
The PlanetLab Boot Manager
Aaron Klingaman <alk@cs.princeton.edu>

Abstract

This document outlines the design and policy decisions of a new PlanetLab component called the
Boot Manager. The Boot Manager encompasses several systems and all policy regarding how new
nodes are brought into the system, how they are authenticated with PlanetLab Central (PLC), what
authenticated operations they can perform, and what constitutes a node's identity.

Table of Contents
1. Overview ... 1
2. Terminology ... 2
3. Background .. 2

3.1. How Sites Become Part of PlanetLab .. 2
3.2. How Nodes Become Part of PlanetLab .. 3
3.3. Node Installation ... 3
3.4. Node Identity ... 4
3.5. Node Authentication .. 4

4. Recommendations .. 5
4.1. How PLC Will Identify Nodes ... 5
4.2. Authenticating Node Identity ... 6
4.3. Adding New Nodes ... 7
4.4. How To Remove Nodes .. 8
4.5. Node Installation ... 8

5. Conclusion ... 8
Bibliography .. 9

1. Overview
This document describes the history of and groups several previously separate, undocumented compon-
ents and policy decisions of the PlanetLab infrastructure into one logical group, which will be called the
Boot Manager. In addition, specific recommendations are made for changes and additions to these parts
to support new features and better security outlined in detail later. These include:

1. How new nodes are added to the PlanetLab system, and the chain of trust that accompanies that ad-
dition

2. How to prevent unauthorized nodes from becoming part of the system, and the consequences of
that happening

3. How any existing node authenticates itself with PlanetLab Central (PLC), and what operations can
it perform

4. What constitutes node identity, and, when this identity should and should not change

1

Not covered by this document are topics including node to node authentication, or any service or system
running after a node is fully booted and the Boot Manager is no longer applicable.

2. Terminology
Before continuing, terms used through this document, including what a site is, what nodes are, and what
PlanetLab consists of will be defined. Current organizational structure consists of groups of sites, usu-
ally a geographical location corresponding one to one with a company or university. These sites have
any number of users or researchers, including a principle investigator , or PI, responsible for the users,
and one or more technical contacts. Sites are usually composed of at least two machines running the
PlanetLab software, usually referred to as nodes. All user and node management operations are done
through a set of servers located in one physical location which is known as PlanetLab Central, or
PLC.There are also a set of PlanetLab administrators; not necessarily affiliated with a particular site.
PlanetLab then collectively refers to all sites and their nodes and users, and PlanetLab Central.

3. Background
3.1. How Sites Become Part of PlanetLab

A full discussion and evaluation of the process and security implications of sites becoming part of Plan-
etLab is outside the scope of this document. It will be assumed that the process is relatively secure, and
that user and PI accounts at that site are legitimate. However, it is necessary to provide some basic in-
formation about the process.

What does it mean for a site to be part of PlanetLab? Primarily:

1. The site's record (e.g. name, url, geographical location, contact information) is in the PLC database

2. There are a set of users (their email address, password, personal information) associated with the
site in the PLC database

3. The ability for those users and PIs to perform some operations at PLC, and gain direct access to the
nodes

The process for allowing new sites to become part of PlanetLab has been continually evolving since the
beginning of PlanetLab. Initially, the first sites were selected and invited, and record of their existence in
PLC was entered in by hand by an administrator. With a site now part of PlanetLab, users and PIs at
those sites could then register for accounts to perform operations at PLC. Privileged accounts, such as PI
accounts, were enabled by administrators. At the time, this administrative overhead was not a problem
given the relatively limited number of total sites.

Over time, parts of these operations have been streamlined. Now, a site can submit all their relevant info
on the PLC website, for review and approval by administrators. They also no longer require an explicit
invitation. With the creation of the PlanetLab Consortium, there is now an additional paperwork step be-
fore a site becomes a member of PlanetLab.

With the introduction of the additional consortium step, the process now exists as:

1. A site either requests to join PlanetLab by contacting administrators over email, or through other
external communication

2. Necessary consortium paper work is signed by all parties

The PlanetLab Boot Manager

2

3. PI(s) submit connect (join) requests with remaining site and personal information

4. Administrators verify that the PI is who they say they are, and enable their site and accounts at PLC

3.2. How Nodes Become Part of PlanetLab
After a site has been approved and added to PLC, they are required to install and make available to other
users at least two nodes (as per current policy).

In the first revisions of the PLC software, nodes were only added to the system by hand. Usually a PI or
technical contact would communicate the network settings of the node, and it was then added to PLC by
an administrator. This prevented any nodes that weren't part of PlanetLab to be recognized by PLC. No
mechanisms existed to ensure that the node's network (effectively its identity) was not hijacked by an-
other machine.

Since the beginning of PlanetLab, there have been little to no restrictions on what machines the Planet-
Lab software can run on. This is primarily due to the fact that all source code is now available, and it is
technically feasible for anyone to bring up a machine that is running the PlanetLab software, or closely
resembles it. What is important, however, is when these nodes become recognized by PLC, and then
available to the users via PLC. Otherwise, a user would have to go through non-PLC channels in order
to find these nodes. Even then, they could not use PLC to run their experiments on the nodes, because
PLC does not know about those nodes.

When a node becomes part of PlanetLab, it:

1. Is recognized by PLC as being at the site by its existence in our database

2. The existing node boot mechanisms allow the machine to come online after communicating its
identity to PLC

3. Researchers can use the node for their experiments by using administrative interfaces at PLC

Rather than adding each node by hand, the current system instead allows for an entire network subnet to
be authorized to contain nodes. When a site joins, a PLC administrator authorizes the subnet the nodes
will be on, and any machines on that network are allowed to become recognized by PLC automatically.
This had immediate advantages, primarily being one of not requiring overhead for PLC administrators to
add each node by hand as was done in the beginning. Given that a common interest was to see PlanetLab
grow in terms of number of nodes (as one metric), the assumption was made that allowing any node to
come online on an authorized subnet without explicit approval from an administrator or PI would benefit
everyone.

3.3. Node Installation
To date, there have been three major revisions of the software that installs a PlanetLab node. Not only
have the mechanisms in which the nodes get installed changed, but, under what context the installation
is running.

The first revision of the installer was primarily nothing more than a customized RedHat (version 7.3)
boot disk, with a PlanetLab specific post script to perform final initialization steps. The network settings,
and which packages to install were all stored on the disk, so a custom disk was generated on demand for
each node. Anyone with one of these disks could install a PlanetLab node.

The second revision of the installer was released in conjunction the release of the new PlanetLab boot
cd. The intention was not necessarily to have the node packages on the cd (as they would quickly go out

The PlanetLab Boot Manager

3

of date), but, to provide a mechanism to allow administrators to regain control of a machine, in the event
that the node was compromised, or the installed software was corrupted. The nodes were configured to
always start off the cd, and, rather than have a custom cd per node, the network settings were stored on a
floppy disk. Both the floppy disk and the boot cd were to remain in the machine at all times. The RedHat
installer, Anaconda [1], that was used prior to the boot cd was modified to run in the context of this boot
cd. This allowed us a great deal of flexibility, as the cd was built so that all it would do was:

1. Bring a full Linux system online, running only off the cd

2. Load any network and other drivers necessary, based on the hardware of the node

3. Configure the network interface with the settings from the floppy disk

4. Contact a special PLC boot server, and download and execute a script.

The boot cd uses HTTPS to contact the boot server, and uses a certification authority (CA) certificate to
verify the identity of the machine at PLC. This way, it can be assured that the installation of a particular
node is correct, in at least that all packages originated from PLC. The script downloaded by the boot cd
for a node depends on the current state of that node, in the PLC database. The PLC database must identi-
fy the node in order to accomplish that. That is covered below, in Node Identity.

The third and current version of the installer still runs in the context of the boot cd, but was a complete
rewrite to better handle packages, and remove much unneeded complexity in the previous installer.

3.4. Node Identity
In the first revisions of the PlanetLab software, nodes were solely identified by their network settings,
primarily, the hostname and the physical address of the network adapter (MAC address). This worked
well then, as this set of information was unique, and allowed for the direct mapping of node identity to a
physical machine. It was stored this way in the PLC database as well.

As the design of the database progressed, the PlanetLab software needed to identify nodes not by any
one aspect of the physical machine, but by a more generic identifier (as this identifier needed to be used
internally to refer to other aspects of a node, like which site it is at) - what has been called a node id. Al-
though better in some respects, there are still drawbacks. For example, deleting a node entry from the
database and recreating a similar one could result in a new node id, when nothing on the node itself
really has changed. These problems are primarily due to a lack of policy being documented, and instead,
the implementation details defining the policy.

Currently, when a node requests a script from the boot server as the last step of the boot cd operation, it
sends to PLC the output of the program 'ifconfig' (among other data), which contains the network set-
tings the machine was configured with. From the network settings, the primary MAC address is extrac-
ted by PLC and used to check the database if the node exists. Here, the MAC address is used to look up
a corresponding numeric node id, which is used internally. The MAC address and the node id are tied -
if a new MAC address is used, a new node id will be generated. If the node does exist, an appropriate
script is sent in response, based on the current node state. Again, this was fine, as long as a node was
identified correctly.

3.5. Node Authentication
What does a node (or PI, for that matter) have to do to prove that it is one of the real, or legitimate, Plan-
etLab nodes? At first, this was not an issue because the nodes were added to the system by administrat-
ors, and all communication paths led only from PLC to the nodes. Everything was downloaded from
PLC, including information about what experimenters can use the system, what packages to install for
updates. For this, a node only needed to send enough information in the request to identify itself with

The PlanetLab Boot Manager

4

PLC. From the PLC point of view, it did not matter which node downloaded the packages for a node, so
long as the node was identified correctly and received the packages it was supposed to. This was accept-
able since the node was added to PLC by hand, thus it was already 'authenticated'. During this period, a
number of assumptions were made:

1. That a rogue node with the same network settings would not be a problem, as the site technical con-
tacts could prevent or detect that

2. The ability to check to ensure a particular node was already authenticated was not done (aside from
assuring that the host's public ssh key fingerprint did not change from one login to the next)

As more previously manual steps became automated, a number of situations came up in which a node
would need to initiate and perform some operation at PLC. There is only a small set of these operations,
and are limited to items such as, adding a node to the system (under a previously authorized subnet),
changing the 'boot state' (a record of if the machine is being installed, or is in a debug mode) of a node,
or, uploading the logs of an installation.

To handle this new node authentication, a 32 byte random nonce value was generated and sent to PLC
during node boot time (at the same time the network settings are sent). The nonce value in the PLC data-
base for that particular node is updated if the node is identified correctly, and is used for authenticating
subsequent, node initiated operations. Then, for example, when a node install finished, a node could re-
quest it's state updated, and all it would need to do would be to resend its network settings, and the ori-
ginal nonce for authentication. If the nonce in the database matched what was sent, then the requested
operation was performed.

The problem here is obvious: now, any node that can be identified is essentially automatically authentic-
ated. For a node to be identified, it has to be in the database, and, new nodes can be automatically added
on any authorized subnets without intervention of an administrator or tech contact. With this system, it is
trivial to add a rogue node to the system, even at a different site that was not originally authorized, be-
cause the whole system is based on what a node sends PLC, which is trivial to spoof.

4. Recommendations
4.1. How PLC Will Identify Nodes

Before any suggestions on what to change regarding the node identity policy can me made, the question,
what makes a node a node, should be answered. This primarily depends on who is asking. From an ad-
ministrators point of view, a node could be tied to a particular installation of the software. Reinstall the
node, and it becomes a new node with a new identity. However, from an end user's perspective, the ma-
chine still has the same network address and hostname, and their software simply was removed. For
them, changing the node identity in this situation does not make any sense, and usually causes them un-
necessary work, as they have to re-add that machine to their experiment (because, as far as the PLC
database is concerned, the node never existed before then). This question is particularly import for sev-
eral reasons:

1. It gives users a way to identify it, in order to use it for their research

2. The node identity could be used by other external systems, as a universal identifier

The following recommendation is made for a new node identity policy. Rather that tie node identity to
some attribute of the physical machine, such as its hardware configuration as is currently, instead, PLC
will assign an arbitrary, unused identity to the node upon its creation, and that identity will be stored loc-
ally at the node (most likely on an external medium like floppy disk). Then as long as that identity is still

The PlanetLab Boot Manager

5

on the node, any hardware or software changes will not necessarily require a change of the node iden-
tity. This will then allow PLC, if necessary in the future, to change the node identity policy as needed.

The following policy will apply to this new node identity:

1. In the past, a tech contact was able to change the network settings on a node automatically by up-
dating the network configuration floppy. Now, these changes will have to be done at PLC (with the
option of assigning a new node identity). Thus, the node's network settings (excluding MAC ad-
dress), are tied to the identity.

2. Attempting to move the node identity to another machine will halt that machine from being used by
researchers until the change is dealt with by either a PLC administrator or a site technical contact. If
approved, the node would reconfigure itself appropriately.

3. A node identity cannot be reused after the node has been deleted from the PLC database.

4. The node identity will not change across software reinstalls, changes of the harddisks or network
adapters (as long as the network settings remain), or any other hardware changes.

Given the current design of the PLC database, there is still a need to use, at least internally, a numeric
based node identifier. Other software and APIs available to researchers also use this identifier, so the
question becomes whether or not the above policy can be applied to it without significantly changing
either the PLC software or the researcher's experiments. Answering this question is beyond the scope of
this document, and is left as implementation decision.

4.2. Authenticating Node Identity
It is clear that the previous model for authentication will need to change, which assumes with identity
comes authorization, to one where a node can present its identity, then authenticate it as a separate step
in order to become authorized. During the boot process, a node can still send sufficient information to
identify itself, but, a new system is required to prove that what it sends in fact does come from the node,
and not someone attempting to impersonate the node. This is especially important as node identities are
made public knowledge.

Authentication in distributed systems is a fairly widely researched problem, and the goal here is not to
build a new mechanism from scratch, but rather to identify an existing method that can be used to fulfill
our requirements. Our requirements are fairly simple, and include:

1. The ability to trace the origin of a node added to PlanetLab, including the party responsible for the
addition.

2. Authenticating requests initiated by nodes to change information at PLC. These requests involve
little actual communication between the nodes and PLC, and the overhead for authenticating each
request is small given the number and frequency of them. This also means the need to open an au-
thenticated channel for multiple requests will not be necessary.

Given the public nature of PlanetLab, the need to encrypt data during these system processes to prevent
other parties from seeing it is not necessary (also, simply hiding the details of the authentication process
is not a valid security model). Assuring the requests are not modified during transmission is necessary,
however. A public/private key pair system could be used, where each site would be responsible for gen-
erating a private key, and signing their node's identity. PLC could then have a list of all public keys, and
could validate the identities. However, this is not recommended for several reasons:

The PlanetLab Boot Manager

6

1. It places an additional burden on the site to generate and keep secure these private keys. Having a
private key for each node would be unreasonable, so one key would be used for all nodes at a par-
ticular site.

2. By using one key for all nodes, it not only increases the cost of a compromised key (all identities
would have to be resigned), but, use of the key to add unauthorized nodes could not as easily be de-
tected.

3. Differences in versions of the software used to generate keys would have to be handling, increasing
the complexity of supporting a system at PLC

To fulfill the above requirements for node identity, the recommendation is made to use a message au-
thenticate system using hash functions and shared secrets such as in [2]. In such a system, the shared
secret (or refered to as key, but not in the public/private key pair sense), is as simple as a fixed size, ran-
dom generated number. Of primary importance in such a system is the control and distribution of the
key.

Securing a key at PLC is relatively straight forward. Only a limited number of administrators have direct
access to the PLC database, so keys can be stored there with relative confidence, provided access to the
PLC machines is secure. Should any of these keys be compromised, all keys would need to be regener-
ated and redistributed, so security here is highly important.

However, securing the secret on the client side, at the node, is more difficult. The key could be placed
on some removable media that will not be erased, such as a floppy disk or a small usb based disk, but
mechanisms must be in place to prevent the key from being read by anyone except the boot manager and
the boot cd processes, and not by any users of the machine. In a situation like this, physical security is a
problem. Anyone who could get access to the machine can easily copy that key and use it elsewhere.
One possible solution to such a problem is to instead make the key a combination of two different val-
ues, one stored on the floppy disk, the other being a value that is only known to the PI, and must be
entered by hand for each message authentication. Then, in order to compromise the entire key, not only
must the attacker have physical access to the machine, but would have to know the other half of the key,
which would not be recorded anywhere except in the PLC database. This ultimately cannot work be-
cause of the need for human intervention each time a node needs to be authenticated.

Ultimately, the best solution for the circumstances here is to leave the entire key on the disk; leave phys-
ical security to the individual sites; and put checks in place to attempt to identify if the key is being re-
used elsewhere. As before, the post-boot manager system (running the real PlanetLab kernel), can be
configured to prevent the floppy disk from being read by any logged in user (local or not).

If the key was identified as being reused elsewhere, appropriate actions would include deleting the key
from the PLC database (effectively halting any use of it), and notifying the technical contacts and PIs at
the site. If necessary, they could regenerate a new keys after corrective actions had been taken.

4.3. Adding New Nodes
It is important to have control over the process for which nodes are added to the PlanetLab system, and
to be able to derive which party is responsible for that machine at any point in the future. This is because
several different parties come to PLC for the list of nodes, and PLC needs to provide a list that only in-
cludes nodes that have been authorized. For one, the researchers who are looking to run experiments
need to identify a set of PlanetLab machines. Two, non-PlanetLab related people who may have traffic
related concerns or complaints, and are trying to track down who is responsible for a node and/or the re-
searcher's experiment.

It is possible to envision at least several scenarios where having a non-authorized node in the PLC data-
base would be a problem. One of which would be a researcher inadvertently using a rogue node (those
who installed it could easily have root access) to run an experiment, and, that experiment being com-
promised across all of PlanetLab, or the results from their research being tampered with. Another could

The PlanetLab Boot Manager

7

include a rogue node being used for malicious purposes, such as a spam relay, and the (initial) blame be-
ing directed at PLC, simply because of the association.

As shown previously, simply authorizing an entire network is insufficient, as the ability to identify who
authorized an individual node on that subnet is unknown. Having the PlanetLab administrators add all
nodes by hand incorporates too much overhead, given the number of nodes and the current growth of
PlanetLab. This also places the administrators in a state where they may not have the contact informa-
tion for the responsible party. A decent compromise will be to require either the PIs or technical contacts
at each site to enter in their own nodes using the existing PLC interfaces. Given that one of the existing
steps for bringing a node online involves generating a floppy-based network configuration file on the
PlanetLab website, this process can be extended to also add record of the nodes with little additional im-
pact to PIs and tech contacts. At this point, the per-node shared secret and a node identity necessary for
node authentication would be generated and saved at PLC as well.

4.4. How To Remove Nodes
There may be the need for an administrator, PI, or technical contact to remove a node from the system.
This can be done simply by removing the node record from the PLC database, thereby preventing it
from successfully authenticating at boot time. In addition, a node could be effectively disabled (but not
removed), by deleting the private key for that node from the database. Once restarted, it would not be
able to come back online until a new key is generated.

4.5. Node Installation
The node installer shall be integrated into the Boot Manager, rather than continue to be a standalone
component. This will allow the boot manager, when appropriate, to invoke the installer directly.

5. Conclusion
As outlined above, this new system effectively encapsulates a new policy for node identity, and a new
mechanism for verifying the node identity and authenticating node-initiated PLC changes. In total, the
boot manager collectively will consist of:

1. A set of interfaces at PLC that are used to perform authenticated, node-initiated changes.

2. A set of interfaces at PLC that are used to add new nodes to the system.

3. A package downloaded by the boot cd at every boot, which used to install nodes, update configura-
tions, or boot nodes, using the interfaces above.

4. The policy for identifying nodes, and when that identity should change.

Given the above recommendations, the boot strap process and the chain of trust for adding a new node
now exists as detailed below. A site, a principle investigator, and a tech contact are assumed to be
already present, and authorized.

1. The technical contact downloads a boot cd for the new node. Since the HTTPS certificate for the
public web server is signed by a trusted third party, the image can be verified by either ensuring it
was downloaded via HTTPS, or by downloading the PlanetLab public key and verifying a signed
copy of the cd, also available on the website.

2. The now validated boot cd contains the CA certificate for the boot server, so any host initiated
communication that is using this certificate on the cd can be sure that the server is in fact the Plan-

The PlanetLab Boot Manager

8

etLab boot server.

3. The PI logs into their account on the PlanetLab website, also over HTTPS and verifying the SSL
certificates. Once logged in, they use a tool to generate a configuration file for the new node, which
includes the network settings and node identity. During this configuration file generation, record of
the nodes existence is entered into PLC, and a random, shared secret is generated for this machine.
The shared secret is saved in the PLC database, and is also included in this configuration file.

4. Both the cd and the new configuration file (on a floppy disk), are inserted into the machine. The
machine is configured such that it always starts off the cd, and never the floppy disk or the ma-
chines hard disks.

5. After the boot cd finishes bringing the machine online, loading all hardware and network settings
from the floppy, it contacts the boot server using HTTPS and the certificate on the cd, and down-
loads and executes the boot manager.

6. The boot manager then contacts PLC to get the current state of the node it is currently running on.

7. Based on this state, the boot manager can either continue booting the node (if already installed), in-
stall the machine if necessary, or take any other action as appropriate. Since this is a new machine,
the installation will be initiated.

8. After successful installation, the boot manager needs to change the state of the node such that the
next time it starts, it will instead continue the normal boot process. The boot manager contacts PLC
and requests a change of node state. This request consists of the node identity, data pertaining to the
request itself, and a message authentication code based on the shared secret from the floppy disk
and the request data.

9. The boot manager, in order to authenticate the request, generates its own message authentication
code based on the submitted data and its own copy of the shared secret. If the message authenticate
codes match, then the requested action is performed and the boot manager notified of success.

10. If the node is already installed, and no actions are necessary, the machine is booted. To protect the
shared secret on the floppy disk from users of the machine, the kernel during runtime cannot access
the floppy disk. At this point, control of the system is removed from the boot manager and run-time
software takes control.

Any action the boot manager may need to take that requires some value to be changed in PLC can use
the steps outlined in 8 through 10. As an extra precaution to prevent unauthorized nodes from booting,
the process in step 7 should also use the authentication steps in 8 through 10.

Given that the shared secret on the floppy disk can only be accessed in the cd environment (when the
boot manager is running and the boot cd kernel provides floppy disk access), any operation that a node
can perform that results in a change in data at PLC must be performed during this stage. During runtime,
a node can still present its identity to PLC to receive node-specific packages or configuration files, but
all interfaces that provide these packages or files cannot change any record or data at PLC.

Bibliography
[1] Anaconda [http://rhlinux.redhat.com/anaconda].

[2] Message Authentication using Hash Functions - The HMAC construction. Mihir Bellare, Ran Canetti, and Hugo
Krawczyk. Spring 1996.

The PlanetLab Boot Manager

9

http://rhlinux.redhat.com/anaconda

