#ifndef _ASM_M32R_PGTABLE_H #define _ASM_M32R_PGTABLE_H /* $Id$ */ /* * The Linux memory management assumes a three-level page table setup. On * the M32R, we use that, but "fold" the mid level into the top-level page * table, so that we physically have the same two-level page table as the * M32R mmu expects. * * This file contains the functions and defines necessary to modify and use * the M32R page table tree. */ /* CAUTION!: If you change macro definitions in this file, you might have to * change arch/m32r/mmu.S manually. */ #ifndef __ASSEMBLY__ #include #include #include #include #include #include extern pgd_t swapper_pg_dir[1024]; extern void paging_init(void); /* * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */ extern unsigned long empty_zero_page[1024]; #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) #endif /* !__ASSEMBLY__ */ /* * The Linux x86 paging architecture is 'compile-time dual-mode', it * implements both the traditional 2-level x86 page tables and the * newer 3-level PAE-mode page tables. */ #ifndef __ASSEMBLY__ #include #endif #define pgtable_cache_init() do { } while (0) #define PMD_SIZE (1UL << PMD_SHIFT) #define PMD_MASK (~(PMD_SIZE - 1)) #define PGDIR_SIZE (1UL << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE - 1)) #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) #define FIRST_USER_PGD_NR 0 #ifndef __ASSEMBLY__ /* Just any arbitrary offset to the start of the vmalloc VM area: the * current 8MB value just means that there will be a 8MB "hole" after the * physical memory until the kernel virtual memory starts. That means that * any out-of-bounds memory accesses will hopefully be caught. * The vmalloc() routines leaves a hole of 4kB between each vmalloced * area for the same reason. ;) */ #define VMALLOC_START KSEG2 #define VMALLOC_END KSEG3 /* * The 4MB page is guessing.. Detailed in the infamous "Chapter H" * of the Pentium details, but assuming intel did the straightforward * thing, this bit set in the page directory entry just means that * the page directory entry points directly to a 4MB-aligned block of * memory. */ /* * M32R TLB format * * [0] [1:19] [20:23] [24:31] * +-----------------------+----+-------------+ * | VPN |0000| ASID | * +-----------------------+----+-------------+ * +-+---------------------+----+-+---+-+-+-+-+ * |0 PPN |0000|N|AC |L|G|V| | * +-+---------------------+----+-+---+-+-+-+-+ * RWX */ #define _PAGE_BIT_DIRTY 0 /* software */ #define _PAGE_BIT_FILE 0 /* when !present: nonlinear file mapping */ #define _PAGE_BIT_PRESENT 1 /* Valid */ #define _PAGE_BIT_GLOBAL 2 /* Global */ #define _PAGE_BIT_LARGE 3 /* Large */ #define _PAGE_BIT_EXEC 4 /* Execute */ #define _PAGE_BIT_WRITE 5 /* Write */ #define _PAGE_BIT_READ 6 /* Read */ #define _PAGE_BIT_NONCACHABLE 7 /* Non cachable */ #define _PAGE_BIT_USER 8 /* software */ #define _PAGE_BIT_ACCESSED 9 /* software */ #define _PAGE_DIRTY \ (1UL << _PAGE_BIT_DIRTY) /* software : page changed */ #define _PAGE_FILE \ (1UL << _PAGE_BIT_FILE) /* when !present: nonlinear file mapping */ #define _PAGE_PRESENT \ (1UL << _PAGE_BIT_PRESENT) /* Valid : Page is Valid */ #define _PAGE_GLOBAL \ (1UL << _PAGE_BIT_GLOBAL) /* Global */ #define _PAGE_LARGE \ (1UL << _PAGE_BIT_LARGE) /* Large */ #define _PAGE_EXEC \ (1UL << _PAGE_BIT_EXEC) /* Execute */ #define _PAGE_WRITE \ (1UL << _PAGE_BIT_WRITE) /* Write */ #define _PAGE_READ \ (1UL << _PAGE_BIT_READ) /* Read */ #define _PAGE_NONCACHABLE \ (1UL<<_PAGE_BIT_NONCACHABLE) /* Non cachable */ #define _PAGE_USER \ (1UL << _PAGE_BIT_USER) /* software : user space access allowed */ #define _PAGE_ACCESSED \ (1UL << _PAGE_BIT_ACCESSED) /* software : page referenced */ #define _PAGE_TABLE \ ( _PAGE_PRESENT | _PAGE_WRITE | _PAGE_READ | _PAGE_USER \ | _PAGE_ACCESSED | _PAGE_DIRTY ) #define _KERNPG_TABLE \ ( _PAGE_PRESENT | _PAGE_WRITE | _PAGE_READ | _PAGE_ACCESSED \ | _PAGE_DIRTY ) #define _PAGE_CHG_MASK \ ( PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY ) #ifdef CONFIG_MMU #define PAGE_NONE \ __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED) #define PAGE_SHARED \ __pgprot(_PAGE_PRESENT | _PAGE_WRITE | _PAGE_READ | _PAGE_USER \ | _PAGE_ACCESSED) #define PAGE_SHARED_X \ __pgprot(_PAGE_PRESENT | _PAGE_EXEC | _PAGE_WRITE | _PAGE_READ \ | _PAGE_USER | _PAGE_ACCESSED) #define PAGE_COPY \ __pgprot(_PAGE_PRESENT | _PAGE_EXEC | _PAGE_READ | _PAGE_USER \ | _PAGE_ACCESSED) #define PAGE_COPY_X \ __pgprot(_PAGE_PRESENT | _PAGE_EXEC | _PAGE_READ | _PAGE_USER \ | _PAGE_ACCESSED) #define PAGE_READONLY \ __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_USER | _PAGE_ACCESSED) #define PAGE_READONLY_X \ __pgprot(_PAGE_PRESENT | _PAGE_EXEC | _PAGE_READ | _PAGE_USER \ | _PAGE_ACCESSED) #define __PAGE_KERNEL \ ( _PAGE_PRESENT | _PAGE_EXEC | _PAGE_WRITE | _PAGE_READ | _PAGE_DIRTY \ | _PAGE_ACCESSED ) #define __PAGE_KERNEL_RO ( __PAGE_KERNEL & ~_PAGE_WRITE ) #define __PAGE_KERNEL_NOCACHE ( __PAGE_KERNEL | _PAGE_NONCACHABLE) #define MAKE_GLOBAL(x) __pgprot((x) | _PAGE_GLOBAL) #define PAGE_KERNEL MAKE_GLOBAL(__PAGE_KERNEL) #define PAGE_KERNEL_RO MAKE_GLOBAL(__PAGE_KERNEL_RO) #define PAGE_KERNEL_NOCACHE MAKE_GLOBAL(__PAGE_KERNEL_NOCACHE) #else #define PAGE_NONE __pgprot(0) #define PAGE_SHARED __pgprot(0) #define PAGE_SHARED_X __pgprot(0) #define PAGE_COPY __pgprot(0) #define PAGE_COPY_X __pgprot(0) #define PAGE_READONLY __pgprot(0) #define PAGE_READONLY_X __pgprot(0) #define PAGE_KERNEL __pgprot(0) #define PAGE_KERNEL_RO __pgprot(0) #define PAGE_KERNEL_NOCACHE __pgprot(0) #endif /* CONFIG_MMU */ /* * The i386 can't do page protection for execute, and considers that * the same are read. Also, write permissions imply read permissions. * This is the closest we can get.. */ /* rwx */ #define __P000 PAGE_NONE #define __P001 PAGE_READONLY_X #define __P010 PAGE_COPY_X #define __P011 PAGE_COPY_X #define __P100 PAGE_READONLY #define __P101 PAGE_READONLY_X #define __P110 PAGE_COPY_X #define __P111 PAGE_COPY_X #define __S000 PAGE_NONE #define __S001 PAGE_READONLY_X #define __S010 PAGE_SHARED #define __S011 PAGE_SHARED_X #define __S100 PAGE_READONLY #define __S101 PAGE_READONLY_X #define __S110 PAGE_SHARED #define __S111 PAGE_SHARED_X /* page table for 0-4MB for everybody */ #define pte_present(x) (pte_val(x) & _PAGE_PRESENT) #define pte_clear(xp) do { set_pte(xp, __pte(0)); } while (0) #define pmd_none(x) (!pmd_val(x)) #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT) #define pmd_clear(xp) do { set_pmd(xp, __pmd(0)); } while (0) #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) \ != _KERNPG_TABLE) #define pages_to_mb(x) ((x) >> (20 - PAGE_SHIFT)) /* * The following only work if pte_present() is true. * Undefined behaviour if not.. */ static __inline__ int pte_user(pte_t pte) { return pte_val(pte) & _PAGE_USER; } static __inline__ int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_READ; } static __inline__ int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; } static __inline__ int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } static __inline__ int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } static __inline__ int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; } /* * The following only works if pte_present() is not true. */ static __inline__ int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; } static __inline__ pte_t pte_rdprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_READ; return pte; } static __inline__ pte_t pte_exprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_EXEC; return pte; } static __inline__ pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; } static __inline__ pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED;return pte;} static __inline__ pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_WRITE; return pte; } static __inline__ pte_t pte_mkread(pte_t pte) { pte_val(pte) |= _PAGE_READ; return pte; } static __inline__ pte_t pte_mkexec(pte_t pte) { pte_val(pte) |= _PAGE_EXEC; return pte; } static __inline__ pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; } static __inline__ pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; } static __inline__ pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_WRITE; return pte; } static __inline__ int ptep_test_and_clear_dirty(pte_t *ptep) { return test_and_clear_bit(_PAGE_BIT_DIRTY, ptep); } static __inline__ int ptep_test_and_clear_young(pte_t *ptep) { return test_and_clear_bit(_PAGE_BIT_ACCESSED, ptep); } static __inline__ void ptep_set_wrprotect(pte_t *ptep) { clear_bit(_PAGE_BIT_WRITE, ptep); } static __inline__ void ptep_mkdirty(pte_t *ptep) { set_bit(_PAGE_BIT_DIRTY, ptep); } /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), pgprot) static __inline__ pte_t pte_modify(pte_t pte, pgprot_t newprot) { set_pte(&pte, __pte((pte_val(pte) & _PAGE_CHG_MASK) \ | pgprot_val(newprot))); return pte; } #define page_pte(page) page_pte_prot(page, __pgprot(0)) /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ static __inline__ void pmd_set(pmd_t * pmdp, pte_t * ptep) { pmd_val(*pmdp) = (((unsigned long) ptep) & PAGE_MASK); } #define pmd_page_kernel(pmd) \ ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) #ifndef CONFIG_DISCONTIGMEM #define pmd_page(pmd) (mem_map + ((pmd_val(pmd) >> PAGE_SHIFT) - PFN_BASE)) #endif /* !CONFIG_DISCONTIGMEM */ /* to find an entry in a page-table-directory. */ #define pgd_index(address) \ (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) /* to find an entry in a kernel page-table-directory */ #define pgd_offset_k(address) pgd_offset(&init_mm, address) #define pmd_index(address) \ (((address) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)) #define pte_index(address) \ (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) #define pte_offset_kernel(dir, address) \ ((pte_t *)pmd_page_kernel(*(dir)) + pte_index(address)) #define pte_offset_map(dir, address) \ ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address)) #define pte_offset_map_nested(dir, address) pte_offset_map(dir, address) #define pte_unmap(pte) do { } while (0) #define pte_unmap_nested(pte) do { } while (0) /* Encode and de-code a swap entry */ #define __swp_type(x) (((x).val >> 1) & 0x3f) #define __swp_offset(x) ((x).val >> 8) #define __swp_entry(type, offset) \ ((swp_entry_t) { ((type) << 1) | ((offset) << 8) }) #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) #endif /* !__ASSEMBLY__ */ /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ #define kern_addr_valid(addr) (1) #define io_remap_page_range remap_page_range #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY #define __HAVE_ARCH_PTEP_GET_AND_CLEAR #define __HAVE_ARCH_PTEP_SET_WRPROTECT #define __HAVE_ARCH_PTEP_MKDIRTY #define __HAVE_ARCH_PTE_SAME #include #endif /* _ASM_M32R_PGTABLE_H */