From: Scott Baker Date: Fri, 18 Apr 2014 17:46:25 +0000 (-0700) Subject: postprocessing support X-Git-Url: http://git.onelab.eu/?a=commitdiff_plain;h=c655e66a1da45b89a4871cbbeb465cdc132f640f;p=plstackapi.git postprocessing support --- diff --git a/planetstack/hpc_wizard/bigquery_analytics.py b/planetstack/hpc_wizard/bigquery_analytics.py index f50a9ac..2e65707 100644 --- a/planetstack/hpc_wizard/bigquery_analytics.py +++ b/planetstack/hpc_wizard/bigquery_analytics.py @@ -40,6 +40,15 @@ HOUR_MS = 60*60*1000 mappings = {} reverse_mappings = {} +def to_number(s): + try: + if "." in str(s): + return float(s) + else: + return int(s) + except: + return 0 + class MappingException(Exception): pass @@ -108,6 +117,88 @@ class BigQueryAnalytics: return result + """ Filter_results, groupby_results, do_computed_fields, and postprocess_results + are all used for postprocessing queries. The idea is to do one query that + includes the ungrouped and unfiltered data, and cache it for multiple + consumers who will filter and group it as necessary. + + TODO: Find a more generalized source for these sorts operations. Perhaps + put the results in SQLite and then run SQL queries against it. + """ + + def filter_results(self, rows, name, value): + result = [row for row in rows if row.get(name)==value] + return result + + def groupby_results(self, rows, groupBy=[], sum=[], count=[], avg=[], maxi=[]): + new_rows = {} + for row in rows: + groupby_key = [row.get(k, None) for k in groupBy] + + if str(groupby_key) not in new_rows: + new_row = {} + for k in groupBy: + new_row[k] = row.get(k, None) + + new_rows[str(groupby_key)] = new_row + else: + new_row = new_rows[str(groupby_key)] + + for k in sum: + new_row["sum_" + k] = new_row.get("sum_" + k, 0) + to_number(row.get(k,0)) + + for k in avg: + new_row["avg_" + k] = new_row.get("avg_" + k, 0) + to_number(row.get(k,0)) + new_row["avg_base_" + k] = new_row.get("avg_base_"+k,0) + 1 + + for k in maxi: + new_row["max_" + k] = max(new_row.get("max_" + k, 0), to_number(row.get(k,0))) + + for k in count: + new_row["count_" + k] = new_row.get("count_" + k, 0) + 1 + + for row in new_rows.values(): + for k in avg: + row["avg_" + k] = float(row["avg_" + k]) / row["avg_base_" + k] + del row["avg_base_" + k] + + return new_rows.values() + + def do_computed_fields(self, rows, computed=[]): + computedFieldNames=[] + for row in rows: + for k in computed: + if "/" in k: + parts = k.split("/") + computedFieldName = "computed_" + parts[0].replace("%","")+"_div_"+parts[1].replace("%","") + try: + row[computedFieldName] = to_number(row[parts[0]]) / to_number(row[parts[1]]) + except: + pass + + if computedFieldName not in computedFieldNames: + computedFieldNames.append(computedFieldName) + return (computedFieldNames, rows) + + def postprocess_results(self, rows, filter={}, groupBy=[], sum=[], count=[], avg=[], computed=[], maxi=[], maxDeltaTime=None): + sum = [x.replace("%","") for x in sum] + count = [x.replace("%","") for x in count] + avg = [x.replace("%","") for x in avg] + computed = [x.replace("%","") for x in computed] + maxi = [x.replace("%","") for x in maxi] + + for (k,v) in filter.items(): + rows = self.filter_results(rows, k, v) + + if maxDeltaTime is not None: + maxTime = max([float(row["time"]) for row in rows]) + rows = [row for row in rows if float(row["time"])>=maxTime-maxDeltaTime] + + (computedFieldNames, rows) = self.do_computed_fields(rows, computed) + sum = sum + computedFieldNames + rows = self.groupby_results(rows, groupBy, sum, count, avg, maxi) + return rows + def remap(self, match): if not self.tableName in mappings: raise MappingException("no mapping for table %s" % self.tableName)