Added the new version for dummynet.
[ipfw.git] / dummynet2 / ip_dummynet.c
diff --git a/dummynet2/ip_dummynet.c b/dummynet2/ip_dummynet.c
new file mode 100644 (file)
index 0000000..bb34c04
--- /dev/null
@@ -0,0 +1,2370 @@
+/*-
+ * Copyright (c) 1998-2002 Luigi Rizzo, Universita` di Pisa
+ * Portions Copyright (c) 2000 Akamba Corp.
+ * All rights reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ *    notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ *    notice, this list of conditions and the following disclaimer in the
+ *    documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD: head/sys/netinet/ipfw/ip_dummynet.c 200601 2009-12-16 10:48:40Z luigi $");
+
+#define        DUMMYNET_DEBUG
+
+#include "opt_inet6.h"
+
+/*
+ * This module implements IP dummynet, a bandwidth limiter/delay emulator
+ * used in conjunction with the ipfw package.
+ * Description of the data structures used is in ip_dummynet.h
+ * Here you mainly find the following blocks of code:
+ *  + variable declarations;
+ *  + heap management functions;
+ *  + scheduler and dummynet functions;
+ *  + configuration and initialization.
+ *
+ * NOTA BENE: critical sections are protected by the "dummynet lock".
+ *
+ * Most important Changes:
+ *
+ * 011004: KLDable
+ * 010124: Fixed WF2Q behaviour
+ * 010122: Fixed spl protection.
+ * 000601: WF2Q support
+ * 000106: large rewrite, use heaps to handle very many pipes.
+ * 980513:     initial release
+ *
+ * include files marked with XXX are probably not needed
+ */
+
+#include <sys/param.h>
+#include <sys/systm.h>
+#include <sys/malloc.h>
+#include <sys/mbuf.h>
+#include <sys/kernel.h>
+#include <sys/lock.h>
+#include <sys/module.h>
+#include <sys/priv.h>
+#include <sys/proc.h>
+#include <sys/rwlock.h>
+#include <sys/socket.h>
+#include <sys/socketvar.h>
+#include <sys/time.h>
+#include <sys/sysctl.h>
+#include <sys/taskqueue.h>
+#include <net/if.h>    /* IFNAMSIZ, struct ifaddr, ifq head, lock.h mutex.h */
+#include <net/netisr.h>
+#include <netinet/in.h>
+#include <netinet/ip.h>                /* ip_len, ip_off */
+#include <netinet/ip_fw.h>
+#include <netinet/ipfw/ip_fw_private.h>
+#include <netinet/ip_dummynet.h>
+#include <netinet/ip_var.h>    /* ip_output(), IP_FORWARDING */
+
+#include <netinet/if_ether.h> /* various ether_* routines */
+
+#include <netinet/ip6.h>       /* for ip6_input, ip6_output prototypes */
+#include <netinet6/ip6_var.h>
+
+/*
+ * We keep a private variable for the simulation time, but we could
+ * probably use an existing one ("softticks" in sys/kern/kern_timeout.c)
+ */
+static dn_key curr_time = 0 ; /* current simulation time */
+
+static int dn_hash_size = 64 ; /* default hash size */
+
+/* statistics on number of queue searches and search steps */
+static long searches, search_steps ;
+static int pipe_expire = 1 ;   /* expire queue if empty */
+static int dn_max_ratio = 16 ; /* max queues/buckets ratio */
+
+static long pipe_slot_limit = 100; /* Foot shooting limit for pipe queues. */
+static long pipe_byte_limit = 1024 * 1024;
+
+static int red_lookup_depth = 256;     /* RED - default lookup table depth */
+static int red_avg_pkt_size = 512;      /* RED - default medium packet size */
+static int red_max_pkt_size = 1500;     /* RED - default max packet size */
+
+static struct timeval prev_t, t;
+static long tick_last;                 /* Last tick duration (usec). */
+static long tick_delta;                        /* Last vs standard tick diff (usec). */
+static long tick_delta_sum;            /* Accumulated tick difference (usec).*/
+static long tick_adjustment;           /* Tick adjustments done. */
+static long tick_lost;                 /* Lost(coalesced) ticks number. */
+/* Adjusted vs non-adjusted curr_time difference (ticks). */
+static long tick_diff;
+
+static int             io_fast;
+static unsigned long   io_pkt;
+static unsigned long   io_pkt_fast;
+static unsigned long   io_pkt_drop;
+
+/*
+ * Three heaps contain queues and pipes that the scheduler handles:
+ *
+ * ready_heap contains all dn_flow_queue related to fixed-rate pipes.
+ *
+ * wfq_ready_heap contains the pipes associated with WF2Q flows
+ *
+ * extract_heap contains pipes associated with delay lines.
+ *
+ */
+
+MALLOC_DEFINE(M_DUMMYNET, "dummynet", "dummynet heap");
+
+static struct dn_heap ready_heap, extract_heap, wfq_ready_heap ;
+
+static int     heap_init(struct dn_heap *h, int size);
+static int     heap_insert (struct dn_heap *h, dn_key key1, void *p);
+static void    heap_extract(struct dn_heap *h, void *obj);
+static void    transmit_event(struct dn_pipe *pipe, struct mbuf **head,
+                   struct mbuf **tail);
+static void    ready_event(struct dn_flow_queue *q, struct mbuf **head,
+                   struct mbuf **tail);
+static void    ready_event_wfq(struct dn_pipe *p, struct mbuf **head,
+                   struct mbuf **tail);
+
+#define        HASHSIZE        16
+#define        HASH(num)       ((((num) >> 8) ^ ((num) >> 4) ^ (num)) & 0x0f)
+static struct dn_pipe_head     pipehash[HASHSIZE];     /* all pipes */
+static struct dn_flow_set_head flowsethash[HASHSIZE];  /* all flowsets */
+
+static struct callout dn_timeout;
+
+extern void (*bridge_dn_p)(struct mbuf *, struct ifnet *);
+
+#ifdef SYSCTL_NODE
+SYSCTL_DECL(_net_inet);
+SYSCTL_DECL(_net_inet_ip);
+
+SYSCTL_NODE(_net_inet_ip, OID_AUTO, dummynet, CTLFLAG_RW, 0, "Dummynet");
+SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, hash_size,
+    CTLFLAG_RW, &dn_hash_size, 0, "Default hash table size");
+#if 0  /* curr_time is 64 bit */
+SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, curr_time,
+    CTLFLAG_RD, &curr_time, 0, "Current tick");
+#endif
+SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, ready_heap,
+    CTLFLAG_RD, &ready_heap.size, 0, "Size of ready heap");
+SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, extract_heap,
+    CTLFLAG_RD, &extract_heap.size, 0, "Size of extract heap");
+SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, searches,
+    CTLFLAG_RD, &searches, 0, "Number of queue searches");
+SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, search_steps,
+    CTLFLAG_RD, &search_steps, 0, "Number of queue search steps");
+SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, expire,
+    CTLFLAG_RW, &pipe_expire, 0, "Expire queue if empty");
+SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, max_chain_len,
+    CTLFLAG_RW, &dn_max_ratio, 0,
+    "Max ratio between dynamic queues and buckets");
+SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_lookup_depth,
+    CTLFLAG_RD, &red_lookup_depth, 0, "Depth of RED lookup table");
+SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_avg_pkt_size,
+    CTLFLAG_RD, &red_avg_pkt_size, 0, "RED Medium packet size");
+SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_max_pkt_size,
+    CTLFLAG_RD, &red_max_pkt_size, 0, "RED Max packet size");
+SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_delta,
+    CTLFLAG_RD, &tick_delta, 0, "Last vs standard tick difference (usec).");
+SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_delta_sum,
+    CTLFLAG_RD, &tick_delta_sum, 0, "Accumulated tick difference (usec).");
+SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_adjustment,
+    CTLFLAG_RD, &tick_adjustment, 0, "Tick adjustments done.");
+SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_diff,
+    CTLFLAG_RD, &tick_diff, 0,
+    "Adjusted vs non-adjusted curr_time difference (ticks).");
+SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_lost,
+    CTLFLAG_RD, &tick_lost, 0,
+    "Number of ticks coalesced by dummynet taskqueue.");
+SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, io_fast,
+    CTLFLAG_RW, &io_fast, 0, "Enable fast dummynet io.");
+SYSCTL_ULONG(_net_inet_ip_dummynet, OID_AUTO, io_pkt,
+    CTLFLAG_RD, &io_pkt, 0,
+    "Number of packets passed to dummynet.");
+SYSCTL_ULONG(_net_inet_ip_dummynet, OID_AUTO, io_pkt_fast,
+    CTLFLAG_RD, &io_pkt_fast, 0,
+    "Number of packets bypassed dummynet scheduler.");
+SYSCTL_ULONG(_net_inet_ip_dummynet, OID_AUTO, io_pkt_drop,
+    CTLFLAG_RD, &io_pkt_drop, 0,
+    "Number of packets dropped by dummynet.");
+SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, pipe_slot_limit,
+    CTLFLAG_RW, &pipe_slot_limit, 0, "Upper limit in slots for pipe queue.");
+SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, pipe_byte_limit,
+    CTLFLAG_RW, &pipe_byte_limit, 0, "Upper limit in bytes for pipe queue.");
+#endif
+
+#ifdef DUMMYNET_DEBUG
+int    dummynet_debug = 0;
+#ifdef SYSCTL_NODE
+SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, debug, CTLFLAG_RW, &dummynet_debug,
+           0, "control debugging printfs");
+#endif
+#define        DPRINTF(X)      if (dummynet_debug) printf X
+#else
+#define        DPRINTF(X)
+#endif
+
+static struct task     dn_task;
+static struct taskqueue        *dn_tq = NULL;
+static void dummynet_task(void *, int);
+
+#if defined( __linux__ ) || defined( _WIN32 )
+static DEFINE_SPINLOCK(dummynet_mtx);
+#else
+static struct mtx dummynet_mtx;
+#endif
+#define        DUMMYNET_LOCK_INIT() \
+       mtx_init(&dummynet_mtx, "dummynet", NULL, MTX_DEF)
+#define        DUMMYNET_LOCK_DESTROY() mtx_destroy(&dummynet_mtx)
+#define        DUMMYNET_LOCK()         mtx_lock(&dummynet_mtx)
+#define        DUMMYNET_UNLOCK()       mtx_unlock(&dummynet_mtx)
+#define        DUMMYNET_LOCK_ASSERT()  mtx_assert(&dummynet_mtx, MA_OWNED)
+
+static int     config_pipe(struct dn_pipe *p);
+static int     ip_dn_ctl(struct sockopt *sopt);
+
+static void    dummynet(void *);
+static void    dummynet_flush(void);
+static void    dummynet_send(struct mbuf *);
+void           dummynet_drain(void);
+static int     dummynet_io(struct mbuf **, int , struct ip_fw_args *);
+
+/*
+ * Flow queue is idle if:
+ *   1) it's empty for at least 1 tick
+ *   2) it has invalid timestamp (WF2Q case)
+ *   3) parent pipe has no 'exhausted' burst.
+ */
+#define QUEUE_IS_IDLE(q) ((q)->head == NULL && (q)->S == (q)->F + 1 && \
+       curr_time > (q)->idle_time + 1 && \
+       ((q)->numbytes + (curr_time - (q)->idle_time - 1) * \
+       (q)->fs->pipe->bandwidth >= (q)->fs->pipe->burst))
+
+/*
+ * Heap management functions.
+ *
+ * In the heap, first node is element 0. Children of i are 2i+1 and 2i+2.
+ * Some macros help finding parent/children so we can optimize them.
+ *
+ * heap_init() is called to expand the heap when needed.
+ * Increment size in blocks of 16 entries.
+ * XXX failure to allocate a new element is a pretty bad failure
+ * as we basically stall a whole queue forever!!
+ * Returns 1 on error, 0 on success
+ */
+#define HEAP_FATHER(x) ( ( (x) - 1 ) / 2 )
+#define HEAP_LEFT(x) ( 2*(x) + 1 )
+#define HEAP_IS_LEFT(x) ( (x) & 1 )
+#define HEAP_RIGHT(x) ( 2*(x) + 2 )
+#define        HEAP_SWAP(a, b, buffer) { buffer = a ; a = b ; b = buffer ; }
+#define HEAP_INCREMENT 15
+
+static int
+heap_init(struct dn_heap *h, int new_size)
+{
+    struct dn_heap_entry *p;
+
+    if (h->size >= new_size ) {
+       printf("dummynet: %s, Bogus call, have %d want %d\n", __func__,
+               h->size, new_size);
+       return 0 ;
+    }
+    new_size = (new_size + HEAP_INCREMENT ) & ~HEAP_INCREMENT ;
+    p = malloc(new_size * sizeof(*p), M_DUMMYNET, M_NOWAIT);
+    if (p == NULL) {
+       printf("dummynet: %s, resize %d failed\n", __func__, new_size );
+       return 1 ; /* error */
+    }
+    if (h->size > 0) {
+       bcopy(h->p, p, h->size * sizeof(*p) );
+       free(h->p, M_DUMMYNET);
+    }
+    h->p = p ;
+    h->size = new_size ;
+    return 0 ;
+}
+
+/*
+ * Insert element in heap. Normally, p != NULL, we insert p in
+ * a new position and bubble up. If p == NULL, then the element is
+ * already in place, and key is the position where to start the
+ * bubble-up.
+ * Returns 1 on failure (cannot allocate new heap entry)
+ *
+ * If offset > 0 the position (index, int) of the element in the heap is
+ * also stored in the element itself at the given offset in bytes.
+ */
+#define SET_OFFSET(heap, node) \
+    if (heap->offset > 0) \
+           *((int *)((char *)(heap->p[node].object) + heap->offset)) = node ;
+/*
+ * RESET_OFFSET is used for sanity checks. It sets offset to an invalid value.
+ */
+#define RESET_OFFSET(heap, node) \
+    if (heap->offset > 0) \
+           *((int *)((char *)(heap->p[node].object) + heap->offset)) = -1 ;
+static int
+heap_insert(struct dn_heap *h, dn_key key1, void *p)
+{
+    int son = h->elements ;
+
+    if (p == NULL)     /* data already there, set starting point */
+       son = key1 ;
+    else {             /* insert new element at the end, possibly resize */
+       son = h->elements ;
+       if (son == h->size) /* need resize... */
+           if (heap_init(h, h->elements+1) )
+               return 1 ; /* failure... */
+       h->p[son].object = p ;
+       h->p[son].key = key1 ;
+       h->elements++ ;
+    }
+    while (son > 0) {                          /* bubble up */
+       int father = HEAP_FATHER(son) ;
+       struct dn_heap_entry tmp  ;
+
+       if (DN_KEY_LT( h->p[father].key, h->p[son].key ) )
+           break ; /* found right position */
+       /* son smaller than father, swap and repeat */
+       HEAP_SWAP(h->p[son], h->p[father], tmp) ;
+       SET_OFFSET(h, son);
+       son = father ;
+    }
+    SET_OFFSET(h, son);
+    return 0 ;
+}
+
+/*
+ * remove top element from heap, or obj if obj != NULL
+ */
+static void
+heap_extract(struct dn_heap *h, void *obj)
+{
+    int child, father, max = h->elements - 1 ;
+
+    if (max < 0) {
+       printf("dummynet: warning, extract from empty heap 0x%p\n", h);
+       return ;
+    }
+    father = 0 ; /* default: move up smallest child */
+    if (obj != NULL) { /* extract specific element, index is at offset */
+       if (h->offset <= 0)
+           panic("dummynet: heap_extract from middle not supported on this heap!!!\n");
+       father = *((int *)((char *)obj + h->offset)) ;
+       if (father < 0 || father >= h->elements) {
+           printf("dummynet: heap_extract, father %d out of bound 0..%d\n",
+               father, h->elements);
+           panic("dummynet: heap_extract");
+       }
+    }
+    RESET_OFFSET(h, father);
+    child = HEAP_LEFT(father) ;                /* left child */
+    while (child <= max) {             /* valid entry */
+       if (child != max && DN_KEY_LT(h->p[child+1].key, h->p[child].key) )
+           child = child+1 ;           /* take right child, otherwise left */
+       h->p[father] = h->p[child] ;
+       SET_OFFSET(h, father);
+       father = child ;
+       child = HEAP_LEFT(child) ;   /* left child for next loop */
+    }
+    h->elements-- ;
+    if (father != max) {
+       /*
+        * Fill hole with last entry and bubble up, reusing the insert code
+        */
+       h->p[father] = h->p[max] ;
+       heap_insert(h, father, NULL); /* this one cannot fail */
+    }
+}
+
+#if 0
+/*
+ * change object position and update references
+ * XXX this one is never used!
+ */
+static void
+heap_move(struct dn_heap *h, dn_key new_key, void *object)
+{
+    int temp;
+    int i ;
+    int max = h->elements-1 ;
+    struct dn_heap_entry buf ;
+
+    if (h->offset <= 0)
+       panic("cannot move items on this heap");
+
+    i = *((int *)((char *)object + h->offset));
+    if (DN_KEY_LT(new_key, h->p[i].key) ) { /* must move up */
+       h->p[i].key = new_key ;
+       for (; i>0 && DN_KEY_LT(new_key, h->p[(temp = HEAP_FATHER(i))].key) ;
+                i = temp ) { /* bubble up */
+           HEAP_SWAP(h->p[i], h->p[temp], buf) ;
+           SET_OFFSET(h, i);
+       }
+    } else {           /* must move down */
+       h->p[i].key = new_key ;
+       while ( (temp = HEAP_LEFT(i)) <= max ) { /* found left child */
+           if ((temp != max) && DN_KEY_GT(h->p[temp].key, h->p[temp+1].key))
+               temp++ ; /* select child with min key */
+           if (DN_KEY_GT(new_key, h->p[temp].key)) { /* go down */
+               HEAP_SWAP(h->p[i], h->p[temp], buf) ;
+               SET_OFFSET(h, i);
+           } else
+               break ;
+           i = temp ;
+       }
+    }
+    SET_OFFSET(h, i);
+}
+#endif /* heap_move, unused */
+
+/*
+ * heapify() will reorganize data inside an array to maintain the
+ * heap property. It is needed when we delete a bunch of entries.
+ */
+static void
+heapify(struct dn_heap *h)
+{
+    int i ;
+
+    for (i = 0 ; i < h->elements ; i++ )
+       heap_insert(h, i , NULL) ;
+}
+
+/*
+ * cleanup the heap and free data structure
+ */
+static void
+heap_free(struct dn_heap *h)
+{
+    if (h->size >0 )
+       free(h->p, M_DUMMYNET);
+    bzero(h, sizeof(*h) );
+}
+
+/*
+ * --- end of heap management functions ---
+ */
+
+/*
+ * Dispose a list of packet. Use an inline functions so if we
+ * need to free extra state associated to a packet, this is a
+ * central point to do it.
+ */
+
+static __inline void dn_free_pkts(struct mbuf *mnext)
+{
+       struct mbuf *m;
+
+       while ((m = mnext) != NULL) {
+               mnext = m->m_nextpkt;
+               FREE_PKT(m);
+       }
+}
+
+/*
+ * Return the mbuf tag holding the dummynet state.  As an optimization
+ * this is assumed to be the first tag on the list.  If this turns out
+ * wrong we'll need to search the list.
+ */
+static struct dn_pkt_tag *
+dn_tag_get(struct mbuf *m)
+{
+    struct m_tag *mtag = m_tag_first(m);
+    KASSERT(mtag != NULL &&
+           mtag->m_tag_cookie == MTAG_ABI_COMPAT &&
+           mtag->m_tag_id == PACKET_TAG_DUMMYNET,
+           ("packet on dummynet queue w/o dummynet tag!"));
+    return (struct dn_pkt_tag *)(mtag+1);
+}
+
+/*
+ * Scheduler functions:
+ *
+ * transmit_event() is called when the delay-line needs to enter
+ * the scheduler, either because of existing pkts getting ready,
+ * or new packets entering the queue. The event handled is the delivery
+ * time of the packet.
+ *
+ * ready_event() does something similar with fixed-rate queues, and the
+ * event handled is the finish time of the head pkt.
+ *
+ * wfq_ready_event() does something similar with WF2Q queues, and the
+ * event handled is the start time of the head pkt.
+ *
+ * In all cases, we make sure that the data structures are consistent
+ * before passing pkts out, because this might trigger recursive
+ * invocations of the procedures.
+ */
+static void
+transmit_event(struct dn_pipe *pipe, struct mbuf **head, struct mbuf **tail)
+{
+       struct mbuf *m;
+       struct dn_pkt_tag *pkt;
+
+       DUMMYNET_LOCK_ASSERT();
+
+       while ((m = pipe->head) != NULL) {
+               pkt = dn_tag_get(m);
+               if (!DN_KEY_LEQ(pkt->output_time, curr_time))
+                       break;
+
+               pipe->head = m->m_nextpkt;
+               if (*tail != NULL)
+                       (*tail)->m_nextpkt = m;
+               else
+                       *head = m;
+               *tail = m;
+       }
+       if (*tail != NULL)
+               (*tail)->m_nextpkt = NULL;
+
+       /* If there are leftover packets, put into the heap for next event. */
+       if ((m = pipe->head) != NULL) {
+               pkt = dn_tag_get(m);
+               /*
+                * XXX Should check errors on heap_insert, by draining the
+                * whole pipe p and hoping in the future we are more successful.
+                */
+               heap_insert(&extract_heap, pkt->output_time, pipe);
+       }
+}
+
+#ifndef __linux__
+#define div64(a, b)    ((int64_t)(a) / (int64_t)(b))
+#endif
+/*
+ * Compute how many ticks we have to wait before being able to send
+ * a packet. This is computed as the "wire time" for the packet
+ * (length + extra bits), minus the credit available, scaled to ticks.
+ * Check that the result is not be negative (it could be if we have
+ * too much leftover credit in q->numbytes).
+ */
+static inline dn_key
+set_ticks(struct mbuf *m, struct dn_flow_queue *q, struct dn_pipe *p)
+{
+       int64_t ret;
+
+       ret = div64( (m->m_pkthdr.len * 8 + q->extra_bits) * hz
+               - q->numbytes + p->bandwidth - 1 , p->bandwidth);
+       if (ret < 0)
+               ret = 0;
+       return ret;
+}
+
+/*
+ * Convert the additional MAC overheads/delays into an equivalent
+ * number of bits for the given data rate. The samples are in milliseconds
+ * so we need to divide by 1000.
+ */
+static dn_key
+compute_extra_bits(struct mbuf *pkt, struct dn_pipe *p)
+{
+       int index;
+       dn_key extra_bits;
+
+       if (!p->samples || p->samples_no == 0)
+               return 0;
+       index  = random() % p->samples_no;
+       extra_bits = div64((dn_key)p->samples[index] * p->bandwidth, 1000);
+       if (index >= p->loss_level) {
+               struct dn_pkt_tag *dt = dn_tag_get(pkt);
+               if (dt)
+                       dt->dn_dir = DIR_DROP;
+       }
+       return extra_bits;
+}
+
+static void
+free_pipe(struct dn_pipe *p)
+{
+       if (p->samples)
+               free(p->samples, M_DUMMYNET);
+       free(p, M_DUMMYNET);
+}
+
+/*
+ * extract pkt from queue, compute output time (could be now)
+ * and put into delay line (p_queue)
+ */
+static void
+move_pkt(struct mbuf *pkt, struct dn_flow_queue *q, struct dn_pipe *p,
+    int len)
+{
+    struct dn_pkt_tag *dt = dn_tag_get(pkt);
+
+    q->head = pkt->m_nextpkt ;
+    q->len-- ;
+    q->len_bytes -= len ;
+
+    dt->output_time = curr_time + p->delay ;
+
+    if (p->head == NULL)
+       p->head = pkt;
+    else
+       p->tail->m_nextpkt = pkt;
+    p->tail = pkt;
+    p->tail->m_nextpkt = NULL;
+}
+
+/*
+ * ready_event() is invoked every time the queue must enter the
+ * scheduler, either because the first packet arrives, or because
+ * a previously scheduled event fired.
+ * On invokation, drain as many pkts as possible (could be 0) and then
+ * if there are leftover packets reinsert the pkt in the scheduler.
+ */
+static void
+ready_event(struct dn_flow_queue *q, struct mbuf **head, struct mbuf **tail)
+{
+       struct mbuf *pkt;
+       struct dn_pipe *p = q->fs->pipe;
+       int p_was_empty;
+
+       DUMMYNET_LOCK_ASSERT();
+
+       if (p == NULL) {
+               printf("dummynet: ready_event- pipe is gone\n");
+               return;
+       }
+       p_was_empty = (p->head == NULL);
+
+       /*
+        * Schedule fixed-rate queues linked to this pipe:
+        * account for the bw accumulated since last scheduling, then
+        * drain as many pkts as allowed by q->numbytes and move to
+        * the delay line (in p) computing output time.
+        * bandwidth==0 (no limit) means we can drain the whole queue,
+        * setting len_scaled = 0 does the job.
+        */
+       q->numbytes += (curr_time - q->sched_time) * p->bandwidth;
+       while ((pkt = q->head) != NULL) {
+               int len = pkt->m_pkthdr.len;
+               dn_key len_scaled = p->bandwidth ? len*8*hz
+                       + q->extra_bits*hz
+                       : 0;
+
+               if (DN_KEY_GT(len_scaled, q->numbytes))
+                       break;
+               q->numbytes -= len_scaled;
+               move_pkt(pkt, q, p, len);
+               if (q->head)
+                       q->extra_bits = compute_extra_bits(q->head, p);
+       }
+       /*
+        * If we have more packets queued, schedule next ready event
+        * (can only occur when bandwidth != 0, otherwise we would have
+        * flushed the whole queue in the previous loop).
+        * To this purpose we record the current time and compute how many
+        * ticks to go for the finish time of the packet.
+        */
+       if ((pkt = q->head) != NULL) {  /* this implies bandwidth != 0 */
+               dn_key t = set_ticks(pkt, q, p); /* ticks i have to wait */
+
+               q->sched_time = curr_time;
+               heap_insert(&ready_heap, curr_time + t, (void *)q);
+               /*
+                * XXX Should check errors on heap_insert, and drain the whole
+                * queue on error hoping next time we are luckier.
+                */
+       } else          /* RED needs to know when the queue becomes empty. */
+               q->idle_time = curr_time;
+
+       /*
+        * If the delay line was empty call transmit_event() now.
+        * Otherwise, the scheduler will take care of it.
+        */
+       if (p_was_empty)
+               transmit_event(p, head, tail);
+}
+
+/*
+ * Called when we can transmit packets on WF2Q queues. Take pkts out of
+ * the queues at their start time, and enqueue into the delay line.
+ * Packets are drained until p->numbytes < 0. As long as
+ * len_scaled >= p->numbytes, the packet goes into the delay line
+ * with a deadline p->delay. For the last packet, if p->numbytes < 0,
+ * there is an additional delay.
+ */
+static void
+ready_event_wfq(struct dn_pipe *p, struct mbuf **head, struct mbuf **tail)
+{
+       int p_was_empty = (p->head == NULL);
+       struct dn_heap *sch = &(p->scheduler_heap);
+       struct dn_heap *neh = &(p->not_eligible_heap);
+       int64_t p_numbytes = p->numbytes;
+
+       /*
+        * p->numbytes is only 32bits in FBSD7, but we might need 64 bits.
+        * Use a local variable for the computations, and write back the
+        * results when done, saturating if needed.
+        * The local variable has no impact on performance and helps
+        * reducing diffs between the various branches.
+        */
+
+       DUMMYNET_LOCK_ASSERT();
+
+       if (p->if_name[0] == 0)         /* tx clock is simulated */
+               p_numbytes += (curr_time - p->sched_time) * p->bandwidth;
+       else {  /*
+                * tx clock is for real,
+                * the ifq must be empty or this is a NOP.
+                */
+#ifdef __linux__
+               return;
+#else
+               if (p->ifp && p->ifp->if_snd.ifq_head != NULL)
+                       return;
+               else {
+                       DPRINTF(("dummynet: pipe %d ready from %s --\n",
+                           p->pipe_nr, p->if_name));
+               }
+#endif
+       }
+
+       /*
+        * While we have backlogged traffic AND credit, we need to do
+        * something on the queue.
+        */
+       while (p_numbytes >= 0 && (sch->elements > 0 || neh->elements > 0)) {
+               if (sch->elements > 0) {
+                       /* Have some eligible pkts to send out. */
+                       struct dn_flow_queue *q = sch->p[0].object;
+                       struct mbuf *pkt = q->head;
+                       struct dn_flow_set *fs = q->fs;
+                       uint64_t len = pkt->m_pkthdr.len;
+                       int len_scaled = p->bandwidth ? len * 8 * hz : 0;
+
+                       heap_extract(sch, NULL); /* Remove queue from heap. */
+                       p_numbytes -= len_scaled;
+                       move_pkt(pkt, q, p, len);
+
+                       p->V += div64((len << MY_M), p->sum);   /* Update V. */
+                       q->S = q->F;                    /* Update start time. */
+                       if (q->len == 0) {
+                               /* Flow not backlogged any more. */
+                               fs->backlogged--;
+                               heap_insert(&(p->idle_heap), q->F, q);
+                       } else {
+                               /* Still backlogged. */
+
+                               /*
+                                * Update F and position in backlogged queue,
+                                * then put flow in not_eligible_heap
+                                * (we will fix this later).
+                                */
+                               len = (q->head)->m_pkthdr.len;
+                               q->F += div64((len << MY_M), fs->weight);
+                               if (DN_KEY_LEQ(q->S, p->V))
+                                       heap_insert(neh, q->S, q);
+                               else
+                                       heap_insert(sch, q->F, q);
+                       }
+               }
+               /*
+                * Now compute V = max(V, min(S_i)). Remember that all elements
+                * in sch have by definition S_i <= V so if sch is not empty,
+                * V is surely the max and we must not update it. Conversely,
+                * if sch is empty we only need to look at neh.
+                */
+               if (sch->elements == 0 && neh->elements > 0)
+                       p->V = MAX64(p->V, neh->p[0].key);
+               /* Move from neh to sch any packets that have become eligible */
+               while (neh->elements > 0 && DN_KEY_LEQ(neh->p[0].key, p->V)) {
+                       struct dn_flow_queue *q = neh->p[0].object;
+                       heap_extract(neh, NULL);
+                       heap_insert(sch, q->F, q);
+               }
+
+               if (p->if_name[0] != '\0') { /* Tx clock is from a real thing */
+                       p_numbytes = -1;        /* Mark not ready for I/O. */
+                       break;
+               }
+       }
+       if (sch->elements == 0 && neh->elements == 0 && p_numbytes >= 0) {
+               p->idle_time = curr_time;
+               /*
+                * No traffic and no events scheduled.
+                * We can get rid of idle-heap.
+                */
+               if (p->idle_heap.elements > 0) {
+                       int i;
+
+                       for (i = 0; i < p->idle_heap.elements; i++) {
+                               struct dn_flow_queue *q;
+                               
+                               q = p->idle_heap.p[i].object;
+                               q->F = 0;
+                               q->S = q->F + 1;
+                       }
+                       p->sum = 0;
+                       p->V = 0;
+                       p->idle_heap.elements = 0;
+               }
+       }
+       /*
+        * If we are getting clocks from dummynet (not a real interface) and
+        * If we are under credit, schedule the next ready event.
+        * Also fix the delivery time of the last packet.
+        */
+       if (p->if_name[0]==0 && p_numbytes < 0) { /* This implies bw > 0. */
+               dn_key t = 0;           /* Number of ticks i have to wait. */
+
+               if (p->bandwidth > 0)
+                       t = div64(p->bandwidth - 1 - p_numbytes, p->bandwidth);
+               dn_tag_get(p->tail)->output_time += t;
+               p->sched_time = curr_time;
+               heap_insert(&wfq_ready_heap, curr_time + t, (void *)p);
+               /*
+                * XXX Should check errors on heap_insert, and drain the whole
+                * queue on error hoping next time we are luckier.
+                */
+       }
+
+       /* Write back p_numbytes (adjust 64->32bit if necessary). */
+       p->numbytes = p_numbytes;
+
+       /*
+        * If the delay line was empty call transmit_event() now.
+        * Otherwise, the scheduler will take care of it.
+        */
+       if (p_was_empty)
+               transmit_event(p, head, tail);
+}
+
+/*
+ * This is called one tick, after previous run. It is used to
+ * schedule next run.
+ */
+static void
+dummynet(void * __unused unused)
+{
+
+       taskqueue_enqueue(dn_tq, &dn_task);
+}
+
+/*
+ * The main dummynet processing function.
+ */
+static void
+dummynet_task(void *context, int pending)
+{
+       struct mbuf *head = NULL, *tail = NULL;
+       struct dn_pipe *pipe;
+       struct dn_heap *heaps[3];
+       struct dn_heap *h;
+       void *p;        /* generic parameter to handler */
+       int i;
+
+       DUMMYNET_LOCK();
+
+       heaps[0] = &ready_heap;                 /* fixed-rate queues */
+       heaps[1] = &wfq_ready_heap;             /* wfq queues */
+       heaps[2] = &extract_heap;               /* delay line */
+
+       /* Update number of lost(coalesced) ticks. */
+       tick_lost += pending - 1;
+       getmicrouptime(&t);
+       /* Last tick duration (usec). */
+       tick_last = (t.tv_sec - prev_t.tv_sec) * 1000000 +
+           (t.tv_usec - prev_t.tv_usec);
+       /* Last tick vs standard tick difference (usec). */
+       tick_delta = (tick_last * hz - 1000000) / hz;
+       /* Accumulated tick difference (usec). */
+       tick_delta_sum += tick_delta;
+       prev_t = t;
+       /*
+        * Adjust curr_time if accumulated tick difference greater than
+        * 'standard' tick. Since curr_time should be monotonically increasing,
+        * we do positive adjustment as required and throttle curr_time in
+        * case of negative adjustment.
+        */
+       curr_time++;
+       if (tick_delta_sum - tick >= 0) {
+               int diff = tick_delta_sum / tick;
+               curr_time += diff;
+               tick_diff += diff;
+               tick_delta_sum %= tick;
+               tick_adjustment++;
+       } else if (tick_delta_sum + tick <= 0) {
+               curr_time--;
+               tick_diff--;
+               tick_delta_sum += tick;
+               tick_adjustment++;
+       }
+
+       for (i = 0; i < 3; i++) {
+               h = heaps[i];
+               while (h->elements > 0 && DN_KEY_LEQ(h->p[0].key, curr_time)) {
+                       if (h->p[0].key > curr_time)
+                               printf("dummynet: warning, "
+                                   "heap %d is %d ticks late\n",
+                                   i, (int)(curr_time - h->p[0].key));
+                       /* store a copy before heap_extract */
+                       p = h->p[0].object;
+                       /* need to extract before processing */
+                       heap_extract(h, NULL);
+                       if (i == 0)
+                               ready_event(p, &head, &tail);
+                       else if (i == 1) {
+                               struct dn_pipe *pipe = p;
+                               if (pipe->if_name[0] != '\0')
+                                       printf("dummynet: bad ready_event_wfq "
+                                           "for pipe %s\n", pipe->if_name);
+                               else
+                                       ready_event_wfq(p, &head, &tail);
+                       } else
+                               transmit_event(p, &head, &tail);
+               }
+       }
+
+       /* Sweep pipes trying to expire idle flow_queues. */
+       for (i = 0; i < HASHSIZE; i++) {
+               SLIST_FOREACH(pipe, &pipehash[i], next) {
+                       if (pipe->idle_heap.elements > 0 &&
+                           DN_KEY_LT(pipe->idle_heap.p[0].key, pipe->V)) {
+                               struct dn_flow_queue *q =
+                                   pipe->idle_heap.p[0].object;
+
+                               heap_extract(&(pipe->idle_heap), NULL);
+                               /* Mark timestamp as invalid. */
+                               q->S = q->F + 1;
+                               pipe->sum -= q->fs->weight;
+                       }
+               }
+       }
+
+       DUMMYNET_UNLOCK();
+
+       if (head != NULL)
+               dummynet_send(head);
+
+       callout_reset(&dn_timeout, 1, dummynet, NULL);
+}
+
+static void
+dummynet_send(struct mbuf *m)
+{
+       struct mbuf *n;
+
+       for (; m != NULL; m = n) {
+               struct ifnet *ifp = NULL;
+               int dst;
+               struct m_tag *tag;
+
+               n = m->m_nextpkt;
+               m->m_nextpkt = NULL;
+               tag = m_tag_first(m);
+               if (tag == NULL) {
+                       dst = DIR_DROP;
+               } else {
+                       struct dn_pkt_tag *pkt = dn_tag_get(m);
+                       /* extract the dummynet info, rename the tag */
+                       dst = pkt->dn_dir;
+                       ifp = pkt->ifp;
+                       /* rename the tag so it carries reinject info */
+                       tag->m_tag_cookie = MTAG_IPFW_RULE;
+                       tag->m_tag_id = 0;
+               }
+
+               switch (dst) {
+               case DIR_OUT:
+                       SET_HOST_IPLEN(mtod(m, struct ip *));
+                       ip_output(m, NULL, NULL, IP_FORWARDING, NULL, NULL);
+                       break ;
+               case DIR_IN :
+                       /* put header in network format for ip_input() */
+                       //SET_NET_IPLEN(mtod(m, struct ip *));
+                       netisr_dispatch(NETISR_IP, m);
+                       break;
+#ifdef INET6
+               case DIR_IN | PROTO_IPV6:
+                       netisr_dispatch(NETISR_IPV6, m);
+                       break;
+
+               case DIR_OUT | PROTO_IPV6:
+                       SET_HOST_IPLEN(mtod(m, struct ip *));
+                       ip6_output(m, NULL, NULL, IPV6_FORWARDING, NULL, NULL, NULL);
+                       break;
+#endif
+               case DIR_FWD | PROTO_IFB: /* DN_TO_IFB_FWD: */
+                       if (bridge_dn_p != NULL)
+                               ((*bridge_dn_p)(m, ifp));
+                       else
+                               printf("dummynet: if_bridge not loaded\n");
+
+                       break;
+               case DIR_IN | PROTO_LAYER2: /* DN_TO_ETH_DEMUX: */
+                       /*
+                        * The Ethernet code assumes the Ethernet header is
+                        * contiguous in the first mbuf header.
+                        * Insure this is true.
+                        */
+                       if (m->m_len < ETHER_HDR_LEN &&
+                           (m = m_pullup(m, ETHER_HDR_LEN)) == NULL) {
+                               printf("dummynet/ether: pullup failed, "
+                                   "dropping packet\n");
+                               break;
+                       }
+                       ether_demux(m->m_pkthdr.rcvif, m);
+                       break;
+               case DIR_OUT | PROTO_LAYER2: /* N_TO_ETH_OUT: */
+                       ether_output_frame(ifp, m);
+                       break;
+
+               case DIR_DROP:
+                       /* drop the packet after some time */
+                       FREE_PKT(m);
+                       break;
+
+               default:
+                       printf("dummynet: bad switch %d!\n", dst);
+                       FREE_PKT(m);
+                       break;
+               }
+       }
+}
+
+/*
+ * Unconditionally expire empty queues in case of shortage.
+ * Returns the number of queues freed.
+ */
+static int
+expire_queues(struct dn_flow_set *fs)
+{
+    struct dn_flow_queue *q, *prev ;
+    int i, initial_elements = fs->rq_elements ;
+
+    if (fs->last_expired == time_uptime)
+       return 0 ;
+    fs->last_expired = time_uptime ;
+    for (i = 0 ; i <= fs->rq_size ; i++) { /* last one is overflow */
+       for (prev=NULL, q = fs->rq[i] ; q != NULL ; ) {
+           if (!QUEUE_IS_IDLE(q)) {
+               prev = q ;
+               q = q->next ;
+           } else { /* entry is idle, expire it */
+               struct dn_flow_queue *old_q = q ;
+
+               if (prev != NULL)
+                   prev->next = q = q->next ;
+               else
+                   fs->rq[i] = q = q->next ;
+               fs->rq_elements-- ;
+               free(old_q, M_DUMMYNET);
+           }
+       }
+    }
+    return initial_elements - fs->rq_elements ;
+}
+
+/*
+ * If room, create a new queue and put at head of slot i;
+ * otherwise, create or use the default queue.
+ */
+static struct dn_flow_queue *
+create_queue(struct dn_flow_set *fs, int i)
+{
+       struct dn_flow_queue *q;
+
+       if (fs->rq_elements > fs->rq_size * dn_max_ratio &&
+           expire_queues(fs) == 0) {
+               /* No way to get room, use or create overflow queue. */
+               i = fs->rq_size;
+               if (fs->rq[i] != NULL)
+                   return fs->rq[i];
+       }
+       q = malloc(sizeof(*q), M_DUMMYNET, M_NOWAIT | M_ZERO);
+       if (q == NULL) {
+               printf("dummynet: sorry, cannot allocate queue for new flow\n");
+               return (NULL);
+       }
+       q->fs = fs;
+       q->hash_slot = i;
+       q->next = fs->rq[i];
+       q->S = q->F + 1;        /* hack - mark timestamp as invalid. */
+       q->numbytes = fs->pipe->burst + (io_fast ? fs->pipe->bandwidth : 0);
+       fs->rq[i] = q;
+       fs->rq_elements++;
+       return (q);
+}
+
+/*
+ * Given a flow_set and a pkt in last_pkt, find a matching queue
+ * after appropriate masking. The queue is moved to front
+ * so that further searches take less time.
+ */
+static struct dn_flow_queue *
+find_queue(struct dn_flow_set *fs, struct ipfw_flow_id *id)
+{
+    int i = 0 ; /* we need i and q for new allocations */
+    struct dn_flow_queue *q, *prev;
+    int is_v6 = IS_IP6_FLOW_ID(id);
+
+    if ( !(fs->flags_fs & DN_HAVE_FLOW_MASK) )
+       q = fs->rq[0] ;
+    else {
+       /* first, do the masking, then hash */
+       id->dst_port &= fs->flow_mask.dst_port ;
+       id->src_port &= fs->flow_mask.src_port ;
+       id->proto &= fs->flow_mask.proto ;
+       id->flags = 0 ; /* we don't care about this one */
+       if (is_v6) {
+           APPLY_MASK(&id->dst_ip6, &fs->flow_mask.dst_ip6);
+           APPLY_MASK(&id->src_ip6, &fs->flow_mask.src_ip6);
+           id->flow_id6 &= fs->flow_mask.flow_id6;
+
+           i = ((id->dst_ip6.__u6_addr.__u6_addr32[0]) & 0xffff)^
+               ((id->dst_ip6.__u6_addr.__u6_addr32[1]) & 0xffff)^
+               ((id->dst_ip6.__u6_addr.__u6_addr32[2]) & 0xffff)^
+               ((id->dst_ip6.__u6_addr.__u6_addr32[3]) & 0xffff)^
+
+               ((id->dst_ip6.__u6_addr.__u6_addr32[0] >> 15) & 0xffff)^
+               ((id->dst_ip6.__u6_addr.__u6_addr32[1] >> 15) & 0xffff)^
+               ((id->dst_ip6.__u6_addr.__u6_addr32[2] >> 15) & 0xffff)^
+               ((id->dst_ip6.__u6_addr.__u6_addr32[3] >> 15) & 0xffff)^
+
+               ((id->src_ip6.__u6_addr.__u6_addr32[0] << 1) & 0xfffff)^
+               ((id->src_ip6.__u6_addr.__u6_addr32[1] << 1) & 0xfffff)^
+               ((id->src_ip6.__u6_addr.__u6_addr32[2] << 1) & 0xfffff)^
+               ((id->src_ip6.__u6_addr.__u6_addr32[3] << 1) & 0xfffff)^
+
+               ((id->src_ip6.__u6_addr.__u6_addr32[0] << 16) & 0xffff)^
+               ((id->src_ip6.__u6_addr.__u6_addr32[1] << 16) & 0xffff)^
+               ((id->src_ip6.__u6_addr.__u6_addr32[2] << 16) & 0xffff)^
+               ((id->src_ip6.__u6_addr.__u6_addr32[3] << 16) & 0xffff)^
+
+               (id->dst_port << 1) ^ (id->src_port) ^
+               (id->proto ) ^
+               (id->flow_id6);
+       } else {
+           id->dst_ip &= fs->flow_mask.dst_ip ;
+           id->src_ip &= fs->flow_mask.src_ip ;
+
+           i = ( (id->dst_ip) & 0xffff ) ^
+               ( (id->dst_ip >> 15) & 0xffff ) ^
+               ( (id->src_ip << 1) & 0xffff ) ^
+               ( (id->src_ip >> 16 ) & 0xffff ) ^
+               (id->dst_port << 1) ^ (id->src_port) ^
+               (id->proto );
+       }
+       i = i % fs->rq_size ;
+       /* finally, scan the current list for a match */
+       searches++ ;
+       for (prev=NULL, q = fs->rq[i] ; q ; ) {
+           search_steps++;
+           if (is_v6 &&
+                   IN6_ARE_ADDR_EQUAL(&id->dst_ip6,&q->id.dst_ip6) &&  
+                   IN6_ARE_ADDR_EQUAL(&id->src_ip6,&q->id.src_ip6) &&  
+                   id->dst_port == q->id.dst_port &&
+                   id->src_port == q->id.src_port &&
+                   id->proto == q->id.proto &&
+                   id->flags == q->id.flags &&
+                   id->flow_id6 == q->id.flow_id6)
+               break ; /* found */
+
+           if (!is_v6 && id->dst_ip == q->id.dst_ip &&
+                   id->src_ip == q->id.src_ip &&
+                   id->dst_port == q->id.dst_port &&
+                   id->src_port == q->id.src_port &&
+                   id->proto == q->id.proto &&
+                   id->flags == q->id.flags)
+               break ; /* found */
+
+           /* No match. Check if we can expire the entry */
+           if (pipe_expire && QUEUE_IS_IDLE(q)) {
+               /* entry is idle and not in any heap, expire it */
+               struct dn_flow_queue *old_q = q ;
+
+               if (prev != NULL)
+                   prev->next = q = q->next ;
+               else
+                   fs->rq[i] = q = q->next ;
+               fs->rq_elements-- ;
+               free(old_q, M_DUMMYNET);
+               continue ;
+           }
+           prev = q ;
+           q = q->next ;
+       }
+       if (q && prev != NULL) { /* found and not in front */
+           prev->next = q->next ;
+           q->next = fs->rq[i] ;
+           fs->rq[i] = q ;
+       }
+    }
+    if (q == NULL) { /* no match, need to allocate a new entry */
+       q = create_queue(fs, i);
+       if (q != NULL)
+       q->id = *id ;
+    }
+    return q ;
+}
+
+static int
+red_drops(struct dn_flow_set *fs, struct dn_flow_queue *q, int len)
+{
+       /*
+        * RED algorithm
+        *
+        * RED calculates the average queue size (avg) using a low-pass filter
+        * with an exponential weighted (w_q) moving average:
+        *      avg  <-  (1-w_q) * avg + w_q * q_size
+        * where q_size is the queue length (measured in bytes or * packets).
+        *
+        * If q_size == 0, we compute the idle time for the link, and set
+        *      avg = (1 - w_q)^(idle/s)
+        * where s is the time needed for transmitting a medium-sized packet.
+        *
+        * Now, if avg < min_th the packet is enqueued.
+        * If avg > max_th the packet is dropped. Otherwise, the packet is
+        * dropped with probability P function of avg.
+        */
+
+       int64_t p_b = 0;
+
+       /* Queue in bytes or packets? */
+       u_int q_size = (fs->flags_fs & DN_QSIZE_IS_BYTES) ?
+           q->len_bytes : q->len;
+
+       DPRINTF(("\ndummynet: %d q: %2u ", (int)curr_time, q_size));
+
+       /* Average queue size estimation. */
+       if (q_size != 0) {
+               /* Queue is not empty, avg <- avg + (q_size - avg) * w_q */
+               int diff = SCALE(q_size) - q->avg;
+               int64_t v = SCALE_MUL((int64_t)diff, (int64_t)fs->w_q);
+
+               q->avg += (int)v;
+       } else {
+               /*
+                * Queue is empty, find for how long the queue has been
+                * empty and use a lookup table for computing
+                * (1 - * w_q)^(idle_time/s) where s is the time to send a
+                * (small) packet.
+                * XXX check wraps...
+                */
+               if (q->avg) {
+                       u_int t = div64(curr_time - q->idle_time,
+                           fs->lookup_step);
+
+                       q->avg = (t < fs->lookup_depth) ?
+                           SCALE_MUL(q->avg, fs->w_q_lookup[t]) : 0;
+               }
+       }
+       DPRINTF(("dummynet: avg: %u ", SCALE_VAL(q->avg)));
+
+       /* Should i drop? */
+       if (q->avg < fs->min_th) {
+               q->count = -1;
+               return (0);     /* accept packet */
+       }
+       if (q->avg >= fs->max_th) {     /* average queue >=  max threshold */
+               if (fs->flags_fs & DN_IS_GENTLE_RED) {
+                       /*
+                        * According to Gentle-RED, if avg is greater than
+                        * max_th the packet is dropped with a probability
+                        *       p_b = c_3 * avg - c_4
+                        * where c_3 = (1 - max_p) / max_th
+                        *       c_4 = 1 - 2 * max_p
+                        */
+                       p_b = SCALE_MUL((int64_t)fs->c_3, (int64_t)q->avg) -
+                           fs->c_4;
+               } else {
+                       q->count = -1;
+                       DPRINTF(("dummynet: - drop"));
+                       return (1);
+               }
+       } else if (q->avg > fs->min_th) {
+               /*
+                * We compute p_b using the linear dropping function
+                *       p_b = c_1 * avg - c_2
+                * where c_1 = max_p / (max_th - min_th)
+                *       c_2 = max_p * min_th / (max_th - min_th)
+                */
+               p_b = SCALE_MUL((int64_t)fs->c_1, (int64_t)q->avg) - fs->c_2;
+       }
+
+       if (fs->flags_fs & DN_QSIZE_IS_BYTES)
+               p_b = div64(p_b * len, fs->max_pkt_size);
+       if (++q->count == 0)
+               q->random = random() & 0xffff;
+       else {
+               /*
+                * q->count counts packets arrived since last drop, so a greater
+                * value of q->count means a greater packet drop probability.
+                */
+               if (SCALE_MUL(p_b, SCALE((int64_t)q->count)) > q->random) {
+                       q->count = 0;
+                       DPRINTF(("dummynet: - red drop"));
+                       /* After a drop we calculate a new random value. */
+                       q->random = random() & 0xffff;
+                       return (1);     /* drop */
+               }
+       }
+       /* End of RED algorithm. */
+
+       return (0);     /* accept */
+}
+
+static __inline struct dn_flow_set *
+locate_flowset(int fs_nr)
+{
+       struct dn_flow_set *fs;
+
+       SLIST_FOREACH(fs, &flowsethash[HASH(fs_nr)], next)
+               if (fs->fs_nr == fs_nr)
+                       return (fs);
+
+       return (NULL);
+}
+
+static __inline struct dn_pipe *
+locate_pipe(int pipe_nr)
+{
+       struct dn_pipe *pipe;
+
+       SLIST_FOREACH(pipe, &pipehash[HASH(pipe_nr)], next)
+               if (pipe->pipe_nr == pipe_nr)
+                       return (pipe);
+
+       return (NULL);
+}
+
+/*
+ * dummynet hook for packets. Below 'pipe' is a pipe or a queue
+ * depending on whether WF2Q or fixed bw is used.
+ *
+ * pipe_nr     pipe or queue the packet is destined for.
+ * dir         where shall we send the packet after dummynet.
+ * m           the mbuf with the packet
+ * ifp         the 'ifp' parameter from the caller.
+ *             NULL in ip_input, destination interface in ip_output,
+ * rule                matching rule, in case of multiple passes
+ */
+static int
+dummynet_io(struct mbuf **m0, int dir, struct ip_fw_args *fwa)
+{
+       struct mbuf *m = *m0, *head = NULL, *tail = NULL;
+       struct dn_pkt_tag *pkt;
+       struct m_tag *mtag;
+       struct dn_flow_set *fs = NULL;
+       struct dn_pipe *pipe;
+       uint64_t len = m->m_pkthdr.len;
+       struct dn_flow_queue *q = NULL;
+       int is_pipe = fwa->rule.info & IPFW_IS_PIPE;
+
+       KASSERT(m->m_nextpkt == NULL,
+           ("dummynet_io: mbuf queue passed to dummynet"));
+
+       DUMMYNET_LOCK();
+       io_pkt++;
+       /*
+        * This is a dummynet rule, so we expect an O_PIPE or O_QUEUE rule.
+        */
+       if (is_pipe) {
+               pipe = locate_pipe(fwa->rule.info & IPFW_INFO_MASK);
+               if (pipe != NULL)
+                       fs = &(pipe->fs);
+       } else
+               fs = locate_flowset(fwa->rule.info & IPFW_INFO_MASK);
+
+       if (fs == NULL)
+               goto dropit;    /* This queue/pipe does not exist! */
+       pipe = fs->pipe;
+       if (pipe == NULL) {     /* Must be a queue, try find a matching pipe. */
+               pipe = locate_pipe(fs->parent_nr);
+               if (pipe != NULL)
+                       fs->pipe = pipe;
+               else {
+                       printf("dummynet: no pipe %d for queue %d, drop pkt\n",
+                           fs->parent_nr, fs->fs_nr);
+                       goto dropit;
+               }
+       }
+       q = find_queue(fs, &(fwa->f_id));
+       if (q == NULL)
+               goto dropit;            /* Cannot allocate queue. */
+
+       /* Update statistics, then check reasons to drop pkt. */
+       q->tot_bytes += len;
+       q->tot_pkts++;
+       if (fs->plr && random() < fs->plr)
+               goto dropit;            /* Random pkt drop. */
+       if (fs->flags_fs & DN_QSIZE_IS_BYTES) {
+               if (q->len_bytes > fs->qsize)
+                       goto dropit;    /* Queue size overflow. */
+       } else {
+               if (q->len >= fs->qsize)
+                       goto dropit;    /* Queue count overflow. */
+       }
+       if (fs->flags_fs & DN_IS_RED && red_drops(fs, q, len))
+               goto dropit;
+
+       /* XXX expensive to zero, see if we can remove it. */
+       mtag = m_tag_get(PACKET_TAG_DUMMYNET,
+           sizeof(struct dn_pkt_tag), M_NOWAIT | M_ZERO);
+       if (mtag == NULL)
+               goto dropit;            /* Cannot allocate packet header. */
+       m_tag_prepend(m, mtag);         /* Attach to mbuf chain. */
+
+       pkt = (struct dn_pkt_tag *)(mtag + 1);
+       /*
+        * Ok, i can handle the pkt now...
+        * Build and enqueue packet + parameters.
+        */
+       pkt->rule = fwa->rule;
+       pkt->rule.info &= IPFW_ONEPASS; /* only keep this info */
+       pkt->dn_dir = dir;
+       pkt->ifp = fwa->oif;
+
+       if (q->head == NULL)
+               q->head = m;
+       else
+               q->tail->m_nextpkt = m;
+       q->tail = m;
+       q->len++;
+       q->len_bytes += len;
+
+       if (q->head != m)               /* Flow was not idle, we are done. */
+               goto done;
+
+       if (is_pipe) {                  /* Fixed rate queues. */
+               if (q->idle_time < curr_time) {
+                       /* Calculate available burst size. */
+                       q->numbytes +=
+                           (curr_time - q->idle_time - 1) * pipe->bandwidth;
+                       if (q->numbytes > pipe->burst)
+                               q->numbytes = pipe->burst;
+                       if (io_fast)
+                               q->numbytes += pipe->bandwidth;
+               }
+       } else {                        /* WF2Q. */
+               if (pipe->idle_time < curr_time &&
+                   pipe->scheduler_heap.elements == 0 &&
+                   pipe->not_eligible_heap.elements == 0) {
+                       /* Calculate available burst size. */
+                       pipe->numbytes +=
+                           (curr_time - pipe->idle_time - 1) * pipe->bandwidth;
+                       if (pipe->numbytes > 0 && pipe->numbytes > pipe->burst)
+                               pipe->numbytes = pipe->burst;
+                       if (io_fast)
+                               pipe->numbytes += pipe->bandwidth;
+               }
+               pipe->idle_time = curr_time;
+       }
+       /* Necessary for both: fixed rate & WF2Q queues. */
+       q->idle_time = curr_time;
+
+       /*
+        * If we reach this point the flow was previously idle, so we need
+        * to schedule it. This involves different actions for fixed-rate or
+        * WF2Q queues.
+        */
+       if (is_pipe) {
+               /* Fixed-rate queue: just insert into the ready_heap. */
+               dn_key t = 0;
+
+               if (pipe->bandwidth) {
+                       q->extra_bits = compute_extra_bits(m, pipe);
+                       t = set_ticks(m, q, pipe);
+               }
+               q->sched_time = curr_time;
+               if (t == 0)             /* Must process it now. */
+                       ready_event(q, &head, &tail);
+               else
+                       heap_insert(&ready_heap, curr_time + t , q);
+       } else {
+               /*
+                * WF2Q. First, compute start time S: if the flow was
+                * idle (S = F + 1) set S to the virtual time V for the
+                * controlling pipe, and update the sum of weights for the pipe;
+                * otherwise, remove flow from idle_heap and set S to max(F,V).
+                * Second, compute finish time F = S + len / weight.
+                * Third, if pipe was idle, update V = max(S, V).
+                * Fourth, count one more backlogged flow.
+                */
+               if (DN_KEY_GT(q->S, q->F)) { /* Means timestamps are invalid. */
+                       q->S = pipe->V;
+                       pipe->sum += fs->weight; /* Add weight of new queue. */
+               } else {
+                       heap_extract(&(pipe->idle_heap), q);
+                       q->S = MAX64(q->F, pipe->V);
+               }
+               q->F = q->S + div64(len << MY_M, fs->weight);
+
+               if (pipe->not_eligible_heap.elements == 0 &&
+                   pipe->scheduler_heap.elements == 0)
+                       pipe->V = MAX64(q->S, pipe->V);
+               fs->backlogged++;
+               /*
+                * Look at eligibility. A flow is not eligibile if S>V (when
+                * this happens, it means that there is some other flow already
+                * scheduled for the same pipe, so the scheduler_heap cannot be
+                * empty). If the flow is not eligible we just store it in the
+                * not_eligible_heap. Otherwise, we store in the scheduler_heap
+                * and possibly invoke ready_event_wfq() right now if there is
+                * leftover credit.
+                * Note that for all flows in scheduler_heap (SCH), S_i <= V,
+                * and for all flows in not_eligible_heap (NEH), S_i > V.
+                * So when we need to compute max(V, min(S_i)) forall i in
+                * SCH+NEH, we only need to look into NEH.
+                */
+               if (DN_KEY_GT(q->S, pipe->V)) {         /* Not eligible. */
+                       if (pipe->scheduler_heap.elements == 0)
+                               printf("dummynet: ++ ouch! not eligible but empty scheduler!\n");
+                       heap_insert(&(pipe->not_eligible_heap), q->S, q);
+               } else {
+                       heap_insert(&(pipe->scheduler_heap), q->F, q);
+                       if (pipe->numbytes >= 0) {       /* Pipe is idle. */
+                               if (pipe->scheduler_heap.elements != 1)
+                                       printf("dummynet: OUCH! pipe should have been idle!\n");
+                               DPRINTF(("dummynet: waking up pipe %d at %d\n",
+                                   pipe->pipe_nr, (int)(q->F >> MY_M)));
+                               pipe->sched_time = curr_time;
+                               ready_event_wfq(pipe, &head, &tail);
+                       }
+               }
+       }
+done:
+       if (head == m && (dir & PROTO_LAYER2) == 0 ) {
+               /* Fast io. */
+               io_pkt_fast++;
+               if (m->m_nextpkt != NULL)
+                       printf("dummynet: fast io: pkt chain detected!\n");
+               head = m->m_nextpkt = NULL;
+       } else
+               *m0 = NULL;             /* Normal io. */
+
+       DUMMYNET_UNLOCK();
+       if (head != NULL)
+               dummynet_send(head);
+       return (0);
+
+dropit:
+       io_pkt_drop++;
+       if (q)
+               q->drops++;
+       DUMMYNET_UNLOCK();
+       FREE_PKT(m);
+       *m0 = NULL;
+       return ((fs && (fs->flags_fs & DN_NOERROR)) ? 0 : ENOBUFS);
+}
+
+/*
+ * Dispose all packets and flow_queues on a flow_set.
+ * If all=1, also remove red lookup table and other storage,
+ * including the descriptor itself.
+ * For the one in dn_pipe MUST also cleanup ready_heap...
+ */
+static void
+purge_flow_set(struct dn_flow_set *fs, int all)
+{
+       struct dn_flow_queue *q, *qn;
+       int i;
+
+       DUMMYNET_LOCK_ASSERT();
+
+       for (i = 0; i <= fs->rq_size; i++) {
+               for (q = fs->rq[i]; q != NULL; q = qn) {
+                       dn_free_pkts(q->head);
+                       qn = q->next;
+                       free(q, M_DUMMYNET);
+               }
+               fs->rq[i] = NULL;
+       }
+
+       fs->rq_elements = 0;
+       if (all) {
+               /* RED - free lookup table. */
+               if (fs->w_q_lookup != NULL)
+                       free(fs->w_q_lookup, M_DUMMYNET);
+               if (fs->rq != NULL)
+                       free(fs->rq, M_DUMMYNET);
+               /* If this fs is not part of a pipe, free it. */
+               if (fs->pipe == NULL || fs != &(fs->pipe->fs))
+                       free(fs, M_DUMMYNET);
+       }
+}
+
+/*
+ * Dispose all packets queued on a pipe (not a flow_set).
+ * Also free all resources associated to a pipe, which is about
+ * to be deleted.
+ */
+static void
+purge_pipe(struct dn_pipe *pipe)
+{
+
+    purge_flow_set( &(pipe->fs), 1 );
+
+    dn_free_pkts(pipe->head);
+
+    heap_free( &(pipe->scheduler_heap) );
+    heap_free( &(pipe->not_eligible_heap) );
+    heap_free( &(pipe->idle_heap) );
+}
+
+/*
+ * Delete all pipes and heaps returning memory. Must also
+ * remove references from all ipfw rules to all pipes.
+ */
+static void
+dummynet_flush(void)
+{
+       struct dn_pipe *pipe, *pipe1;
+       struct dn_flow_set *fs, *fs1;
+       int i;
+
+       DUMMYNET_LOCK();
+       /* Free heaps so we don't have unwanted events. */
+       heap_free(&ready_heap);
+       heap_free(&wfq_ready_heap);
+       heap_free(&extract_heap);
+
+       /*
+        * Now purge all queued pkts and delete all pipes.
+        *
+        * XXXGL: can we merge the for(;;) cycles into one or not?
+        */
+       for (i = 0; i < HASHSIZE; i++)
+               SLIST_FOREACH_SAFE(fs, &flowsethash[i], next, fs1) {
+                       SLIST_REMOVE(&flowsethash[i], fs, dn_flow_set, next);
+                       purge_flow_set(fs, 1);
+               }
+       for (i = 0; i < HASHSIZE; i++)
+               SLIST_FOREACH_SAFE(pipe, &pipehash[i], next, pipe1) {
+                       SLIST_REMOVE(&pipehash[i], pipe, dn_pipe, next);
+                       purge_pipe(pipe);
+                       free_pipe(pipe);
+               }
+       DUMMYNET_UNLOCK();
+}
+
+/*
+ * setup RED parameters
+ */
+static int
+config_red(struct dn_flow_set *p, struct dn_flow_set *x)
+{
+       int i;
+
+       x->w_q = p->w_q;
+       x->min_th = SCALE(p->min_th);
+       x->max_th = SCALE(p->max_th);
+       x->max_p = p->max_p;
+
+       x->c_1 = p->max_p / (p->max_th - p->min_th);
+       x->c_2 = SCALE_MUL(x->c_1, SCALE(p->min_th));
+
+       if (x->flags_fs & DN_IS_GENTLE_RED) {
+               x->c_3 = (SCALE(1) - p->max_p) / p->max_th;
+               x->c_4 = SCALE(1) - 2 * p->max_p;
+       }
+
+       /* If the lookup table already exist, free and create it again. */
+       if (x->w_q_lookup) {
+               free(x->w_q_lookup, M_DUMMYNET);
+               x->w_q_lookup = NULL;
+       }
+       if (red_lookup_depth == 0) {
+               printf("\ndummynet: net.inet.ip.dummynet.red_lookup_depth"
+                   "must be > 0\n");
+               free(x, M_DUMMYNET);
+               return (EINVAL);
+       }
+       x->lookup_depth = red_lookup_depth;
+       x->w_q_lookup = (u_int *)malloc(x->lookup_depth * sizeof(int),
+           M_DUMMYNET, M_NOWAIT);
+       if (x->w_q_lookup == NULL) {
+               printf("dummynet: sorry, cannot allocate red lookup table\n");
+               free(x, M_DUMMYNET);
+               return(ENOSPC);
+       }
+
+       /* Fill the lookup table with (1 - w_q)^x */
+       x->lookup_step = p->lookup_step;
+       x->lookup_weight = p->lookup_weight;
+       x->w_q_lookup[0] = SCALE(1) - x->w_q;
+
+       for (i = 1; i < x->lookup_depth; i++)
+               x->w_q_lookup[i] =
+                   SCALE_MUL(x->w_q_lookup[i - 1], x->lookup_weight);
+
+       if (red_avg_pkt_size < 1)
+               red_avg_pkt_size = 512;
+       x->avg_pkt_size = red_avg_pkt_size;
+       if (red_max_pkt_size < 1)
+               red_max_pkt_size = 1500;
+       x->max_pkt_size = red_max_pkt_size;
+       return (0);
+}
+
+static int
+alloc_hash(struct dn_flow_set *x, struct dn_flow_set *pfs)
+{
+    if (x->flags_fs & DN_HAVE_FLOW_MASK) {     /* allocate some slots */
+       int l = pfs->rq_size;
+
+       if (l == 0)
+           l = dn_hash_size;
+       if (l < 4)
+           l = 4;
+       else if (l > DN_MAX_HASH_SIZE)
+           l = DN_MAX_HASH_SIZE;
+       x->rq_size = l;
+    } else                  /* one is enough for null mask */
+       x->rq_size = 1;
+    x->rq = malloc((1 + x->rq_size) * sizeof(struct dn_flow_queue *),
+           M_DUMMYNET, M_NOWAIT | M_ZERO);
+    if (x->rq == NULL) {
+       printf("dummynet: sorry, cannot allocate queue\n");
+       return (ENOMEM);
+    }
+    x->rq_elements = 0;
+    return 0 ;
+}
+
+static void
+set_fs_parms(struct dn_flow_set *x, struct dn_flow_set *src)
+{
+       x->flags_fs = src->flags_fs;
+       x->qsize = src->qsize;
+       x->plr = src->plr;
+       x->flow_mask = src->flow_mask;
+       if (x->flags_fs & DN_QSIZE_IS_BYTES) {
+               if (x->qsize > pipe_byte_limit)
+                       x->qsize = 1024 * 1024;
+       } else {
+               if (x->qsize == 0)
+                       x->qsize = 50;
+               if (x->qsize > pipe_slot_limit)
+                       x->qsize = 50;
+       }
+       /* Configuring RED. */
+       if (x->flags_fs & DN_IS_RED)
+               config_red(src, x);     /* XXX should check errors */
+}
+
+/*
+ * Setup pipe or queue parameters.
+ */
+static int
+config_pipe(struct dn_pipe *p)
+{
+       struct dn_flow_set *pfs = &(p->fs);
+       struct dn_flow_queue *q;
+       int i, error;
+
+       /*
+        * The config program passes parameters as follows:
+        * bw = bits/second (0 means no limits),
+        * delay = ms, must be translated into ticks.
+        * qsize = slots/bytes
+        */
+       p->delay = (p->delay * hz) / 1000;
+       /* Scale burst size: bytes -> bits * hz */
+       p->burst *= 8 * hz;
+       /* We need either a pipe number or a flow_set number. */
+       if (p->pipe_nr == 0 && pfs->fs_nr == 0)
+               return (EINVAL);
+       if (p->pipe_nr != 0 && pfs->fs_nr != 0)
+               return (EINVAL);
+       if (p->pipe_nr != 0) {                  /* this is a pipe */
+               struct dn_pipe *pipe;
+
+               DUMMYNET_LOCK();
+               pipe = locate_pipe(p->pipe_nr); /* locate pipe */
+
+               if (pipe == NULL) {             /* new pipe */
+                       pipe = malloc(sizeof(struct dn_pipe), M_DUMMYNET,
+                           M_NOWAIT | M_ZERO);
+                       if (pipe == NULL) {
+                               DUMMYNET_UNLOCK();
+                               printf("dummynet: no memory for new pipe\n");
+                               return (ENOMEM);
+                       }
+                       pipe->pipe_nr = p->pipe_nr;
+                       pipe->fs.pipe = pipe;
+                       /*
+                        * idle_heap is the only one from which
+                        * we extract from the middle.
+                        */
+                       pipe->idle_heap.size = pipe->idle_heap.elements = 0;
+                       pipe->idle_heap.offset =
+                           offsetof(struct dn_flow_queue, heap_pos);
+               } else {
+                       /* Flush accumulated credit for all queues. */
+                       for (i = 0; i <= pipe->fs.rq_size; i++) {
+                               for (q = pipe->fs.rq[i]; q; q = q->next) {
+                                       q->numbytes = p->burst +
+                                           (io_fast ? p->bandwidth : 0);
+                               }
+                       }
+               }
+
+               pipe->bandwidth = p->bandwidth;
+               pipe->burst = p->burst;
+               pipe->numbytes = pipe->burst + (io_fast ? pipe->bandwidth : 0);
+               bcopy(p->if_name, pipe->if_name, sizeof(p->if_name));
+               pipe->ifp = NULL;               /* reset interface ptr */
+               pipe->delay = p->delay;
+               set_fs_parms(&(pipe->fs), pfs);
+
+               /* Handle changes in the delay profile. */
+               if (p->samples_no > 0) {
+                       if (pipe->samples_no != p->samples_no) {
+                               if (pipe->samples != NULL)
+                                       free(pipe->samples, M_DUMMYNET);
+                               pipe->samples =
+                                   malloc(p->samples_no*sizeof(dn_key),
+                                       M_DUMMYNET, M_NOWAIT | M_ZERO);
+                               if (pipe->samples == NULL) {
+                                       DUMMYNET_UNLOCK();
+                                       printf("dummynet: no memory "
+                                               "for new samples\n");
+                                       return (ENOMEM);
+                               }
+                               pipe->samples_no = p->samples_no;
+                       }
+
+                       strncpy(pipe->name,p->name,sizeof(pipe->name));
+                       pipe->loss_level = p->loss_level;
+                       for (i = 0; i<pipe->samples_no; ++i)
+                               pipe->samples[i] = p->samples[i];
+               } else if (pipe->samples != NULL) {
+                       free(pipe->samples, M_DUMMYNET);
+                       pipe->samples = NULL;
+                       pipe->samples_no = 0;
+               }
+
+               if (pipe->fs.rq == NULL) {      /* a new pipe */
+                       error = alloc_hash(&(pipe->fs), pfs);
+                       if (error) {
+                               DUMMYNET_UNLOCK();
+                               free_pipe(pipe);
+                               return (error);
+                       }
+                       SLIST_INSERT_HEAD(&pipehash[HASH(pipe->pipe_nr)],
+                           pipe, next);
+               }
+               DUMMYNET_UNLOCK();
+       } else {                                /* config queue */
+               struct dn_flow_set *fs;
+
+               DUMMYNET_LOCK();
+               fs = locate_flowset(pfs->fs_nr); /* locate flow_set */
+
+               if (fs == NULL) {               /* new */
+                       if (pfs->parent_nr == 0) { /* need link to a pipe */
+                               DUMMYNET_UNLOCK();
+                               return (EINVAL);
+                       }
+                       fs = malloc(sizeof(struct dn_flow_set), M_DUMMYNET,
+                           M_NOWAIT | M_ZERO);
+                       if (fs == NULL) {
+                               DUMMYNET_UNLOCK();
+                               printf(
+                                   "dummynet: no memory for new flow_set\n");
+                               return (ENOMEM);
+                       }
+                       fs->fs_nr = pfs->fs_nr;
+                       fs->parent_nr = pfs->parent_nr;
+                       fs->weight = pfs->weight;
+                       if (fs->weight == 0)
+                               fs->weight = 1;
+                       else if (fs->weight > 100)
+                               fs->weight = 100;
+               } else {
+                       /*
+                        * Change parent pipe not allowed;
+                        * must delete and recreate.
+                        */
+                       if (pfs->parent_nr != 0 &&
+                           fs->parent_nr != pfs->parent_nr) {
+                               DUMMYNET_UNLOCK();
+                               return (EINVAL);
+                       }
+               }
+
+               set_fs_parms(fs, pfs);
+
+               if (fs->rq == NULL) {           /* a new flow_set */
+                       error = alloc_hash(fs, pfs);
+                       if (error) {
+                               DUMMYNET_UNLOCK();
+                               free(fs, M_DUMMYNET);
+                               return (error);
+                       }
+                       SLIST_INSERT_HEAD(&flowsethash[HASH(fs->fs_nr)],
+                           fs, next);
+               }
+               DUMMYNET_UNLOCK();
+       }
+       return (0);
+}
+
+/*
+ * Helper function to remove from a heap queues which are linked to
+ * a flow_set about to be deleted.
+ */
+static void
+fs_remove_from_heap(struct dn_heap *h, struct dn_flow_set *fs)
+{
+    int i, found;
+
+    for (i = found = 0 ; i < h->elements ;) {
+       if ( ((struct dn_flow_queue *)h->p[i].object)->fs == fs) {
+           h->elements-- ;
+           h->p[i] = h->p[h->elements] ;
+           found++ ;
+       } else
+           i++ ;
+    }
+    if (found)
+       heapify(h);
+}
+
+/*
+ * helper function to remove a pipe from a heap (can be there at most once)
+ */
+static void
+pipe_remove_from_heap(struct dn_heap *h, struct dn_pipe *p)
+{
+    int i;
+
+    for (i=0; i < h->elements ; i++ ) {
+       if (h->p[i].object == p) { /* found it */
+           h->elements-- ;
+           h->p[i] = h->p[h->elements] ;
+           heapify(h);
+           break ;
+       }
+    }
+}
+
+/*
+ * drain all queues. Called in case of severe mbuf shortage.
+ */
+void
+dummynet_drain(void)
+{
+    struct dn_flow_set *fs;
+    struct dn_pipe *pipe;
+    int i;
+
+    DUMMYNET_LOCK_ASSERT();
+
+    heap_free(&ready_heap);
+    heap_free(&wfq_ready_heap);
+    heap_free(&extract_heap);
+    /* remove all references to this pipe from flow_sets */
+    for (i = 0; i < HASHSIZE; i++)
+       SLIST_FOREACH(fs, &flowsethash[i], next)
+               purge_flow_set(fs, 0);
+
+    for (i = 0; i < HASHSIZE; i++) {
+       SLIST_FOREACH(pipe, &pipehash[i], next) {
+               purge_flow_set(&(pipe->fs), 0);
+               dn_free_pkts(pipe->head);
+               pipe->head = pipe->tail = NULL;
+       }
+    }
+}
+
+/*
+ * Fully delete a pipe or a queue, cleaning up associated info.
+ */
+static int
+delete_pipe(struct dn_pipe *p)
+{
+
+    if (p->pipe_nr == 0 && p->fs.fs_nr == 0)
+       return EINVAL ;
+    if (p->pipe_nr != 0 && p->fs.fs_nr != 0)
+       return EINVAL ;
+    if (p->pipe_nr != 0) { /* this is an old-style pipe */
+       struct dn_pipe *pipe;
+       struct dn_flow_set *fs;
+       int i;
+
+       DUMMYNET_LOCK();
+       pipe = locate_pipe(p->pipe_nr); /* locate pipe */
+
+       if (pipe == NULL) {
+           DUMMYNET_UNLOCK();
+           return (ENOENT);    /* not found */
+       }
+
+       /* Unlink from list of pipes. */
+       SLIST_REMOVE(&pipehash[HASH(pipe->pipe_nr)], pipe, dn_pipe, next);
+
+       /* Remove all references to this pipe from flow_sets. */
+       for (i = 0; i < HASHSIZE; i++) {
+           SLIST_FOREACH(fs, &flowsethash[i], next) {
+               if (fs->pipe == pipe) {
+                       printf("dummynet: ++ ref to pipe %d from fs %d\n",
+                           p->pipe_nr, fs->fs_nr);
+                       fs->pipe = NULL ;
+                       purge_flow_set(fs, 0);
+               }
+           }
+       }
+       fs_remove_from_heap(&ready_heap, &(pipe->fs));
+       purge_pipe(pipe); /* remove all data associated to this pipe */
+       /* remove reference to here from extract_heap and wfq_ready_heap */
+       pipe_remove_from_heap(&extract_heap, pipe);
+       pipe_remove_from_heap(&wfq_ready_heap, pipe);
+       DUMMYNET_UNLOCK();
+
+       free_pipe(pipe);
+    } else { /* this is a WF2Q queue (dn_flow_set) */
+       struct dn_flow_set *fs;
+
+       DUMMYNET_LOCK();
+       fs = locate_flowset(p->fs.fs_nr); /* locate set */
+
+       if (fs == NULL) {
+           DUMMYNET_UNLOCK();
+           return (ENOENT); /* not found */
+       }
+
+       /* Unlink from list of flowsets. */
+       SLIST_REMOVE( &flowsethash[HASH(fs->fs_nr)], fs, dn_flow_set, next);
+
+       if (fs->pipe != NULL) {
+           /* Update total weight on parent pipe and cleanup parent heaps. */
+           fs->pipe->sum -= fs->weight * fs->backlogged ;
+           fs_remove_from_heap(&(fs->pipe->not_eligible_heap), fs);
+           fs_remove_from_heap(&(fs->pipe->scheduler_heap), fs);
+#if 1  /* XXX should i remove from idle_heap as well ? */
+           fs_remove_from_heap(&(fs->pipe->idle_heap), fs);
+#endif
+       }
+       purge_flow_set(fs, 1);
+       DUMMYNET_UNLOCK();
+    }
+    return 0 ;
+}
+
+/*
+ * helper function used to copy data from kernel in DUMMYNET_GET
+ */
+static char *
+dn_copy_set(struct dn_flow_set *set, char *bp)
+{
+    int i, copied = 0 ;
+    struct dn_flow_queue *q, *qp = (struct dn_flow_queue *)bp;
+
+    DUMMYNET_LOCK_ASSERT();
+
+    for (i = 0 ; i <= set->rq_size ; i++) {
+       for (q = set->rq[i] ; q ; q = q->next, qp++ ) {
+           if (q->hash_slot != i)
+               printf("dummynet: ++ at %d: wrong slot (have %d, "
+                   "should be %d)\n", copied, q->hash_slot, i);
+           if (q->fs != set)
+               printf("dummynet: ++ at %d: wrong fs ptr (have %p, should be %p)\n",
+                       i, q->fs, set);
+           copied++ ;
+           bcopy(q, qp, sizeof( *q ) );
+           /* cleanup pointers */
+           qp->next = NULL ;
+           qp->head = qp->tail = NULL ;
+           qp->fs = NULL ;
+       }
+    }
+    if (copied != set->rq_elements)
+       printf("dummynet: ++ wrong count, have %d should be %d\n",
+           copied, set->rq_elements);
+    return (char *)qp ;
+}
+
+static size_t
+dn_calc_size(void)
+{
+    struct dn_flow_set *fs;
+    struct dn_pipe *pipe;
+    size_t size = 0;
+    int i;
+
+    DUMMYNET_LOCK_ASSERT();
+    /*
+     * Compute size of data structures: list of pipes and flow_sets.
+     */
+    for (i = 0; i < HASHSIZE; i++) {
+       SLIST_FOREACH(pipe, &pipehash[i], next)
+               size += sizeof(*pipe) +
+                   pipe->fs.rq_elements * sizeof(struct dn_flow_queue);
+       SLIST_FOREACH(fs, &flowsethash[i], next)
+               size += sizeof (*fs) +
+                   fs->rq_elements * sizeof(struct dn_flow_queue);
+    }
+    return size;
+}
+
+static int
+dummynet_get(struct sockopt *sopt)
+{
+    char *buf, *bp ; /* bp is the "copy-pointer" */
+    size_t size ;
+    struct dn_flow_set *fs;
+    struct dn_pipe *pipe;
+    int error=0, i ;
+
+    /* XXX lock held too long */
+    DUMMYNET_LOCK();
+    /*
+     * XXX: Ugly, but we need to allocate memory with M_WAITOK flag and we
+     *      cannot use this flag while holding a mutex.
+     */
+    for (i = 0; i < 10; i++) {
+       size = dn_calc_size();
+       DUMMYNET_UNLOCK();
+       buf = malloc(size, M_TEMP, M_WAITOK);
+       DUMMYNET_LOCK();
+       if (size >= dn_calc_size())
+               break;
+       free(buf, M_TEMP);
+       buf = NULL;
+    }
+    if (buf == NULL) {
+       DUMMYNET_UNLOCK();
+       return ENOBUFS ;
+    }
+    bp = buf;
+    for (i = 0; i < HASHSIZE; i++) {
+       SLIST_FOREACH(pipe, &pipehash[i], next) {
+               struct dn_pipe *pipe_bp = (struct dn_pipe *)bp;
+
+               /*
+                * Copy pipe descriptor into *bp, convert delay back to ms,
+                * then copy the flow_set descriptor(s) one at a time.
+                * After each flow_set, copy the queue descriptor it owns.
+                */
+               bcopy(pipe, bp, sizeof(*pipe));
+               pipe_bp->delay = (pipe_bp->delay * 1000) / hz;
+               pipe_bp->burst = div64(pipe_bp->burst, 8 * hz);
+               /*
+                * XXX the following is a hack based on ->next being the
+                * first field in dn_pipe and dn_flow_set. The correct
+                * solution would be to move the dn_flow_set to the beginning
+                * of struct dn_pipe.
+                */
+               pipe_bp->next.sle_next = (struct dn_pipe *)DN_IS_PIPE;
+               /* Clean pointers. */
+               pipe_bp->head = pipe_bp->tail = NULL;
+               pipe_bp->fs.next.sle_next = NULL;
+               pipe_bp->fs.pipe = NULL;
+               pipe_bp->fs.rq = NULL;
+               pipe_bp->samples = NULL;
+
+               bp += sizeof(*pipe) ;
+               bp = dn_copy_set(&(pipe->fs), bp);
+       }
+    }
+
+    for (i = 0; i < HASHSIZE; i++) {
+       SLIST_FOREACH(fs, &flowsethash[i], next) {
+               struct dn_flow_set *fs_bp = (struct dn_flow_set *)bp;
+
+               bcopy(fs, bp, sizeof(*fs));
+               /* XXX same hack as above */
+               fs_bp->next.sle_next = (struct dn_flow_set *)DN_IS_QUEUE;
+               fs_bp->pipe = NULL;
+               fs_bp->rq = NULL;
+               bp += sizeof(*fs);
+               bp = dn_copy_set(fs, bp);
+       }
+    }
+
+    DUMMYNET_UNLOCK();
+
+    error = sooptcopyout(sopt, buf, size);
+    free(buf, M_TEMP);
+    return error ;
+}
+
+/*
+ * Handler for the various dummynet socket options (get, flush, config, del)
+ */
+static int
+ip_dn_ctl(struct sockopt *sopt)
+{
+    int error;
+    struct dn_pipe *p = NULL;
+
+    error = priv_check(sopt->sopt_td, PRIV_NETINET_DUMMYNET);
+    if (error)
+       return (error);
+
+    /* Disallow sets in really-really secure mode. */
+    if (sopt->sopt_dir == SOPT_SET) {
+#if __FreeBSD_version >= 500034
+       error =  securelevel_ge(sopt->sopt_td->td_ucred, 3);
+       if (error)
+           return (error);
+#else
+       if (securelevel >= 3)
+           return (EPERM);
+#endif
+    }
+
+    switch (sopt->sopt_name) {
+    default :
+       printf("dummynet: -- unknown option %d", sopt->sopt_name);
+       error = EINVAL ;
+       break;
+
+    case IP_DUMMYNET_GET :
+       error = dummynet_get(sopt);
+       break ;
+
+    case IP_DUMMYNET_FLUSH :
+       dummynet_flush() ;
+       break ;
+
+    case IP_DUMMYNET_CONFIGURE :
+       p = malloc(sizeof(struct dn_pipe_max), M_TEMP, M_WAITOK);
+       error = sooptcopyin(sopt, p, sizeof(struct dn_pipe_max), sizeof *p);
+       if (error)
+           break ;
+       if (p->samples_no > 0)
+           p->samples = &(((struct dn_pipe_max *)p)->samples[0]);
+
+       error = config_pipe(p);
+       break ;
+
+    case IP_DUMMYNET_DEL :     /* remove a pipe or queue */
+       p = malloc(sizeof(struct dn_pipe), M_TEMP, M_WAITOK);
+       error = sooptcopyin(sopt, p, sizeof(struct dn_pipe), sizeof *p);
+       if (error)
+           break ;
+
+       error = delete_pipe(p);
+       break ;
+    }
+
+    if (p != NULL)
+       free(p, M_TEMP);
+
+    return error ;
+}
+
+static void
+ip_dn_init(void)
+{
+       int i;
+
+       if (bootverbose)
+               printf("DUMMYNET with IPv6 initialized (040826)\n");
+
+       DUMMYNET_LOCK_INIT();
+
+       for (i = 0; i < HASHSIZE; i++) {
+               SLIST_INIT(&pipehash[i]);
+               SLIST_INIT(&flowsethash[i]);
+       }
+       ready_heap.size = ready_heap.elements = 0;
+       ready_heap.offset = 0;
+
+       wfq_ready_heap.size = wfq_ready_heap.elements = 0;
+       wfq_ready_heap.offset = 0;
+
+       extract_heap.size = extract_heap.elements = 0;
+       extract_heap.offset = 0;
+
+       ip_dn_ctl_ptr = ip_dn_ctl;
+       ip_dn_io_ptr = dummynet_io;
+
+       TASK_INIT(&dn_task, 0, dummynet_task, NULL);
+       dn_tq = taskqueue_create_fast("dummynet", M_NOWAIT,
+           taskqueue_thread_enqueue, &dn_tq);
+       taskqueue_start_threads(&dn_tq, 1, PI_NET, "dummynet");
+
+       callout_init(&dn_timeout, CALLOUT_MPSAFE);
+       callout_reset(&dn_timeout, 1, dummynet, NULL);
+
+       /* Initialize curr_time adjustment mechanics. */
+       getmicrouptime(&prev_t);
+}
+
+#ifdef KLD_MODULE
+static void
+ip_dn_destroy(void)
+{
+       ip_dn_ctl_ptr = NULL;
+       ip_dn_io_ptr = NULL;
+
+       DUMMYNET_LOCK();
+       callout_stop(&dn_timeout);
+       DUMMYNET_UNLOCK();
+       taskqueue_drain(dn_tq, &dn_task);
+       taskqueue_free(dn_tq);
+
+       dummynet_flush();
+
+       DUMMYNET_LOCK_DESTROY();
+}
+#endif /* KLD_MODULE */
+
+static int
+dummynet_modevent(module_t mod, int type, void *data)
+{
+
+       switch (type) {
+       case MOD_LOAD:
+               if (ip_dn_io_ptr) {
+                   printf("DUMMYNET already loaded\n");
+                   return EEXIST ;
+               }
+               ip_dn_init();
+               break;
+
+       case MOD_UNLOAD:
+#if !defined(KLD_MODULE)
+               printf("dummynet statically compiled, cannot unload\n");
+               return EINVAL ;
+#else
+               ip_dn_destroy();
+#endif
+               break ;
+       default:
+               return EOPNOTSUPP;
+               break ;
+       }
+       return 0 ;
+}
+
+static moduledata_t dummynet_mod = {
+       "dummynet",
+       dummynet_modevent,
+       NULL
+};
+DECLARE_MODULE(dummynet, dummynet_mod, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY);
+MODULE_DEPEND(dummynet, ipfw, 2, 2, 2);
+MODULE_VERSION(dummynet, 1);
+/* end of file */