #include "ofproto.h" #include "ofpbuf.h" +#include "ofproto-provider.h" #include "openflow/openflow.h" -#include "openvswitch/datapath-protocol.h" #include "packets.h" #include "poll-loop.h" -#include "rconn.h" -#include "status.h" #include "timeval.h" -#include "vconn.h" - -#define THIS_MODULE VLM_in_band #include "vlog.h" -/* In-band control allows a single network to be used for OpenFlow - * traffic and other data traffic. Refer to ovs-vswitchd.conf(5) and - * secchan(8) for a description of configuring in-band control. - * - * This comment is an attempt to describe how in-band control works at a - * wire- and implementation-level. Correctly implementing in-band - * control has proven difficult due to its many subtleties, and has thus - * gone through many iterations. Please read through and understand the - * reasoning behind the chosen rules before making modifications. - * - * In Open vSwitch, in-band control is implemented as "hidden" flows (in - * that they are not visible through OpenFlow) and at a higher priority - * than wildcarded flows can be set up by the controller. This is done - * so that the controller cannot interfere with them and possibly break - * connectivity with its switches. It is possible to see all flows, - * including in-band ones, with the ovs-appctl "bridge/dump-flows" - * command. - * - * The following rules are always enabled with the "normal" action by a - * switch with in-band control: - * - * a. DHCP requests sent from the local port. - * b. ARP replies to the local port's MAC address. - * c. ARP requests from the local port's MAC address. - * d. ARP replies to the remote side's MAC address. Note that the - * remote side is either the controller or the gateway to reach - * the controller. - * e. ARP requests from the remote side's MAC address. Note that - * like (d), the MAC is either for the controller or gateway. - * f. ARP replies containing the controller's IP address as a target. - * g. ARP requests containing the controller's IP address as a source. - * h. OpenFlow (6633/tcp) traffic to the controller's IP. - * i. OpenFlow (6633/tcp) traffic from the controller's IP. - * - * The goal of these rules is to be as narrow as possible to allow a - * switch to join a network and be able to communicate with a - * controller. As mentioned earlier, these rules have higher priority - * than the controller's rules, so if they are too broad, they may - * prevent the controller from implementing its policy. As such, - * in-band actively monitors some aspects of flow and packet processing - * so that the rules can be made more precise. - * - * In-band control monitors attempts to add flows into the datapath that - * could interfere with its duties. The datapath only allows exact - * match entries, so in-band control is able to be very precise about - * the flows it prevents. Flows that miss in the datapath are sent to - * userspace to be processed, so preventing these flows from being - * cached in the "fast path" does not affect correctness. The only type - * of flow that is currently prevented is one that would prevent DHCP - * replies from being seen by the local port. For example, a rule that - * forwarded all DHCP traffic to the controller would not be allowed, - * but one that forwarded to all ports (including the local port) would. - * - * As mentioned earlier, packets that miss in the datapath are sent to - * the userspace for processing. The userspace has its own flow table, - * the "classifier", so in-band checks whether any special processing - * is needed before the classifier is consulted. If a packet is a DHCP - * response to a request from the local port, the packet is forwarded to - * the local port, regardless of the flow table. Note that this requires - * L7 processing of DHCP replies to determine whether the 'chaddr' field - * matches the MAC address of the local port. - * - * It is interesting to note that for an L3-based in-band control - * mechanism, the majority of rules are devoted to ARP traffic. At first - * glance, some of these rules appear redundant. However, each serves an - * important role. First, in order to determine the MAC address of the - * remote side (controller or gateway) for other ARP rules, we must allow - * ARP traffic for our local port with rules (b) and (c). If we are - * between a switch and its connection to the controller, we have to - * allow the other switch's ARP traffic to through. This is done with - * rules (d) and (e), since we do not know the addresses of the other - * switches a priori, but do know the controller's or gateway's. Finally, - * if the controller is running in a local guest VM that is not reached - * through the local port, the switch that is connected to the VM must - * allow ARP traffic based on the controller's IP address, since it will - * not know the MAC address of the local port that is sending the traffic - * or the MAC address of the controller in the guest VM. - * - * With a few notable exceptions below, in-band should work in most - * network setups. The following are considered "supported' in the - * current implementation: - * - * - Locally Connected. The switch and controller are on the same - * subnet. This uses rules (a), (b), (c), (h), and (i). - * - * - Reached through Gateway. The switch and controller are on - * different subnets and must go through a gateway. This uses - * rules (a), (b), (c), (h), and (i). - * - * - Between Switch and Controller. This switch is between another - * switch and the controller, and we want to allow the other - * switch's traffic through. This uses rules (d), (e), (h), and - * (i). It uses (b) and (c) indirectly in order to know the MAC - * address for rules (d) and (e). Note that DHCP for the other - * switch will not work unless the controller explicitly lets this - * switch pass the traffic. - * - * - Between Switch and Gateway. This switch is between another - * switch and the gateway, and we want to allow the other switch's - * traffic through. This uses the same rules and logic as the - * "Between Switch and Controller" configuration described earlier. - * - * - Controller on Local VM. The controller is a guest VM on the - * system running in-band control. This uses rules (a), (b), (c), - * (h), and (i). - * - * - Controller on Local VM with Different Networks. The controller - * is a guest VM on the system running in-band control, but the - * local port is not used to connect to the controller. For - * example, an IP address is configured on eth0 of the switch. The - * controller's VM is connected through eth1 of the switch, but an - * IP address has not been configured for that port on the switch. - * As such, the switch will use eth0 to connect to the controller, - * and eth1's rules about the local port will not work. In the - * example, the switch attached to eth0 would use rules (a), (b), - * (c), (h), and (i) on eth0. The switch attached to eth1 would use - * rules (f), (g), (h), and (i). - * - * The following are explicitly *not* supported by in-band control: - * - * - Specify Controller by Name. Currently, the controller must be - * identified by IP address. A naive approach would be to permit - * all DNS traffic. Unfortunately, this would prevent the - * controller from defining any policy over DNS. Since switches - * that are located behind us need to connect to the controller, - * in-band cannot simply add a rule that allows DNS traffic from - * the local port. The "correct" way to support this is to parse - * DNS requests to allow all traffic related to a request for the - * controller's name through. Due to the potential security - * problems and amount of processing, we decided to hold off for - * the time-being. - * - * - Multiple Controllers. There is nothing intrinsic in the high- - * level design that prevents using multiple (known) controllers, - * however, the current implementation's data structures assume - * only one. - * - * - Differing Controllers for Switches. All switches must know - * the L3 addresses for all the controllers that other switches - * may use, since rules need to be set up to allow traffic related - * to those controllers through. See rules (f), (g), (h), and (i). - * - * - Differing Routes for Switches. In order for the switch to - * allow other switches to connect to a controller through a - * gateway, it allows the gateway's traffic through with rules (d) - * and (e). If the routes to the controller differ for the two - * switches, we will not know the MAC address of the alternate - * gateway. - */ - -#define IB_BASE_PRIORITY 18181800 +VLOG_DEFINE_THIS_MODULE(in_band); +/* Priorities used in classifier for in-band rules. These values are higher + * than any that may be set with OpenFlow, and "18" kind of looks like "IB". + * The ordering of priorities is not important because all of the rules set up + * by in-band control have the same action. The only reason to use more than + * one priority is to make the kind of flow easier to see during debugging. */ enum { - IBR_FROM_LOCAL_DHCP, /* (a) From local port, DHCP. */ + /* One set per bridge. */ + IBR_FROM_LOCAL_DHCP = 180000, /* (a) From local port, DHCP. */ IBR_TO_LOCAL_ARP, /* (b) To local port, ARP. */ IBR_FROM_LOCAL_ARP, /* (c) From local port, ARP. */ - IBR_TO_REMOTE_ARP, /* (d) To remote MAC, ARP. */ - IBR_FROM_REMOTE_ARP, /* (e) From remote MAC, ARP. */ - IBR_TO_CTL_ARP, /* (f) To controller IP, ARP. */ - IBR_FROM_CTL_ARP, /* (g) From controller IP, ARP. */ - IBR_TO_CTL_OFP, /* (h) To controller, OpenFlow port. */ - IBR_FROM_CTL_OFP, /* (i) From controller, OpenFlow port. */ -#if OFP_TCP_PORT != OFP_SSL_PORT -#error Need to support separate TCP and SSL flows. -#endif - N_IB_RULES + + /* One set per unique next-hop MAC. */ + IBR_TO_NEXT_HOP_ARP, /* (d) To remote MAC, ARP. */ + IBR_FROM_NEXT_HOP_ARP, /* (e) From remote MAC, ARP. */ + + /* One set per unique remote IP address. */ + IBR_TO_REMOTE_ARP, /* (f) To remote IP, ARP. */ + IBR_FROM_REMOTE_ARP, /* (g) From remote IP, ARP. */ + + /* One set per unique remote (IP,port) pair. */ + IBR_TO_REMOTE_TCP, /* (h) To remote IP, TCP port. */ + IBR_FROM_REMOTE_TCP /* (i) From remote IP, TCP port. */ }; -struct ib_rule { - bool installed; - flow_t flow; - uint32_t wildcards; +/* Track one remote IP and next hop information. */ +struct in_band_remote { + struct sockaddr_in remote_addr; /* IP address, in network byte order. */ + uint8_t remote_mac[ETH_ADDR_LEN]; /* Next-hop MAC, all-zeros if unknown. */ + uint8_t last_remote_mac[ETH_ADDR_LEN]; /* Previous nonzero next-hop MAC. */ + struct netdev *remote_netdev; /* Device to send to next-hop MAC. */ +}; + +/* What to do to an in_band_rule. */ +enum in_band_op { + ADD, /* Add the rule to ofproto's flow table. */ + DEL /* Delete the rule from ofproto's flow table. */ +}; + +/* A rule to add to or delete from ofproto's flow table. */ +struct in_band_rule { + struct hmap_node hmap_node; /* In struct in_band's "rules" hmap. */ + struct match match; unsigned int priority; + enum in_band_op op; }; struct in_band { struct ofproto *ofproto; - struct rconn *controller; - struct status_category *ss_cat; - - /* Keep track of local port's information. */ - uint8_t local_mac[ETH_ADDR_LEN]; /* Current MAC. */ - struct netdev *local_netdev; /* Local port's network device. */ - time_t next_local_refresh; - - /* Keep track of controller and next hop's information. */ - uint32_t controller_ip; /* Controller IP, 0 if unknown. */ - uint8_t remote_mac[ETH_ADDR_LEN]; /* Remote MAC. */ - struct netdev *remote_netdev; - uint8_t last_remote_mac[ETH_ADDR_LEN]; /* Previous remote MAC. */ - time_t next_remote_refresh; - - /* Rules that we set up. */ - struct ib_rule rules[N_IB_RULES]; + int queue_id; + + /* Remote information. */ + time_t next_remote_refresh; /* Refresh timer. */ + struct in_band_remote *remotes; + size_t n_remotes; + + /* Local information. */ + time_t next_local_refresh; /* Refresh timer. */ + uint8_t local_mac[ETH_ADDR_LEN]; /* Current MAC. */ + struct netdev *local_netdev; /* Local port's network device. */ + + /* Flow tracking. */ + struct hmap rules; /* Contains "struct in_band_rule"s. */ }; static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(60, 60); -static const uint8_t * -get_remote_mac(struct in_band *ib) +static int +refresh_remote(struct in_band *ib, struct in_band_remote *r) { - int retval; - bool have_mac; - struct in_addr c_in4; /* Controller's IP address. */ - struct in_addr r_in4; /* Next hop IP address. */ + struct in_addr next_hop_inaddr; char *next_hop_dev; - time_t now = time_now(); - - if (now >= ib->next_remote_refresh) { - /* Find the next-hop IP address. */ - c_in4.s_addr = ib->controller_ip; - memset(ib->remote_mac, 0, sizeof ib->remote_mac); - retval = netdev_get_next_hop(ib->local_netdev, - &c_in4, &r_in4, &next_hop_dev); - if (retval) { - VLOG_WARN("cannot find route for controller ("IP_FMT"): %s", - IP_ARGS(&ib->controller_ip), strerror(retval)); - ib->next_remote_refresh = now + 1; - return NULL; - } - if (!r_in4.s_addr) { - r_in4.s_addr = c_in4.s_addr; - } + int retval; - /* Get the next-hop IP and network device. */ - if (!ib->remote_netdev - || strcmp(netdev_get_name(ib->remote_netdev), next_hop_dev)) - { - netdev_close(ib->remote_netdev); - - retval = netdev_open_default(next_hop_dev, &ib->remote_netdev); - if (retval) { - VLOG_WARN_RL(&rl, "cannot open netdev %s (next hop " - "to controller "IP_FMT"): %s", - next_hop_dev, IP_ARGS(&ib->controller_ip), - strerror(retval)); - free(next_hop_dev); - ib->next_remote_refresh = now + 1; - return NULL; - } - } - free(next_hop_dev); + /* Find the next-hop IP address. */ + memset(r->remote_mac, 0, sizeof r->remote_mac); + retval = netdev_get_next_hop(ib->local_netdev, &r->remote_addr.sin_addr, + &next_hop_inaddr, &next_hop_dev); + if (retval) { + VLOG_WARN("cannot find route for controller ("IP_FMT"): %s", + IP_ARGS(r->remote_addr.sin_addr.s_addr), + ovs_strerror(retval)); + return 1; + } + if (!next_hop_inaddr.s_addr) { + next_hop_inaddr = r->remote_addr.sin_addr; + } - /* Look up the MAC address of the next-hop IP address. */ - retval = netdev_arp_lookup(ib->remote_netdev, r_in4.s_addr, - ib->remote_mac); + /* Open the next-hop network device. */ + if (!r->remote_netdev + || strcmp(netdev_get_name(r->remote_netdev), next_hop_dev)) + { + netdev_close(r->remote_netdev); + + retval = netdev_open(next_hop_dev, "system", &r->remote_netdev); if (retval) { - VLOG_DBG_RL(&rl, "cannot look up remote MAC address ("IP_FMT"): %s", - IP_ARGS(&r_in4.s_addr), strerror(retval)); - } - have_mac = !eth_addr_is_zero(ib->remote_mac); - if (have_mac - && !eth_addr_equals(ib->last_remote_mac, ib->remote_mac)) { - VLOG_DBG("remote MAC address changed from "ETH_ADDR_FMT" to " - ETH_ADDR_FMT, - ETH_ADDR_ARGS(ib->last_remote_mac), - ETH_ADDR_ARGS(ib->remote_mac)); - memcpy(ib->last_remote_mac, ib->remote_mac, ETH_ADDR_LEN); + VLOG_WARN_RL(&rl, "cannot open netdev %s (next hop " + "to controller "IP_FMT"): %s", + next_hop_dev, IP_ARGS(r->remote_addr.sin_addr.s_addr), + ovs_strerror(retval)); + free(next_hop_dev); + return 1; } - - /* Schedule next refresh. - * - * If we have an IP address but not a MAC address, then refresh - * quickly, since we probably will get a MAC address soon (via ARP). - * Otherwise, we can afford to wait a little while. */ - ib->next_remote_refresh - = now + (!ib->controller_ip || have_mac ? 10 : 1); + } + free(next_hop_dev); + + /* Look up the MAC address of the next-hop IP address. */ + retval = netdev_arp_lookup(r->remote_netdev, next_hop_inaddr.s_addr, + r->remote_mac); + if (retval) { + VLOG_DBG_RL(&rl, "cannot look up remote MAC address ("IP_FMT"): %s", + IP_ARGS(next_hop_inaddr.s_addr), ovs_strerror(retval)); } - return !eth_addr_is_zero(ib->remote_mac) ? ib->remote_mac : NULL; + /* If we don't have a MAC address, then refresh quickly, since we probably + * will get a MAC address soon (via ARP). Otherwise, we can afford to wait + * a little while. */ + return eth_addr_is_zero(r->remote_mac) ? 1 : 10; } -static const uint8_t * -get_local_mac(struct in_band *ib) +static bool +refresh_remotes(struct in_band *ib) { - time_t now = time_now(); - if (now >= ib->next_local_refresh) { - uint8_t ea[ETH_ADDR_LEN]; - if (ib->local_netdev && !netdev_get_etheraddr(ib->local_netdev, ea)) { - memcpy(ib->local_mac, ea, ETH_ADDR_LEN); + struct in_band_remote *r; + bool any_changes; + + if (time_now() < ib->next_remote_refresh) { + return false; + } + + any_changes = false; + ib->next_remote_refresh = TIME_MAX; + for (r = ib->remotes; r < &ib->remotes[ib->n_remotes]; r++) { + uint8_t old_remote_mac[ETH_ADDR_LEN]; + time_t next_refresh; + + /* Save old MAC. */ + memcpy(old_remote_mac, r->remote_mac, ETH_ADDR_LEN); + + /* Refresh remote information. */ + next_refresh = refresh_remote(ib, r) + time_now(); + ib->next_remote_refresh = MIN(ib->next_remote_refresh, next_refresh); + + /* If the MAC changed, log the changes. */ + if (!eth_addr_equals(r->remote_mac, old_remote_mac)) { + any_changes = true; + if (!eth_addr_is_zero(r->remote_mac) + && !eth_addr_equals(r->last_remote_mac, r->remote_mac)) { + VLOG_DBG("remote MAC address changed from "ETH_ADDR_FMT + " to "ETH_ADDR_FMT, + ETH_ADDR_ARGS(r->last_remote_mac), + ETH_ADDR_ARGS(r->remote_mac)); + memcpy(r->last_remote_mac, r->remote_mac, ETH_ADDR_LEN); + } } - ib->next_local_refresh = now + 1; } - return !eth_addr_is_zero(ib->local_mac) ? ib->local_mac : NULL; + + return any_changes; } -static void -in_band_status_cb(struct status_reply *sr, void *in_band_) +/* Refreshes the MAC address of the local port into ib->local_mac, if it is due + * for a refresh. Returns true if anything changed, otherwise false. */ +static bool +refresh_local(struct in_band *ib) { - struct in_band *in_band = in_band_; + uint8_t ea[ETH_ADDR_LEN]; + time_t now; - if (!eth_addr_is_zero(in_band->local_mac)) { - status_reply_put(sr, "local-mac="ETH_ADDR_FMT, - ETH_ADDR_ARGS(in_band->local_mac)); + now = time_now(); + if (now < ib->next_local_refresh) { + return false; } + ib->next_local_refresh = now + 1; - if (!eth_addr_is_zero(in_band->remote_mac)) { - status_reply_put(sr, "remote-mac="ETH_ADDR_FMT, - ETH_ADDR_ARGS(in_band->remote_mac)); + if (netdev_get_etheraddr(ib->local_netdev, ea) + || eth_addr_equals(ea, ib->local_mac)) { + return false; } + + memcpy(ib->local_mac, ea, ETH_ADDR_LEN); + return true; } -static void -drop_flow(struct in_band *in_band, int rule_idx) +/* Returns true if packets in 'flow' should be directed to the local port. + * (This keeps the flow table from preventing DHCP replies from being seen by + * the local port.) */ +bool +in_band_must_output_to_local_port(const struct flow *flow) { - struct ib_rule *rule = &in_band->rules[rule_idx]; - - if (rule->installed) { - rule->installed = false; - ofproto_delete_flow(in_band->ofproto, &rule->flow, rule->wildcards, - rule->priority); - } + return (flow->dl_type == htons(ETH_TYPE_IP) + && flow->nw_proto == IPPROTO_UDP + && flow->tp_src == htons(DHCP_SERVER_PORT) + && flow->tp_dst == htons(DHCP_CLIENT_PORT)); } -/* out_port and fixed_fields are assumed never to change. */ static void -set_up_flow(struct in_band *in_band, int rule_idx, const flow_t *flow, - uint32_t fixed_fields, uint16_t out_port) +add_rule(struct in_band *ib, const struct match *match, unsigned int priority) { - struct ib_rule *rule = &in_band->rules[rule_idx]; + uint32_t hash = match_hash(match, 0); + struct in_band_rule *rule; - if (!rule->installed || memcmp(flow, &rule->flow, sizeof *flow)) { - union ofp_action action; - - drop_flow(in_band, rule_idx); - - rule->installed = true; - rule->flow = *flow; - rule->wildcards = OVSFW_ALL & ~fixed_fields; - rule->priority = IB_BASE_PRIORITY + (N_IB_RULES - rule_idx); - - action.type = htons(OFPAT_OUTPUT); - action.output.len = htons(sizeof action); - action.output.port = htons(out_port); - action.output.max_len = htons(0); - ofproto_add_flow(in_band->ofproto, &rule->flow, rule->wildcards, - rule->priority, &action, 1, 0); + HMAP_FOR_EACH_WITH_HASH (rule, hmap_node, hash, &ib->rules) { + if (match_equal(&rule->match, match)) { + rule->op = ADD; + return; + } } + + rule = xmalloc(sizeof *rule); + rule->match = *match; + rule->priority = priority; + rule->op = ADD; + hmap_insert(&ib->rules, &rule->hmap_node, hash); } -/* Returns true if 'packet' should be sent to the local port regardless - * of the flow table. */ -bool -in_band_msg_in_hook(struct in_band *in_band, const flow_t *flow, - const struct ofpbuf *packet) +static void +update_rules(struct in_band *ib) { - if (!in_band) { - return false; + struct in_band_rule *ib_rule; + struct in_band_remote *r; + struct match match; + + /* Mark all the existing rules for deletion. (Afterward we will re-add any + * rules that are still valid.) */ + HMAP_FOR_EACH (ib_rule, hmap_node, &ib->rules) { + ib_rule->op = DEL; } - /* Regardless of how the flow table is configured, we want to be - * able to see replies to our DHCP requests. */ - if (flow->dl_type == htons(ETH_TYPE_IP) - && flow->nw_proto == IP_TYPE_UDP - && flow->tp_src == htons(DHCP_SERVER_PORT) - && flow->tp_dst == htons(DHCP_CLIENT_PORT) - && packet->l7) { - struct dhcp_header *dhcp; - const uint8_t *local_mac; - - dhcp = ofpbuf_at(packet, (char *)packet->l7 - (char *)packet->data, - sizeof *dhcp); - if (!dhcp) { - return false; - } + if (ib->n_remotes && !eth_addr_is_zero(ib->local_mac)) { + /* (a) Allow DHCP requests sent from the local port. */ + match_init_catchall(&match); + match_set_in_port(&match, OFPP_LOCAL); + match_set_dl_type(&match, htons(ETH_TYPE_IP)); + match_set_dl_src(&match, ib->local_mac); + match_set_nw_proto(&match, IPPROTO_UDP); + match_set_tp_src(&match, htons(DHCP_CLIENT_PORT)); + match_set_tp_dst(&match, htons(DHCP_SERVER_PORT)); + add_rule(ib, &match, IBR_FROM_LOCAL_DHCP); + + /* (b) Allow ARP replies to the local port's MAC address. */ + match_init_catchall(&match); + match_set_dl_type(&match, htons(ETH_TYPE_ARP)); + match_set_dl_dst(&match, ib->local_mac); + match_set_nw_proto(&match, ARP_OP_REPLY); + add_rule(ib, &match, IBR_TO_LOCAL_ARP); + + /* (c) Allow ARP requests from the local port's MAC address. */ + match_init_catchall(&match); + match_set_dl_type(&match, htons(ETH_TYPE_ARP)); + match_set_dl_src(&match, ib->local_mac); + match_set_nw_proto(&match, ARP_OP_REQUEST); + add_rule(ib, &match, IBR_FROM_LOCAL_ARP); + } - local_mac = get_local_mac(in_band); - if (local_mac && eth_addr_equals(dhcp->chaddr, local_mac)) { - return true; + for (r = ib->remotes; r < &ib->remotes[ib->n_remotes]; r++) { + const uint8_t *remote_mac = r->remote_mac; + + if (eth_addr_is_zero(remote_mac)) { + continue; } + + /* (d) Allow ARP replies to the next hop's MAC address. */ + match_init_catchall(&match); + match_set_dl_type(&match, htons(ETH_TYPE_ARP)); + match_set_dl_dst(&match, remote_mac); + match_set_nw_proto(&match, ARP_OP_REPLY); + add_rule(ib, &match, IBR_TO_NEXT_HOP_ARP); + + /* (e) Allow ARP requests from the next hop's MAC address. */ + match_init_catchall(&match); + match_set_dl_type(&match, htons(ETH_TYPE_ARP)); + match_set_dl_src(&match, remote_mac); + match_set_nw_proto(&match, ARP_OP_REQUEST); + add_rule(ib, &match, IBR_FROM_NEXT_HOP_ARP); } - return false; + for (r = ib->remotes; r < &ib->remotes[ib->n_remotes]; r++) { + const struct sockaddr_in *a = &r->remote_addr; + + /* (f) Allow ARP replies containing the remote's IP address as a + * target. */ + match_init_catchall(&match); + match_set_dl_type(&match, htons(ETH_TYPE_ARP)); + match_set_nw_proto(&match, ARP_OP_REPLY); + match_set_nw_dst(&match, a->sin_addr.s_addr); + add_rule(ib, &match, IBR_TO_REMOTE_ARP); + + /* (g) Allow ARP requests containing the remote's IP address as a + * source. */ + match_init_catchall(&match); + match_set_dl_type(&match, htons(ETH_TYPE_ARP)); + match_set_nw_proto(&match, ARP_OP_REQUEST); + match_set_nw_src(&match, a->sin_addr.s_addr); + add_rule(ib, &match, IBR_FROM_REMOTE_ARP); + + /* (h) Allow TCP traffic to the remote's IP and port. */ + match_init_catchall(&match); + match_set_dl_type(&match, htons(ETH_TYPE_IP)); + match_set_nw_proto(&match, IPPROTO_TCP); + match_set_nw_dst(&match, a->sin_addr.s_addr); + match_set_tp_dst(&match, a->sin_port); + add_rule(ib, &match, IBR_TO_REMOTE_TCP); + + /* (i) Allow TCP traffic from the remote's IP and port. */ + match_init_catchall(&match); + match_set_dl_type(&match, htons(ETH_TYPE_IP)); + match_set_nw_proto(&match, IPPROTO_TCP); + match_set_nw_src(&match, a->sin_addr.s_addr); + match_set_tp_src(&match, a->sin_port); + add_rule(ib, &match, IBR_FROM_REMOTE_TCP); + } } -/* Returns true if the rule that would match 'flow' with 'actions' is - * allowed to be set up in the datapath. */ +/* Updates the OpenFlow flow table for the current state of in-band control. + * Returns true ordinarily. Returns false if no remotes are configured on 'ib' + * and 'ib' doesn't have any rules left to remove from the OpenFlow flow + * table. Thus, a false return value means that the caller can destroy 'ib' + * without leaving extra flows hanging around in the flow table. */ bool -in_band_rule_check(struct in_band *in_band, const flow_t *flow, - const struct odp_actions *actions) +in_band_run(struct in_band *ib) { - if (!in_band) { - return true; - } + uint64_t ofpacts_stub[128 / 8]; + struct ofpbuf ofpacts; - /* Don't allow flows that would prevent DHCP replies from being seen - * by the local port. */ - if (flow->dl_type == htons(ETH_TYPE_IP) - && flow->nw_proto == IP_TYPE_UDP - && flow->tp_src == htons(DHCP_SERVER_PORT) - && flow->tp_dst == htons(DHCP_CLIENT_PORT)) { - int i; - - for (i=0; in_actions; i++) { - if (actions->actions[i].output.type == ODPAT_OUTPUT - && actions->actions[i].output.port == ODPP_LOCAL) { - return true; - } - } - return false; - } + struct in_band_rule *rule, *next; - return true; -} + ofpbuf_use_stub(&ofpacts, ofpacts_stub, sizeof ofpacts_stub); -void -in_band_run(struct in_band *in_band) -{ - time_t now = time_now(); - uint32_t controller_ip; - const uint8_t *remote_mac; - const uint8_t *local_mac; - flow_t flow; - - if (now < in_band->next_remote_refresh - && now < in_band->next_local_refresh) { - return; + if (ib->queue_id >= 0) { + ofpact_put_SET_QUEUE(&ofpacts)->queue_id = ib->queue_id; } - - controller_ip = rconn_get_remote_ip(in_band->controller); - if (in_band->controller_ip && controller_ip != in_band->controller_ip) { - VLOG_DBG("controller IP address changed from "IP_FMT" to "IP_FMT, - IP_ARGS(&in_band->controller_ip), - IP_ARGS(&controller_ip)); - } - in_band->controller_ip = controller_ip; - - remote_mac = get_remote_mac(in_band); - local_mac = get_local_mac(in_band); - - if (local_mac) { - /* Allow DHCP requests to be sent from the local port. */ - memset(&flow, 0, sizeof flow); - flow.in_port = ODPP_LOCAL; - flow.dl_type = htons(ETH_TYPE_IP); - memcpy(flow.dl_src, local_mac, ETH_ADDR_LEN); - flow.nw_proto = IP_TYPE_UDP; - flow.tp_src = htons(DHCP_CLIENT_PORT); - flow.tp_dst = htons(DHCP_SERVER_PORT); - set_up_flow(in_band, IBR_FROM_LOCAL_DHCP, &flow, - (OFPFW_IN_PORT | OFPFW_DL_TYPE | OFPFW_DL_SRC - | OFPFW_NW_PROTO | OFPFW_TP_SRC | OFPFW_TP_DST), - OFPP_NORMAL); - - /* Allow the connection's interface to receive directed ARP traffic. */ - memset(&flow, 0, sizeof flow); - flow.dl_type = htons(ETH_TYPE_ARP); - memcpy(flow.dl_dst, local_mac, ETH_ADDR_LEN); - flow.nw_proto = ARP_OP_REPLY; - set_up_flow(in_band, IBR_TO_LOCAL_ARP, &flow, - (OFPFW_DL_TYPE | OFPFW_DL_DST | OFPFW_NW_PROTO), - OFPP_NORMAL); - - /* Allow the connection's interface to be the source of ARP traffic. */ - memset(&flow, 0, sizeof flow); - flow.dl_type = htons(ETH_TYPE_ARP); - memcpy(flow.dl_src, local_mac, ETH_ADDR_LEN); - flow.nw_proto = ARP_OP_REQUEST; - set_up_flow(in_band, IBR_FROM_LOCAL_ARP, &flow, - (OFPFW_DL_TYPE | OFPFW_DL_SRC | OFPFW_NW_PROTO), - OFPP_NORMAL); - } else { - drop_flow(in_band, IBR_FROM_LOCAL_DHCP); - drop_flow(in_band, IBR_TO_LOCAL_ARP); - drop_flow(in_band, IBR_FROM_LOCAL_ARP); + ofpact_put_OUTPUT(&ofpacts)->port = OFPP_NORMAL; + + refresh_local(ib); + refresh_remotes(ib); + + update_rules(ib); + + HMAP_FOR_EACH_SAFE (rule, next, hmap_node, &ib->rules) { + switch (rule->op) { + case ADD: + ofproto_add_flow(ib->ofproto, &rule->match, rule->priority, + ofpbuf_data(&ofpacts), ofpbuf_size(&ofpacts)); + break; + + case DEL: + if (ofproto_delete_flow(ib->ofproto, + &rule->match, rule->priority)) { + /* ofproto doesn't have the rule anymore so there's no reason + * for us to track it any longer. */ + hmap_remove(&ib->rules, &rule->hmap_node); + free(rule); + } + break; + } } - if (remote_mac) { - /* Allow ARP replies to the remote side's MAC. */ - memset(&flow, 0, sizeof flow); - flow.dl_type = htons(ETH_TYPE_ARP); - memcpy(flow.dl_dst, remote_mac, ETH_ADDR_LEN); - flow.nw_proto = ARP_OP_REPLY; - set_up_flow(in_band, IBR_TO_REMOTE_ARP, &flow, - (OFPFW_DL_TYPE | OFPFW_DL_DST | OFPFW_NW_PROTO), - OFPP_NORMAL); - - /* Allow ARP requests from the remote side's MAC. */ - memset(&flow, 0, sizeof flow); - flow.dl_type = htons(ETH_TYPE_ARP); - memcpy(flow.dl_src, remote_mac, ETH_ADDR_LEN); - flow.nw_proto = ARP_OP_REQUEST; - set_up_flow(in_band, IBR_FROM_REMOTE_ARP, &flow, - (OFPFW_DL_TYPE | OFPFW_DL_SRC | OFPFW_NW_PROTO), - OFPP_NORMAL); - } else { - drop_flow(in_band, IBR_TO_REMOTE_ARP); - drop_flow(in_band, IBR_FROM_REMOTE_ARP); - } + ofpbuf_uninit(&ofpacts); - if (controller_ip) { - /* Allow ARP replies to the controller's IP. */ - memset(&flow, 0, sizeof flow); - flow.dl_type = htons(ETH_TYPE_ARP); - flow.nw_proto = ARP_OP_REPLY; - flow.nw_dst = controller_ip; - set_up_flow(in_band, IBR_TO_CTL_ARP, &flow, - (OFPFW_DL_TYPE | OFPFW_NW_PROTO | OFPFW_NW_DST_MASK), - OFPP_NORMAL); - - /* Allow ARP requests from the controller's IP. */ - memset(&flow, 0, sizeof flow); - flow.dl_type = htons(ETH_TYPE_ARP); - flow.nw_proto = ARP_OP_REQUEST; - flow.nw_src = controller_ip; - set_up_flow(in_band, IBR_FROM_CTL_ARP, &flow, - (OFPFW_DL_TYPE | OFPFW_NW_PROTO | OFPFW_NW_SRC_MASK), - OFPP_NORMAL); - - /* OpenFlow traffic to or from the controller. - * - * (A given field's value is completely ignored if it is wildcarded, - * which is why we can get away with using a single 'flow' in each - * case here.) */ - memset(&flow, 0, sizeof flow); - flow.dl_type = htons(ETH_TYPE_IP); - flow.nw_proto = IP_TYPE_TCP; - flow.nw_src = controller_ip; - flow.nw_dst = controller_ip; - flow.tp_src = htons(OFP_TCP_PORT); - flow.tp_dst = htons(OFP_TCP_PORT); - set_up_flow(in_band, IBR_TO_CTL_OFP, &flow, - (OFPFW_DL_TYPE | OFPFW_NW_PROTO | OFPFW_NW_DST_MASK - | OFPFW_TP_DST), OFPP_NORMAL); - set_up_flow(in_band, IBR_FROM_CTL_OFP, &flow, - (OFPFW_DL_TYPE | OFPFW_NW_PROTO | OFPFW_NW_SRC_MASK - | OFPFW_TP_SRC), OFPP_NORMAL); - } else { - drop_flow(in_band, IBR_TO_CTL_ARP); - drop_flow(in_band, IBR_FROM_CTL_ARP); - drop_flow(in_band, IBR_TO_CTL_OFP); - drop_flow(in_band, IBR_FROM_CTL_OFP); - } + return ib->n_remotes || !hmap_is_empty(&ib->rules); } void in_band_wait(struct in_band *in_band) { - time_t now = time_now(); - time_t wakeup + long long int wakeup = MIN(in_band->next_remote_refresh, in_band->next_local_refresh); - if (wakeup > now) { - poll_timer_wait((wakeup - now) * 1000); - } else { - poll_immediate_wake(); - } -} - -void -in_band_flushed(struct in_band *in_band) -{ - int i; - - for (i = 0; i < N_IB_RULES; i++) { - in_band->rules[i].installed = false; - } + poll_timer_wait_until(wakeup * 1000); } int -in_band_create(struct ofproto *ofproto, struct dpif *dpif, - struct switch_status *ss, struct rconn *controller, +in_band_create(struct ofproto *ofproto, const char *local_name, struct in_band **in_bandp) { struct in_band *in_band; - char local_name[IF_NAMESIZE]; struct netdev *local_netdev; int error; - error = dpif_port_get_name(dpif, ODPP_LOCAL, - local_name, sizeof local_name); - if (error) { - VLOG_ERR("failed to initialize in-band control: cannot get name " - "of datapath local port (%s)", strerror(error)); - return error; - } - - error = netdev_open_default(local_name, &local_netdev); + *in_bandp = NULL; + error = netdev_open(local_name, "internal", &local_netdev); if (error) { VLOG_ERR("failed to initialize in-band control: cannot open " - "datapath local port %s (%s)", local_name, strerror(error)); + "datapath local port %s (%s)", + local_name, ovs_strerror(error)); return error; } in_band = xzalloc(sizeof *in_band); in_band->ofproto = ofproto; - in_band->controller = controller; - in_band->ss_cat = switch_status_register(ss, "in-band", - in_band_status_cb, in_band); - in_band->local_netdev = local_netdev; - in_band->next_local_refresh = TIME_MIN; - in_band->remote_netdev = NULL; + in_band->queue_id = -1; in_band->next_remote_refresh = TIME_MIN; + in_band->next_local_refresh = TIME_MIN; + in_band->local_netdev = local_netdev; + hmap_init(&in_band->rules); *in_bandp = in_band; @@ -642,13 +441,78 @@ in_band_create(struct ofproto *ofproto, struct dpif *dpif, } void -in_band_destroy(struct in_band *in_band) +in_band_destroy(struct in_band *ib) +{ + if (ib) { + struct in_band_rule *rule, *next; + + HMAP_FOR_EACH_SAFE (rule, next, hmap_node, &ib->rules) { + hmap_remove(&ib->rules, &rule->hmap_node); + free(rule); + } + hmap_destroy(&ib->rules); + in_band_set_remotes(ib, NULL, 0); + netdev_close(ib->local_netdev); + free(ib); + } +} + +static bool +any_addresses_changed(struct in_band *ib, + const struct sockaddr_in *addresses, size_t n) { - if (in_band) { - switch_status_unregister(in_band->ss_cat); - netdev_close(in_band->local_netdev); - netdev_close(in_band->remote_netdev); - /* We don't own the rconn. */ + size_t i; + + if (n != ib->n_remotes) { + return true; } + + for (i = 0; i < n; i++) { + const struct sockaddr_in *old = &ib->remotes[i].remote_addr; + const struct sockaddr_in *new = &addresses[i]; + + if (old->sin_addr.s_addr != new->sin_addr.s_addr || + old->sin_port != new->sin_port) { + return true; + } + } + + return false; +} + +void +in_band_set_remotes(struct in_band *ib, + const struct sockaddr_in *addresses, size_t n) +{ + size_t i; + + if (!any_addresses_changed(ib, addresses, n)) { + return; + } + + /* Clear old remotes. */ + for (i = 0; i < ib->n_remotes; i++) { + netdev_close(ib->remotes[i].remote_netdev); + } + free(ib->remotes); + + /* Set up new remotes. */ + ib->remotes = n ? xzalloc(n * sizeof *ib->remotes) : NULL; + ib->n_remotes = n; + for (i = 0; i < n; i++) { + ib->remotes[i].remote_addr = addresses[i]; + } + + /* Force refresh in next call to in_band_run(). */ + ib->next_remote_refresh = TIME_MIN; +} + +/* Sets the OpenFlow queue used by flows set up by 'ib' to 'queue_id'. If + * 'queue_id' is negative, 'ib' will not set any queue (which is also the + * default). */ +void +in_band_set_queue(struct in_band *ib, int queue_id) +{ + ib->queue_id = queue_id; }