X-Git-Url: http://git.onelab.eu/?a=blobdiff_plain;f=ofproto%2Fofproto-dpif-upcall.c;h=0d7dd8e7ffe4bc2ded8445b82531836b9ffc78cb;hb=698ffe3623f1b630ae;hp=22cdf1b8a4d740392588300b325b95f624789698;hpb=caf6491f3e077d58e0c09e64a3183f34fcbdf672;p=sliver-openvswitch.git diff --git a/ofproto/ofproto-dpif-upcall.c b/ofproto/ofproto-dpif-upcall.c index 22cdf1b8a..0d7dd8e7f 100644 --- a/ofproto/ofproto-dpif-upcall.c +++ b/ofproto/ofproto-dpif-upcall.c @@ -1,4 +1,4 @@ -/* Copyright (c) 2009, 2010, 2011, 2012, 2013 Nicira, Inc. +/* Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014 Nicira, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. @@ -19,115 +19,262 @@ #include #include +#include "connmgr.h" #include "coverage.h" -#include "dynamic-string.h" #include "dpif.h" +#include "dynamic-string.h" #include "fail-open.h" +#include "guarded-list.h" #include "latch.h" -#include "seq.h" #include "list.h" #include "netlink.h" #include "ofpbuf.h" -#include "ofproto-dpif.h" +#include "ofproto-dpif-ipfix.h" +#include "ofproto-dpif-sflow.h" +#include "ofproto-dpif-xlate.h" +#include "ovs-rcu.h" #include "packets.h" #include "poll-loop.h" +#include "seq.h" +#include "unixctl.h" #include "vlog.h" #define MAX_QUEUE_LENGTH 512 +#define FLOW_MISS_MAX_BATCH 50 +#define REVALIDATE_MAX_BATCH 50 VLOG_DEFINE_THIS_MODULE(ofproto_dpif_upcall); COVERAGE_DEFINE(upcall_queue_overflow); -COVERAGE_DEFINE(drop_queue_overflow); -COVERAGE_DEFINE(miss_queue_overflow); -COVERAGE_DEFINE(fmb_queue_overflow); /* A thread that processes each upcall handed to it by the dispatcher thread, - * forwards the upcall's packet, and then queues it to the main ofproto_dpif - * to possibly set up a kernel flow as a cache. */ + * forwards the upcall's packet, and possibly sets up a kernel flow as a + * cache. */ struct handler { struct udpif *udpif; /* Parent udpif. */ pthread_t thread; /* Thread ID. */ + char *name; /* Thread name. */ struct ovs_mutex mutex; /* Mutex guarding the following. */ - /* Atomic queue of unprocessed miss upcalls. */ + /* Atomic queue of unprocessed upcalls. */ struct list upcalls OVS_GUARDED; size_t n_upcalls OVS_GUARDED; - size_t n_new_upcalls; /* Only changed by the dispatcher. */ + bool need_signal; /* Only changed by the dispatcher. */ pthread_cond_t wake_cond; /* Wakes 'thread' while holding 'mutex'. */ }; +/* A thread that processes each kernel flow handed to it by the flow_dumper + * thread, updates OpenFlow statistics, and updates or removes the kernel flow + * as necessary. */ +struct revalidator { + struct udpif *udpif; /* Parent udpif. */ + char *name; /* Thread name. */ + + pthread_t thread; /* Thread ID. */ + struct hmap ukeys; /* Datapath flow keys. */ + + uint64_t dump_seq; + + struct ovs_mutex mutex; /* Mutex guarding the following. */ + pthread_cond_t wake_cond; + struct list udumps OVS_GUARDED; /* Unprocessed udumps. */ + size_t n_udumps OVS_GUARDED; /* Number of unprocessed udumps. */ +}; + /* An upcall handler for ofproto_dpif. * - * udpif is implemented as a "dispatcher" thread that reads upcalls from the - * kernel. It processes each upcall just enough to figure out its next - * destination. For a "miss" upcall (MISS_UPCALL), this is one of several - * "handler" threads (see struct handler). Other upcalls are queued to the - * main ofproto_dpif. */ + * udpif has two logically separate pieces: + * + * - A "dispatcher" thread that reads upcalls from the kernel and dispatches + * them to one of several "handler" threads (see struct handler). + * + * - A "flow_dumper" thread that reads the kernel flow table and dispatches + * flows to one of several "revalidator" threads (see struct + * revalidator). */ struct udpif { + struct list list_node; /* In all_udpifs list. */ + struct dpif *dpif; /* Datapath handle. */ struct dpif_backer *backer; /* Opaque dpif_backer pointer. */ uint32_t secret; /* Random seed for upcall hash. */ pthread_t dispatcher; /* Dispatcher thread ID. */ + pthread_t flow_dumper; /* Flow dumper thread ID. */ - struct handler *handlers; /* Miss handlers. */ + struct handler *handlers; /* Upcall handlers. */ size_t n_handlers; - /* Atomic queue of unprocessed drop keys. */ - struct ovs_mutex drop_key_mutex; - struct list drop_keys OVS_GUARDED; - size_t n_drop_keys OVS_GUARDED; + struct revalidator *revalidators; /* Flow revalidators. */ + size_t n_revalidators; - /* Atomic queue of special upcalls for ofproto-dpif to process. */ - struct ovs_mutex upcall_mutex; - struct list upcalls OVS_GUARDED; - size_t n_upcalls OVS_GUARDED; + uint64_t last_reval_seq; /* 'reval_seq' at last revalidation. */ + struct seq *reval_seq; /* Incremented to force revalidation. */ + + struct seq *dump_seq; /* Increments each dump iteration. */ + + struct latch exit_latch; /* Tells child threads to exit. */ + + long long int dump_duration; /* Duration of the last flow dump. */ + + /* Datapath flow statistics. */ + unsigned int max_n_flows; + unsigned int avg_n_flows; + + /* Following fields are accessed and modified by different threads. */ + atomic_uint flow_limit; /* Datapath flow hard limit. */ + + /* n_flows_mutex prevents multiple threads updating these concurrently. */ + atomic_uint64_t n_flows; /* Number of flows in the datapath. */ + atomic_llong n_flows_timestamp; /* Last time n_flows was updated. */ + struct ovs_mutex n_flows_mutex; +}; + +enum upcall_type { + BAD_UPCALL, /* Some kind of bug somewhere. */ + MISS_UPCALL, /* A flow miss. */ + SFLOW_UPCALL, /* sFlow sample. */ + FLOW_SAMPLE_UPCALL, /* Per-flow sampling. */ + IPFIX_UPCALL /* Per-bridge sampling. */ +}; + +struct upcall { + struct list list_node; /* For queuing upcalls. */ + struct flow_miss *flow_miss; /* This upcall's flow_miss. */ + + /* Raw upcall plus data for keeping track of the memory backing it. */ + struct dpif_upcall dpif_upcall; /* As returned by dpif_recv() */ + struct ofpbuf upcall_buf; /* Owns some data in 'dpif_upcall'. */ + uint64_t upcall_stub[512 / 8]; /* Buffer to reduce need for malloc(). */ +}; - /* Atomic queue of flow_miss_batches. */ - struct ovs_mutex fmb_mutex; - struct list fmbs OVS_GUARDED; - size_t n_fmbs OVS_GUARDED; +/* 'udpif_key's are responsible for tracking the little bit of state udpif + * needs to do flow expiration which can't be pulled directly from the + * datapath. They are owned, created by, maintained, and destroyed by a single + * revalidator making them easy to efficiently handle with multiple threads. */ +struct udpif_key { + struct hmap_node hmap_node; /* In parent revalidator 'ukeys' map. */ - /* Number of times udpif_revalidate() has been called. */ - atomic_uint reval_seq; + struct nlattr *key; /* Datapath flow key. */ + size_t key_len; /* Length of 'key'. */ - struct seq *wait_seq; - uint64_t last_seq; + struct dpif_flow_stats stats; /* Stats at most recent flow dump. */ + long long int created; /* Estimation of creation time. */ - struct latch exit_latch; /* Tells child threads to exit. */ + bool mark; /* Used by mark and sweep GC algorithm. */ + + struct odputil_keybuf key_buf; /* Memory for 'key'. */ + struct xlate_cache *xcache; /* Cache for xlate entries that + * are affected by this ukey. + * Used for stats and learning.*/ +}; + +/* 'udpif_flow_dump's hold the state associated with one iteration in a flow + * dump operation. This is created by the flow_dumper thread and handed to the + * appropriate revalidator thread to be processed. */ +struct udpif_flow_dump { + struct list list_node; + + struct nlattr *key; /* Datapath flow key. */ + size_t key_len; /* Length of 'key'. */ + uint32_t key_hash; /* Hash of 'key'. */ + + struct odputil_keybuf mask_buf; + struct nlattr *mask; /* Datapath mask for 'key'. */ + size_t mask_len; /* Length of 'mask'. */ + + struct dpif_flow_stats stats; /* Stats pulled from the datapath. */ + + bool need_revalidate; /* Key needs revalidation? */ + + struct odputil_keybuf key_buf; }; +/* Flow miss batching. + * + * Some dpifs implement operations faster when you hand them off in a batch. + * To allow batching, "struct flow_miss" queues the dpif-related work needed + * for a given flow. Each "struct flow_miss" corresponds to sending one or + * more packets, plus possibly installing the flow in the dpif. */ +struct flow_miss { + struct hmap_node hmap_node; + struct ofproto_dpif *ofproto; + + struct flow flow; + const struct nlattr *key; + size_t key_len; + enum dpif_upcall_type upcall_type; + struct dpif_flow_stats stats; + odp_port_t odp_in_port; + + uint64_t slow_path_buf[128 / 8]; + struct odputil_keybuf mask_buf; + + struct xlate_out xout; + + bool put; +}; + +static void upcall_destroy(struct upcall *); + static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); +static struct list all_udpifs = LIST_INITIALIZER(&all_udpifs); static void recv_upcalls(struct udpif *); -static void handle_miss_upcalls(struct udpif *, struct list *upcalls); -static void miss_destroy(struct flow_miss *); +static void handle_upcalls(struct handler *handler, struct list *upcalls); +static void *udpif_flow_dumper(void *); static void *udpif_dispatcher(void *); -static void *udpif_miss_handler(void *); +static void *udpif_upcall_handler(void *); +static void *udpif_revalidator(void *); +static uint64_t udpif_get_n_flows(struct udpif *); +static void revalidate_udumps(struct revalidator *, struct list *udumps); +static void revalidator_sweep(struct revalidator *); +static void revalidator_purge(struct revalidator *); +static void upcall_unixctl_show(struct unixctl_conn *conn, int argc, + const char *argv[], void *aux); +static void upcall_unixctl_disable_megaflows(struct unixctl_conn *, int argc, + const char *argv[], void *aux); +static void upcall_unixctl_enable_megaflows(struct unixctl_conn *, int argc, + const char *argv[], void *aux); +static void upcall_unixctl_set_flow_limit(struct unixctl_conn *conn, int argc, + const char *argv[], void *aux); +static void ukey_delete(struct revalidator *, struct udpif_key *); + +static atomic_bool enable_megaflows = ATOMIC_VAR_INIT(true); struct udpif * udpif_create(struct dpif_backer *backer, struct dpif *dpif) { + static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER; struct udpif *udpif = xzalloc(sizeof *udpif); + if (ovsthread_once_start(&once)) { + unixctl_command_register("upcall/show", "", 0, 0, upcall_unixctl_show, + NULL); + unixctl_command_register("upcall/disable-megaflows", "", 0, 0, + upcall_unixctl_disable_megaflows, NULL); + unixctl_command_register("upcall/enable-megaflows", "", 0, 0, + upcall_unixctl_enable_megaflows, NULL); + unixctl_command_register("upcall/set-flow-limit", "", 1, 1, + upcall_unixctl_set_flow_limit, NULL); + ovsthread_once_done(&once); + } + udpif->dpif = dpif; udpif->backer = backer; + atomic_init(&udpif->flow_limit, MIN(ofproto_flow_limit, 10000)); udpif->secret = random_uint32(); - udpif->wait_seq = seq_create(); + udpif->reval_seq = seq_create(); + udpif->dump_seq = seq_create(); latch_init(&udpif->exit_latch); - list_init(&udpif->drop_keys); - list_init(&udpif->upcalls); - list_init(&udpif->fmbs); - atomic_init(&udpif->reval_seq, 0); - ovs_mutex_init(&udpif->drop_key_mutex); - ovs_mutex_init(&udpif->upcall_mutex); - ovs_mutex_init(&udpif->fmb_mutex); + list_push_back(&all_udpifs, &udpif->list_node); + atomic_init(&udpif->n_flows, 0); + atomic_init(&udpif->n_flows_timestamp, LLONG_MIN); + ovs_mutex_init(&udpif->n_flows_mutex); return udpif; } @@ -135,127 +282,161 @@ udpif_create(struct dpif_backer *backer, struct dpif *dpif) void udpif_destroy(struct udpif *udpif) { - struct flow_miss_batch *fmb; - struct drop_key *drop_key; - struct upcall *upcall; - - udpif_recv_set(udpif, 0, false); + udpif_set_threads(udpif, 0, 0); + udpif_flush(udpif); - while ((drop_key = drop_key_next(udpif))) { - drop_key_destroy(drop_key); - } - - while ((upcall = upcall_next(udpif))) { - upcall_destroy(upcall); - } - - while ((fmb = flow_miss_batch_next(udpif))) { - flow_miss_batch_destroy(fmb); - } - - ovs_mutex_destroy(&udpif->drop_key_mutex); - ovs_mutex_destroy(&udpif->upcall_mutex); - ovs_mutex_destroy(&udpif->fmb_mutex); + list_remove(&udpif->list_node); latch_destroy(&udpif->exit_latch); - seq_destroy(udpif->wait_seq); + seq_destroy(udpif->reval_seq); + seq_destroy(udpif->dump_seq); + ovs_mutex_destroy(&udpif->n_flows_mutex); free(udpif); } -/* Tells 'udpif' to begin or stop handling flow misses depending on the value - * of 'enable'. 'n_handlers' is the number of miss_handler threads to create. - * Passing 'n_handlers' as zero is equivalent to passing 'enable' as false. */ +/* Tells 'udpif' how many threads it should use to handle upcalls. Disables + * all threads if 'n_handlers' and 'n_revalidators' is zero. 'udpif''s + * datapath handle must have packet reception enabled before starting threads. + */ void -udpif_recv_set(struct udpif *udpif, size_t n_handlers, bool enable) +udpif_set_threads(struct udpif *udpif, size_t n_handlers, + size_t n_revalidators) { - n_handlers = enable ? n_handlers : 0; - n_handlers = MIN(n_handlers, 64); + int error; + ovsrcu_quiesce_start(); /* Stop the old threads (if any). */ - if (udpif->handlers && udpif->n_handlers != n_handlers) { + if (udpif->handlers && + (udpif->n_handlers != n_handlers + || udpif->n_revalidators != n_revalidators)) { size_t i; latch_set(&udpif->exit_latch); - /* Wake the handlers so they can exit. */ for (i = 0; i < udpif->n_handlers; i++) { struct handler *handler = &udpif->handlers[i]; ovs_mutex_lock(&handler->mutex); xpthread_cond_signal(&handler->wake_cond); ovs_mutex_unlock(&handler->mutex); + xpthread_join(handler->thread, NULL); } + for (i = 0; i < udpif->n_revalidators; i++) { + struct revalidator *revalidator = &udpif->revalidators[i]; + + ovs_mutex_lock(&revalidator->mutex); + xpthread_cond_signal(&revalidator->wake_cond); + ovs_mutex_unlock(&revalidator->mutex); + xpthread_join(revalidator->thread, NULL); + } + + xpthread_join(udpif->flow_dumper, NULL); xpthread_join(udpif->dispatcher, NULL); + + for (i = 0; i < udpif->n_revalidators; i++) { + struct revalidator *revalidator = &udpif->revalidators[i]; + struct udpif_flow_dump *udump, *next_udump; + + LIST_FOR_EACH_SAFE (udump, next_udump, list_node, + &revalidator->udumps) { + list_remove(&udump->list_node); + free(udump); + } + + /* Delete ukeys, and delete all flows from the datapath to prevent + * double-counting stats. */ + revalidator_purge(revalidator); + hmap_destroy(&revalidator->ukeys); + ovs_mutex_destroy(&revalidator->mutex); + + free(revalidator->name); + } + for (i = 0; i < udpif->n_handlers; i++) { struct handler *handler = &udpif->handlers[i]; struct upcall *miss, *next; - xpthread_join(handler->thread, NULL); - - ovs_mutex_lock(&handler->mutex); LIST_FOR_EACH_SAFE (miss, next, list_node, &handler->upcalls) { list_remove(&miss->list_node); upcall_destroy(miss); } - ovs_mutex_unlock(&handler->mutex); ovs_mutex_destroy(&handler->mutex); xpthread_cond_destroy(&handler->wake_cond); + free(handler->name); } latch_poll(&udpif->exit_latch); + free(udpif->revalidators); + udpif->revalidators = NULL; + udpif->n_revalidators = 0; + free(udpif->handlers); udpif->handlers = NULL; udpif->n_handlers = 0; } + error = dpif_handlers_set(udpif->dpif, 1); + if (error) { + VLOG_ERR("failed to configure handlers in dpif %s: %s", + dpif_name(udpif->dpif), ovs_strerror(error)); + return; + } + /* Start new threads (if necessary). */ if (!udpif->handlers && n_handlers) { size_t i; udpif->n_handlers = n_handlers; + udpif->n_revalidators = n_revalidators; + udpif->handlers = xzalloc(udpif->n_handlers * sizeof *udpif->handlers); for (i = 0; i < udpif->n_handlers; i++) { struct handler *handler = &udpif->handlers[i]; handler->udpif = udpif; list_init(&handler->upcalls); + handler->need_signal = false; xpthread_cond_init(&handler->wake_cond, NULL); ovs_mutex_init(&handler->mutex); - xpthread_create(&handler->thread, NULL, udpif_miss_handler, handler); + xpthread_create(&handler->thread, NULL, udpif_upcall_handler, + handler); + } + + udpif->revalidators = xzalloc(udpif->n_revalidators + * sizeof *udpif->revalidators); + for (i = 0; i < udpif->n_revalidators; i++) { + struct revalidator *revalidator = &udpif->revalidators[i]; + + revalidator->udpif = udpif; + list_init(&revalidator->udumps); + hmap_init(&revalidator->ukeys); + ovs_mutex_init(&revalidator->mutex); + xpthread_cond_init(&revalidator->wake_cond, NULL); + xpthread_create(&revalidator->thread, NULL, udpif_revalidator, + revalidator); } xpthread_create(&udpif->dispatcher, NULL, udpif_dispatcher, udpif); + xpthread_create(&udpif->flow_dumper, NULL, udpif_flow_dumper, udpif); } -} -void -udpif_run(struct udpif *udpif) -{ - udpif->last_seq = seq_read(udpif->wait_seq); + ovsrcu_quiesce_end(); } +/* Waits for all ongoing upcall translations to complete. This ensures that + * there are no transient references to any removed ofprotos (or other + * objects). In particular, this should be called after an ofproto is removed + * (e.g. via xlate_remove_ofproto()) but before it is destroyed. */ void -udpif_wait(struct udpif *udpif) +udpif_synchronize(struct udpif *udpif) { - ovs_mutex_lock(&udpif->drop_key_mutex); - if (udpif->n_drop_keys) { - poll_immediate_wake(); - } - ovs_mutex_unlock(&udpif->drop_key_mutex); - - ovs_mutex_lock(&udpif->upcall_mutex); - if (udpif->n_upcalls) { - poll_immediate_wake(); - } - ovs_mutex_unlock(&udpif->upcall_mutex); - - ovs_mutex_lock(&udpif->fmb_mutex); - if (udpif->n_fmbs) { - poll_immediate_wake(); - } - ovs_mutex_unlock(&udpif->fmb_mutex); - - seq_wait(udpif->wait_seq, udpif->last_seq); + /* This is stronger than necessary. It would be sufficient to ensure + * (somehow) that each handler and revalidator thread had passed through + * its main loop once. */ + size_t n_handlers = udpif->n_handlers; + size_t n_revalidators = udpif->n_revalidators; + udpif_set_threads(udpif, 0, 0); + udpif_set_threads(udpif, n_handlers, n_revalidators); } /* Notifies 'udpif' that something changed which may render previous @@ -263,135 +444,109 @@ udpif_wait(struct udpif *udpif) void udpif_revalidate(struct udpif *udpif) { - struct flow_miss_batch *fmb, *next_fmb; - unsigned int junk; - - /* Since we remove each miss on revalidation, their statistics won't be - * accounted to the appropriate 'facet's in the upper layer. In most - * cases, this is alright because we've already pushed the stats to the - * relevant rules. However, NetFlow requires absolute packet counts on - * 'facet's which could now be incorrect. */ - ovs_mutex_lock(&udpif->fmb_mutex); - atomic_add(&udpif->reval_seq, 1, &junk); - LIST_FOR_EACH_SAFE (fmb, next_fmb, list_node, &udpif->fmbs) { - list_remove(&fmb->list_node); - flow_miss_batch_destroy(fmb); - udpif->n_fmbs--; - } - ovs_mutex_unlock(&udpif->fmb_mutex); - udpif_drop_key_clear(udpif); + seq_change(udpif->reval_seq); } -/* Retreives the next upcall which ofproto-dpif is responsible for handling. - * The caller is responsible for destroying the returned upcall with - * upcall_destroy(). */ -struct upcall * -upcall_next(struct udpif *udpif) +/* Returns a seq which increments every time 'udpif' pulls stats from the + * datapath. Callers can use this to get a sense of when might be a good time + * to do periodic work which relies on relatively up to date statistics. */ +struct seq * +udpif_dump_seq(struct udpif *udpif) { - struct upcall *next = NULL; - - ovs_mutex_lock(&udpif->upcall_mutex); - if (udpif->n_upcalls) { - udpif->n_upcalls--; - next = CONTAINER_OF(list_pop_front(&udpif->upcalls), struct upcall, - list_node); - } - ovs_mutex_unlock(&udpif->upcall_mutex); - return next; + return udpif->dump_seq; } -/* Destroys and deallocates 'upcall'. */ void -upcall_destroy(struct upcall *upcall) +udpif_get_memory_usage(struct udpif *udpif, struct simap *usage) { - if (upcall) { - ofpbuf_uninit(&upcall->upcall_buf); - free(upcall); - } -} + size_t i; -/* Retreives the next batch of processed flow misses for 'udpif' to install. - * The caller is responsible for destroying it with flow_miss_batch_destroy(). - */ -struct flow_miss_batch * -flow_miss_batch_next(struct udpif *udpif) -{ - struct flow_miss_batch *next = NULL; + simap_increase(usage, "dispatchers", 1); + simap_increase(usage, "flow_dumpers", 1); - ovs_mutex_lock(&udpif->fmb_mutex); - if (udpif->n_fmbs) { - udpif->n_fmbs--; - next = CONTAINER_OF(list_pop_front(&udpif->fmbs), - struct flow_miss_batch, list_node); + simap_increase(usage, "handlers", udpif->n_handlers); + for (i = 0; i < udpif->n_handlers; i++) { + struct handler *handler = &udpif->handlers[i]; + ovs_mutex_lock(&handler->mutex); + simap_increase(usage, "handler upcalls", handler->n_upcalls); + ovs_mutex_unlock(&handler->mutex); + } + + simap_increase(usage, "revalidators", udpif->n_revalidators); + for (i = 0; i < udpif->n_revalidators; i++) { + struct revalidator *revalidator = &udpif->revalidators[i]; + ovs_mutex_lock(&revalidator->mutex); + simap_increase(usage, "revalidator dumps", revalidator->n_udumps); + + /* XXX: This isn't technically thread safe because the revalidator + * ukeys maps isn't protected by a mutex since it's per thread. */ + simap_increase(usage, "revalidator keys", + hmap_count(&revalidator->ukeys)); + ovs_mutex_unlock(&revalidator->mutex); } - ovs_mutex_unlock(&udpif->fmb_mutex); - return next; } -/* Destroys and deallocates 'fmb'. */ +/* Remove flows from a single datapath. */ void -flow_miss_batch_destroy(struct flow_miss_batch *fmb) +udpif_flush(struct udpif *udpif) { - struct flow_miss *miss, *next; - - if (!fmb) { - return; - } + size_t n_handlers, n_revalidators; - HMAP_FOR_EACH_SAFE (miss, next, hmap_node, &fmb->misses) { - hmap_remove(&fmb->misses, &miss->hmap_node); - miss_destroy(miss); - } + n_handlers = udpif->n_handlers; + n_revalidators = udpif->n_revalidators; - hmap_destroy(&fmb->misses); - free(fmb); + udpif_set_threads(udpif, 0, 0); + dpif_flow_flush(udpif->dpif); + udpif_set_threads(udpif, n_handlers, n_revalidators); } -/* Retreives the next drop key which ofproto-dpif needs to process. The caller - * is responsible for destroying it with drop_key_destroy(). */ -struct drop_key * -drop_key_next(struct udpif *udpif) +/* Removes all flows from all datapaths. */ +static void +udpif_flush_all_datapaths(void) { - struct drop_key *next = NULL; + struct udpif *udpif; - ovs_mutex_lock(&udpif->drop_key_mutex); - if (udpif->n_drop_keys) { - udpif->n_drop_keys--; - next = CONTAINER_OF(list_pop_front(&udpif->drop_keys), struct drop_key, - list_node); + LIST_FOR_EACH (udpif, list_node, &all_udpifs) { + udpif_flush(udpif); } - ovs_mutex_unlock(&udpif->drop_key_mutex); - return next; } -/* Destorys and deallocates 'drop_key'. */ -void -drop_key_destroy(struct drop_key *drop_key) + +/* Destroys and deallocates 'upcall'. */ +static void +upcall_destroy(struct upcall *upcall) { - if (drop_key) { - free(drop_key->key); - free(drop_key); + if (upcall) { + ofpbuf_uninit(&upcall->dpif_upcall.packet); + ofpbuf_uninit(&upcall->upcall_buf); + free(upcall); } } -/* Clears all drop keys waiting to be processed by drop_key_next(). */ -void -udpif_drop_key_clear(struct udpif *udpif) +static uint64_t +udpif_get_n_flows(struct udpif *udpif) { - struct drop_key *drop_key, *next; - - ovs_mutex_lock(&udpif->drop_key_mutex); - LIST_FOR_EACH_SAFE (drop_key, next, list_node, &udpif->drop_keys) { - list_remove(&drop_key->list_node); - drop_key_destroy(drop_key); - udpif->n_drop_keys--; + long long int time, now; + uint64_t flow_count; + + now = time_msec(); + atomic_read(&udpif->n_flows_timestamp, &time); + if (time < now - 100 && !ovs_mutex_trylock(&udpif->n_flows_mutex)) { + struct dpif_dp_stats stats; + + atomic_store(&udpif->n_flows_timestamp, now); + dpif_get_dp_stats(udpif->dpif, &stats); + flow_count = stats.n_flows; + atomic_store(&udpif->n_flows, flow_count); + ovs_mutex_unlock(&udpif->n_flows_mutex); + } else { + atomic_read(&udpif->n_flows, &flow_count); } - ovs_mutex_unlock(&udpif->drop_key_mutex); + return flow_count; } - -/* The dispatcher thread is responsible for receving upcalls from the kernel, - * assigning the miss upcalls to a miss_handler thread, and assigning the more - * complex ones to ofproto-dpif directly. */ + +/* The dispatcher thread is responsible for receiving upcalls from the kernel, + * assigning them to a upcall_handler thread. */ static void * udpif_dispatcher(void *arg) { @@ -400,7 +555,126 @@ udpif_dispatcher(void *arg) set_subprogram_name("dispatcher"); while (!latch_is_set(&udpif->exit_latch)) { recv_upcalls(udpif); - dpif_recv_wait(udpif->dpif); + dpif_recv_wait(udpif->dpif, 0); + latch_wait(&udpif->exit_latch); + poll_block(); + } + + return NULL; +} + +static void * +udpif_flow_dumper(void *arg) +{ + struct udpif *udpif = arg; + + set_subprogram_name("flow_dumper"); + while (!latch_is_set(&udpif->exit_latch)) { + const struct dpif_flow_stats *stats; + long long int start_time, duration; + const struct nlattr *key, *mask; + struct dpif_flow_dump dump; + size_t key_len, mask_len; + unsigned int flow_limit; + bool need_revalidate; + uint64_t reval_seq; + size_t n_flows, i; + int error; + void *state = NULL; + + reval_seq = seq_read(udpif->reval_seq); + need_revalidate = udpif->last_reval_seq != reval_seq; + udpif->last_reval_seq = reval_seq; + + n_flows = udpif_get_n_flows(udpif); + udpif->max_n_flows = MAX(n_flows, udpif->max_n_flows); + udpif->avg_n_flows = (udpif->avg_n_flows + n_flows) / 2; + + start_time = time_msec(); + error = dpif_flow_dump_start(&dump, udpif->dpif); + if (error) { + VLOG_INFO("Failed to start flow dump (%s)", ovs_strerror(error)); + goto skip; + } + dpif_flow_dump_state_init(udpif->dpif, &state); + while (dpif_flow_dump_next(&dump, state, &key, &key_len, + &mask, &mask_len, NULL, NULL, &stats) + && !latch_is_set(&udpif->exit_latch)) { + struct udpif_flow_dump *udump = xmalloc(sizeof *udump); + struct revalidator *revalidator; + + udump->key_hash = hash_bytes(key, key_len, udpif->secret); + memcpy(&udump->key_buf, key, key_len); + udump->key = (struct nlattr *) &udump->key_buf; + udump->key_len = key_len; + + memcpy(&udump->mask_buf, mask, mask_len); + udump->mask = (struct nlattr *) &udump->mask_buf; + udump->mask_len = mask_len; + + udump->stats = *stats; + udump->need_revalidate = need_revalidate; + + revalidator = &udpif->revalidators[udump->key_hash + % udpif->n_revalidators]; + + ovs_mutex_lock(&revalidator->mutex); + while (revalidator->n_udumps >= REVALIDATE_MAX_BATCH * 3 + && !latch_is_set(&udpif->exit_latch)) { + ovs_mutex_cond_wait(&revalidator->wake_cond, + &revalidator->mutex); + } + list_push_back(&revalidator->udumps, &udump->list_node); + revalidator->n_udumps++; + xpthread_cond_signal(&revalidator->wake_cond); + ovs_mutex_unlock(&revalidator->mutex); + } + dpif_flow_dump_state_uninit(udpif->dpif, state); + dpif_flow_dump_done(&dump); + + /* Let all the revalidators finish and garbage collect. */ + seq_change(udpif->dump_seq); + for (i = 0; i < udpif->n_revalidators; i++) { + struct revalidator *revalidator = &udpif->revalidators[i]; + ovs_mutex_lock(&revalidator->mutex); + xpthread_cond_signal(&revalidator->wake_cond); + ovs_mutex_unlock(&revalidator->mutex); + } + + for (i = 0; i < udpif->n_revalidators; i++) { + struct revalidator *revalidator = &udpif->revalidators[i]; + + ovs_mutex_lock(&revalidator->mutex); + while (revalidator->dump_seq != seq_read(udpif->dump_seq) + && !latch_is_set(&udpif->exit_latch)) { + ovs_mutex_cond_wait(&revalidator->wake_cond, + &revalidator->mutex); + } + ovs_mutex_unlock(&revalidator->mutex); + } + + duration = MAX(time_msec() - start_time, 1); + udpif->dump_duration = duration; + atomic_read(&udpif->flow_limit, &flow_limit); + if (duration > 2000) { + flow_limit /= duration / 1000; + } else if (duration > 1300) { + flow_limit = flow_limit * 3 / 4; + } else if (duration < 1000 && n_flows > 2000 + && flow_limit < n_flows * 1000 / duration) { + flow_limit += 1000; + } + flow_limit = MIN(ofproto_flow_limit, MAX(flow_limit, 1000)); + atomic_store(&udpif->flow_limit, flow_limit); + + if (duration > 2000) { + VLOG_INFO("Spent an unreasonably long %lldms dumping flows", + duration); + } + +skip: + poll_timer_wait_until(start_time + MIN(ofproto_max_idle, 500)); + seq_wait(udpif->reval_seq, udpif->last_reval_seq); latch_wait(&udpif->exit_latch); poll_block(); } @@ -408,27 +682,26 @@ udpif_dispatcher(void *arg) return NULL; } -/* The miss handler thread is responsible for processing miss upcalls retreived +/* The miss handler thread is responsible for processing miss upcalls retrieved * by the dispatcher thread. Once finished it passes the processed miss * upcalls to ofproto-dpif where they're installed in the datapath. */ static void * -udpif_miss_handler(void *arg) +udpif_upcall_handler(void *arg) { - struct list misses = LIST_INITIALIZER(&misses); struct handler *handler = arg; - set_subprogram_name("miss_handler"); - for (;;) { + handler->name = xasprintf("handler_%u", ovsthread_id_self()); + set_subprogram_name("%s", handler->name); + + while (!latch_is_set(&handler->udpif->exit_latch)) { + struct list misses = LIST_INITIALIZER(&misses); size_t i; ovs_mutex_lock(&handler->mutex); - - if (latch_is_set(&handler->udpif->exit_latch)) { - ovs_mutex_unlock(&handler->mutex); - return NULL; - } - - if (!handler->n_upcalls) { + /* Must check the 'exit_latch' again to make sure the main thread is + * not joining on the handler thread. */ + if (!handler->n_upcalls + && !latch_is_set(&handler->udpif->exit_latch)) { ovs_mutex_cond_wait(&handler->wake_cond, &handler->mutex); } @@ -442,22 +715,59 @@ udpif_miss_handler(void *arg) } ovs_mutex_unlock(&handler->mutex); - handle_miss_upcalls(handler->udpif, &misses); + handle_upcalls(handler, &misses); + + coverage_clear(); } + + return NULL; } - -static void -miss_destroy(struct flow_miss *miss) + +static void * +udpif_revalidator(void *arg) { - struct upcall *upcall, *next; + struct revalidator *revalidator = arg; - LIST_FOR_EACH_SAFE (upcall, next, list_node, &miss->upcalls) { - list_remove(&upcall->list_node); - upcall_destroy(upcall); + revalidator->name = xasprintf("revalidator_%u", ovsthread_id_self()); + set_subprogram_name("%s", revalidator->name); + for (;;) { + struct list udumps = LIST_INITIALIZER(&udumps); + struct udpif *udpif = revalidator->udpif; + size_t i; + + ovs_mutex_lock(&revalidator->mutex); + if (latch_is_set(&udpif->exit_latch)) { + ovs_mutex_unlock(&revalidator->mutex); + return NULL; + } + + if (!revalidator->n_udumps) { + if (revalidator->dump_seq != seq_read(udpif->dump_seq)) { + revalidator->dump_seq = seq_read(udpif->dump_seq); + revalidator_sweep(revalidator); + } else { + ovs_mutex_cond_wait(&revalidator->wake_cond, + &revalidator->mutex); + } + } + + for (i = 0; i < REVALIDATE_MAX_BATCH && revalidator->n_udumps; i++) { + list_push_back(&udumps, list_pop_front(&revalidator->udumps)); + revalidator->n_udumps--; + } + + /* Wake up the flow dumper. */ + xpthread_cond_signal(&revalidator->wake_cond); + ovs_mutex_unlock(&revalidator->mutex); + + if (!list_is_empty(&udumps)) { + revalidate_udumps(revalidator, &udumps); + } } - xlate_out_uninit(&miss->xout); -} + return NULL; +} + static enum upcall_type classify_upcall(const struct upcall *upcall) { @@ -488,27 +798,27 @@ classify_upcall(const struct upcall *upcall) userdata_len = nl_attr_get_size(dpif_upcall->userdata); if (userdata_len < sizeof cookie.type || userdata_len > sizeof cookie) { - VLOG_WARN_RL(&rl, "action upcall cookie has unexpected size %zu", + VLOG_WARN_RL(&rl, "action upcall cookie has unexpected size %"PRIuSIZE, userdata_len); return BAD_UPCALL; } memset(&cookie, 0, sizeof cookie); memcpy(&cookie, nl_attr_get(dpif_upcall->userdata), userdata_len); - if (userdata_len == sizeof cookie.sflow + if (userdata_len == MAX(8, sizeof cookie.sflow) && cookie.type == USER_ACTION_COOKIE_SFLOW) { return SFLOW_UPCALL; - } else if (userdata_len == sizeof cookie.slow_path + } else if (userdata_len == MAX(8, sizeof cookie.slow_path) && cookie.type == USER_ACTION_COOKIE_SLOW_PATH) { return MISS_UPCALL; - } else if (userdata_len == sizeof cookie.flow_sample + } else if (userdata_len == MAX(8, sizeof cookie.flow_sample) && cookie.type == USER_ACTION_COOKIE_FLOW_SAMPLE) { return FLOW_SAMPLE_UPCALL; - } else if (userdata_len == sizeof cookie.ipfix + } else if (userdata_len == MAX(8, sizeof cookie.ipfix) && cookie.type == USER_ACTION_COOKIE_IPFIX) { return IPFIX_UPCALL; } else { VLOG_WARN_RL(&rl, "invalid user cookie of type %"PRIu16 - " and size %zu", cookie.type, userdata_len); + " and size %"PRIuSIZE, cookie.type, userdata_len); return BAD_UPCALL; } } @@ -516,105 +826,109 @@ classify_upcall(const struct upcall *upcall) static void recv_upcalls(struct udpif *udpif) { - static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(60, 60); - size_t n_udpif_new_upcalls = 0; - struct handler *handler; int n; for (;;) { + uint32_t hash = udpif->secret; + struct handler *handler; struct upcall *upcall; + size_t n_bytes, left; + struct nlattr *nla; int error; upcall = xmalloc(sizeof *upcall); ofpbuf_use_stub(&upcall->upcall_buf, upcall->upcall_stub, sizeof upcall->upcall_stub); - error = dpif_recv(udpif->dpif, &upcall->dpif_upcall, + error = dpif_recv(udpif->dpif, 0, &upcall->dpif_upcall, &upcall->upcall_buf); if (error) { - upcall_destroy(upcall); + /* upcall_destroy() can only be called on successfully received + * upcalls. */ + ofpbuf_uninit(&upcall->upcall_buf); + free(upcall); break; } - upcall->type = classify_upcall(upcall); - if (upcall->type == BAD_UPCALL) { - upcall_destroy(upcall); - } else if (upcall->type == MISS_UPCALL) { - struct dpif_upcall *dupcall = &upcall->dpif_upcall; - uint32_t hash = udpif->secret; - struct nlattr *nla; - size_t n_bytes, left; - - n_bytes = 0; - NL_ATTR_FOR_EACH (nla, left, dupcall->key, dupcall->key_len) { - enum ovs_key_attr type = nl_attr_type(nla); - if (type == OVS_KEY_ATTR_IN_PORT - || type == OVS_KEY_ATTR_TCP - || type == OVS_KEY_ATTR_UDP) { - if (nl_attr_get_size(nla) == 4) { - ovs_be32 attr = nl_attr_get_be32(nla); - hash = mhash_add(hash, (OVS_FORCE uint32_t) attr); - n_bytes += 4; - } else { - VLOG_WARN("Netlink attribute with incorrect size."); - } + n_bytes = 0; + NL_ATTR_FOR_EACH (nla, left, upcall->dpif_upcall.key, + upcall->dpif_upcall.key_len) { + enum ovs_key_attr type = nl_attr_type(nla); + if (type == OVS_KEY_ATTR_IN_PORT + || type == OVS_KEY_ATTR_TCP + || type == OVS_KEY_ATTR_UDP) { + if (nl_attr_get_size(nla) == 4) { + hash = mhash_add(hash, nl_attr_get_u32(nla)); + n_bytes += 4; + } else { + VLOG_WARN_RL(&rl, + "Netlink attribute with incorrect size."); } } - hash = mhash_finish(hash, n_bytes); - - handler = &udpif->handlers[hash % udpif->n_handlers]; + } + hash = mhash_finish(hash, n_bytes); - ovs_mutex_lock(&handler->mutex); - if (handler->n_upcalls < MAX_QUEUE_LENGTH) { - list_push_back(&handler->upcalls, &upcall->list_node); - handler->n_new_upcalls = ++handler->n_upcalls; + handler = &udpif->handlers[hash % udpif->n_handlers]; - if (handler->n_new_upcalls >= FLOW_MISS_MAX_BATCH) { - xpthread_cond_signal(&handler->wake_cond); - } - ovs_mutex_unlock(&handler->mutex); - if (!VLOG_DROP_DBG(&rl)) { - struct ds ds = DS_EMPTY_INITIALIZER; - - odp_flow_key_format(upcall->dpif_upcall.key, - upcall->dpif_upcall.key_len, - &ds); - VLOG_DBG("dispatcher: miss enqueue (%s)", ds_cstr(&ds)); - ds_destroy(&ds); - } - } else { - ovs_mutex_unlock(&handler->mutex); - COVERAGE_INC(miss_queue_overflow); - upcall_destroy(upcall); + ovs_mutex_lock(&handler->mutex); + if (handler->n_upcalls < MAX_QUEUE_LENGTH) { + list_push_back(&handler->upcalls, &upcall->list_node); + if (handler->n_upcalls == 0) { + handler->need_signal = true; } - } else { - ovs_mutex_lock(&udpif->upcall_mutex); - if (udpif->n_upcalls < MAX_QUEUE_LENGTH) { - n_udpif_new_upcalls = ++udpif->n_upcalls; - list_push_back(&udpif->upcalls, &upcall->list_node); - ovs_mutex_unlock(&udpif->upcall_mutex); - - if (n_udpif_new_upcalls >= FLOW_MISS_MAX_BATCH) { - seq_change(udpif->wait_seq); - } - } else { - ovs_mutex_unlock(&udpif->upcall_mutex); - COVERAGE_INC(upcall_queue_overflow); - upcall_destroy(upcall); + handler->n_upcalls++; + if (handler->need_signal && + handler->n_upcalls >= FLOW_MISS_MAX_BATCH) { + handler->need_signal = false; + xpthread_cond_signal(&handler->wake_cond); } + ovs_mutex_unlock(&handler->mutex); + if (!VLOG_DROP_DBG(&rl)) { + struct ds ds = DS_EMPTY_INITIALIZER; + + odp_flow_key_format(upcall->dpif_upcall.key, + upcall->dpif_upcall.key_len, + &ds); + VLOG_DBG("dispatcher: enqueue (%s)", ds_cstr(&ds)); + ds_destroy(&ds); + } + } else { + ovs_mutex_unlock(&handler->mutex); + COVERAGE_INC(upcall_queue_overflow); + upcall_destroy(upcall); } } + for (n = 0; n < udpif->n_handlers; ++n) { - handler = &udpif->handlers[n]; - if (handler->n_new_upcalls) { - handler->n_new_upcalls = 0; + struct handler *handler = &udpif->handlers[n]; + + if (handler->need_signal) { + handler->need_signal = false; ovs_mutex_lock(&handler->mutex); xpthread_cond_signal(&handler->wake_cond); ovs_mutex_unlock(&handler->mutex); } } - if (n_udpif_new_upcalls) { - seq_change(udpif->wait_seq); - } +} + +/* Calculates slow path actions for 'xout'. 'buf' must statically be + * initialized with at least 128 bytes of space. */ +static void +compose_slow_path(struct udpif *udpif, struct xlate_out *xout, + odp_port_t odp_in_port, struct ofpbuf *buf) +{ + union user_action_cookie cookie; + odp_port_t port; + uint32_t pid; + + cookie.type = USER_ACTION_COOKIE_SLOW_PATH; + cookie.slow_path.unused = 0; + cookie.slow_path.reason = xout->slow; + + port = xout->slow & (SLOW_CFM | SLOW_BFD | SLOW_LACP | SLOW_STP) + ? ODPP_NONE + : odp_in_port; + pid = dpif_port_get_pid(udpif->dpif, port, 0); + odp_put_userspace_action(pid, &cookie, sizeof cookie.slow_path, buf); } static struct flow_miss * @@ -632,226 +946,853 @@ flow_miss_find(struct hmap *todo, const struct ofproto_dpif *ofproto, return NULL; } -/* Executes flow miss 'miss'. May add any required datapath operations - * to 'ops', incrementing '*n_ops' for each new op. */ static void -execute_flow_miss(struct flow_miss *miss, struct dpif_op *ops, size_t *n_ops) +handle_upcalls(struct handler *handler, struct list *upcalls) { - struct ofproto_dpif *ofproto = miss->ofproto; - struct flow_wildcards wc; - struct rule_dpif *rule; - struct ofpbuf *packet; - struct xlate_in xin; + struct hmap misses = HMAP_INITIALIZER(&misses); + struct udpif *udpif = handler->udpif; - memset(&miss->stats, 0, sizeof miss->stats); - miss->stats.used = time_msec(); - LIST_FOR_EACH (packet, list_node, &miss->packets) { - miss->stats.tcp_flags |= packet_get_tcp_flags(packet, &miss->flow); - miss->stats.n_bytes += packet->size; - miss->stats.n_packets++; - } - - flow_wildcards_init_catchall(&wc); - rule_dpif_lookup(ofproto, &miss->flow, &wc, &rule); - rule_credit_stats(rule, &miss->stats); - xlate_in_init(&xin, ofproto, &miss->flow, rule, miss->stats.tcp_flags, - NULL); - xin.may_learn = true; - xin.resubmit_stats = &miss->stats; - xlate_actions(&xin, &miss->xout); - flow_wildcards_or(&miss->xout.wc, &miss->xout.wc, &wc); - - if (rule->up.cr.priority == FAIL_OPEN_PRIORITY) { - LIST_FOR_EACH (packet, list_node, &miss->packets) { - struct ofputil_packet_in *pin; - - /* Extra-special case for fail-open mode. - * - * We are in fail-open mode and the packet matched the fail-open - * rule, but we are connected to a controller too. We should send - * the packet up to the controller in the hope that it will try to - * set up a flow and thereby allow us to exit fail-open. - * - * See the top-level comment in fail-open.c for more information. */ - pin = xmalloc(sizeof(*pin)); - pin->packet = xmemdup(packet->data, packet->size); - pin->packet_len = packet->size; - pin->reason = OFPR_NO_MATCH; - pin->controller_id = 0; - pin->table_id = 0; - pin->cookie = 0; - pin->send_len = 0; /* Not used for flow table misses. */ - flow_get_metadata(&miss->flow, &pin->fmd); - ofproto_dpif_send_packet_in(ofproto, pin); + struct flow_miss miss_buf[FLOW_MISS_MAX_BATCH]; + struct dpif_op *opsp[FLOW_MISS_MAX_BATCH * 2]; + struct dpif_op ops[FLOW_MISS_MAX_BATCH * 2]; + struct flow_miss *miss, *next_miss; + struct upcall *upcall, *next; + size_t n_misses, n_ops, i; + unsigned int flow_limit; + bool fail_open, may_put; + enum upcall_type type; + + atomic_read(&udpif->flow_limit, &flow_limit); + may_put = udpif_get_n_flows(udpif) < flow_limit; + + /* Extract the flow from each upcall. Construct in 'misses' a hash table + * that maps each unique flow to a 'struct flow_miss'. + * + * Most commonly there is a single packet per flow_miss, but there are + * several reasons why there might be more than one, e.g.: + * + * - The dpif packet interface does not support TSO (or UFO, etc.), so a + * large packet sent to userspace is split into a sequence of smaller + * ones. + * + * - A stream of quickly arriving packets in an established "slow-pathed" + * flow. + * + * - Rarely, a stream of quickly arriving packets in a flow not yet + * established. (This is rare because most protocols do not send + * multiple back-to-back packets before receiving a reply from the + * other end of the connection, which gives OVS a chance to set up a + * datapath flow.) + */ + n_misses = 0; + LIST_FOR_EACH_SAFE (upcall, next, list_node, upcalls) { + struct dpif_upcall *dupcall = &upcall->dpif_upcall; + struct flow_miss *miss = &miss_buf[n_misses]; + struct ofpbuf *packet = &dupcall->packet; + struct flow_miss *existing_miss; + struct ofproto_dpif *ofproto; + struct dpif_sflow *sflow; + struct dpif_ipfix *ipfix; + odp_port_t odp_in_port; + struct flow flow; + int error; + + error = xlate_receive(udpif->backer, packet, dupcall->key, + dupcall->key_len, &flow, + &ofproto, &ipfix, &sflow, NULL, &odp_in_port); + if (error) { + if (error == ENODEV) { + /* Received packet on datapath port for which we couldn't + * associate an ofproto. This can happen if a port is removed + * while traffic is being received. Print a rate-limited + * message in case it happens frequently. Install a drop flow + * so that future packets of the flow are inexpensively dropped + * in the kernel. */ + VLOG_INFO_RL(&rl, "received packet on unassociated datapath " + "port %"PRIu32, odp_in_port); + dpif_flow_put(udpif->dpif, DPIF_FP_CREATE | DPIF_FP_MODIFY, + dupcall->key, dupcall->key_len, NULL, 0, NULL, 0, + NULL); + } + list_remove(&upcall->list_node); + upcall_destroy(upcall); + continue; + } + + type = classify_upcall(upcall); + if (type == MISS_UPCALL) { + uint32_t hash; + struct pkt_metadata md = pkt_metadata_from_flow(&flow); + + flow_extract(packet, &md, &miss->flow); + hash = flow_hash(&miss->flow, 0); + existing_miss = flow_miss_find(&misses, ofproto, &miss->flow, + hash); + if (!existing_miss) { + hmap_insert(&misses, &miss->hmap_node, hash); + miss->ofproto = ofproto; + miss->key = dupcall->key; + miss->key_len = dupcall->key_len; + miss->upcall_type = dupcall->type; + miss->stats.n_packets = 0; + miss->stats.n_bytes = 0; + miss->stats.used = time_msec(); + miss->stats.tcp_flags = 0; + miss->odp_in_port = odp_in_port; + miss->put = false; + + n_misses++; + } else { + miss = existing_miss; + } + miss->stats.tcp_flags |= ntohs(miss->flow.tcp_flags); + miss->stats.n_bytes += ofpbuf_size(packet); + miss->stats.n_packets++; + + upcall->flow_miss = miss; + continue; + } + + switch (type) { + case SFLOW_UPCALL: + if (sflow) { + union user_action_cookie cookie; + + memset(&cookie, 0, sizeof cookie); + memcpy(&cookie, nl_attr_get(dupcall->userdata), + sizeof cookie.sflow); + dpif_sflow_received(sflow, packet, &flow, odp_in_port, + &cookie); + } + break; + case IPFIX_UPCALL: + if (ipfix) { + dpif_ipfix_bridge_sample(ipfix, packet, &flow); + } + break; + case FLOW_SAMPLE_UPCALL: + if (ipfix) { + union user_action_cookie cookie; + + memset(&cookie, 0, sizeof cookie); + memcpy(&cookie, nl_attr_get(dupcall->userdata), + sizeof cookie.flow_sample); + + /* The flow reflects exactly the contents of the packet. + * Sample the packet using it. */ + dpif_ipfix_flow_sample(ipfix, packet, &flow, + cookie.flow_sample.collector_set_id, + cookie.flow_sample.probability, + cookie.flow_sample.obs_domain_id, + cookie.flow_sample.obs_point_id); + } + break; + case BAD_UPCALL: + break; + case MISS_UPCALL: + OVS_NOT_REACHED(); } + + dpif_ipfix_unref(ipfix); + dpif_sflow_unref(sflow); + + list_remove(&upcall->list_node); + upcall_destroy(upcall); + } + + /* Initialize each 'struct flow_miss's ->xout. + * + * We do this per-flow_miss rather than per-packet because, most commonly, + * all the packets in a flow can use the same translation. + * + * We can't do this in the previous loop because we need the TCP flags for + * all the packets in each miss. */ + fail_open = false; + HMAP_FOR_EACH (miss, hmap_node, &misses) { + struct xlate_in xin; + + xlate_in_init(&xin, miss->ofproto, &miss->flow, NULL, + miss->stats.tcp_flags, NULL); + xin.may_learn = true; + + if (miss->upcall_type == DPIF_UC_MISS) { + xin.resubmit_stats = &miss->stats; + } else { + /* For non-miss upcalls, there's a flow in the datapath which this + * packet was accounted to. Presumably the revalidators will deal + * with pushing its stats eventually. */ + } + + xlate_actions(&xin, &miss->xout); + fail_open = fail_open || miss->xout.fail_open; } - if (miss->xout.slow) { - LIST_FOR_EACH (packet, list_node, &miss->packets) { + /* Now handle the packets individually in order of arrival. In the common + * case each packet of a miss can share the same actions, but slow-pathed + * packets need to be translated individually: + * + * - For SLOW_CFM, SLOW_LACP, SLOW_STP, and SLOW_BFD, translation is what + * processes received packets for these protocols. + * + * - For SLOW_CONTROLLER, translation sends the packet to the OpenFlow + * controller. + * + * The loop fills 'ops' with an array of operations to execute in the + * datapath. */ + n_ops = 0; + LIST_FOR_EACH (upcall, list_node, upcalls) { + struct flow_miss *miss = upcall->flow_miss; + struct ofpbuf *packet = &upcall->dpif_upcall.packet; + struct dpif_op *op; + ovs_be16 flow_vlan_tci; + + /* Save a copy of flow.vlan_tci in case it is changed to + * generate proper mega flow masks for VLAN splinter flows. */ + flow_vlan_tci = miss->flow.vlan_tci; + + if (miss->xout.slow) { struct xlate_in xin; - xlate_in_init(&xin, miss->ofproto, &miss->flow, rule, 0, packet); + xlate_in_init(&xin, miss->ofproto, &miss->flow, NULL, 0, packet); xlate_actions_for_side_effects(&xin); } - } - rule_release(rule); - if (miss->xout.odp_actions.size) { - LIST_FOR_EACH (packet, list_node, &miss->packets) { - struct dpif_op *op = &ops[*n_ops]; - struct dpif_execute *execute = &op->u.execute; - - if (miss->flow.in_port.ofp_port - != vsp_realdev_to_vlandev(miss->ofproto, - miss->flow.in_port.ofp_port, - miss->flow.vlan_tci)) { - /* This packet was received on a VLAN splinter port. We - * added a VLAN to the packet to make the packet resemble - * the flow, but the actions were composed assuming that - * the packet contained no VLAN. So, we must remove the - * VLAN header from the packet before trying to execute the - * actions. */ + if (miss->flow.in_port.ofp_port + != vsp_realdev_to_vlandev(miss->ofproto, + miss->flow.in_port.ofp_port, + miss->flow.vlan_tci)) { + /* This packet was received on a VLAN splinter port. We + * added a VLAN to the packet to make the packet resemble + * the flow, but the actions were composed assuming that + * the packet contained no VLAN. So, we must remove the + * VLAN header from the packet before trying to execute the + * actions. */ + if (ofpbuf_size(&miss->xout.odp_actions)) { eth_pop_vlan(packet); } + /* Remove the flow vlan tags inserted by vlan splinter logic + * to ensure megaflow masks generated match the data path flow. */ + miss->flow.vlan_tci = 0; + } + + /* Do not install a flow into the datapath if: + * + * - The datapath already has too many flows. + * + * - An earlier iteration of this loop already put the same flow. + * + * - We received this packet via some flow installed in the kernel + * already. */ + if (may_put + && !miss->put + && upcall->dpif_upcall.type == DPIF_UC_MISS) { + struct ofpbuf mask; + bool megaflow; + + miss->put = true; + + atomic_read(&enable_megaflows, &megaflow); + ofpbuf_use_stack(&mask, &miss->mask_buf, sizeof miss->mask_buf); + if (megaflow) { + size_t max_mpls; + + max_mpls = ofproto_dpif_get_max_mpls_depth(miss->ofproto); + odp_flow_key_from_mask(&mask, &miss->xout.wc.masks, + &miss->flow, UINT32_MAX, max_mpls); + } + + op = &ops[n_ops++]; + op->type = DPIF_OP_FLOW_PUT; + op->u.flow_put.flags = DPIF_FP_CREATE | DPIF_FP_MODIFY; + op->u.flow_put.key = miss->key; + op->u.flow_put.key_len = miss->key_len; + op->u.flow_put.mask = ofpbuf_data(&mask); + op->u.flow_put.mask_len = ofpbuf_size(&mask); + op->u.flow_put.stats = NULL; + + if (!miss->xout.slow) { + op->u.flow_put.actions = ofpbuf_data(&miss->xout.odp_actions); + op->u.flow_put.actions_len = ofpbuf_size(&miss->xout.odp_actions); + } else { + struct ofpbuf buf; + + ofpbuf_use_stack(&buf, miss->slow_path_buf, + sizeof miss->slow_path_buf); + compose_slow_path(udpif, &miss->xout, miss->odp_in_port, &buf); + op->u.flow_put.actions = ofpbuf_data(&buf); + op->u.flow_put.actions_len = ofpbuf_size(&buf); + } + } + + /* + * The 'miss' may be shared by multiple upcalls. Restore + * the saved flow vlan_tci field before processing the next + * upcall. */ + miss->flow.vlan_tci = flow_vlan_tci; + + if (ofpbuf_size(&miss->xout.odp_actions)) { + + op = &ops[n_ops++]; op->type = DPIF_OP_EXECUTE; - execute->key = miss->key; - execute->key_len = miss->key_len; - execute->packet = packet; - execute->actions = miss->xout.odp_actions.data; - execute->actions_len = miss->xout.odp_actions.size; + op->u.execute.packet = packet; + odp_key_to_pkt_metadata(miss->key, miss->key_len, + &op->u.execute.md); + op->u.execute.actions = ofpbuf_data(&miss->xout.odp_actions); + op->u.execute.actions_len = ofpbuf_size(&miss->xout.odp_actions); + op->u.execute.needs_help = (miss->xout.slow & SLOW_ACTION) != 0; + } + } - (*n_ops)++; + /* Special case for fail-open mode. + * + * If we are in fail-open mode, but we are connected to a controller too, + * then we should send the packet up to the controller in the hope that it + * will try to set up a flow and thereby allow us to exit fail-open. + * + * See the top-level comment in fail-open.c for more information. + * + * Copy packets before they are modified by execution. */ + if (fail_open) { + LIST_FOR_EACH (upcall, list_node, upcalls) { + struct flow_miss *miss = upcall->flow_miss; + struct ofpbuf *packet = &upcall->dpif_upcall.packet; + struct ofproto_packet_in *pin; + + pin = xmalloc(sizeof *pin); + pin->up.packet = xmemdup(ofpbuf_data(packet), ofpbuf_size(packet)); + pin->up.packet_len = ofpbuf_size(packet); + pin->up.reason = OFPR_NO_MATCH; + pin->up.table_id = 0; + pin->up.cookie = OVS_BE64_MAX; + flow_get_metadata(&miss->flow, &pin->up.fmd); + pin->send_len = 0; /* Not used for flow table misses. */ + pin->miss_type = OFPROTO_PACKET_IN_NO_MISS; + ofproto_dpif_send_packet_in(miss->ofproto, pin); } } + + /* Execute batch. */ + for (i = 0; i < n_ops; i++) { + opsp[i] = &ops[i]; + } + dpif_operate(udpif->dpif, opsp, n_ops); + + HMAP_FOR_EACH_SAFE (miss, next_miss, hmap_node, &misses) { + hmap_remove(&misses, &miss->hmap_node); + xlate_out_uninit(&miss->xout); + } + hmap_destroy(&misses); + + LIST_FOR_EACH_SAFE (upcall, next, list_node, upcalls) { + list_remove(&upcall->list_node); + upcall_destroy(upcall); + } +} + +static struct udpif_key * +ukey_lookup(struct revalidator *revalidator, struct udpif_flow_dump *udump) +{ + struct udpif_key *ukey; + + HMAP_FOR_EACH_WITH_HASH (ukey, hmap_node, udump->key_hash, + &revalidator->ukeys) { + if (ukey->key_len == udump->key_len + && !memcmp(ukey->key, udump->key, udump->key_len)) { + return ukey; + } + } + return NULL; +} + +static struct udpif_key * +ukey_create(const struct nlattr *key, size_t key_len, long long int used) +{ + struct udpif_key *ukey = xmalloc(sizeof *ukey); + + ukey->key = (struct nlattr *) &ukey->key_buf; + memcpy(&ukey->key_buf, key, key_len); + ukey->key_len = key_len; + + ukey->mark = false; + ukey->created = used ? used : time_msec(); + memset(&ukey->stats, 0, sizeof ukey->stats); + ukey->xcache = NULL; + + return ukey; } static void -handle_miss_upcalls(struct udpif *udpif, struct list *upcalls) +ukey_delete(struct revalidator *revalidator, struct udpif_key *ukey) { - struct dpif_op *opsp[FLOW_MISS_MAX_BATCH]; - struct dpif_op ops[FLOW_MISS_MAX_BATCH]; - unsigned int old_reval_seq, new_reval_seq; - struct upcall *upcall, *next; - struct flow_miss_batch *fmb; - size_t n_upcalls, n_ops, i; - struct flow_miss *miss; + hmap_remove(&revalidator->ukeys, &ukey->hmap_node); + xlate_cache_delete(ukey->xcache); + free(ukey); +} - atomic_read(&udpif->reval_seq, &old_reval_seq); +static bool +should_revalidate(uint64_t packets, long long int used) +{ + long long int metric, now, duration; - /* Construct the to-do list. + /* Calculate the mean time between seeing these packets. If this + * exceeds the threshold, then delete the flow rather than performing + * costly revalidation for flows that aren't being hit frequently. * - * This just amounts to extracting the flow from each packet and sticking - * the packets that have the same flow in the same "flow_miss" structure so - * that we can process them together. */ - fmb = xmalloc(sizeof *fmb); - hmap_init(&fmb->misses); - n_upcalls = 0; - LIST_FOR_EACH_SAFE (upcall, next, list_node, upcalls) { - struct dpif_upcall *dupcall = &upcall->dpif_upcall; - struct flow_miss *miss = &fmb->miss_buf[n_upcalls]; - struct flow_miss *existing_miss; - struct ofproto_dpif *ofproto; - odp_port_t odp_in_port; - struct flow flow; - uint32_t hash; - int error; + * This is targeted at situations where the dump_duration is high (~1s), + * and revalidation is triggered by a call to udpif_revalidate(). In + * these situations, revalidation of all flows causes fluctuations in the + * flow_limit due to the interaction with the dump_duration and max_idle. + * This tends to result in deletion of low-throughput flows anyway, so + * skip the revalidation and just delete those flows. */ + packets = MAX(packets, 1); + now = MAX(used, time_msec()); + duration = now - used; + metric = duration / packets; + + if (metric > 200) { + return false; + } + return true; +} - error = xlate_receive(udpif->backer, dupcall->packet, dupcall->key, - dupcall->key_len, &flow, &miss->key_fitness, - &ofproto, &odp_in_port); - - if (error == ENODEV) { - struct drop_key *drop_key; - - /* Received packet on datapath port for which we couldn't - * associate an ofproto. This can happen if a port is removed - * while traffic is being received. Print a rate-limited message - * in case it happens frequently. Install a drop flow so - * that future packets of the flow are inexpensively dropped - * in the kernel. */ - VLOG_INFO_RL(&rl, "received packet on unassociated datapath port " - "%"PRIu32, odp_in_port); - - drop_key = xmalloc(sizeof *drop_key); - drop_key->key = xmemdup(dupcall->key, dupcall->key_len); - drop_key->key_len = dupcall->key_len; - - ovs_mutex_lock(&udpif->drop_key_mutex); - if (udpif->n_drop_keys < MAX_QUEUE_LENGTH) { - udpif->n_drop_keys++; - list_push_back(&udpif->drop_keys, &drop_key->list_node); - ovs_mutex_unlock(&udpif->drop_key_mutex); - seq_change(udpif->wait_seq); - } else { - ovs_mutex_unlock(&udpif->drop_key_mutex); - COVERAGE_INC(drop_queue_overflow); - drop_key_destroy(drop_key); - } - continue; - } else if (error) { - continue; +static bool +revalidate_ukey(struct udpif *udpif, struct udpif_flow_dump *udump, + struct udpif_key *ukey) +{ + struct ofpbuf xout_actions, *actions; + uint64_t slow_path_buf[128 / 8]; + struct xlate_out xout, *xoutp; + struct netflow *netflow; + struct flow flow, udump_mask; + struct ofproto_dpif *ofproto; + struct dpif_flow_stats push; + uint32_t *udump32, *xout32; + odp_port_t odp_in_port; + struct xlate_in xin; + long long int last_used; + int error; + size_t i; + bool may_learn, ok; + + ok = false; + xoutp = NULL; + actions = NULL; + netflow = NULL; + may_learn = push.n_packets > 0; + + /* If we don't need to revalidate, we can simply push the stats contained + * in the udump, otherwise we'll have to get the actions so we can check + * them. */ + if (udump->need_revalidate) { + if (dpif_flow_get(udpif->dpif, ukey->key, ukey->key_len, &actions, + &udump->stats)) { + goto exit; + } + } + + last_used = ukey->stats.used; + push.used = udump->stats.used; + push.tcp_flags = udump->stats.tcp_flags; + push.n_packets = udump->stats.n_packets > ukey->stats.n_packets + ? udump->stats.n_packets - ukey->stats.n_packets + : 0; + push.n_bytes = udump->stats.n_bytes > ukey->stats.n_bytes + ? udump->stats.n_bytes - ukey->stats.n_bytes + : 0; + ukey->stats = udump->stats; + + if (udump->need_revalidate && last_used + && !should_revalidate(push.n_packets, last_used)) { + ok = false; + goto exit; + } + + if (!push.n_packets && !udump->need_revalidate) { + ok = true; + goto exit; + } + + if (ukey->xcache && !udump->need_revalidate) { + xlate_push_stats(ukey->xcache, may_learn, &push); + ok = true; + goto exit; + } + + error = xlate_receive(udpif->backer, NULL, ukey->key, ukey->key_len, &flow, + &ofproto, NULL, NULL, &netflow, &odp_in_port); + if (error) { + goto exit; + } + + if (udump->need_revalidate) { + xlate_cache_clear(ukey->xcache); + } + if (!ukey->xcache) { + ukey->xcache = xlate_cache_new(); + } + + xlate_in_init(&xin, ofproto, &flow, NULL, push.tcp_flags, NULL); + xin.resubmit_stats = push.n_packets ? &push : NULL; + xin.xcache = ukey->xcache; + xin.may_learn = may_learn; + xin.skip_wildcards = !udump->need_revalidate; + xlate_actions(&xin, &xout); + xoutp = &xout; + + if (!udump->need_revalidate) { + ok = true; + goto exit; + } + + if (!xout.slow) { + ofpbuf_use_const(&xout_actions, ofpbuf_data(&xout.odp_actions), + ofpbuf_size(&xout.odp_actions)); + } else { + ofpbuf_use_stack(&xout_actions, slow_path_buf, sizeof slow_path_buf); + compose_slow_path(udpif, &xout, odp_in_port, &xout_actions); + } + + if (!ofpbuf_equal(&xout_actions, actions)) { + goto exit; + } + + if (odp_flow_key_to_mask(udump->mask, udump->mask_len, &udump_mask, &flow) + == ODP_FIT_ERROR) { + goto exit; + } + + /* Since the kernel is free to ignore wildcarded bits in the mask, we can't + * directly check that the masks are the same. Instead we check that the + * mask in the kernel is more specific i.e. less wildcarded, than what + * we've calculated here. This guarantees we don't catch any packets we + * shouldn't with the megaflow. */ + udump32 = (uint32_t *) &udump_mask; + xout32 = (uint32_t *) &xout.wc.masks; + for (i = 0; i < FLOW_U32S; i++) { + if ((udump32[i] | xout32[i]) != udump32[i]) { + goto exit; } + } + ok = true; - flow_extract(dupcall->packet, flow.skb_priority, flow.pkt_mark, - &flow.tunnel, &flow.in_port, &miss->flow); +exit: + if (netflow) { + if (!ok) { + netflow_expire(netflow, &flow); + netflow_flow_clear(netflow, &flow); + } + netflow_unref(netflow); + } + ofpbuf_delete(actions); + xlate_out_uninit(xoutp); + return ok; +} - /* Add other packets to a to-do list. */ - hash = flow_hash(&miss->flow, 0); - existing_miss = flow_miss_find(&fmb->misses, ofproto, &miss->flow, hash); - if (!existing_miss) { - hmap_insert(&fmb->misses, &miss->hmap_node, hash); - miss->ofproto = ofproto; - miss->key = dupcall->key; - miss->key_len = dupcall->key_len; - miss->upcall_type = dupcall->type; - list_init(&miss->packets); - list_init(&miss->upcalls); +struct dump_op { + struct udpif_key *ukey; + struct udpif_flow_dump *udump; + struct dpif_flow_stats stats; /* Stats for 'op'. */ + struct dpif_op op; /* Flow del operation. */ +}; - n_upcalls++; +static void +dump_op_init(struct dump_op *op, const struct nlattr *key, size_t key_len, + struct udpif_key *ukey, struct udpif_flow_dump *udump) +{ + op->ukey = ukey; + op->udump = udump; + op->op.type = DPIF_OP_FLOW_DEL; + op->op.u.flow_del.key = key; + op->op.u.flow_del.key_len = key_len; + op->op.u.flow_del.stats = &op->stats; +} + +static void +push_dump_ops(struct revalidator *revalidator, + struct dump_op *ops, size_t n_ops) +{ + struct udpif *udpif = revalidator->udpif; + struct dpif_op *opsp[REVALIDATE_MAX_BATCH]; + size_t i; + + ovs_assert(n_ops <= REVALIDATE_MAX_BATCH); + for (i = 0; i < n_ops; i++) { + opsp[i] = &ops[i].op; + } + dpif_operate(udpif->dpif, opsp, n_ops); + + for (i = 0; i < n_ops; i++) { + struct dump_op *op = &ops[i]; + struct dpif_flow_stats *push, *stats, push_buf; + + stats = op->op.u.flow_del.stats; + if (op->ukey) { + push = &push_buf; + push->used = MAX(stats->used, op->ukey->stats.used); + push->tcp_flags = stats->tcp_flags | op->ukey->stats.tcp_flags; + push->n_packets = stats->n_packets - op->ukey->stats.n_packets; + push->n_bytes = stats->n_bytes - op->ukey->stats.n_bytes; } else { - miss = existing_miss; + push = stats; } - list_push_back(&miss->packets, &dupcall->packet->list_node); - list_remove(&upcall->list_node); - list_push_back(&miss->upcalls, &upcall->list_node); + if (push->n_packets || netflow_exists()) { + struct ofproto_dpif *ofproto; + struct netflow *netflow; + struct flow flow; + bool may_learn; + + may_learn = push->n_packets > 0; + if (op->ukey && op->ukey->xcache) { + xlate_push_stats(op->ukey->xcache, may_learn, push); + continue; + } + + if (!xlate_receive(udpif->backer, NULL, op->op.u.flow_del.key, + op->op.u.flow_del.key_len, &flow, &ofproto, + NULL, NULL, &netflow, NULL)) { + struct xlate_in xin; + + xlate_in_init(&xin, ofproto, &flow, NULL, push->tcp_flags, + NULL); + xin.resubmit_stats = push->n_packets ? push : NULL; + xin.may_learn = may_learn; + xin.skip_wildcards = true; + xlate_actions_for_side_effects(&xin); + + if (netflow) { + netflow_expire(netflow, &flow); + netflow_flow_clear(netflow, &flow); + netflow_unref(netflow); + } + } + } } - LIST_FOR_EACH_SAFE (upcall, next, list_node, upcalls) { - list_remove(&upcall->list_node); - upcall_destroy(upcall); + for (i = 0; i < n_ops; i++) { + struct udpif_key *ukey; + + /* If there's a udump, this ukey came directly from a datapath flow + * dump. Sometimes a datapath can send duplicates in flow dumps, in + * which case we wouldn't want to double-free a ukey, so avoid that by + * looking up the ukey again. + * + * If there's no udump then we know what we're doing. */ + ukey = (ops[i].udump + ? ukey_lookup(revalidator, ops[i].udump) + : ops[i].ukey); + if (ukey) { + ukey_delete(revalidator, ukey); + } + } +} + +static void +revalidate_udumps(struct revalidator *revalidator, struct list *udumps) +{ + struct udpif *udpif = revalidator->udpif; + + struct dump_op ops[REVALIDATE_MAX_BATCH]; + struct udpif_flow_dump *udump, *next_udump; + size_t n_ops, n_flows; + unsigned int flow_limit; + long long int max_idle; + bool must_del; + + atomic_read(&udpif->flow_limit, &flow_limit); + + n_flows = udpif_get_n_flows(udpif); + + must_del = false; + max_idle = ofproto_max_idle; + if (n_flows > flow_limit) { + must_del = n_flows > 2 * flow_limit; + max_idle = 100; } - /* Process each element in the to-do list, constructing the set of - * operations to batch. */ n_ops = 0; - HMAP_FOR_EACH (miss, hmap_node, &fmb->misses) { - execute_flow_miss(miss, ops, &n_ops); + LIST_FOR_EACH_SAFE (udump, next_udump, list_node, udumps) { + long long int used, now; + struct udpif_key *ukey; + + now = time_msec(); + ukey = ukey_lookup(revalidator, udump); + + used = udump->stats.used; + if (!used && ukey) { + used = ukey->created; + } + + if (must_del || (used && used < now - max_idle)) { + struct dump_op *dop = &ops[n_ops++]; + + dump_op_init(dop, udump->key, udump->key_len, ukey, udump); + continue; + } + + if (!ukey) { + ukey = ukey_create(udump->key, udump->key_len, used); + hmap_insert(&revalidator->ukeys, &ukey->hmap_node, + udump->key_hash); + } + ukey->mark = true; + + if (!revalidate_ukey(udpif, udump, ukey)) { + dpif_flow_del(udpif->dpif, udump->key, udump->key_len, NULL); + ukey_delete(revalidator, ukey); + } + + list_remove(&udump->list_node); + free(udump); } - ovs_assert(n_ops <= ARRAY_SIZE(ops)); - /* Execute batch. */ - for (i = 0; i < n_ops; i++) { - opsp[i] = &ops[i]; + push_dump_ops(revalidator, ops, n_ops); + + LIST_FOR_EACH_SAFE (udump, next_udump, list_node, udumps) { + list_remove(&udump->list_node); + free(udump); } - dpif_operate(udpif->dpif, opsp, n_ops); +} - ovs_mutex_lock(&udpif->fmb_mutex); - atomic_read(&udpif->reval_seq, &new_reval_seq); - if (old_reval_seq != new_reval_seq) { - /* udpif_revalidate() was called as we were calculating the actions. - * To be safe, we need to assume all the misses need revalidation. */ - ovs_mutex_unlock(&udpif->fmb_mutex); - flow_miss_batch_destroy(fmb); - } else if (udpif->n_fmbs < MAX_QUEUE_LENGTH) { - udpif->n_fmbs++; - list_push_back(&udpif->fmbs, &fmb->list_node); - ovs_mutex_unlock(&udpif->fmb_mutex); - seq_change(udpif->wait_seq); - } else { - COVERAGE_INC(fmb_queue_overflow); - ovs_mutex_unlock(&udpif->fmb_mutex); - flow_miss_batch_destroy(fmb); +static void +revalidator_sweep__(struct revalidator *revalidator, bool purge) +{ + struct dump_op ops[REVALIDATE_MAX_BATCH]; + struct udpif_key *ukey, *next; + size_t n_ops; + + n_ops = 0; + + HMAP_FOR_EACH_SAFE (ukey, next, hmap_node, &revalidator->ukeys) { + if (!purge && ukey->mark) { + ukey->mark = false; + } else { + struct dump_op *op = &ops[n_ops++]; + + /* If we have previously seen a flow in the datapath, but didn't + * see it during the most recent dump, delete it. This allows us + * to clean up the ukey and keep the statistics consistent. */ + dump_op_init(op, ukey->key, ukey->key_len, ukey, NULL); + if (n_ops == REVALIDATE_MAX_BATCH) { + push_dump_ops(revalidator, ops, n_ops); + n_ops = 0; + } + } + } + + if (n_ops) { + push_dump_ops(revalidator, ops, n_ops); + } +} + +static void +revalidator_sweep(struct revalidator *revalidator) +{ + revalidator_sweep__(revalidator, false); +} + +static void +revalidator_purge(struct revalidator *revalidator) +{ + revalidator_sweep__(revalidator, true); +} + +static void +upcall_unixctl_show(struct unixctl_conn *conn, int argc OVS_UNUSED, + const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED) +{ + struct ds ds = DS_EMPTY_INITIALIZER; + struct udpif *udpif; + + LIST_FOR_EACH (udpif, list_node, &all_udpifs) { + unsigned int flow_limit; + size_t i; + + atomic_read(&udpif->flow_limit, &flow_limit); + + ds_put_format(&ds, "%s:\n", dpif_name(udpif->dpif)); + ds_put_format(&ds, "\tflows : (current %"PRIu64")" + " (avg %u) (max %u) (limit %u)\n", udpif_get_n_flows(udpif), + udpif->avg_n_flows, udpif->max_n_flows, flow_limit); + ds_put_format(&ds, "\tdump duration : %lldms\n", udpif->dump_duration); + + ds_put_char(&ds, '\n'); + for (i = 0; i < udpif->n_handlers; i++) { + struct handler *handler = &udpif->handlers[i]; + + ovs_mutex_lock(&handler->mutex); + ds_put_format(&ds, "\t%s: (upcall queue %"PRIuSIZE")\n", + handler->name, handler->n_upcalls); + ovs_mutex_unlock(&handler->mutex); + } + + ds_put_char(&ds, '\n'); + for (i = 0; i < n_revalidators; i++) { + struct revalidator *revalidator = &udpif->revalidators[i]; + + /* XXX: The result of hmap_count(&revalidator->ukeys) may not be + * accurate because it's not protected by the revalidator mutex. */ + ovs_mutex_lock(&revalidator->mutex); + ds_put_format(&ds, "\t%s: (dump queue %"PRIuSIZE") (keys %"PRIuSIZE + ")\n", revalidator->name, revalidator->n_udumps, + hmap_count(&revalidator->ukeys)); + ovs_mutex_unlock(&revalidator->mutex); + } + } + + unixctl_command_reply(conn, ds_cstr(&ds)); + ds_destroy(&ds); +} + +/* Disable using the megaflows. + * + * This command is only needed for advanced debugging, so it's not + * documented in the man page. */ +static void +upcall_unixctl_disable_megaflows(struct unixctl_conn *conn, + int argc OVS_UNUSED, + const char *argv[] OVS_UNUSED, + void *aux OVS_UNUSED) +{ + atomic_store(&enable_megaflows, false); + udpif_flush_all_datapaths(); + unixctl_command_reply(conn, "megaflows disabled"); +} + +/* Re-enable using megaflows. + * + * This command is only needed for advanced debugging, so it's not + * documented in the man page. */ +static void +upcall_unixctl_enable_megaflows(struct unixctl_conn *conn, + int argc OVS_UNUSED, + const char *argv[] OVS_UNUSED, + void *aux OVS_UNUSED) +{ + atomic_store(&enable_megaflows, true); + udpif_flush_all_datapaths(); + unixctl_command_reply(conn, "megaflows enabled"); +} + +/* Set the flow limit. + * + * This command is only needed for advanced debugging, so it's not + * documented in the man page. */ +static void +upcall_unixctl_set_flow_limit(struct unixctl_conn *conn, + int argc OVS_UNUSED, + const char *argv[] OVS_UNUSED, + void *aux OVS_UNUSED) +{ + struct ds ds = DS_EMPTY_INITIALIZER; + struct udpif *udpif; + unsigned int flow_limit = atoi(argv[1]); + + LIST_FOR_EACH (udpif, list_node, &all_udpifs) { + atomic_store(&udpif->flow_limit, flow_limit); } + ds_put_format(&ds, "set flow_limit to %u\n", flow_limit); + unixctl_command_reply(conn, ds_cstr(&ds)); + ds_destroy(&ds); }