BootManager Technical
Documentation

Aaron Klingaman <al k@bsar okasoft. cone

Table of Contents

L OVEIVIBIW ettt ettt e et et e et et et e e et et e e e et e e e eaas 1
A 00010 10] 1 1< 011 TP 1
S o 10 £ 0o o L= PP PTRPPRRPPN 2
4. Management Authority NOdE FIEldSccuiiniiiii e 2
O oo = o 2
R 00 o U= (=Y 2
G TR oo o = - (= 2
5. Existing Management Authority APl CallSooouiiiiii e 3
6. New Management Authority API CallScouiii i 3
6.1. NOde AULNENLICALIONccvuiiii ettt e e e 3
B.2. NEW AP CallS ... 4
7. Core SOftware PaCKageovuuiiiieie e e e 5
7.1. BootManager FIOW Chartcc.oviniiiiii e e e 5
7.2. EXample EXECULION SESSIONiviiieiiei e et e e e e e e e e e e e e e e e e e e eaneees 6
7.3. BOOt CD ENVIFONMENT ...ietiiiieiiiee ettt et e e e e e e et e e e e eenaas 7
7.4. Node Configuration Fil€Soovuiiiii e 7
7.5. BootManager Configurationocuuviiiiieiiee e e e e e e e e 8
7.6. Installer Hardware DELECHIONcoeuuiiiiiiii et 10
8. Backward Compatibilitycc.oiieiiiii e 11

1. Overview

This document describes the implementation of the package called the BootManager at a technical level.
The BootManager is used in conjunction with the PlanetLab BootCD to securely boot nodes, including
remote installation, debugging, and validation. It is the primary method used by the PlanetLab Central
Management Authority (MA) to manage nodes.

2. Components

The entire BootManager system consists of several primary components. These are:

» Theexigting, stardard MA provided calls to allow principals to add and manage node records, and a
new call to generate node-specific configuration files

* New MA API callswith anew authentication mechanism for node-based MA calls

* A code package to be run in the boot cd environment on nodes containing core install/validate/boot
logic

The intention with the BootManager system is to send the same script to al nodes (consisting of the core
BootManager code), each time the node starts. Then, the BootManager will run and detiremine which

BootManager Tech-
nical Documentation

operationsto perform on the node, based on its state of installation. All state based logic for the node boot,
install, debug, and reconfigure operations are contained in one place; there is no boot state specific logic
located on the MA servers.

3. Soure Code

All BootManager source code is located in the repository 'bootmanager' on the PlanetLab CVS system.
For information on how to access CV'S, consult the PlanetLab website. Unless otherwise noted, al file
references refer to this repository.

4. Management Authority Node Fields

The following MA database fields are directly applicable to the BootManager operation, and to the node-
related API calls (detailed below).

4.1. node_id

An integer unique identifier for a specific node.

4.2. node_key

Thisisaper-node, unique value that forms the basis of the node authentication mechanism detailed below.
When a new node record is added to the MA by a principal, it is automatically assigned a new, random
key, and distributed out of band to the nodes. This shared secret is then used for node authentication. The
contents of node_key are generated using this command:

openssl rand -base64 32

Any = (equals) characters are removed from the string.

4.3. boot_state

Each node always has one of four possible boot states, stored asastring, refered to asboot_state. These are:
1 inst

Install. The boot state cooresponds to a new node that has not yet been installed, but record of it does
exist. When the BootManager starts, and the node is in this state, the user is prompted to continue
with the installation. The intention here isto prevent a non-PlanetLab machine (like a user's desktop
machine) from becoming inadvertantly wiped and installed with the PlanetLab node software. This
isthe default state for new nodes.

2. 'rins

Reinstall. In this state, anode will reinstall the node software, erasing anything that might have been
on the disk before.

3. 'boot'

Boot to bring a node online. This state cooresponds with nodes that have sucessfully installed, and
can be chain booted to the runtime node kernel.

BootManager Tech-
nical Documentation

ldbgl

Debug. Regardless of whether or not a machine has been installed, this state sets up a node to be de-
bugged by administrators. In debug mode, no node softwareis running, and the node can be accessed
remotely by administrators.

5. Existing Management Authority API Calls

These calls, take from the PlanetLab Core Specification and extended with additional parameters, are
used by principals to maintain the set of nodes managed by a MA. See the Core Specification for more
information. The MA may providean easy to useinterface, such asawebinterface, that callsthese directly.

AddNode(authentication, node_values)

Add a new node record. node_values contains hostname, ip address and other network settings, and
the new fields: boot_state. The resultant node id is returned.

UpdateNode(authentication, node _id, update values)

Update an existing node record. update_values can include hostname, ipaddress, and the new fields:
boot_state.

DeleteNode(authentication, node id)

Delete a node record.

6. New Management Authority API Calls

The API cdls available as part of the MA API that are intended to be run by principals leverage existing
authentication mechanisms. However, the API calls described below that will be run by the nodes them-
selves need a new authentication mechanism.

6.1. Node Authentication

Asis done with other MA API calls, the first parameter to all BootManager related calls will be an au-
thentication structure, consisting of these named fields:

AuthMethod

The authentication method, only 'hmac' is currently supported

node id

The node id, contained in the configuration file on the node.

node_ip

The node's primary | P address. Thiswill be checked with the node_id against MA records.
value

The authentication string, depending on method. For the 'hmac' method, a hash for the call using the
HMAC agorithm, made from the parameters of the call and the key contained on the configuration
file. For specifics on how thisis created, see below.

BootManager Tech-
nical Documentation

Authentication is succesful if the MA is able to create the same hash from the values usings its own copy
of the NODE_KEY. If the hash values to not match, then either the keys do not match or the values of the
call were modified in transmision and the node cannot be authenticated.

Both the BootManager and the authentication functions at the MA must agree on a method for creating
the hash values for each call. This hash is essentially a finger print of the method call, and is created by
this algorithm:

1. Takethevalue of every part of each parameter, except the authentication structure, and convert them
to strings. For arrays, each element is used. For dictionaries, not only is the value of all the items
used, but the keys themselves. Embedded types (arrays or dictionaries inside arrays or dictionaries,
etc), also have all values extracted.

2. Alphabetically sort al the parameters.
3. Concatenate them into a single string.
4. Prepend the string with the method name and [, and append].

The implementation of this algorithm is in the function serialize params in the file source/BootAPI.py.
The same algorithm is located in the 'plc_api' repository, in the function serialize paramsinthefile PLC/
Auth.py.

The resultant string is fed into the HMAC algorithm with the node key, and the resultant hash value is
used in the authentication structure.

This authentication method makes a number of assumptions, detailed below.

1. All calls made to the MA are done over SSL, so the details of the authentication structure cannot
be viewed by 3rd parties. If, in the future, non-SSL based calls are desired, a sequence number or
some other value making each call unique will would be required to prevent replay attacks. In fact,
the current use of SSL negates the need to create and send hashes across - technically, the key itself
could be sent directly to the MA, assuming the connection is made to an HTTPS server with athird
party signed SSL certificate being verified.

2. Athough calls are done over SSL, they use the Python class libary xmlrpclib, which does not do SSL
certificate verification.

6.2. New API Calls

The calls available to the BootM anager, that accept the above authentication, are:
» BootUpdateNode(authentication, update values)
Update a hode record, including its boot state, primary network, or ssh host key.
» BootCheckA uthentication(authentication)
Simply check to seeif the node is recognized by the system and is authorized.
» BootGetNodeDetails(authentication)

Return details about a node, including its state, what networks the MA database has configured for the
node, and what the model of the node is.

BootManager Tech-
nical Documentation

« BootNotifyOwners(authentication, message, include pi, include_tech, include support)

Notify someone about an event that happened on the machine, and optionally include the site Principal
Investigators, technical contacts, and PlanetLab Support.

The new calls used by principals, using existing authentication methods, are:
» GenerateNodeConfigurationFile(authentication, node id)

Generate aconfiguration file to be used by the BootManager and the BootCD to configure the network
for the node during boot. This resultant file also contains the node id and node key values. A new
node _key is generated each time, invalidating old files. The full contents and format of this file is
detailed below.

7. Core Software Package

The BootManager core package, which is run on the nodes and contacts the MA API as necessary, is
responsible for the following major functiona units:

» Configuring node hardware and installing the PlanetL ab operating system
e Putting anode into a debug state so administrators can track down problems
* Reconfiguring an aready installed node to reflect new hardware, or changed network settings

* Booting an aready installed node into the PlanetL ab operating system

7.1. BootManager Flow Chart

Below is a high level flow chart of the BootManager, from the time it is executed to when it exits. This
core state machineis located in source/BootM anager.py.

BootManager Tech-
nical Documentation

Figure 1. BootM anager Flow Chart

Get full node
Read network details from
configuration, Authenticate Yes p! API, including
started by cd node id, and key with PLC successful ? all networks
from floppy disk and boot
state

Yes

Is boot state
new?

Is boot state
reinstall?

Is boot state
boot?

Is boot state
debug?

Yes Yes Yes Yes
Notify v v v
Setup debug Validate that node Check machine
environment is in fact installed . hardware and Prompt user to
network N confirm install
requirements
Notify tech A
c?ontt)ﬁacr:qu; Update node
p X configuration to Install
email match PLC Node confirmed?
Requirements)
Notify met?
Yes
3 v
No Add any unused Yes Update node
block devices to ‘ — | boot state to
extend partitions reinstall
Invoke installer to
Boot manager Boot reinstall machine
exits Yes successful ? No No
A
Send working
hardware
- configuration
Chain boot to to PLC Install]
installed node y succesful ? No Notify
kernel

Update node

I PLC API Calls I boot stateto | [¢—Yes
boot

7.2. Example Execution Session

Below is one exampl e session of the BootManager, for a new node being installed then booted.

BootManager Tech-
nical Documentation

Figure 2. Example Execution Session

\ Node \ \ Boot Manager \ \PLC (MA) Boot Server\

1. Boots from BootCD
(Linux loaded)

2. Hardware initialized

3. Read network config
from floppy

4. Contact PLC (MA)

v

5. Send boot manager

6. Execute boot mgr

> 7. Node key read into memory from floppy
8. Invoke Boot API

> 9. Verify node key, send
current node state

10. State = “install”, run installer
11. Update node state via Boot API

A

12. Verify node key,
change state to “boot”

13. Chain-boot node (no restart)

14. Node booted

7.3. Boot CD Environment

The BootManager needs to be able to operate under all currently supported boot cds. The new 3.0 cd
contains software the current 2.x cds do not contain, including the Logical Volume Manager (LVM) client
tools, RPM, and Y UM, among other packages. Given this requirement, the boot cd will need to download
as necessary the extra support filesit needs to run. Depending on the size of these files, they may only be
downloaded by specific stepsin the flow chart in figure 1, and thus are not mentioned.

See the PlanetL ab BootCD Documentation for more information about the current, 3.x boot cds, how they
are build, and what they provide to the BootManager.

7.4. Node Configuration Files

To remain compatible with 2.x boot cds, the format and existing contents of the configuration filesfor the
nodes will not change. There will be, however, the addition of three fields:

1. NET_DEVICE

If present, use the device with the specified mac address to contact the MA. The network on this
device will be setup. If not present, the device represented by 'eth0" will be used.

2. NODE_KEY

The unique, per-node key to be used during authentication and identity verification. Thisis a fixed
length, random value that is only known to the node and the MA database.

3. NODE_ID

The MA assigned node identifier.

BootManager Tech-
nical Documentation

An example of aconfiguration file for adhcp networked machine:

| P_VETHOD=" dhcp"

HOST_NAME="pl anet | ab- 1"

DOVAI N_NAME="cs. pri ncet on. edu”

NET_DEVI CE="00: 06: 5B: EC: 33: BB"

NODE_KEY="79ef be871722771675de604a227db8386bc6ef 482a4b74"
NODE_| D="121"

An example of aconfiguration file for the same machine, only with a statically assigned network address:

| P_MVETHOD="st ati c"

| P_ADDRESS="128.112. 139. 71"

| P_GATEWAY="128. 112. 139. 65"

| P_NETMASK="255. 255. 255. 192"

| P_NETADDR="128. 112. 139. 127"

| P_BROADCASTADDR="128. 112. 139. 127"
| P_DNS1="128. 112. 136. 10"

| P_DNS2="128. 112. 136. 12"
HOST_NAME="pl anet | ab- 1"

DOVAI N_NAME="cs. pri ncet on. edu”
NET_DEVI CE="00: 06: 5B: EC: 33: BB"
NODE_KEY="79ef be871722771675de604a227db8386hbc6ef 482a4b74"
NODE_I D="121"

Existing 2.x boot cdswill look for the configuration files only on afloppy disk, and the file must be named
'planet.cnf'. The new 3.x boot cds, however, will initially look for a file named ‘plnode.txt' on either a
floppy disk, or burned onto the cd itself. Alternatively, it will fall back tolooking for the original file name,
‘planet.cnf'. Thisinitia file reading is performed by the boot cd itself to bring the nodes network online,
so it can download and execute the BootM anager.

However, the BootManager will also need to identify the location of and read in thefile, so it can get the
extrafields not initially used to bring the network online (primarily node_key and node _id). Below isthe
search order that the BootManager will useto locate afile.

Configuration file location search order:

File name Floppy drive |Flashdevices |Root file sys- CDRom,in/usr/|{CDRom, in/usr
tem, in/ boot

plode.txt 1 2 4 5 6

planet.cnf 3

7.5. BootManager Configuration

All run time configuration options for the BootManager exist in asingle file located at source/configura-
tion. These values are described below. These values cannot be changed on the fly - they must be changed
and a new BootManager package built and signed.

* VERSI ON
The current BootManager version. During install, written out to /etc/planetlab/install_version
* BOOT_API _SERVER

The full URL of the API server to contact for authenticated operations.

8

BootManager Tech-
nical Documentation

TEVMP_PATH

A writable path on the boot cd we can use for temporary storage of files.

SYSI MG_PATH

The path werewe will mount the node logical volumes during any step that requires accessto the disks.
CACERT_PATH

Variable not used anymore.

NONCE_FI LE

Variable not used anymore.

PLCONF_DI R

The path that PlanetL ab node configuration files will be created in during install. This should not be
changed from /etc/planetlab, as this path is assumed in other PlanetLab components.

SUPPORT_FI LE_DI R

A path on the boot server where per-step additional files may be located. For example, the packages
that include the tools to allow older 2.x version boot cds to partition disks with LVM.

ROOT_SI ZE

During install, this setsthe size of the node root partition. It must be large enough to house all the node
operational software. It does not store any user/dlice files. Include 'G' suffix in this value, indicating
gigabytes.

SWAP_SI ZE

How much swap to configure the node with during install. Include 'G' suffix in this value, indicating
gigabytes.

SKI P_HARDWARE_REQUI REMENT_CHECK

Whether or not to skip any of the hardware requirement checks, including total disk and memory size
constraints.

M NI MUM_MEMORY

How much memory is reguired by a running PlanetLab node. If a machine contains less physica
memory than this value, theinstall will not proceed.

M NI MUM DI SK_SI ZE

The size of the small disk we are willing to attempt to use during the install, in gigabytes. Do not
include any suffixes.

TOTAL_M NI MUM DI SK_SI ZE
The size of all usable disks must be at least this sizse, in gigabytes. Do not include any suffixes.

I NSTALL_LANGS

BootManager Tech-
nical Documentation

Which language support to install. Thisvalueisused by RPM, and is used in writting /etc/rpm/macros
before any RPMs are installed.

« NUM AUTH_FAI LURES_BEFORE_DEBUG

How many authentication failures the BootManager is willing to except for any set of calls, before
stopping and putting the node into a debug mode.

7.6. Installer Hardware Detection

When anodeisbeing installed, the BootManager must identify which hardware the machine hasthat is ap-
plicableto arunning node, and configure the node properly so it can boot properly post-install. The general
procedurefor doing soisoutlineinthissection. Itisimplementedinthesour ce/ syst eni nf o. py file.

The process for identifying which kernel module needsto be load is:
1. Createalookup table of all modules, and which PCI ids coorespond to this module.
2. For each PCI device on the system, lookup its module in the first table.

3. If amodule is found, put in into one of two categories of modules, either network module or scsi
module, based on the PCI device class.

4. For each network module, write out an ‘eth<index>' entry in the modprobe.conf configuration file.

5. For each scsi module, write out a'scsi_hostadapter<index>' entry in the modprobe.conf configuration
file.

This processisfairly straight forward, and is smplified by the fact that we currently do not need support
for USB, sound, or video devices when the nodeisfully running. The boot cd itself usesasimilar process,
but includes USB devices. Consult the boot cd technical documentation for more information.

The creation of the PCI id to kernel module table lookup uses three different sources of information, and
merges them together into a single table for easier lookups. With these three sources of information, a
fairly comprehensive lookup table can be generated for the devices that PlanetLab nodes need to have
configured. They include:

1. Theingtaled/ usr/ shar e/ hwdat a/ pci t abl e file

Created at the time the hwdata rpm was built, this file contains mappings of PCI ids to devices for a
large number of devices. It isnot necessarily complete, and doesn't take into account the modul es that
are actualy available by the built PlanetLab kernel, which is a subset of the full set available (again,
PlanetL ab nodes do not have a use for network or video drivers, and thus are not typically built).

2. Fromthebuilt kernel, the modul es. pci map fromthe/ | i b/ modul es/ <ker nel ver si on>/
directory.

This file is generated at the time the kernel is installed, and pulls the PCI ids out of each module,
for the modules list they devices they support. Not all modules list al devices they sort, and some
contain wild cards (that match any device of a single manufacturer).

3. From the built kernel, the rodul es. dep fromthe/ | i b/ nodul es/ <ker nel ver si on>/ di-
rectory.

Thisfileisaso generated at thetimethekernel isinstalled, but lists the dependencies between various
modules. It is used to generate alist of modules that are actually available.

10

BootManager Tech-
nical Documentation

It should be noted here that SATA (Serial ATA) devices have been known to exist with both a PCl SC-
Sl device class, and with a PCl IDE device class. Under linux 2.6 kernels, all SATA modules need to
be listed in modprobe.conf under 'scsi_hostadapter' lines. This case is handled in the hardware loading
scripts by making the assumption that if an IDE device matches a loadable module, it should be put in
the modprobe.conf file, as 'real’ IDE drivers are all currently built into the kernel, and do not need to be
loaded. SATA devicesthat have aPCl SCSI device class are easily identified.

It is enssential that the modprobe.conf configuration file contain the correct drivers for the disks on the
system, if they are present, as during kernel installation the creation of the initrd (initial ramdisk) whichis
responsible for booting the system uses this file to identify which driversto include init. A failure to do
thistypicaly resultsin an kernel panic at boot with a'no init found' message.

8. Backward Compatibility

This section only applies to those interested in sections of the BootManager that exist for backward com-
patibility with nodes not containing the NODE_KEY . This does not affect any nodes added to the system
after deployment of the BootManager.

Given the large number of nodes in PlanetL ab, and the lack of direct physical access to them, the process
of updating all configuration files to include the new NODE_ID and NODE_KEY will take afairly sig-
nificant amount of time. Rather than delay deployment of the BootManager until all machines are updated,
alternative methods for aquiring these valuesis used for these nodes.

First, the NODE_ID value. For any machine already part of PlanetLab, there exists a record of its IP
address and MAC address in PlanetLab central. To get the NODE_ID value, if it is not located in the
configuration file, the BootM anager uses astandard HTTP POST request to aknown php page on the boot
server, sending the I|P and MAC address of the node. This php page queries the MA database (by using a
PHP page, not through the MA API), and returnsaNODE _ID if thenodeispart of PlanetLab, -1 otherwise.

Second, the NODE_KEY value. All Boot CDs currently in use, at the time they request a script from the
MA to run, send in the request arandomly generated value called aboot_nonce, usually 32 bytesor larger.
During normal BootManager operation, this value isignored. However, in the absense of anode key, we
can use thisvalue. Although it is not as secure as atypical node key (becauseit is not distributed through
external mechanisms, but is generated by the node itself), it can be used if we validate that the IP address
of the node making the request matches the MA record. This means that nodes behind firewalls can no
longer be alowed in this situation.

11

