/*- * Copyright (c) 1998-2002 Luigi Rizzo, Universita` di Pisa * Portions Copyright (c) 2000 Akamba Corp. * All rights reserved * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD: head/sys/netinet/ipfw/ip_dummynet.c 200601 2009-12-16 10:48:40Z luigi $"); #define DUMMYNET_DEBUG #include "opt_inet6.h" /* * This module implements IP dummynet, a bandwidth limiter/delay emulator * used in conjunction with the ipfw package. * Description of the data structures used is in ip_dummynet.h * Here you mainly find the following blocks of code: * + variable declarations; * + heap management functions; * + scheduler and dummynet functions; * + configuration and initialization. * * NOTA BENE: critical sections are protected by the "dummynet lock". * * Most important Changes: * * 011004: KLDable * 010124: Fixed WF2Q behaviour * 010122: Fixed spl protection. * 000601: WF2Q support * 000106: large rewrite, use heaps to handle very many pipes. * 980513: initial release * * include files marked with XXX are probably not needed */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* IFNAMSIZ, struct ifaddr, ifq head, lock.h mutex.h */ #include #include #include /* ip_len, ip_off */ #include #include #include #include /* ip_output(), IP_FORWARDING */ #include /* various ether_* routines */ #include /* for ip6_input, ip6_output prototypes */ #include /* * We keep a private variable for the simulation time, but we could * probably use an existing one ("softticks" in sys/kern/kern_timeout.c) */ static dn_key curr_time = 0 ; /* current simulation time */ static int dn_hash_size = 64 ; /* default hash size */ /* statistics on number of queue searches and search steps */ static long searches, search_steps ; static int pipe_expire = 1 ; /* expire queue if empty */ static int dn_max_ratio = 16 ; /* max queues/buckets ratio */ static long pipe_slot_limit = 100; /* Foot shooting limit for pipe queues. */ static long pipe_byte_limit = 1024 * 1024; static int red_lookup_depth = 256; /* RED - default lookup table depth */ static int red_avg_pkt_size = 512; /* RED - default medium packet size */ static int red_max_pkt_size = 1500; /* RED - default max packet size */ static struct timeval prev_t, t; static long tick_last; /* Last tick duration (usec). */ static long tick_delta; /* Last vs standard tick diff (usec). */ static long tick_delta_sum; /* Accumulated tick difference (usec).*/ static long tick_adjustment; /* Tick adjustments done. */ static long tick_lost; /* Lost(coalesced) ticks number. */ /* Adjusted vs non-adjusted curr_time difference (ticks). */ static long tick_diff; static int io_fast; static unsigned long io_pkt; static unsigned long io_pkt_fast; static unsigned long io_pkt_drop; /* * Three heaps contain queues and pipes that the scheduler handles: * * ready_heap contains all dn_flow_queue related to fixed-rate pipes. * * wfq_ready_heap contains the pipes associated with WF2Q flows * * extract_heap contains pipes associated with delay lines. * */ MALLOC_DEFINE(M_DUMMYNET, "dummynet", "dummynet heap"); static struct dn_heap ready_heap, extract_heap, wfq_ready_heap ; static int heap_init(struct dn_heap *h, int size); static int heap_insert (struct dn_heap *h, dn_key key1, void *p); static void heap_extract(struct dn_heap *h, void *obj); static void transmit_event(struct dn_pipe *pipe, struct mbuf **head, struct mbuf **tail); static void ready_event(struct dn_flow_queue *q, struct mbuf **head, struct mbuf **tail); static void ready_event_wfq(struct dn_pipe *p, struct mbuf **head, struct mbuf **tail); #define HASHSIZE 16 #define HASH(num) ((((num) >> 8) ^ ((num) >> 4) ^ (num)) & 0x0f) static struct dn_pipe_head pipehash[HASHSIZE]; /* all pipes */ static struct dn_flow_set_head flowsethash[HASHSIZE]; /* all flowsets */ static struct callout dn_timeout; extern void (*bridge_dn_p)(struct mbuf *, struct ifnet *); #ifdef SYSCTL_NODE SYSCTL_DECL(_net_inet); SYSCTL_DECL(_net_inet_ip); SYSCTL_NODE(_net_inet_ip, OID_AUTO, dummynet, CTLFLAG_RW, 0, "Dummynet"); SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, hash_size, CTLFLAG_RW, &dn_hash_size, 0, "Default hash table size"); #if 0 /* curr_time is 64 bit */ SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, curr_time, CTLFLAG_RD, &curr_time, 0, "Current tick"); #endif SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, ready_heap, CTLFLAG_RD, &ready_heap.size, 0, "Size of ready heap"); SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, extract_heap, CTLFLAG_RD, &extract_heap.size, 0, "Size of extract heap"); SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, searches, CTLFLAG_RD, &searches, 0, "Number of queue searches"); SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, search_steps, CTLFLAG_RD, &search_steps, 0, "Number of queue search steps"); SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, expire, CTLFLAG_RW, &pipe_expire, 0, "Expire queue if empty"); SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, max_chain_len, CTLFLAG_RW, &dn_max_ratio, 0, "Max ratio between dynamic queues and buckets"); SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_lookup_depth, CTLFLAG_RD, &red_lookup_depth, 0, "Depth of RED lookup table"); SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_avg_pkt_size, CTLFLAG_RD, &red_avg_pkt_size, 0, "RED Medium packet size"); SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_max_pkt_size, CTLFLAG_RD, &red_max_pkt_size, 0, "RED Max packet size"); SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_delta, CTLFLAG_RD, &tick_delta, 0, "Last vs standard tick difference (usec)."); SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_delta_sum, CTLFLAG_RD, &tick_delta_sum, 0, "Accumulated tick difference (usec)."); SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_adjustment, CTLFLAG_RD, &tick_adjustment, 0, "Tick adjustments done."); SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_diff, CTLFLAG_RD, &tick_diff, 0, "Adjusted vs non-adjusted curr_time difference (ticks)."); SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_lost, CTLFLAG_RD, &tick_lost, 0, "Number of ticks coalesced by dummynet taskqueue."); SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, io_fast, CTLFLAG_RW, &io_fast, 0, "Enable fast dummynet io."); SYSCTL_ULONG(_net_inet_ip_dummynet, OID_AUTO, io_pkt, CTLFLAG_RD, &io_pkt, 0, "Number of packets passed to dummynet."); SYSCTL_ULONG(_net_inet_ip_dummynet, OID_AUTO, io_pkt_fast, CTLFLAG_RD, &io_pkt_fast, 0, "Number of packets bypassed dummynet scheduler."); SYSCTL_ULONG(_net_inet_ip_dummynet, OID_AUTO, io_pkt_drop, CTLFLAG_RD, &io_pkt_drop, 0, "Number of packets dropped by dummynet."); SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, pipe_slot_limit, CTLFLAG_RW, &pipe_slot_limit, 0, "Upper limit in slots for pipe queue."); SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, pipe_byte_limit, CTLFLAG_RW, &pipe_byte_limit, 0, "Upper limit in bytes for pipe queue."); #endif #ifdef DUMMYNET_DEBUG int dummynet_debug = 0; #ifdef SYSCTL_NODE SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, debug, CTLFLAG_RW, &dummynet_debug, 0, "control debugging printfs"); #endif #define DPRINTF(X) if (dummynet_debug) printf X #else #define DPRINTF(X) #endif static struct task dn_task; static struct taskqueue *dn_tq = NULL; static void dummynet_task(void *, int); #if defined( __linux__ ) || defined( _WIN32 ) static DEFINE_SPINLOCK(dummynet_mtx); #else static struct mtx dummynet_mtx; #endif #define DUMMYNET_LOCK_INIT() \ mtx_init(&dummynet_mtx, "dummynet", NULL, MTX_DEF) #define DUMMYNET_LOCK_DESTROY() mtx_destroy(&dummynet_mtx) #define DUMMYNET_LOCK() mtx_lock(&dummynet_mtx) #define DUMMYNET_UNLOCK() mtx_unlock(&dummynet_mtx) #define DUMMYNET_LOCK_ASSERT() mtx_assert(&dummynet_mtx, MA_OWNED) static int config_pipe(struct dn_pipe *p); static int ip_dn_ctl(struct sockopt *sopt); static void dummynet(void *); static void dummynet_flush(void); static void dummynet_send(struct mbuf *); void dummynet_drain(void); static int dummynet_io(struct mbuf **, int , struct ip_fw_args *); /* * Flow queue is idle if: * 1) it's empty for at least 1 tick * 2) it has invalid timestamp (WF2Q case) * 3) parent pipe has no 'exhausted' burst. */ #define QUEUE_IS_IDLE(q) ((q)->head == NULL && (q)->S == (q)->F + 1 && \ curr_time > (q)->idle_time + 1 && \ ((q)->numbytes + (curr_time - (q)->idle_time - 1) * \ (q)->fs->pipe->bandwidth >= (q)->fs->pipe->burst)) /* * Heap management functions. * * In the heap, first node is element 0. Children of i are 2i+1 and 2i+2. * Some macros help finding parent/children so we can optimize them. * * heap_init() is called to expand the heap when needed. * Increment size in blocks of 16 entries. * XXX failure to allocate a new element is a pretty bad failure * as we basically stall a whole queue forever!! * Returns 1 on error, 0 on success */ #define HEAP_FATHER(x) ( ( (x) - 1 ) / 2 ) #define HEAP_LEFT(x) ( 2*(x) + 1 ) #define HEAP_IS_LEFT(x) ( (x) & 1 ) #define HEAP_RIGHT(x) ( 2*(x) + 2 ) #define HEAP_SWAP(a, b, buffer) { buffer = a ; a = b ; b = buffer ; } #define HEAP_INCREMENT 15 static int heap_init(struct dn_heap *h, int new_size) { struct dn_heap_entry *p; if (h->size >= new_size ) { printf("dummynet: %s, Bogus call, have %d want %d\n", __func__, h->size, new_size); return 0 ; } new_size = (new_size + HEAP_INCREMENT ) & ~HEAP_INCREMENT ; p = malloc(new_size * sizeof(*p), M_DUMMYNET, M_NOWAIT); if (p == NULL) { printf("dummynet: %s, resize %d failed\n", __func__, new_size ); return 1 ; /* error */ } if (h->size > 0) { bcopy(h->p, p, h->size * sizeof(*p) ); free(h->p, M_DUMMYNET); } h->p = p ; h->size = new_size ; return 0 ; } /* * Insert element in heap. Normally, p != NULL, we insert p in * a new position and bubble up. If p == NULL, then the element is * already in place, and key is the position where to start the * bubble-up. * Returns 1 on failure (cannot allocate new heap entry) * * If offset > 0 the position (index, int) of the element in the heap is * also stored in the element itself at the given offset in bytes. */ #define SET_OFFSET(heap, node) \ if (heap->offset > 0) \ *((int *)((char *)(heap->p[node].object) + heap->offset)) = node ; /* * RESET_OFFSET is used for sanity checks. It sets offset to an invalid value. */ #define RESET_OFFSET(heap, node) \ if (heap->offset > 0) \ *((int *)((char *)(heap->p[node].object) + heap->offset)) = -1 ; static int heap_insert(struct dn_heap *h, dn_key key1, void *p) { int son = h->elements ; if (p == NULL) /* data already there, set starting point */ son = key1 ; else { /* insert new element at the end, possibly resize */ son = h->elements ; if (son == h->size) /* need resize... */ if (heap_init(h, h->elements+1) ) return 1 ; /* failure... */ h->p[son].object = p ; h->p[son].key = key1 ; h->elements++ ; } while (son > 0) { /* bubble up */ int father = HEAP_FATHER(son) ; struct dn_heap_entry tmp ; if (DN_KEY_LT( h->p[father].key, h->p[son].key ) ) break ; /* found right position */ /* son smaller than father, swap and repeat */ HEAP_SWAP(h->p[son], h->p[father], tmp) ; SET_OFFSET(h, son); son = father ; } SET_OFFSET(h, son); return 0 ; } /* * remove top element from heap, or obj if obj != NULL */ static void heap_extract(struct dn_heap *h, void *obj) { int child, father, max = h->elements - 1 ; if (max < 0) { printf("dummynet: warning, extract from empty heap 0x%p\n", h); return ; } father = 0 ; /* default: move up smallest child */ if (obj != NULL) { /* extract specific element, index is at offset */ if (h->offset <= 0) panic("dummynet: heap_extract from middle not supported on this heap!!!\n"); father = *((int *)((char *)obj + h->offset)) ; if (father < 0 || father >= h->elements) { printf("dummynet: heap_extract, father %d out of bound 0..%d\n", father, h->elements); panic("dummynet: heap_extract"); } } RESET_OFFSET(h, father); child = HEAP_LEFT(father) ; /* left child */ while (child <= max) { /* valid entry */ if (child != max && DN_KEY_LT(h->p[child+1].key, h->p[child].key) ) child = child+1 ; /* take right child, otherwise left */ h->p[father] = h->p[child] ; SET_OFFSET(h, father); father = child ; child = HEAP_LEFT(child) ; /* left child for next loop */ } h->elements-- ; if (father != max) { /* * Fill hole with last entry and bubble up, reusing the insert code */ h->p[father] = h->p[max] ; heap_insert(h, father, NULL); /* this one cannot fail */ } } #if 0 /* * change object position and update references * XXX this one is never used! */ static void heap_move(struct dn_heap *h, dn_key new_key, void *object) { int temp; int i ; int max = h->elements-1 ; struct dn_heap_entry buf ; if (h->offset <= 0) panic("cannot move items on this heap"); i = *((int *)((char *)object + h->offset)); if (DN_KEY_LT(new_key, h->p[i].key) ) { /* must move up */ h->p[i].key = new_key ; for (; i>0 && DN_KEY_LT(new_key, h->p[(temp = HEAP_FATHER(i))].key) ; i = temp ) { /* bubble up */ HEAP_SWAP(h->p[i], h->p[temp], buf) ; SET_OFFSET(h, i); } } else { /* must move down */ h->p[i].key = new_key ; while ( (temp = HEAP_LEFT(i)) <= max ) { /* found left child */ if ((temp != max) && DN_KEY_GT(h->p[temp].key, h->p[temp+1].key)) temp++ ; /* select child with min key */ if (DN_KEY_GT(new_key, h->p[temp].key)) { /* go down */ HEAP_SWAP(h->p[i], h->p[temp], buf) ; SET_OFFSET(h, i); } else break ; i = temp ; } } SET_OFFSET(h, i); } #endif /* heap_move, unused */ /* * heapify() will reorganize data inside an array to maintain the * heap property. It is needed when we delete a bunch of entries. */ static void heapify(struct dn_heap *h) { int i ; for (i = 0 ; i < h->elements ; i++ ) heap_insert(h, i , NULL) ; } /* * cleanup the heap and free data structure */ static void heap_free(struct dn_heap *h) { if (h->size >0 ) free(h->p, M_DUMMYNET); bzero(h, sizeof(*h) ); } /* * --- end of heap management functions --- */ /* * Dispose a list of packet. Use an inline functions so if we * need to free extra state associated to a packet, this is a * central point to do it. */ static __inline void dn_free_pkts(struct mbuf *mnext) { struct mbuf *m; while ((m = mnext) != NULL) { mnext = m->m_nextpkt; FREE_PKT(m); } } /* * Return the mbuf tag holding the dummynet state. As an optimization * this is assumed to be the first tag on the list. If this turns out * wrong we'll need to search the list. */ static struct dn_pkt_tag * dn_tag_get(struct mbuf *m) { struct m_tag *mtag = m_tag_first(m); KASSERT(mtag != NULL && mtag->m_tag_cookie == MTAG_ABI_COMPAT && mtag->m_tag_id == PACKET_TAG_DUMMYNET, ("packet on dummynet queue w/o dummynet tag!")); return (struct dn_pkt_tag *)(mtag+1); } /* * Scheduler functions: * * transmit_event() is called when the delay-line needs to enter * the scheduler, either because of existing pkts getting ready, * or new packets entering the queue. The event handled is the delivery * time of the packet. * * ready_event() does something similar with fixed-rate queues, and the * event handled is the finish time of the head pkt. * * wfq_ready_event() does something similar with WF2Q queues, and the * event handled is the start time of the head pkt. * * In all cases, we make sure that the data structures are consistent * before passing pkts out, because this might trigger recursive * invocations of the procedures. */ static void transmit_event(struct dn_pipe *pipe, struct mbuf **head, struct mbuf **tail) { struct mbuf *m; struct dn_pkt_tag *pkt; DUMMYNET_LOCK_ASSERT(); while ((m = pipe->head) != NULL) { pkt = dn_tag_get(m); if (!DN_KEY_LEQ(pkt->output_time, curr_time)) break; pipe->head = m->m_nextpkt; if (*tail != NULL) (*tail)->m_nextpkt = m; else *head = m; *tail = m; } if (*tail != NULL) (*tail)->m_nextpkt = NULL; /* If there are leftover packets, put into the heap for next event. */ if ((m = pipe->head) != NULL) { pkt = dn_tag_get(m); /* * XXX Should check errors on heap_insert, by draining the * whole pipe p and hoping in the future we are more successful. */ heap_insert(&extract_heap, pkt->output_time, pipe); } } #ifndef __linux__ #define div64(a, b) ((int64_t)(a) / (int64_t)(b)) #endif /* * Compute how many ticks we have to wait before being able to send * a packet. This is computed as the "wire time" for the packet * (length + extra bits), minus the credit available, scaled to ticks. * Check that the result is not be negative (it could be if we have * too much leftover credit in q->numbytes). */ static inline dn_key set_ticks(struct mbuf *m, struct dn_flow_queue *q, struct dn_pipe *p) { int64_t ret; ret = div64( (m->m_pkthdr.len * 8 + q->extra_bits) * hz - q->numbytes + p->bandwidth - 1 , p->bandwidth); if (ret < 0) ret = 0; return ret; } /* * Convert the additional MAC overheads/delays into an equivalent * number of bits for the given data rate. The samples are in milliseconds * so we need to divide by 1000. */ static dn_key compute_extra_bits(struct mbuf *pkt, struct dn_pipe *p) { int index; dn_key extra_bits; if (!p->samples || p->samples_no == 0) return 0; index = random() % p->samples_no; extra_bits = div64((dn_key)p->samples[index] * p->bandwidth, 1000); if (index >= p->loss_level) { struct dn_pkt_tag *dt = dn_tag_get(pkt); if (dt) dt->dn_dir = DIR_DROP; } return extra_bits; } static void free_pipe(struct dn_pipe *p) { if (p->samples) free(p->samples, M_DUMMYNET); free(p, M_DUMMYNET); } /* * extract pkt from queue, compute output time (could be now) * and put into delay line (p_queue) */ static void move_pkt(struct mbuf *pkt, struct dn_flow_queue *q, struct dn_pipe *p, int len) { struct dn_pkt_tag *dt = dn_tag_get(pkt); q->head = pkt->m_nextpkt ; q->len-- ; q->len_bytes -= len ; dt->output_time = curr_time + p->delay ; if (p->head == NULL) p->head = pkt; else p->tail->m_nextpkt = pkt; p->tail = pkt; p->tail->m_nextpkt = NULL; } /* * ready_event() is invoked every time the queue must enter the * scheduler, either because the first packet arrives, or because * a previously scheduled event fired. * On invokation, drain as many pkts as possible (could be 0) and then * if there are leftover packets reinsert the pkt in the scheduler. */ static void ready_event(struct dn_flow_queue *q, struct mbuf **head, struct mbuf **tail) { struct mbuf *pkt; struct dn_pipe *p = q->fs->pipe; int p_was_empty; DUMMYNET_LOCK_ASSERT(); if (p == NULL) { printf("dummynet: ready_event- pipe is gone\n"); return; } p_was_empty = (p->head == NULL); /* * Schedule fixed-rate queues linked to this pipe: * account for the bw accumulated since last scheduling, then * drain as many pkts as allowed by q->numbytes and move to * the delay line (in p) computing output time. * bandwidth==0 (no limit) means we can drain the whole queue, * setting len_scaled = 0 does the job. */ q->numbytes += (curr_time - q->sched_time) * p->bandwidth; while ((pkt = q->head) != NULL) { int len = pkt->m_pkthdr.len; dn_key len_scaled = p->bandwidth ? len*8*hz + q->extra_bits*hz : 0; if (DN_KEY_GT(len_scaled, q->numbytes)) break; q->numbytes -= len_scaled; move_pkt(pkt, q, p, len); if (q->head) q->extra_bits = compute_extra_bits(q->head, p); } /* * If we have more packets queued, schedule next ready event * (can only occur when bandwidth != 0, otherwise we would have * flushed the whole queue in the previous loop). * To this purpose we record the current time and compute how many * ticks to go for the finish time of the packet. */ if ((pkt = q->head) != NULL) { /* this implies bandwidth != 0 */ dn_key t = set_ticks(pkt, q, p); /* ticks i have to wait */ q->sched_time = curr_time; heap_insert(&ready_heap, curr_time + t, (void *)q); /* * XXX Should check errors on heap_insert, and drain the whole * queue on error hoping next time we are luckier. */ } else /* RED needs to know when the queue becomes empty. */ q->idle_time = curr_time; /* * If the delay line was empty call transmit_event() now. * Otherwise, the scheduler will take care of it. */ if (p_was_empty) transmit_event(p, head, tail); } /* * Called when we can transmit packets on WF2Q queues. Take pkts out of * the queues at their start time, and enqueue into the delay line. * Packets are drained until p->numbytes < 0. As long as * len_scaled >= p->numbytes, the packet goes into the delay line * with a deadline p->delay. For the last packet, if p->numbytes < 0, * there is an additional delay. */ static void ready_event_wfq(struct dn_pipe *p, struct mbuf **head, struct mbuf **tail) { int p_was_empty = (p->head == NULL); struct dn_heap *sch = &(p->scheduler_heap); struct dn_heap *neh = &(p->not_eligible_heap); int64_t p_numbytes = p->numbytes; /* * p->numbytes is only 32bits in FBSD7, but we might need 64 bits. * Use a local variable for the computations, and write back the * results when done, saturating if needed. * The local variable has no impact on performance and helps * reducing diffs between the various branches. */ DUMMYNET_LOCK_ASSERT(); if (p->if_name[0] == 0) /* tx clock is simulated */ p_numbytes += (curr_time - p->sched_time) * p->bandwidth; else { /* * tx clock is for real, * the ifq must be empty or this is a NOP. */ #ifdef __linux__ return; #else if (p->ifp && p->ifp->if_snd.ifq_head != NULL) return; else { DPRINTF(("dummynet: pipe %d ready from %s --\n", p->pipe_nr, p->if_name)); } #endif } /* * While we have backlogged traffic AND credit, we need to do * something on the queue. */ while (p_numbytes >= 0 && (sch->elements > 0 || neh->elements > 0)) { if (sch->elements > 0) { /* Have some eligible pkts to send out. */ struct dn_flow_queue *q = sch->p[0].object; struct mbuf *pkt = q->head; struct dn_flow_set *fs = q->fs; uint64_t len = pkt->m_pkthdr.len; int len_scaled = p->bandwidth ? len * 8 * hz : 0; heap_extract(sch, NULL); /* Remove queue from heap. */ p_numbytes -= len_scaled; move_pkt(pkt, q, p, len); p->V += div64((len << MY_M), p->sum); /* Update V. */ q->S = q->F; /* Update start time. */ if (q->len == 0) { /* Flow not backlogged any more. */ fs->backlogged--; heap_insert(&(p->idle_heap), q->F, q); } else { /* Still backlogged. */ /* * Update F and position in backlogged queue, * then put flow in not_eligible_heap * (we will fix this later). */ len = (q->head)->m_pkthdr.len; q->F += div64((len << MY_M), fs->weight); if (DN_KEY_LEQ(q->S, p->V)) heap_insert(neh, q->S, q); else heap_insert(sch, q->F, q); } } /* * Now compute V = max(V, min(S_i)). Remember that all elements * in sch have by definition S_i <= V so if sch is not empty, * V is surely the max and we must not update it. Conversely, * if sch is empty we only need to look at neh. */ if (sch->elements == 0 && neh->elements > 0) p->V = MAX64(p->V, neh->p[0].key); /* Move from neh to sch any packets that have become eligible */ while (neh->elements > 0 && DN_KEY_LEQ(neh->p[0].key, p->V)) { struct dn_flow_queue *q = neh->p[0].object; heap_extract(neh, NULL); heap_insert(sch, q->F, q); } if (p->if_name[0] != '\0') { /* Tx clock is from a real thing */ p_numbytes = -1; /* Mark not ready for I/O. */ break; } } if (sch->elements == 0 && neh->elements == 0 && p_numbytes >= 0) { p->idle_time = curr_time; /* * No traffic and no events scheduled. * We can get rid of idle-heap. */ if (p->idle_heap.elements > 0) { int i; for (i = 0; i < p->idle_heap.elements; i++) { struct dn_flow_queue *q; q = p->idle_heap.p[i].object; q->F = 0; q->S = q->F + 1; } p->sum = 0; p->V = 0; p->idle_heap.elements = 0; } } /* * If we are getting clocks from dummynet (not a real interface) and * If we are under credit, schedule the next ready event. * Also fix the delivery time of the last packet. */ if (p->if_name[0]==0 && p_numbytes < 0) { /* This implies bw > 0. */ dn_key t = 0; /* Number of ticks i have to wait. */ if (p->bandwidth > 0) t = div64(p->bandwidth - 1 - p_numbytes, p->bandwidth); dn_tag_get(p->tail)->output_time += t; p->sched_time = curr_time; heap_insert(&wfq_ready_heap, curr_time + t, (void *)p); /* * XXX Should check errors on heap_insert, and drain the whole * queue on error hoping next time we are luckier. */ } /* Write back p_numbytes (adjust 64->32bit if necessary). */ p->numbytes = p_numbytes; /* * If the delay line was empty call transmit_event() now. * Otherwise, the scheduler will take care of it. */ if (p_was_empty) transmit_event(p, head, tail); } /* * This is called one tick, after previous run. It is used to * schedule next run. */ static void dummynet(void * __unused unused) { taskqueue_enqueue(dn_tq, &dn_task); } /* * The main dummynet processing function. */ static void dummynet_task(void *context, int pending) { struct mbuf *head = NULL, *tail = NULL; struct dn_pipe *pipe; struct dn_heap *heaps[3]; struct dn_heap *h; void *p; /* generic parameter to handler */ int i; DUMMYNET_LOCK(); heaps[0] = &ready_heap; /* fixed-rate queues */ heaps[1] = &wfq_ready_heap; /* wfq queues */ heaps[2] = &extract_heap; /* delay line */ /* Update number of lost(coalesced) ticks. */ tick_lost += pending - 1; getmicrouptime(&t); /* Last tick duration (usec). */ tick_last = (t.tv_sec - prev_t.tv_sec) * 1000000 + (t.tv_usec - prev_t.tv_usec); /* Last tick vs standard tick difference (usec). */ tick_delta = (tick_last * hz - 1000000) / hz; /* Accumulated tick difference (usec). */ tick_delta_sum += tick_delta; prev_t = t; /* * Adjust curr_time if accumulated tick difference greater than * 'standard' tick. Since curr_time should be monotonically increasing, * we do positive adjustment as required and throttle curr_time in * case of negative adjustment. */ curr_time++; if (tick_delta_sum - tick >= 0) { int diff = tick_delta_sum / tick; curr_time += diff; tick_diff += diff; tick_delta_sum %= tick; tick_adjustment++; } else if (tick_delta_sum + tick <= 0) { curr_time--; tick_diff--; tick_delta_sum += tick; tick_adjustment++; } for (i = 0; i < 3; i++) { h = heaps[i]; while (h->elements > 0 && DN_KEY_LEQ(h->p[0].key, curr_time)) { if (h->p[0].key > curr_time) printf("dummynet: warning, " "heap %d is %d ticks late\n", i, (int)(curr_time - h->p[0].key)); /* store a copy before heap_extract */ p = h->p[0].object; /* need to extract before processing */ heap_extract(h, NULL); if (i == 0) ready_event(p, &head, &tail); else if (i == 1) { struct dn_pipe *pipe = p; if (pipe->if_name[0] != '\0') printf("dummynet: bad ready_event_wfq " "for pipe %s\n", pipe->if_name); else ready_event_wfq(p, &head, &tail); } else transmit_event(p, &head, &tail); } } /* Sweep pipes trying to expire idle flow_queues. */ for (i = 0; i < HASHSIZE; i++) { SLIST_FOREACH(pipe, &pipehash[i], next) { if (pipe->idle_heap.elements > 0 && DN_KEY_LT(pipe->idle_heap.p[0].key, pipe->V)) { struct dn_flow_queue *q = pipe->idle_heap.p[0].object; heap_extract(&(pipe->idle_heap), NULL); /* Mark timestamp as invalid. */ q->S = q->F + 1; pipe->sum -= q->fs->weight; } } } DUMMYNET_UNLOCK(); if (head != NULL) dummynet_send(head); callout_reset(&dn_timeout, 1, dummynet, NULL); } static void dummynet_send(struct mbuf *m) { struct mbuf *n; for (; m != NULL; m = n) { struct ifnet *ifp = NULL; int dst; struct m_tag *tag; n = m->m_nextpkt; m->m_nextpkt = NULL; tag = m_tag_first(m); if (tag == NULL) { dst = DIR_DROP; } else { struct dn_pkt_tag *pkt = dn_tag_get(m); /* extract the dummynet info, rename the tag */ dst = pkt->dn_dir; ifp = pkt->ifp; /* rename the tag so it carries reinject info */ tag->m_tag_cookie = MTAG_IPFW_RULE; tag->m_tag_id = 0; } switch (dst) { case DIR_OUT: SET_HOST_IPLEN(mtod(m, struct ip *)); ip_output(m, NULL, NULL, IP_FORWARDING, NULL, NULL); break ; case DIR_IN : /* put header in network format for ip_input() */ //SET_NET_IPLEN(mtod(m, struct ip *)); netisr_dispatch(NETISR_IP, m); break; #ifdef INET6 case DIR_IN | PROTO_IPV6: netisr_dispatch(NETISR_IPV6, m); break; case DIR_OUT | PROTO_IPV6: SET_HOST_IPLEN(mtod(m, struct ip *)); ip6_output(m, NULL, NULL, IPV6_FORWARDING, NULL, NULL, NULL); break; #endif case DIR_FWD | PROTO_IFB: /* DN_TO_IFB_FWD: */ if (bridge_dn_p != NULL) ((*bridge_dn_p)(m, ifp)); else printf("dummynet: if_bridge not loaded\n"); break; case DIR_IN | PROTO_LAYER2: /* DN_TO_ETH_DEMUX: */ /* * The Ethernet code assumes the Ethernet header is * contiguous in the first mbuf header. * Insure this is true. */ if (m->m_len < ETHER_HDR_LEN && (m = m_pullup(m, ETHER_HDR_LEN)) == NULL) { printf("dummynet/ether: pullup failed, " "dropping packet\n"); break; } ether_demux(m->m_pkthdr.rcvif, m); break; case DIR_OUT | PROTO_LAYER2: /* N_TO_ETH_OUT: */ ether_output_frame(ifp, m); break; case DIR_DROP: /* drop the packet after some time */ FREE_PKT(m); break; default: printf("dummynet: bad switch %d!\n", dst); FREE_PKT(m); break; } } } /* * Unconditionally expire empty queues in case of shortage. * Returns the number of queues freed. */ static int expire_queues(struct dn_flow_set *fs) { struct dn_flow_queue *q, *prev ; int i, initial_elements = fs->rq_elements ; if (fs->last_expired == time_uptime) return 0 ; fs->last_expired = time_uptime ; for (i = 0 ; i <= fs->rq_size ; i++) { /* last one is overflow */ for (prev=NULL, q = fs->rq[i] ; q != NULL ; ) { if (!QUEUE_IS_IDLE(q)) { prev = q ; q = q->next ; } else { /* entry is idle, expire it */ struct dn_flow_queue *old_q = q ; if (prev != NULL) prev->next = q = q->next ; else fs->rq[i] = q = q->next ; fs->rq_elements-- ; free(old_q, M_DUMMYNET); } } } return initial_elements - fs->rq_elements ; } /* * If room, create a new queue and put at head of slot i; * otherwise, create or use the default queue. */ static struct dn_flow_queue * create_queue(struct dn_flow_set *fs, int i) { struct dn_flow_queue *q; if (fs->rq_elements > fs->rq_size * dn_max_ratio && expire_queues(fs) == 0) { /* No way to get room, use or create overflow queue. */ i = fs->rq_size; if (fs->rq[i] != NULL) return fs->rq[i]; } q = malloc(sizeof(*q), M_DUMMYNET, M_NOWAIT | M_ZERO); if (q == NULL) { printf("dummynet: sorry, cannot allocate queue for new flow\n"); return (NULL); } q->fs = fs; q->hash_slot = i; q->next = fs->rq[i]; q->S = q->F + 1; /* hack - mark timestamp as invalid. */ q->numbytes = fs->pipe->burst + (io_fast ? fs->pipe->bandwidth : 0); fs->rq[i] = q; fs->rq_elements++; return (q); } /* * Given a flow_set and a pkt in last_pkt, find a matching queue * after appropriate masking. The queue is moved to front * so that further searches take less time. */ static struct dn_flow_queue * find_queue(struct dn_flow_set *fs, struct ipfw_flow_id *id) { int i = 0 ; /* we need i and q for new allocations */ struct dn_flow_queue *q, *prev; int is_v6 = IS_IP6_FLOW_ID(id); if ( !(fs->flags_fs & DN_HAVE_FLOW_MASK) ) q = fs->rq[0] ; else { /* first, do the masking, then hash */ id->dst_port &= fs->flow_mask.dst_port ; id->src_port &= fs->flow_mask.src_port ; id->proto &= fs->flow_mask.proto ; id->flags = 0 ; /* we don't care about this one */ if (is_v6) { APPLY_MASK(&id->dst_ip6, &fs->flow_mask.dst_ip6); APPLY_MASK(&id->src_ip6, &fs->flow_mask.src_ip6); id->flow_id6 &= fs->flow_mask.flow_id6; i = ((id->dst_ip6.__u6_addr.__u6_addr32[0]) & 0xffff)^ ((id->dst_ip6.__u6_addr.__u6_addr32[1]) & 0xffff)^ ((id->dst_ip6.__u6_addr.__u6_addr32[2]) & 0xffff)^ ((id->dst_ip6.__u6_addr.__u6_addr32[3]) & 0xffff)^ ((id->dst_ip6.__u6_addr.__u6_addr32[0] >> 15) & 0xffff)^ ((id->dst_ip6.__u6_addr.__u6_addr32[1] >> 15) & 0xffff)^ ((id->dst_ip6.__u6_addr.__u6_addr32[2] >> 15) & 0xffff)^ ((id->dst_ip6.__u6_addr.__u6_addr32[3] >> 15) & 0xffff)^ ((id->src_ip6.__u6_addr.__u6_addr32[0] << 1) & 0xfffff)^ ((id->src_ip6.__u6_addr.__u6_addr32[1] << 1) & 0xfffff)^ ((id->src_ip6.__u6_addr.__u6_addr32[2] << 1) & 0xfffff)^ ((id->src_ip6.__u6_addr.__u6_addr32[3] << 1) & 0xfffff)^ ((id->src_ip6.__u6_addr.__u6_addr32[0] << 16) & 0xffff)^ ((id->src_ip6.__u6_addr.__u6_addr32[1] << 16) & 0xffff)^ ((id->src_ip6.__u6_addr.__u6_addr32[2] << 16) & 0xffff)^ ((id->src_ip6.__u6_addr.__u6_addr32[3] << 16) & 0xffff)^ (id->dst_port << 1) ^ (id->src_port) ^ (id->proto ) ^ (id->flow_id6); } else { id->dst_ip &= fs->flow_mask.dst_ip ; id->src_ip &= fs->flow_mask.src_ip ; i = ( (id->dst_ip) & 0xffff ) ^ ( (id->dst_ip >> 15) & 0xffff ) ^ ( (id->src_ip << 1) & 0xffff ) ^ ( (id->src_ip >> 16 ) & 0xffff ) ^ (id->dst_port << 1) ^ (id->src_port) ^ (id->proto ); } i = i % fs->rq_size ; /* finally, scan the current list for a match */ searches++ ; for (prev=NULL, q = fs->rq[i] ; q ; ) { search_steps++; if (is_v6 && IN6_ARE_ADDR_EQUAL(&id->dst_ip6,&q->id.dst_ip6) && IN6_ARE_ADDR_EQUAL(&id->src_ip6,&q->id.src_ip6) && id->dst_port == q->id.dst_port && id->src_port == q->id.src_port && id->proto == q->id.proto && id->flags == q->id.flags && id->flow_id6 == q->id.flow_id6) break ; /* found */ if (!is_v6 && id->dst_ip == q->id.dst_ip && id->src_ip == q->id.src_ip && id->dst_port == q->id.dst_port && id->src_port == q->id.src_port && id->proto == q->id.proto && id->flags == q->id.flags) break ; /* found */ /* No match. Check if we can expire the entry */ if (pipe_expire && QUEUE_IS_IDLE(q)) { /* entry is idle and not in any heap, expire it */ struct dn_flow_queue *old_q = q ; if (prev != NULL) prev->next = q = q->next ; else fs->rq[i] = q = q->next ; fs->rq_elements-- ; free(old_q, M_DUMMYNET); continue ; } prev = q ; q = q->next ; } if (q && prev != NULL) { /* found and not in front */ prev->next = q->next ; q->next = fs->rq[i] ; fs->rq[i] = q ; } } if (q == NULL) { /* no match, need to allocate a new entry */ q = create_queue(fs, i); if (q != NULL) q->id = *id ; } return q ; } static int red_drops(struct dn_flow_set *fs, struct dn_flow_queue *q, int len) { /* * RED algorithm * * RED calculates the average queue size (avg) using a low-pass filter * with an exponential weighted (w_q) moving average: * avg <- (1-w_q) * avg + w_q * q_size * where q_size is the queue length (measured in bytes or * packets). * * If q_size == 0, we compute the idle time for the link, and set * avg = (1 - w_q)^(idle/s) * where s is the time needed for transmitting a medium-sized packet. * * Now, if avg < min_th the packet is enqueued. * If avg > max_th the packet is dropped. Otherwise, the packet is * dropped with probability P function of avg. */ int64_t p_b = 0; /* Queue in bytes or packets? */ u_int q_size = (fs->flags_fs & DN_QSIZE_IS_BYTES) ? q->len_bytes : q->len; DPRINTF(("\ndummynet: %d q: %2u ", (int)curr_time, q_size)); /* Average queue size estimation. */ if (q_size != 0) { /* Queue is not empty, avg <- avg + (q_size - avg) * w_q */ int diff = SCALE(q_size) - q->avg; int64_t v = SCALE_MUL((int64_t)diff, (int64_t)fs->w_q); q->avg += (int)v; } else { /* * Queue is empty, find for how long the queue has been * empty and use a lookup table for computing * (1 - * w_q)^(idle_time/s) where s is the time to send a * (small) packet. * XXX check wraps... */ if (q->avg) { u_int t = div64(curr_time - q->idle_time, fs->lookup_step); q->avg = (t < fs->lookup_depth) ? SCALE_MUL(q->avg, fs->w_q_lookup[t]) : 0; } } DPRINTF(("dummynet: avg: %u ", SCALE_VAL(q->avg))); /* Should i drop? */ if (q->avg < fs->min_th) { q->count = -1; return (0); /* accept packet */ } if (q->avg >= fs->max_th) { /* average queue >= max threshold */ if (fs->flags_fs & DN_IS_GENTLE_RED) { /* * According to Gentle-RED, if avg is greater than * max_th the packet is dropped with a probability * p_b = c_3 * avg - c_4 * where c_3 = (1 - max_p) / max_th * c_4 = 1 - 2 * max_p */ p_b = SCALE_MUL((int64_t)fs->c_3, (int64_t)q->avg) - fs->c_4; } else { q->count = -1; DPRINTF(("dummynet: - drop")); return (1); } } else if (q->avg > fs->min_th) { /* * We compute p_b using the linear dropping function * p_b = c_1 * avg - c_2 * where c_1 = max_p / (max_th - min_th) * c_2 = max_p * min_th / (max_th - min_th) */ p_b = SCALE_MUL((int64_t)fs->c_1, (int64_t)q->avg) - fs->c_2; } if (fs->flags_fs & DN_QSIZE_IS_BYTES) p_b = div64(p_b * len, fs->max_pkt_size); if (++q->count == 0) q->random = random() & 0xffff; else { /* * q->count counts packets arrived since last drop, so a greater * value of q->count means a greater packet drop probability. */ if (SCALE_MUL(p_b, SCALE((int64_t)q->count)) > q->random) { q->count = 0; DPRINTF(("dummynet: - red drop")); /* After a drop we calculate a new random value. */ q->random = random() & 0xffff; return (1); /* drop */ } } /* End of RED algorithm. */ return (0); /* accept */ } static __inline struct dn_flow_set * locate_flowset(int fs_nr) { struct dn_flow_set *fs; SLIST_FOREACH(fs, &flowsethash[HASH(fs_nr)], next) if (fs->fs_nr == fs_nr) return (fs); return (NULL); } static __inline struct dn_pipe * locate_pipe(int pipe_nr) { struct dn_pipe *pipe; SLIST_FOREACH(pipe, &pipehash[HASH(pipe_nr)], next) if (pipe->pipe_nr == pipe_nr) return (pipe); return (NULL); } /* * dummynet hook for packets. Below 'pipe' is a pipe or a queue * depending on whether WF2Q or fixed bw is used. * * pipe_nr pipe or queue the packet is destined for. * dir where shall we send the packet after dummynet. * m the mbuf with the packet * ifp the 'ifp' parameter from the caller. * NULL in ip_input, destination interface in ip_output, * rule matching rule, in case of multiple passes */ static int dummynet_io(struct mbuf **m0, int dir, struct ip_fw_args *fwa) { struct mbuf *m = *m0, *head = NULL, *tail = NULL; struct dn_pkt_tag *pkt; struct m_tag *mtag; struct dn_flow_set *fs = NULL; struct dn_pipe *pipe; uint64_t len = m->m_pkthdr.len; struct dn_flow_queue *q = NULL; int is_pipe = fwa->rule.info & IPFW_IS_PIPE; KASSERT(m->m_nextpkt == NULL, ("dummynet_io: mbuf queue passed to dummynet")); DUMMYNET_LOCK(); io_pkt++; /* * This is a dummynet rule, so we expect an O_PIPE or O_QUEUE rule. */ if (is_pipe) { pipe = locate_pipe(fwa->rule.info & IPFW_INFO_MASK); if (pipe != NULL) fs = &(pipe->fs); } else fs = locate_flowset(fwa->rule.info & IPFW_INFO_MASK); if (fs == NULL) goto dropit; /* This queue/pipe does not exist! */ pipe = fs->pipe; if (pipe == NULL) { /* Must be a queue, try find a matching pipe. */ pipe = locate_pipe(fs->parent_nr); if (pipe != NULL) fs->pipe = pipe; else { printf("dummynet: no pipe %d for queue %d, drop pkt\n", fs->parent_nr, fs->fs_nr); goto dropit; } } q = find_queue(fs, &(fwa->f_id)); if (q == NULL) goto dropit; /* Cannot allocate queue. */ /* Update statistics, then check reasons to drop pkt. */ q->tot_bytes += len; q->tot_pkts++; if (fs->plr && random() < fs->plr) goto dropit; /* Random pkt drop. */ if (fs->flags_fs & DN_QSIZE_IS_BYTES) { if (q->len_bytes > fs->qsize) goto dropit; /* Queue size overflow. */ } else { if (q->len >= fs->qsize) goto dropit; /* Queue count overflow. */ } if (fs->flags_fs & DN_IS_RED && red_drops(fs, q, len)) goto dropit; /* XXX expensive to zero, see if we can remove it. */ mtag = m_tag_get(PACKET_TAG_DUMMYNET, sizeof(struct dn_pkt_tag), M_NOWAIT | M_ZERO); if (mtag == NULL) goto dropit; /* Cannot allocate packet header. */ m_tag_prepend(m, mtag); /* Attach to mbuf chain. */ pkt = (struct dn_pkt_tag *)(mtag + 1); /* * Ok, i can handle the pkt now... * Build and enqueue packet + parameters. */ pkt->rule = fwa->rule; pkt->rule.info &= IPFW_ONEPASS; /* only keep this info */ pkt->dn_dir = dir; pkt->ifp = fwa->oif; if (q->head == NULL) q->head = m; else q->tail->m_nextpkt = m; q->tail = m; q->len++; q->len_bytes += len; if (q->head != m) /* Flow was not idle, we are done. */ goto done; if (is_pipe) { /* Fixed rate queues. */ if (q->idle_time < curr_time) { /* Calculate available burst size. */ q->numbytes += (curr_time - q->idle_time - 1) * pipe->bandwidth; if (q->numbytes > pipe->burst) q->numbytes = pipe->burst; if (io_fast) q->numbytes += pipe->bandwidth; } } else { /* WF2Q. */ if (pipe->idle_time < curr_time && pipe->scheduler_heap.elements == 0 && pipe->not_eligible_heap.elements == 0) { /* Calculate available burst size. */ pipe->numbytes += (curr_time - pipe->idle_time - 1) * pipe->bandwidth; if (pipe->numbytes > 0 && pipe->numbytes > pipe->burst) pipe->numbytes = pipe->burst; if (io_fast) pipe->numbytes += pipe->bandwidth; } pipe->idle_time = curr_time; } /* Necessary for both: fixed rate & WF2Q queues. */ q->idle_time = curr_time; /* * If we reach this point the flow was previously idle, so we need * to schedule it. This involves different actions for fixed-rate or * WF2Q queues. */ if (is_pipe) { /* Fixed-rate queue: just insert into the ready_heap. */ dn_key t = 0; if (pipe->bandwidth) { q->extra_bits = compute_extra_bits(m, pipe); t = set_ticks(m, q, pipe); } q->sched_time = curr_time; if (t == 0) /* Must process it now. */ ready_event(q, &head, &tail); else heap_insert(&ready_heap, curr_time + t , q); } else { /* * WF2Q. First, compute start time S: if the flow was * idle (S = F + 1) set S to the virtual time V for the * controlling pipe, and update the sum of weights for the pipe; * otherwise, remove flow from idle_heap and set S to max(F,V). * Second, compute finish time F = S + len / weight. * Third, if pipe was idle, update V = max(S, V). * Fourth, count one more backlogged flow. */ if (DN_KEY_GT(q->S, q->F)) { /* Means timestamps are invalid. */ q->S = pipe->V; pipe->sum += fs->weight; /* Add weight of new queue. */ } else { heap_extract(&(pipe->idle_heap), q); q->S = MAX64(q->F, pipe->V); } q->F = q->S + div64(len << MY_M, fs->weight); if (pipe->not_eligible_heap.elements == 0 && pipe->scheduler_heap.elements == 0) pipe->V = MAX64(q->S, pipe->V); fs->backlogged++; /* * Look at eligibility. A flow is not eligibile if S>V (when * this happens, it means that there is some other flow already * scheduled for the same pipe, so the scheduler_heap cannot be * empty). If the flow is not eligible we just store it in the * not_eligible_heap. Otherwise, we store in the scheduler_heap * and possibly invoke ready_event_wfq() right now if there is * leftover credit. * Note that for all flows in scheduler_heap (SCH), S_i <= V, * and for all flows in not_eligible_heap (NEH), S_i > V. * So when we need to compute max(V, min(S_i)) forall i in * SCH+NEH, we only need to look into NEH. */ if (DN_KEY_GT(q->S, pipe->V)) { /* Not eligible. */ if (pipe->scheduler_heap.elements == 0) printf("dummynet: ++ ouch! not eligible but empty scheduler!\n"); heap_insert(&(pipe->not_eligible_heap), q->S, q); } else { heap_insert(&(pipe->scheduler_heap), q->F, q); if (pipe->numbytes >= 0) { /* Pipe is idle. */ if (pipe->scheduler_heap.elements != 1) printf("dummynet: OUCH! pipe should have been idle!\n"); DPRINTF(("dummynet: waking up pipe %d at %d\n", pipe->pipe_nr, (int)(q->F >> MY_M))); pipe->sched_time = curr_time; ready_event_wfq(pipe, &head, &tail); } } } done: if (head == m && (dir & PROTO_LAYER2) == 0 ) { /* Fast io. */ io_pkt_fast++; if (m->m_nextpkt != NULL) printf("dummynet: fast io: pkt chain detected!\n"); head = m->m_nextpkt = NULL; } else *m0 = NULL; /* Normal io. */ DUMMYNET_UNLOCK(); if (head != NULL) dummynet_send(head); return (0); dropit: io_pkt_drop++; if (q) q->drops++; DUMMYNET_UNLOCK(); FREE_PKT(m); *m0 = NULL; return ((fs && (fs->flags_fs & DN_NOERROR)) ? 0 : ENOBUFS); } /* * Dispose all packets and flow_queues on a flow_set. * If all=1, also remove red lookup table and other storage, * including the descriptor itself. * For the one in dn_pipe MUST also cleanup ready_heap... */ static void purge_flow_set(struct dn_flow_set *fs, int all) { struct dn_flow_queue *q, *qn; int i; DUMMYNET_LOCK_ASSERT(); for (i = 0; i <= fs->rq_size; i++) { for (q = fs->rq[i]; q != NULL; q = qn) { dn_free_pkts(q->head); qn = q->next; free(q, M_DUMMYNET); } fs->rq[i] = NULL; } fs->rq_elements = 0; if (all) { /* RED - free lookup table. */ if (fs->w_q_lookup != NULL) free(fs->w_q_lookup, M_DUMMYNET); if (fs->rq != NULL) free(fs->rq, M_DUMMYNET); /* If this fs is not part of a pipe, free it. */ if (fs->pipe == NULL || fs != &(fs->pipe->fs)) free(fs, M_DUMMYNET); } } /* * Dispose all packets queued on a pipe (not a flow_set). * Also free all resources associated to a pipe, which is about * to be deleted. */ static void purge_pipe(struct dn_pipe *pipe) { purge_flow_set( &(pipe->fs), 1 ); dn_free_pkts(pipe->head); heap_free( &(pipe->scheduler_heap) ); heap_free( &(pipe->not_eligible_heap) ); heap_free( &(pipe->idle_heap) ); } /* * Delete all pipes and heaps returning memory. Must also * remove references from all ipfw rules to all pipes. */ static void dummynet_flush(void) { struct dn_pipe *pipe, *pipe1; struct dn_flow_set *fs, *fs1; int i; DUMMYNET_LOCK(); /* Free heaps so we don't have unwanted events. */ heap_free(&ready_heap); heap_free(&wfq_ready_heap); heap_free(&extract_heap); /* * Now purge all queued pkts and delete all pipes. * * XXXGL: can we merge the for(;;) cycles into one or not? */ for (i = 0; i < HASHSIZE; i++) SLIST_FOREACH_SAFE(fs, &flowsethash[i], next, fs1) { SLIST_REMOVE(&flowsethash[i], fs, dn_flow_set, next); purge_flow_set(fs, 1); } for (i = 0; i < HASHSIZE; i++) SLIST_FOREACH_SAFE(pipe, &pipehash[i], next, pipe1) { SLIST_REMOVE(&pipehash[i], pipe, dn_pipe, next); purge_pipe(pipe); free_pipe(pipe); } DUMMYNET_UNLOCK(); } /* * setup RED parameters */ static int config_red(struct dn_flow_set *p, struct dn_flow_set *x) { int i; x->w_q = p->w_q; x->min_th = SCALE(p->min_th); x->max_th = SCALE(p->max_th); x->max_p = p->max_p; x->c_1 = p->max_p / (p->max_th - p->min_th); x->c_2 = SCALE_MUL(x->c_1, SCALE(p->min_th)); if (x->flags_fs & DN_IS_GENTLE_RED) { x->c_3 = (SCALE(1) - p->max_p) / p->max_th; x->c_4 = SCALE(1) - 2 * p->max_p; } /* If the lookup table already exist, free and create it again. */ if (x->w_q_lookup) { free(x->w_q_lookup, M_DUMMYNET); x->w_q_lookup = NULL; } if (red_lookup_depth == 0) { printf("\ndummynet: net.inet.ip.dummynet.red_lookup_depth" "must be > 0\n"); free(x, M_DUMMYNET); return (EINVAL); } x->lookup_depth = red_lookup_depth; x->w_q_lookup = (u_int *)malloc(x->lookup_depth * sizeof(int), M_DUMMYNET, M_NOWAIT); if (x->w_q_lookup == NULL) { printf("dummynet: sorry, cannot allocate red lookup table\n"); free(x, M_DUMMYNET); return(ENOSPC); } /* Fill the lookup table with (1 - w_q)^x */ x->lookup_step = p->lookup_step; x->lookup_weight = p->lookup_weight; x->w_q_lookup[0] = SCALE(1) - x->w_q; for (i = 1; i < x->lookup_depth; i++) x->w_q_lookup[i] = SCALE_MUL(x->w_q_lookup[i - 1], x->lookup_weight); if (red_avg_pkt_size < 1) red_avg_pkt_size = 512; x->avg_pkt_size = red_avg_pkt_size; if (red_max_pkt_size < 1) red_max_pkt_size = 1500; x->max_pkt_size = red_max_pkt_size; return (0); } static int alloc_hash(struct dn_flow_set *x, struct dn_flow_set *pfs) { if (x->flags_fs & DN_HAVE_FLOW_MASK) { /* allocate some slots */ int l = pfs->rq_size; if (l == 0) l = dn_hash_size; if (l < 4) l = 4; else if (l > DN_MAX_HASH_SIZE) l = DN_MAX_HASH_SIZE; x->rq_size = l; } else /* one is enough for null mask */ x->rq_size = 1; x->rq = malloc((1 + x->rq_size) * sizeof(struct dn_flow_queue *), M_DUMMYNET, M_NOWAIT | M_ZERO); if (x->rq == NULL) { printf("dummynet: sorry, cannot allocate queue\n"); return (ENOMEM); } x->rq_elements = 0; return 0 ; } static void set_fs_parms(struct dn_flow_set *x, struct dn_flow_set *src) { x->flags_fs = src->flags_fs; x->qsize = src->qsize; x->plr = src->plr; x->flow_mask = src->flow_mask; if (x->flags_fs & DN_QSIZE_IS_BYTES) { if (x->qsize > pipe_byte_limit) x->qsize = 1024 * 1024; } else { if (x->qsize == 0) x->qsize = 50; if (x->qsize > pipe_slot_limit) x->qsize = 50; } /* Configuring RED. */ if (x->flags_fs & DN_IS_RED) config_red(src, x); /* XXX should check errors */ } /* * Setup pipe or queue parameters. */ static int config_pipe(struct dn_pipe *p) { struct dn_flow_set *pfs = &(p->fs); struct dn_flow_queue *q; int i, error; /* * The config program passes parameters as follows: * bw = bits/second (0 means no limits), * delay = ms, must be translated into ticks. * qsize = slots/bytes */ p->delay = (p->delay * hz) / 1000; /* Scale burst size: bytes -> bits * hz */ p->burst *= 8 * hz; /* We need either a pipe number or a flow_set number. */ if (p->pipe_nr == 0 && pfs->fs_nr == 0) return (EINVAL); if (p->pipe_nr != 0 && pfs->fs_nr != 0) return (EINVAL); if (p->pipe_nr != 0) { /* this is a pipe */ struct dn_pipe *pipe; DUMMYNET_LOCK(); pipe = locate_pipe(p->pipe_nr); /* locate pipe */ if (pipe == NULL) { /* new pipe */ pipe = malloc(sizeof(struct dn_pipe), M_DUMMYNET, M_NOWAIT | M_ZERO); if (pipe == NULL) { DUMMYNET_UNLOCK(); printf("dummynet: no memory for new pipe\n"); return (ENOMEM); } pipe->pipe_nr = p->pipe_nr; pipe->fs.pipe = pipe; /* * idle_heap is the only one from which * we extract from the middle. */ pipe->idle_heap.size = pipe->idle_heap.elements = 0; pipe->idle_heap.offset = offsetof(struct dn_flow_queue, heap_pos); } else { /* Flush accumulated credit for all queues. */ for (i = 0; i <= pipe->fs.rq_size; i++) { for (q = pipe->fs.rq[i]; q; q = q->next) { q->numbytes = p->burst + (io_fast ? p->bandwidth : 0); } } } pipe->bandwidth = p->bandwidth; pipe->burst = p->burst; pipe->numbytes = pipe->burst + (io_fast ? pipe->bandwidth : 0); bcopy(p->if_name, pipe->if_name, sizeof(p->if_name)); pipe->ifp = NULL; /* reset interface ptr */ pipe->delay = p->delay; set_fs_parms(&(pipe->fs), pfs); /* Handle changes in the delay profile. */ if (p->samples_no > 0) { if (pipe->samples_no != p->samples_no) { if (pipe->samples != NULL) free(pipe->samples, M_DUMMYNET); pipe->samples = malloc(p->samples_no*sizeof(dn_key), M_DUMMYNET, M_NOWAIT | M_ZERO); if (pipe->samples == NULL) { DUMMYNET_UNLOCK(); printf("dummynet: no memory " "for new samples\n"); return (ENOMEM); } pipe->samples_no = p->samples_no; } strncpy(pipe->name,p->name,sizeof(pipe->name)); pipe->loss_level = p->loss_level; for (i = 0; isamples_no; ++i) pipe->samples[i] = p->samples[i]; } else if (pipe->samples != NULL) { free(pipe->samples, M_DUMMYNET); pipe->samples = NULL; pipe->samples_no = 0; } if (pipe->fs.rq == NULL) { /* a new pipe */ error = alloc_hash(&(pipe->fs), pfs); if (error) { DUMMYNET_UNLOCK(); free_pipe(pipe); return (error); } SLIST_INSERT_HEAD(&pipehash[HASH(pipe->pipe_nr)], pipe, next); } DUMMYNET_UNLOCK(); } else { /* config queue */ struct dn_flow_set *fs; DUMMYNET_LOCK(); fs = locate_flowset(pfs->fs_nr); /* locate flow_set */ if (fs == NULL) { /* new */ if (pfs->parent_nr == 0) { /* need link to a pipe */ DUMMYNET_UNLOCK(); return (EINVAL); } fs = malloc(sizeof(struct dn_flow_set), M_DUMMYNET, M_NOWAIT | M_ZERO); if (fs == NULL) { DUMMYNET_UNLOCK(); printf( "dummynet: no memory for new flow_set\n"); return (ENOMEM); } fs->fs_nr = pfs->fs_nr; fs->parent_nr = pfs->parent_nr; fs->weight = pfs->weight; if (fs->weight == 0) fs->weight = 1; else if (fs->weight > 100) fs->weight = 100; } else { /* * Change parent pipe not allowed; * must delete and recreate. */ if (pfs->parent_nr != 0 && fs->parent_nr != pfs->parent_nr) { DUMMYNET_UNLOCK(); return (EINVAL); } } set_fs_parms(fs, pfs); if (fs->rq == NULL) { /* a new flow_set */ error = alloc_hash(fs, pfs); if (error) { DUMMYNET_UNLOCK(); free(fs, M_DUMMYNET); return (error); } SLIST_INSERT_HEAD(&flowsethash[HASH(fs->fs_nr)], fs, next); } DUMMYNET_UNLOCK(); } return (0); } /* * Helper function to remove from a heap queues which are linked to * a flow_set about to be deleted. */ static void fs_remove_from_heap(struct dn_heap *h, struct dn_flow_set *fs) { int i, found; for (i = found = 0 ; i < h->elements ;) { if ( ((struct dn_flow_queue *)h->p[i].object)->fs == fs) { h->elements-- ; h->p[i] = h->p[h->elements] ; found++ ; } else i++ ; } if (found) heapify(h); } /* * helper function to remove a pipe from a heap (can be there at most once) */ static void pipe_remove_from_heap(struct dn_heap *h, struct dn_pipe *p) { int i; for (i=0; i < h->elements ; i++ ) { if (h->p[i].object == p) { /* found it */ h->elements-- ; h->p[i] = h->p[h->elements] ; heapify(h); break ; } } } /* * drain all queues. Called in case of severe mbuf shortage. */ void dummynet_drain(void) { struct dn_flow_set *fs; struct dn_pipe *pipe; int i; DUMMYNET_LOCK_ASSERT(); heap_free(&ready_heap); heap_free(&wfq_ready_heap); heap_free(&extract_heap); /* remove all references to this pipe from flow_sets */ for (i = 0; i < HASHSIZE; i++) SLIST_FOREACH(fs, &flowsethash[i], next) purge_flow_set(fs, 0); for (i = 0; i < HASHSIZE; i++) { SLIST_FOREACH(pipe, &pipehash[i], next) { purge_flow_set(&(pipe->fs), 0); dn_free_pkts(pipe->head); pipe->head = pipe->tail = NULL; } } } /* * Fully delete a pipe or a queue, cleaning up associated info. */ static int delete_pipe(struct dn_pipe *p) { if (p->pipe_nr == 0 && p->fs.fs_nr == 0) return EINVAL ; if (p->pipe_nr != 0 && p->fs.fs_nr != 0) return EINVAL ; if (p->pipe_nr != 0) { /* this is an old-style pipe */ struct dn_pipe *pipe; struct dn_flow_set *fs; int i; DUMMYNET_LOCK(); pipe = locate_pipe(p->pipe_nr); /* locate pipe */ if (pipe == NULL) { DUMMYNET_UNLOCK(); return (ENOENT); /* not found */ } /* Unlink from list of pipes. */ SLIST_REMOVE(&pipehash[HASH(pipe->pipe_nr)], pipe, dn_pipe, next); /* Remove all references to this pipe from flow_sets. */ for (i = 0; i < HASHSIZE; i++) { SLIST_FOREACH(fs, &flowsethash[i], next) { if (fs->pipe == pipe) { printf("dummynet: ++ ref to pipe %d from fs %d\n", p->pipe_nr, fs->fs_nr); fs->pipe = NULL ; purge_flow_set(fs, 0); } } } fs_remove_from_heap(&ready_heap, &(pipe->fs)); purge_pipe(pipe); /* remove all data associated to this pipe */ /* remove reference to here from extract_heap and wfq_ready_heap */ pipe_remove_from_heap(&extract_heap, pipe); pipe_remove_from_heap(&wfq_ready_heap, pipe); DUMMYNET_UNLOCK(); free_pipe(pipe); } else { /* this is a WF2Q queue (dn_flow_set) */ struct dn_flow_set *fs; DUMMYNET_LOCK(); fs = locate_flowset(p->fs.fs_nr); /* locate set */ if (fs == NULL) { DUMMYNET_UNLOCK(); return (ENOENT); /* not found */ } /* Unlink from list of flowsets. */ SLIST_REMOVE( &flowsethash[HASH(fs->fs_nr)], fs, dn_flow_set, next); if (fs->pipe != NULL) { /* Update total weight on parent pipe and cleanup parent heaps. */ fs->pipe->sum -= fs->weight * fs->backlogged ; fs_remove_from_heap(&(fs->pipe->not_eligible_heap), fs); fs_remove_from_heap(&(fs->pipe->scheduler_heap), fs); #if 1 /* XXX should i remove from idle_heap as well ? */ fs_remove_from_heap(&(fs->pipe->idle_heap), fs); #endif } purge_flow_set(fs, 1); DUMMYNET_UNLOCK(); } return 0 ; } /* * helper function used to copy data from kernel in DUMMYNET_GET */ static char * dn_copy_set(struct dn_flow_set *set, char *bp) { int i, copied = 0 ; struct dn_flow_queue *q, *qp = (struct dn_flow_queue *)bp; DUMMYNET_LOCK_ASSERT(); for (i = 0 ; i <= set->rq_size ; i++) { for (q = set->rq[i] ; q ; q = q->next, qp++ ) { if (q->hash_slot != i) printf("dummynet: ++ at %d: wrong slot (have %d, " "should be %d)\n", copied, q->hash_slot, i); if (q->fs != set) printf("dummynet: ++ at %d: wrong fs ptr (have %p, should be %p)\n", i, q->fs, set); copied++ ; bcopy(q, qp, sizeof( *q ) ); /* cleanup pointers */ qp->next = NULL ; qp->head = qp->tail = NULL ; qp->fs = NULL ; } } if (copied != set->rq_elements) printf("dummynet: ++ wrong count, have %d should be %d\n", copied, set->rq_elements); return (char *)qp ; } static size_t dn_calc_size(void) { struct dn_flow_set *fs; struct dn_pipe *pipe; size_t size = 0; int i; DUMMYNET_LOCK_ASSERT(); /* * Compute size of data structures: list of pipes and flow_sets. */ for (i = 0; i < HASHSIZE; i++) { SLIST_FOREACH(pipe, &pipehash[i], next) size += sizeof(*pipe) + pipe->fs.rq_elements * sizeof(struct dn_flow_queue); SLIST_FOREACH(fs, &flowsethash[i], next) size += sizeof (*fs) + fs->rq_elements * sizeof(struct dn_flow_queue); } return size; } static int dummynet_get(struct sockopt *sopt) { char *buf, *bp ; /* bp is the "copy-pointer" */ size_t size ; struct dn_flow_set *fs; struct dn_pipe *pipe; int error=0, i ; /* XXX lock held too long */ DUMMYNET_LOCK(); /* * XXX: Ugly, but we need to allocate memory with M_WAITOK flag and we * cannot use this flag while holding a mutex. */ for (i = 0; i < 10; i++) { size = dn_calc_size(); DUMMYNET_UNLOCK(); buf = malloc(size, M_TEMP, M_WAITOK); DUMMYNET_LOCK(); if (size >= dn_calc_size()) break; free(buf, M_TEMP); buf = NULL; } if (buf == NULL) { DUMMYNET_UNLOCK(); return ENOBUFS ; } bp = buf; for (i = 0; i < HASHSIZE; i++) { SLIST_FOREACH(pipe, &pipehash[i], next) { struct dn_pipe *pipe_bp = (struct dn_pipe *)bp; /* * Copy pipe descriptor into *bp, convert delay back to ms, * then copy the flow_set descriptor(s) one at a time. * After each flow_set, copy the queue descriptor it owns. */ bcopy(pipe, bp, sizeof(*pipe)); pipe_bp->delay = (pipe_bp->delay * 1000) / hz; pipe_bp->burst = div64(pipe_bp->burst, 8 * hz); /* * XXX the following is a hack based on ->next being the * first field in dn_pipe and dn_flow_set. The correct * solution would be to move the dn_flow_set to the beginning * of struct dn_pipe. */ pipe_bp->next.sle_next = (struct dn_pipe *)DN_IS_PIPE; /* Clean pointers. */ pipe_bp->head = pipe_bp->tail = NULL; pipe_bp->fs.next.sle_next = NULL; pipe_bp->fs.pipe = NULL; pipe_bp->fs.rq = NULL; pipe_bp->samples = NULL; bp += sizeof(*pipe) ; bp = dn_copy_set(&(pipe->fs), bp); } } for (i = 0; i < HASHSIZE; i++) { SLIST_FOREACH(fs, &flowsethash[i], next) { struct dn_flow_set *fs_bp = (struct dn_flow_set *)bp; bcopy(fs, bp, sizeof(*fs)); /* XXX same hack as above */ fs_bp->next.sle_next = (struct dn_flow_set *)DN_IS_QUEUE; fs_bp->pipe = NULL; fs_bp->rq = NULL; bp += sizeof(*fs); bp = dn_copy_set(fs, bp); } } DUMMYNET_UNLOCK(); error = sooptcopyout(sopt, buf, size); free(buf, M_TEMP); return error ; } /* * Handler for the various dummynet socket options (get, flush, config, del) */ static int ip_dn_ctl(struct sockopt *sopt) { int error; struct dn_pipe *p = NULL; error = priv_check(sopt->sopt_td, PRIV_NETINET_DUMMYNET); if (error) return (error); /* Disallow sets in really-really secure mode. */ if (sopt->sopt_dir == SOPT_SET) { #if __FreeBSD_version >= 500034 error = securelevel_ge(sopt->sopt_td->td_ucred, 3); if (error) return (error); #else if (securelevel >= 3) return (EPERM); #endif } switch (sopt->sopt_name) { default : printf("dummynet: -- unknown option %d", sopt->sopt_name); error = EINVAL ; break; case IP_DUMMYNET_GET : error = dummynet_get(sopt); break ; case IP_DUMMYNET_FLUSH : dummynet_flush() ; break ; case IP_DUMMYNET_CONFIGURE : p = malloc(sizeof(struct dn_pipe_max), M_TEMP, M_WAITOK); error = sooptcopyin(sopt, p, sizeof(struct dn_pipe_max), sizeof *p); if (error) break ; if (p->samples_no > 0) p->samples = &(((struct dn_pipe_max *)p)->samples[0]); error = config_pipe(p); break ; case IP_DUMMYNET_DEL : /* remove a pipe or queue */ p = malloc(sizeof(struct dn_pipe), M_TEMP, M_WAITOK); error = sooptcopyin(sopt, p, sizeof(struct dn_pipe), sizeof *p); if (error) break ; error = delete_pipe(p); break ; } if (p != NULL) free(p, M_TEMP); return error ; } static void ip_dn_init(void) { int i; if (bootverbose) printf("DUMMYNET with IPv6 initialized (040826)\n"); DUMMYNET_LOCK_INIT(); for (i = 0; i < HASHSIZE; i++) { SLIST_INIT(&pipehash[i]); SLIST_INIT(&flowsethash[i]); } ready_heap.size = ready_heap.elements = 0; ready_heap.offset = 0; wfq_ready_heap.size = wfq_ready_heap.elements = 0; wfq_ready_heap.offset = 0; extract_heap.size = extract_heap.elements = 0; extract_heap.offset = 0; ip_dn_ctl_ptr = ip_dn_ctl; ip_dn_io_ptr = dummynet_io; TASK_INIT(&dn_task, 0, dummynet_task, NULL); dn_tq = taskqueue_create_fast("dummynet", M_NOWAIT, taskqueue_thread_enqueue, &dn_tq); taskqueue_start_threads(&dn_tq, 1, PI_NET, "dummynet"); callout_init(&dn_timeout, CALLOUT_MPSAFE); callout_reset(&dn_timeout, 1, dummynet, NULL); /* Initialize curr_time adjustment mechanics. */ getmicrouptime(&prev_t); } #ifdef KLD_MODULE static void ip_dn_destroy(void) { ip_dn_ctl_ptr = NULL; ip_dn_io_ptr = NULL; DUMMYNET_LOCK(); callout_stop(&dn_timeout); DUMMYNET_UNLOCK(); taskqueue_drain(dn_tq, &dn_task); taskqueue_free(dn_tq); dummynet_flush(); DUMMYNET_LOCK_DESTROY(); } #endif /* KLD_MODULE */ static int dummynet_modevent(module_t mod, int type, void *data) { switch (type) { case MOD_LOAD: if (ip_dn_io_ptr) { printf("DUMMYNET already loaded\n"); return EEXIST ; } ip_dn_init(); break; case MOD_UNLOAD: #if !defined(KLD_MODULE) printf("dummynet statically compiled, cannot unload\n"); return EINVAL ; #else ip_dn_destroy(); #endif break ; default: return EOPNOTSUPP; break ; } return 0 ; } static moduledata_t dummynet_mod = { "dummynet", dummynet_modevent, NULL }; DECLARE_MODULE(dummynet, dummynet_mod, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY); MODULE_DEPEND(dummynet, ipfw, 2, 2, 2); MODULE_VERSION(dummynet, 1); /* end of file */