X-Git-Url: http://git.onelab.eu/?a=blobdiff_plain;f=ofproto%2Fin-band.c;h=e75d19eac340452de7a9752dfae516b2744698ec;hb=1b5f560cf6ca83e4728d294ab5a871ca0777200d;hp=35ea534cd197c79d8e548f4e526f9880caa6903c;hpb=39fb08818bbd9c438dbf23caa89937c663451b5a;p=sliver-openvswitch.git diff --git a/ofproto/in-band.c b/ofproto/in-band.c index 35ea534cd..e75d19eac 100644 --- a/ofproto/in-band.c +++ b/ofproto/in-band.c @@ -1,5 +1,5 @@ /* - * Copyright (c) 2008, 2009 Nicira Networks. + * Copyright (c) 2008, 2009, 2010, 2011 Nicira Networks. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. @@ -19,238 +19,372 @@ #include #include #include +#include #include #include #include +#include "classifier.h" #include "dhcp.h" #include "dpif.h" #include "flow.h" -#include "mac-learning.h" #include "netdev.h" +#include "netlink.h" #include "odp-util.h" -#include "ofp-print.h" #include "ofproto.h" #include "ofpbuf.h" #include "openflow/openflow.h" -#include "openvswitch/datapath-protocol.h" #include "packets.h" #include "poll-loop.h" -#include "rconn.h" -#include "status.h" #include "timeval.h" -#include "vconn.h" - -#define THIS_MODULE VLM_in_band #include "vlog.h" -#define IB_BASE_PRIORITY 18181800 +VLOG_DEFINE_THIS_MODULE(in_band); +/* In-band control allows a single network to be used for OpenFlow traffic and + * other data traffic. See ovs-vswitchd.conf.db(5) for a description of + * configuring in-band control. + * + * This comment is an attempt to describe how in-band control works at a + * wire- and implementation-level. Correctly implementing in-band + * control has proven difficult due to its many subtleties, and has thus + * gone through many iterations. Please read through and understand the + * reasoning behind the chosen rules before making modifications. + * + * In Open vSwitch, in-band control is implemented as "hidden" flows (in that + * they are not visible through OpenFlow) and at a higher priority than + * wildcarded flows can be set up by through OpenFlow. This is done so that + * the OpenFlow controller cannot interfere with them and possibly break + * connectivity with its switches. It is possible to see all flows, including + * in-band ones, with the ovs-appctl "bridge/dump-flows" command. + * + * The Open vSwitch implementation of in-band control can hide traffic to + * arbitrary "remotes", where each remote is one TCP port on one IP address. + * Currently the remotes are automatically configured as the in-band OpenFlow + * controllers plus the OVSDB managers, if any. (The latter is a requirement + * because OVSDB managers are responsible for configuring OpenFlow controllers, + * so if the manager cannot be reached then OpenFlow cannot be reconfigured.) + * + * The following rules (with the OFPP_NORMAL action) are set up on any bridge + * that has any remotes: + * + * (a) DHCP requests sent from the local port. + * (b) ARP replies to the local port's MAC address. + * (c) ARP requests from the local port's MAC address. + * + * In-band also sets up the following rules for each unique next-hop MAC + * address for the remotes' IPs (the "next hop" is either the remote + * itself, if it is on a local subnet, or the gateway to reach the remote): + * + * (d) ARP replies to the next hop's MAC address. + * (e) ARP requests from the next hop's MAC address. + * + * In-band also sets up the following rules for each unique remote IP address: + * + * (f) ARP replies containing the remote's IP address as a target. + * (g) ARP requests containing the remote's IP address as a source. + * + * In-band also sets up the following rules for each unique remote (IP,port) + * pair: + * + * (h) TCP traffic to the remote's IP and port. + * (i) TCP traffic from the remote's IP and port. + * + * The goal of these rules is to be as narrow as possible to allow a + * switch to join a network and be able to communicate with the + * remotes. As mentioned earlier, these rules have higher priority + * than the controller's rules, so if they are too broad, they may + * prevent the controller from implementing its policy. As such, + * in-band actively monitors some aspects of flow and packet processing + * so that the rules can be made more precise. + * + * In-band control monitors attempts to add flows into the datapath that + * could interfere with its duties. The datapath only allows exact + * match entries, so in-band control is able to be very precise about + * the flows it prevents. Flows that miss in the datapath are sent to + * userspace to be processed, so preventing these flows from being + * cached in the "fast path" does not affect correctness. The only type + * of flow that is currently prevented is one that would prevent DHCP + * replies from being seen by the local port. For example, a rule that + * forwarded all DHCP traffic to the controller would not be allowed, + * but one that forwarded to all ports (including the local port) would. + * + * As mentioned earlier, packets that miss in the datapath are sent to + * the userspace for processing. The userspace has its own flow table, + * the "classifier", so in-band checks whether any special processing + * is needed before the classifier is consulted. If a packet is a DHCP + * response to a request from the local port, the packet is forwarded to + * the local port, regardless of the flow table. Note that this requires + * L7 processing of DHCP replies to determine whether the 'chaddr' field + * matches the MAC address of the local port. + * + * It is interesting to note that for an L3-based in-band control + * mechanism, the majority of rules are devoted to ARP traffic. At first + * glance, some of these rules appear redundant. However, each serves an + * important role. First, in order to determine the MAC address of the + * remote side (controller or gateway) for other ARP rules, we must allow + * ARP traffic for our local port with rules (b) and (c). If we are + * between a switch and its connection to the remote, we have to + * allow the other switch's ARP traffic to through. This is done with + * rules (d) and (e), since we do not know the addresses of the other + * switches a priori, but do know the remote's or gateway's. Finally, + * if the remote is running in a local guest VM that is not reached + * through the local port, the switch that is connected to the VM must + * allow ARP traffic based on the remote's IP address, since it will + * not know the MAC address of the local port that is sending the traffic + * or the MAC address of the remote in the guest VM. + * + * With a few notable exceptions below, in-band should work in most + * network setups. The following are considered "supported' in the + * current implementation: + * + * - Locally Connected. The switch and remote are on the same + * subnet. This uses rules (a), (b), (c), (h), and (i). + * + * - Reached through Gateway. The switch and remote are on + * different subnets and must go through a gateway. This uses + * rules (a), (b), (c), (h), and (i). + * + * - Between Switch and Remote. This switch is between another + * switch and the remote, and we want to allow the other + * switch's traffic through. This uses rules (d), (e), (h), and + * (i). It uses (b) and (c) indirectly in order to know the MAC + * address for rules (d) and (e). Note that DHCP for the other + * switch will not work unless an OpenFlow controller explicitly lets this + * switch pass the traffic. + * + * - Between Switch and Gateway. This switch is between another + * switch and the gateway, and we want to allow the other switch's + * traffic through. This uses the same rules and logic as the + * "Between Switch and Remote" configuration described earlier. + * + * - Remote on Local VM. The remote is a guest VM on the + * system running in-band control. This uses rules (a), (b), (c), + * (h), and (i). + * + * - Remote on Local VM with Different Networks. The remote + * is a guest VM on the system running in-band control, but the + * local port is not used to connect to the remote. For + * example, an IP address is configured on eth0 of the switch. The + * remote's VM is connected through eth1 of the switch, but an + * IP address has not been configured for that port on the switch. + * As such, the switch will use eth0 to connect to the remote, + * and eth1's rules about the local port will not work. In the + * example, the switch attached to eth0 would use rules (a), (b), + * (c), (h), and (i) on eth0. The switch attached to eth1 would use + * rules (f), (g), (h), and (i). + * + * The following are explicitly *not* supported by in-band control: + * + * - Specify Remote by Name. Currently, the remote must be + * identified by IP address. A naive approach would be to permit + * all DNS traffic. Unfortunately, this would prevent the + * controller from defining any policy over DNS. Since switches + * that are located behind us need to connect to the remote, + * in-band cannot simply add a rule that allows DNS traffic from + * the local port. The "correct" way to support this is to parse + * DNS requests to allow all traffic related to a request for the + * remote's name through. Due to the potential security + * problems and amount of processing, we decided to hold off for + * the time-being. + * + * - Differing Remotes for Switches. All switches must know + * the L3 addresses for all the remotes that other switches + * may use, since rules need to be set up to allow traffic related + * to those remotes through. See rules (f), (g), (h), and (i). + * + * - Differing Routes for Switches. In order for the switch to + * allow other switches to connect to a remote through a + * gateway, it allows the gateway's traffic through with rules (d) + * and (e). If the routes to the remote differ for the two + * switches, we will not know the MAC address of the alternate + * gateway. + */ + +/* Priorities used in classifier for in-band rules. These values are higher + * than any that may be set with OpenFlow, and "18" kind of looks like "IB". + * The ordering of priorities is not important because all of the rules set up + * by in-band control have the same action. The only reason to use more than + * one priority is to make the kind of flow easier to see during debugging. */ enum { - IBR_FROM_LOCAL_DHCP, /* From local port, DHCP. */ - IBR_TO_LOCAL_ARP, /* To local port, ARP. */ - IBR_FROM_LOCAL_ARP, /* From local port, ARP. */ - IBR_TO_REMOTE_ARP, /* To remote MAC, ARP. */ - IBR_FROM_REMOTE_ARP, /* From remote MAC, ARP. */ - IBR_TO_CTL_ARP, /* To controller IP, ARP. */ - IBR_FROM_CTL_ARP, /* From controller IP, ARP. */ - IBR_TO_CTL_OFP, /* To controller, OpenFlow port. */ - IBR_FROM_CTL_OFP, /* From controller, OpenFlow port. */ -#if OFP_TCP_PORT != OFP_SSL_PORT -#error Need to support separate TCP and SSL flows. -#endif - N_IB_RULES + /* One set per bridge. */ + IBR_FROM_LOCAL_DHCP = 180000, /* (a) From local port, DHCP. */ + IBR_TO_LOCAL_ARP, /* (b) To local port, ARP. */ + IBR_FROM_LOCAL_ARP, /* (c) From local port, ARP. */ + + /* One set per unique next-hop MAC. */ + IBR_TO_NEXT_HOP_ARP, /* (d) To remote MAC, ARP. */ + IBR_FROM_NEXT_HOP_ARP, /* (e) From remote MAC, ARP. */ + + /* One set per unique remote IP address. */ + IBR_TO_REMOTE_ARP, /* (f) To remote IP, ARP. */ + IBR_FROM_REMOTE_ARP, /* (g) From remote IP, ARP. */ + + /* One set per unique remote (IP,port) pair. */ + IBR_TO_REMOTE_TCP, /* (h) To remote IP, TCP port. */ + IBR_FROM_REMOTE_TCP /* (i) From remote IP, TCP port. */ }; -struct ib_rule { - bool installed; - flow_t flow; - uint32_t wildcards; - unsigned int priority; +/* Track one remote IP and next hop information. */ +struct in_band_remote { + struct sockaddr_in remote_addr; /* IP address, in network byte order. */ + uint8_t remote_mac[ETH_ADDR_LEN]; /* Next-hop MAC, all-zeros if unknown. */ + uint8_t last_remote_mac[ETH_ADDR_LEN]; /* Previous nonzero next-hop MAC. */ + struct netdev *remote_netdev; /* Device to send to next-hop MAC. */ }; struct in_band { struct ofproto *ofproto; - struct rconn *controller; - struct status_category *ss_cat; - - /* Keep track of local port's information. */ - uint8_t local_mac[ETH_ADDR_LEN]; /* Current MAC. */ - struct netdev *local_netdev; /* Local port's network device. */ - time_t next_local_refresh; - - /* Keep track of controller and next hop's information. */ - uint32_t controller_ip; /* Controller IP, 0 if unknown. */ - uint8_t remote_mac[ETH_ADDR_LEN]; /* Remote MAC. */ - struct netdev *remote_netdev; - uint8_t last_remote_mac[ETH_ADDR_LEN]; /* Previous remote MAC. */ - time_t next_remote_refresh; - - /* Rules that we set up. */ - struct ib_rule rules[N_IB_RULES]; + int queue_id, prev_queue_id; + + /* Remote information. */ + time_t next_remote_refresh; /* Refresh timer. */ + struct in_band_remote *remotes; + size_t n_remotes; + + /* Local information. */ + time_t next_local_refresh; /* Refresh timer. */ + uint8_t local_mac[ETH_ADDR_LEN]; /* Current MAC. */ + struct netdev *local_netdev; /* Local port's network device. */ + + /* Local and remote addresses that are installed as flows. */ + uint8_t installed_local_mac[ETH_ADDR_LEN]; + struct sockaddr_in *remote_addrs; + size_t n_remote_addrs; + uint8_t *remote_macs; + size_t n_remote_macs; }; static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(60, 60); -static const uint8_t * -get_remote_mac(struct in_band *ib) +static int +refresh_remote(struct in_band *ib, struct in_band_remote *r) { - int retval; - bool have_mac; - struct in_addr c_in4; /* Controller's IP address. */ - struct in_addr r_in4; /* Next hop IP address. */ + struct in_addr next_hop_inaddr; char *next_hop_dev; - time_t now = time_now(); - - if (now >= ib->next_remote_refresh) { - /* Find the next-hop IP address. */ - c_in4.s_addr = ib->controller_ip; - memset(ib->remote_mac, 0, sizeof ib->remote_mac); - retval = netdev_get_next_hop(ib->local_netdev, - &c_in4, &r_in4, &next_hop_dev); - if (retval) { - VLOG_WARN("cannot find route for controller ("IP_FMT"): %s", - IP_ARGS(&ib->controller_ip), strerror(retval)); - ib->next_remote_refresh = now + 1; - return NULL; - } - if (!r_in4.s_addr) { - r_in4.s_addr = c_in4.s_addr; - } - - /* Get the next-hop IP and network device. */ - if (!ib->remote_netdev - || strcmp(netdev_get_name(ib->remote_netdev), next_hop_dev)) - { - netdev_close(ib->remote_netdev); - retval = netdev_open(next_hop_dev, NETDEV_ETH_TYPE_NONE, - &ib->remote_netdev); - if (retval) { - VLOG_WARN_RL(&rl, "cannot open netdev %s (next hop " - "to controller "IP_FMT"): %s", - next_hop_dev, IP_ARGS(&ib->controller_ip), - strerror(retval)); - ib->next_remote_refresh = now + 1; - return NULL; - } - } - - /* Look up the MAC address of the next-hop IP address. */ - retval = netdev_arp_lookup(ib->remote_netdev, r_in4.s_addr, - ib->remote_mac); - if (retval) { - VLOG_DBG_RL(&rl, "cannot look up remote MAC address ("IP_FMT"): %s", - IP_ARGS(&r_in4.s_addr), strerror(retval)); - } - have_mac = !eth_addr_is_zero(ib->remote_mac); - free(next_hop_dev); - if (have_mac - && !eth_addr_equals(ib->last_remote_mac, ib->remote_mac)) { - VLOG_DBG("remote MAC address changed from "ETH_ADDR_FMT" to " - ETH_ADDR_FMT, - ETH_ADDR_ARGS(ib->last_remote_mac), - ETH_ADDR_ARGS(ib->remote_mac)); - memcpy(ib->last_remote_mac, ib->remote_mac, ETH_ADDR_LEN); - } + int retval; - /* Schedule next refresh. - * - * If we have an IP address but not a MAC address, then refresh - * quickly, since we probably will get a MAC address soon (via ARP). - * Otherwise, we can afford to wait a little while. */ - ib->next_remote_refresh - = now + (!ib->controller_ip || have_mac ? 10 : 1); + /* Find the next-hop IP address. */ + memset(r->remote_mac, 0, sizeof r->remote_mac); + retval = netdev_get_next_hop(ib->local_netdev, &r->remote_addr.sin_addr, + &next_hop_inaddr, &next_hop_dev); + if (retval) { + VLOG_WARN("cannot find route for controller ("IP_FMT"): %s", + IP_ARGS(&r->remote_addr.sin_addr), strerror(retval)); + return 1; + } + if (!next_hop_inaddr.s_addr) { + next_hop_inaddr = r->remote_addr.sin_addr; } - return !eth_addr_is_zero(ib->remote_mac) ? ib->remote_mac : NULL; -} + /* Open the next-hop network device. */ + if (!r->remote_netdev + || strcmp(netdev_get_name(r->remote_netdev), next_hop_dev)) + { + netdev_close(r->remote_netdev); -static const uint8_t * -get_local_mac(struct in_band *ib) -{ - time_t now = time_now(); - if (now >= ib->next_local_refresh) { - uint8_t ea[ETH_ADDR_LEN]; - if (ib->local_netdev && !netdev_get_etheraddr(ib->local_netdev, ea)) { - memcpy(ib->local_mac, ea, ETH_ADDR_LEN); + retval = netdev_open_default(next_hop_dev, &r->remote_netdev); + if (retval) { + VLOG_WARN_RL(&rl, "cannot open netdev %s (next hop " + "to controller "IP_FMT"): %s", + next_hop_dev, IP_ARGS(&r->remote_addr.sin_addr), + strerror(retval)); + free(next_hop_dev); + return 1; } - ib->next_local_refresh = now + 1; } - return !eth_addr_is_zero(ib->local_mac) ? ib->local_mac : NULL; + free(next_hop_dev); + + /* Look up the MAC address of the next-hop IP address. */ + retval = netdev_arp_lookup(r->remote_netdev, next_hop_inaddr.s_addr, + r->remote_mac); + if (retval) { + VLOG_DBG_RL(&rl, "cannot look up remote MAC address ("IP_FMT"): %s", + IP_ARGS(&next_hop_inaddr.s_addr), strerror(retval)); + } + + /* If we don't have a MAC address, then refresh quickly, since we probably + * will get a MAC address soon (via ARP). Otherwise, we can afford to wait + * a little while. */ + return eth_addr_is_zero(r->remote_mac) ? 1 : 10; } -static void -in_band_status_cb(struct status_reply *sr, void *in_band_) +static bool +refresh_remotes(struct in_band *ib) { - struct in_band *in_band = in_band_; + struct in_band_remote *r; + bool any_changes; - if (!eth_addr_is_zero(in_band->local_mac)) { - status_reply_put(sr, "local-mac="ETH_ADDR_FMT, - ETH_ADDR_ARGS(in_band->local_mac)); + if (time_now() < ib->next_remote_refresh) { + return false; } - if (!eth_addr_is_zero(in_band->remote_mac)) { - status_reply_put(sr, "remote-mac="ETH_ADDR_FMT, - ETH_ADDR_ARGS(in_band->remote_mac)); + any_changes = false; + ib->next_remote_refresh = TIME_MAX; + for (r = ib->remotes; r < &ib->remotes[ib->n_remotes]; r++) { + uint8_t old_remote_mac[ETH_ADDR_LEN]; + time_t next_refresh; + + /* Save old MAC. */ + memcpy(old_remote_mac, r->remote_mac, ETH_ADDR_LEN); + + /* Refresh remote information. */ + next_refresh = refresh_remote(ib, r) + time_now(); + ib->next_remote_refresh = MIN(ib->next_remote_refresh, next_refresh); + + /* If the MAC changed, log the changes. */ + if (!eth_addr_equals(r->remote_mac, old_remote_mac)) { + any_changes = true; + if (!eth_addr_is_zero(r->remote_mac) + && !eth_addr_equals(r->last_remote_mac, r->remote_mac)) { + VLOG_DBG("remote MAC address changed from "ETH_ADDR_FMT + " to "ETH_ADDR_FMT, + ETH_ADDR_ARGS(r->last_remote_mac), + ETH_ADDR_ARGS(r->remote_mac)); + memcpy(r->last_remote_mac, r->remote_mac, ETH_ADDR_LEN); + } + } } -} -static void -drop_flow(struct in_band *in_band, int rule_idx) -{ - struct ib_rule *rule = &in_band->rules[rule_idx]; - - if (rule->installed) { - rule->installed = false; - ofproto_delete_flow(in_band->ofproto, &rule->flow, rule->wildcards, - rule->priority); - } + return any_changes; } -/* out_port and fixed_fields are assumed never to change. */ -static void -setup_flow(struct in_band *in_band, int rule_idx, const flow_t *flow, - uint32_t fixed_fields, uint16_t out_port) +/* Refreshes the MAC address of the local port into ib->local_mac, if it is due + * for a refresh. Returns true if anything changed, otherwise false. */ +static bool +refresh_local(struct in_band *ib) { - struct ib_rule *rule = &in_band->rules[rule_idx]; - - if (!rule->installed || memcmp(flow, &rule->flow, sizeof *flow)) { - union ofp_action action; - - drop_flow(in_band, rule_idx); + uint8_t ea[ETH_ADDR_LEN]; + time_t now; - rule->installed = true; - rule->flow = *flow; - rule->wildcards = OFPFW_ALL & ~fixed_fields; - rule->priority = IB_BASE_PRIORITY + (N_IB_RULES - rule_idx); + now = time_now(); + if (now < ib->next_local_refresh) { + return false; + } + ib->next_local_refresh = now + 1; - action.type = htons(OFPAT_OUTPUT); - action.output.len = htons(sizeof action); - action.output.port = htons(out_port); - action.output.max_len = htons(0); - ofproto_add_flow(in_band->ofproto, &rule->flow, rule->wildcards, - rule->priority, &action, 1, 0); + if (netdev_get_etheraddr(ib->local_netdev, ea) + || eth_addr_equals(ea, ib->local_mac)) { + return false; } + + memcpy(ib->local_mac, ea, ETH_ADDR_LEN); + return true; } /* Returns true if 'packet' should be sent to the local port regardless - * of the flow table. */ + * of the flow table. */ bool -in_band_msg_in_hook(struct in_band *in_band, const flow_t *flow, +in_band_msg_in_hook(struct in_band *in_band, const struct flow *flow, const struct ofpbuf *packet) { - if (!in_band) { - return false; - } - /* Regardless of how the flow table is configured, we want to be * able to see replies to our DHCP requests. */ if (flow->dl_type == htons(ETH_TYPE_IP) - && flow->nw_proto == IP_TYPE_UDP + && flow->nw_proto == IPPROTO_UDP && flow->tp_src == htons(DHCP_SERVER_PORT) && flow->tp_dst == htons(DHCP_CLIENT_PORT) && packet->l7) { struct dhcp_header *dhcp; - const uint8_t *local_mac; dhcp = ofpbuf_at(packet, (char *)packet->l7 - (char *)packet->data, sizeof *dhcp); @@ -258,8 +392,9 @@ in_band_msg_in_hook(struct in_band *in_band, const flow_t *flow, return false; } - local_mac = get_local_mac(in_band); - if (eth_addr_equals(dhcp->chaddr, local_mac)) { + refresh_local(in_band); + if (!eth_addr_is_zero(in_band->local_mac) + && eth_addr_equals(dhcp->chaddr, in_band->local_mac)) { return true; } } @@ -267,29 +402,26 @@ in_band_msg_in_hook(struct in_band *in_band, const flow_t *flow, return false; } -/* Returns true if the rule that would match 'flow' with 'actions' is +/* Returns true if the rule that would match 'flow' with 'actions' is * allowed to be set up in the datapath. */ bool -in_band_rule_check(struct in_band *in_band, const flow_t *flow, - const struct odp_actions *actions) +in_band_rule_check(const struct flow *flow, + const struct nlattr *actions, size_t actions_len) { - if (!in_band) { - return true; - } - /* Don't allow flows that would prevent DHCP replies from being seen * by the local port. */ if (flow->dl_type == htons(ETH_TYPE_IP) - && flow->nw_proto == IP_TYPE_UDP - && flow->tp_src == htons(DHCP_SERVER_PORT) + && flow->nw_proto == IPPROTO_UDP + && flow->tp_src == htons(DHCP_SERVER_PORT) && flow->tp_dst == htons(DHCP_CLIENT_PORT)) { - int i; + const struct nlattr *a; + unsigned int left; - for (i=0; in_actions; i++) { - if (actions->actions[i].output.type == ODPAT_OUTPUT - && actions->actions[i].output.port == ODPP_LOCAL) { + NL_ATTR_FOR_EACH_UNSAFE (a, left, actions, actions_len) { + if (nl_attr_type(a) == ODP_ACTION_ATTR_OUTPUT + && nl_attr_get_u32(a) == ODPP_LOCAL) { return true; - } + } } return false; } @@ -297,192 +429,274 @@ in_band_rule_check(struct in_band *in_band, const flow_t *flow, return true; } -void -in_band_run(struct in_band *in_band) +static void +make_rules(struct in_band *ib, + void (*cb)(struct in_band *, const struct cls_rule *)) { - time_t now = time_now(); - uint32_t controller_ip; - const uint8_t *remote_mac; - const uint8_t *local_mac; - flow_t flow; - - if (now < in_band->next_remote_refresh - && now < in_band->next_local_refresh) { - return; + struct cls_rule rule; + size_t i; + + if (!eth_addr_is_zero(ib->installed_local_mac)) { + /* (a) Allow DHCP requests sent from the local port. */ + cls_rule_init_catchall(&rule, IBR_FROM_LOCAL_DHCP); + cls_rule_set_in_port(&rule, ODPP_LOCAL); + cls_rule_set_dl_type(&rule, htons(ETH_TYPE_IP)); + cls_rule_set_dl_src(&rule, ib->installed_local_mac); + cls_rule_set_nw_proto(&rule, IPPROTO_UDP); + cls_rule_set_tp_src(&rule, htons(DHCP_CLIENT_PORT)); + cls_rule_set_tp_dst(&rule, htons(DHCP_SERVER_PORT)); + cb(ib, &rule); + + /* (b) Allow ARP replies to the local port's MAC address. */ + cls_rule_init_catchall(&rule, IBR_TO_LOCAL_ARP); + cls_rule_set_dl_type(&rule, htons(ETH_TYPE_ARP)); + cls_rule_set_dl_dst(&rule, ib->installed_local_mac); + cls_rule_set_nw_proto(&rule, ARP_OP_REPLY); + cb(ib, &rule); + + /* (c) Allow ARP requests from the local port's MAC address. */ + cls_rule_init_catchall(&rule, IBR_FROM_LOCAL_ARP); + cls_rule_set_dl_type(&rule, htons(ETH_TYPE_ARP)); + cls_rule_set_dl_src(&rule, ib->installed_local_mac); + cls_rule_set_nw_proto(&rule, ARP_OP_REQUEST); + cb(ib, &rule); } - controller_ip = rconn_get_remote_ip(in_band->controller); - if (in_band->controller_ip && controller_ip != in_band->controller_ip) { - VLOG_DBG("controller IP address changed from "IP_FMT" to "IP_FMT, - IP_ARGS(&in_band->controller_ip), - IP_ARGS(&controller_ip)); + for (i = 0; i < ib->n_remote_macs; i++) { + const uint8_t *remote_mac = &ib->remote_macs[i * ETH_ADDR_LEN]; + + if (i > 0) { + const uint8_t *prev_mac = &ib->remote_macs[(i - 1) * ETH_ADDR_LEN]; + if (eth_addr_equals(remote_mac, prev_mac)) { + /* Skip duplicates. */ + continue; + } + } + + /* (d) Allow ARP replies to the next hop's MAC address. */ + cls_rule_init_catchall(&rule, IBR_TO_NEXT_HOP_ARP); + cls_rule_set_dl_type(&rule, htons(ETH_TYPE_ARP)); + cls_rule_set_dl_dst(&rule, remote_mac); + cls_rule_set_nw_proto(&rule, ARP_OP_REPLY); + cb(ib, &rule); + + /* (e) Allow ARP requests from the next hop's MAC address. */ + cls_rule_init_catchall(&rule, IBR_FROM_NEXT_HOP_ARP); + cls_rule_set_dl_type(&rule, htons(ETH_TYPE_ARP)); + cls_rule_set_dl_src(&rule, remote_mac); + cls_rule_set_nw_proto(&rule, ARP_OP_REQUEST); + cb(ib, &rule); } - in_band->controller_ip = controller_ip; - - remote_mac = get_remote_mac(in_band); - local_mac = get_local_mac(in_band); - - if (local_mac) { - /* Allow DHCP requests to be sent from the local port. */ - memset(&flow, 0, sizeof flow); - flow.in_port = ODPP_LOCAL; - flow.dl_type = htons(ETH_TYPE_IP); - memcpy(flow.dl_src, local_mac, ETH_ADDR_LEN); - flow.nw_proto = IP_TYPE_UDP; - flow.tp_src = htons(DHCP_CLIENT_PORT); - flow.tp_dst = htons(DHCP_SERVER_PORT); - setup_flow(in_band, IBR_FROM_LOCAL_DHCP, &flow, - (OFPFW_IN_PORT | OFPFW_DL_TYPE | OFPFW_DL_SRC - | OFPFW_NW_PROTO | OFPFW_TP_SRC | OFPFW_TP_DST), - OFPP_NORMAL); - - /* Allow the connection's interface to receive directed ARP traffic. */ - memset(&flow, 0, sizeof flow); - flow.dl_type = htons(ETH_TYPE_ARP); - memcpy(flow.dl_dst, local_mac, ETH_ADDR_LEN); - flow.nw_proto = ARP_OP_REPLY; - setup_flow(in_band, IBR_TO_LOCAL_ARP, &flow, - (OFPFW_DL_TYPE | OFPFW_DL_DST | OFPFW_NW_PROTO), - OFPP_NORMAL); - - /* Allow the connection's interface to be the source of ARP traffic. */ - memset(&flow, 0, sizeof flow); - flow.dl_type = htons(ETH_TYPE_ARP); - memcpy(flow.dl_src, local_mac, ETH_ADDR_LEN); - flow.nw_proto = ARP_OP_REQUEST; - setup_flow(in_band, IBR_FROM_LOCAL_ARP, &flow, - (OFPFW_DL_TYPE | OFPFW_DL_SRC | OFPFW_NW_PROTO), - OFPP_NORMAL); - } else { - drop_flow(in_band, IBR_TO_LOCAL_ARP); - drop_flow(in_band, IBR_FROM_LOCAL_ARP); + + for (i = 0; i < ib->n_remote_addrs; i++) { + const struct sockaddr_in *a = &ib->remote_addrs[i]; + + if (!i || a->sin_addr.s_addr != a[-1].sin_addr.s_addr) { + /* (f) Allow ARP replies containing the remote's IP address as a + * target. */ + cls_rule_init_catchall(&rule, IBR_TO_REMOTE_ARP); + cls_rule_set_dl_type(&rule, htons(ETH_TYPE_ARP)); + cls_rule_set_nw_proto(&rule, ARP_OP_REPLY); + cls_rule_set_nw_dst(&rule, a->sin_addr.s_addr); + cb(ib, &rule); + + /* (g) Allow ARP requests containing the remote's IP address as a + * source. */ + cls_rule_init_catchall(&rule, IBR_FROM_REMOTE_ARP); + cls_rule_set_dl_type(&rule, htons(ETH_TYPE_ARP)); + cls_rule_set_nw_proto(&rule, ARP_OP_REQUEST); + cls_rule_set_nw_src(&rule, a->sin_addr.s_addr); + cb(ib, &rule); + } + + if (!i + || a->sin_addr.s_addr != a[-1].sin_addr.s_addr + || a->sin_port != a[-1].sin_port) { + /* (h) Allow TCP traffic to the remote's IP and port. */ + cls_rule_init_catchall(&rule, IBR_TO_REMOTE_TCP); + cls_rule_set_dl_type(&rule, htons(ETH_TYPE_IP)); + cls_rule_set_nw_proto(&rule, IPPROTO_TCP); + cls_rule_set_nw_dst(&rule, a->sin_addr.s_addr); + cls_rule_set_tp_dst(&rule, a->sin_port); + cb(ib, &rule); + + /* (i) Allow TCP traffic from the remote's IP and port. */ + cls_rule_init_catchall(&rule, IBR_FROM_REMOTE_TCP); + cls_rule_set_dl_type(&rule, htons(ETH_TYPE_IP)); + cls_rule_set_nw_proto(&rule, IPPROTO_TCP); + cls_rule_set_nw_src(&rule, a->sin_addr.s_addr); + cls_rule_set_tp_src(&rule, a->sin_port); + cb(ib, &rule); + } } +} + +static void +drop_rule(struct in_band *ib, const struct cls_rule *rule) +{ + ofproto_delete_flow(ib->ofproto, rule); +} + +/* Drops from the flow table all of the flows set up by 'ib', then clears out + * the information about the installed flows so that they can be filled in + * again if necessary. */ +static void +drop_rules(struct in_band *ib) +{ + /* Drop rules. */ + make_rules(ib, drop_rule); - if (remote_mac) { - /* Allow ARP replies to the remote side's MAC. */ - memset(&flow, 0, sizeof flow); - flow.dl_type = htons(ETH_TYPE_ARP); - memcpy(flow.dl_dst, remote_mac, ETH_ADDR_LEN); - flow.nw_proto = ARP_OP_REPLY; - setup_flow(in_band, IBR_TO_REMOTE_ARP, &flow, - (OFPFW_DL_TYPE | OFPFW_DL_DST | OFPFW_NW_PROTO), - OFPP_NORMAL); - - /* Allow ARP requests from the remote side's MAC. */ - memset(&flow, 0, sizeof flow); - flow.dl_type = htons(ETH_TYPE_ARP); - memcpy(flow.dl_src, remote_mac, ETH_ADDR_LEN); - flow.nw_proto = ARP_OP_REQUEST; - setup_flow(in_band, IBR_FROM_REMOTE_ARP, &flow, - (OFPFW_DL_TYPE | OFPFW_DL_SRC | OFPFW_NW_PROTO), - OFPP_NORMAL); + /* Clear out state. */ + memset(ib->installed_local_mac, 0, sizeof ib->installed_local_mac); + + free(ib->remote_addrs); + ib->remote_addrs = NULL; + ib->n_remote_addrs = 0; + + free(ib->remote_macs); + ib->remote_macs = NULL; + ib->n_remote_macs = 0; +} + +static void +add_rule(struct in_band *ib, const struct cls_rule *rule) +{ + struct { + struct nx_action_set_queue nxsq; + struct ofp_action_output oao; + } actions; + + memset(&actions, 0, sizeof actions); + + actions.oao.type = htons(OFPAT_OUTPUT); + actions.oao.len = htons(sizeof actions.oao); + actions.oao.port = htons(OFPP_NORMAL); + actions.oao.max_len = htons(0); + + if (ib->queue_id < 0) { + ofproto_add_flow(ib->ofproto, rule, + (union ofp_action *) &actions.oao, 1); } else { - drop_flow(in_band, IBR_TO_REMOTE_ARP); - drop_flow(in_band, IBR_FROM_REMOTE_ARP); + actions.nxsq.type = htons(OFPAT_VENDOR); + actions.nxsq.len = htons(sizeof actions.nxsq); + actions.nxsq.vendor = htonl(NX_VENDOR_ID); + actions.nxsq.subtype = htons(NXAST_SET_QUEUE); + actions.nxsq.queue_id = htonl(ib->queue_id); + + ofproto_add_flow(ib->ofproto, rule, (union ofp_action *) &actions, + sizeof actions / sizeof(union ofp_action)); } +} - if (controller_ip) { - /* Allow ARP replies to the controller's IP. */ - memset(&flow, 0, sizeof flow); - flow.dl_type = htons(ETH_TYPE_ARP); - flow.nw_proto = ARP_OP_REPLY; - flow.nw_dst = controller_ip; - setup_flow(in_band, IBR_TO_CTL_ARP, &flow, - (OFPFW_DL_TYPE | OFPFW_NW_PROTO | OFPFW_NW_DST_MASK), - OFPP_NORMAL); - - /* Allow ARP requests from the controller's IP. */ - memset(&flow, 0, sizeof flow); - flow.dl_type = htons(ETH_TYPE_ARP); - flow.nw_proto = ARP_OP_REQUEST; - flow.nw_src = controller_ip; - setup_flow(in_band, IBR_FROM_CTL_ARP, &flow, - (OFPFW_DL_TYPE | OFPFW_NW_PROTO | OFPFW_NW_SRC_MASK), - OFPP_NORMAL); - - /* OpenFlow traffic to or from the controller. - * - * (A given field's value is completely ignored if it is wildcarded, - * which is why we can get away with using a single 'flow' in each - * case here.) */ - memset(&flow, 0, sizeof flow); - flow.dl_type = htons(ETH_TYPE_IP); - flow.nw_proto = IP_TYPE_TCP; - flow.nw_src = controller_ip; - flow.nw_dst = controller_ip; - flow.tp_src = htons(OFP_TCP_PORT); - flow.tp_dst = htons(OFP_TCP_PORT); - setup_flow(in_band, IBR_TO_CTL_OFP, &flow, - (OFPFW_DL_TYPE | OFPFW_NW_PROTO | OFPFW_NW_DST_MASK - | OFPFW_TP_DST), OFPP_NORMAL); - setup_flow(in_band, IBR_FROM_CTL_OFP, &flow, - (OFPFW_DL_TYPE | OFPFW_NW_PROTO | OFPFW_NW_SRC_MASK - | OFPFW_TP_SRC), OFPP_NORMAL); - } else { - drop_flow(in_band, IBR_TO_CTL_ARP); - drop_flow(in_band, IBR_FROM_CTL_ARP); - drop_flow(in_band, IBR_TO_CTL_OFP); - drop_flow(in_band, IBR_FROM_CTL_OFP); +/* Inserts flows into the flow table for the current state of 'ib'. */ +static void +add_rules(struct in_band *ib) +{ + make_rules(ib, add_rule); +} + +static int +compare_addrs(const void *a_, const void *b_) +{ + const struct sockaddr_in *a = a_; + const struct sockaddr_in *b = b_; + int cmp; + + cmp = memcmp(&a->sin_addr.s_addr, + &b->sin_addr.s_addr, + sizeof a->sin_addr.s_addr); + if (cmp) { + return cmp; + } + return memcmp(&a->sin_port, &b->sin_port, sizeof a->sin_port); +} + +static int +compare_macs(const void *a, const void *b) +{ + return eth_addr_compare_3way(a, b); +} + +void +in_band_run(struct in_band *ib) +{ + bool local_change, remote_change, queue_id_change; + struct in_band_remote *r; + + local_change = refresh_local(ib); + remote_change = refresh_remotes(ib); + queue_id_change = ib->queue_id != ib->prev_queue_id; + if (!local_change && !remote_change && !queue_id_change) { + /* Nothing changed, nothing to do. */ + return; } + ib->prev_queue_id = ib->queue_id; + + /* Drop old rules. */ + drop_rules(ib); + + /* Figure out new rules. */ + memcpy(ib->installed_local_mac, ib->local_mac, ETH_ADDR_LEN); + ib->remote_addrs = xmalloc(ib->n_remotes * sizeof *ib->remote_addrs); + ib->n_remote_addrs = 0; + ib->remote_macs = xmalloc(ib->n_remotes * ETH_ADDR_LEN); + ib->n_remote_macs = 0; + for (r = ib->remotes; r < &ib->remotes[ib->n_remotes]; r++) { + ib->remote_addrs[ib->n_remote_addrs++] = r->remote_addr; + if (!eth_addr_is_zero(r->remote_mac)) { + memcpy(&ib->remote_macs[ib->n_remote_macs * ETH_ADDR_LEN], + r->remote_mac, ETH_ADDR_LEN); + ib->n_remote_macs++; + } + } + + /* Sort, to allow make_rules() to easily skip duplicates. */ + qsort(ib->remote_addrs, ib->n_remote_addrs, sizeof *ib->remote_addrs, + compare_addrs); + qsort(ib->remote_macs, ib->n_remote_macs, ETH_ADDR_LEN, compare_macs); + + /* Add new rules. */ + add_rules(ib); } void in_band_wait(struct in_band *in_band) { - time_t now = time_now(); - time_t wakeup + long long int wakeup = MIN(in_band->next_remote_refresh, in_band->next_local_refresh); - if (wakeup > now) { - poll_timer_wait((wakeup - now) * 1000); - } else { - poll_immediate_wake(); - } + poll_timer_wait_until(wakeup * 1000); } +/* ofproto has flushed all flows from the flow table and it is calling us back + * to allow us to reinstall the ones that are important to us. */ void in_band_flushed(struct in_band *in_band) { - int i; - - for (i = 0; i < N_IB_RULES; i++) { - in_band->rules[i].installed = false; - } + add_rules(in_band); } int -in_band_create(struct ofproto *ofproto, struct dpif *dpif, - struct switch_status *ss, struct rconn *controller, +in_band_create(struct ofproto *ofproto, const char *local_name, struct in_band **in_bandp) { struct in_band *in_band; - char local_name[IF_NAMESIZE]; struct netdev *local_netdev; int error; - error = dpif_port_get_name(dpif, ODPP_LOCAL, - local_name, sizeof local_name); - if (error) { - VLOG_ERR("failed to initialize in-band control: cannot get name " - "of datapath local port (%s)", strerror(error)); - return error; - } - - error = netdev_open(local_name, NETDEV_ETH_TYPE_NONE, &local_netdev); + *in_bandp = NULL; + error = netdev_open_default(local_name, &local_netdev); if (error) { VLOG_ERR("failed to initialize in-band control: cannot open " "datapath local port %s (%s)", local_name, strerror(error)); return error; } - in_band = xcalloc(1, sizeof *in_band); + in_band = xzalloc(sizeof *in_band); in_band->ofproto = ofproto; - in_band->controller = controller; - in_band->ss_cat = switch_status_register(ss, "in-band", - in_band_status_cb, in_band); - in_band->local_netdev = local_netdev; - in_band->next_local_refresh = TIME_MIN; - in_band->remote_netdev = NULL; + in_band->queue_id = in_band->prev_queue_id = -1; in_band->next_remote_refresh = TIME_MIN; + in_band->next_local_refresh = TIME_MIN; + in_band->local_netdev = local_netdev; *in_bandp = in_band; @@ -490,13 +704,72 @@ in_band_create(struct ofproto *ofproto, struct dpif *dpif, } void -in_band_destroy(struct in_band *in_band) +in_band_destroy(struct in_band *ib) +{ + if (ib) { + drop_rules(ib); + in_band_set_remotes(ib, NULL, 0); + netdev_close(ib->local_netdev); + free(ib); + } +} + +static bool +any_addresses_changed(struct in_band *ib, + const struct sockaddr_in *addresses, size_t n) +{ + size_t i; + + if (n != ib->n_remotes) { + return true; + } + + for (i = 0; i < n; i++) { + const struct sockaddr_in *old = &ib->remotes[i].remote_addr; + const struct sockaddr_in *new = &addresses[i]; + + if (old->sin_addr.s_addr != new->sin_addr.s_addr || + old->sin_port != new->sin_port) { + return true; + } + } + + return false; +} + +void +in_band_set_remotes(struct in_band *ib, + const struct sockaddr_in *addresses, size_t n) { - if (in_band) { - switch_status_unregister(in_band->ss_cat); - netdev_close(in_band->local_netdev); - netdev_close(in_band->remote_netdev); - /* We don't own the rconn. */ + size_t i; + + if (!any_addresses_changed(ib, addresses, n)) { + return; + } + + /* Clear old remotes. */ + for (i = 0; i < ib->n_remotes; i++) { + netdev_close(ib->remotes[i].remote_netdev); + } + free(ib->remotes); + + /* Set up new remotes. */ + ib->remotes = n ? xzalloc(n * sizeof *ib->remotes) : NULL; + ib->n_remotes = n; + for (i = 0; i < n; i++) { + ib->remotes[i].remote_addr = addresses[i]; } + + /* Force refresh in next call to in_band_run(). */ + ib->next_remote_refresh = TIME_MIN; +} + +/* Sets the OpenFlow queue used by flows set up by 'ib' to 'queue_id'. If + * 'queue_id' is negative, 'ib' will not set any queue (which is also the + * default). */ +void +in_band_set_queue(struct in_band *ib, int queue_id) +{ + ib->queue_id = queue_id; }