/* * US-428 AUDIO * Copyright (c) 2002-2003 by Karsten Wiese * based on * (Tentative) USB Audio Driver for ALSA * * Main and PCM part * * Copyright (c) 2002 by Takashi Iwai * * Many codes borrowed from audio.c by * Alan Cox (alan@lxorguk.ukuu.org.uk) * Thomas Sailer (sailer@ife.ee.ethz.ch) * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include #include #include "usx2y.h" #include "usbusx2y.h" struct snd_usX2Y_substream { usX2Ydev_t *usX2Y; snd_pcm_substream_t *pcm_substream; unsigned char endpoint; unsigned int datapipe; /* the data i/o pipe */ unsigned int maxpacksize; /* max packet size in bytes */ char prepared, running, stalled; int hwptr; /* free frame position in the buffer (only for playback) */ int hwptr_done; /* processed frame position in the buffer */ int transfer_done; /* processed frames since last period update */ struct urb *urb[NRURBS]; /* data urb table */ int next_urb_complete; struct urb *completed_urb; char *tmpbuf; /* temporary buffer for playback */ volatile int submitted_urbs; wait_queue_head_t wait_queue; }; static int usX2Y_urb_capt_retire(snd_usX2Y_substream_t *subs) { struct urb *urb = subs->completed_urb; snd_pcm_runtime_t *runtime = subs->pcm_substream->runtime; unsigned char *cp; int i, len, lens = 0, hwptr_done = subs->hwptr_done; usX2Ydev_t *usX2Y = subs->usX2Y; for (i = 0; i < NRPACKS; i++) { cp = (unsigned char*)urb->transfer_buffer + urb->iso_frame_desc[i].offset; if (urb->iso_frame_desc[i].status) { /* active? hmm, skip this */ snd_printdd("activ frame status %i\n", urb->iso_frame_desc[i].status); return urb->iso_frame_desc[i].status; } len = urb->iso_frame_desc[i].actual_length / usX2Y->stride; if (! len) { snd_printk("0 == len ERROR!\n"); continue; } /* copy a data chunk */ if ((hwptr_done + len) > runtime->buffer_size) { int cnt = runtime->buffer_size - hwptr_done; int blen = cnt * usX2Y->stride; memcpy(runtime->dma_area + hwptr_done * usX2Y->stride, cp, blen); memcpy(runtime->dma_area, cp + blen, len * usX2Y->stride - blen); } else { memcpy(runtime->dma_area + hwptr_done * usX2Y->stride, cp, len * usX2Y->stride); } lens += len; if ((hwptr_done += len) >= runtime->buffer_size) hwptr_done -= runtime->buffer_size; } subs->hwptr_done = hwptr_done; subs->transfer_done += lens; /* update the pointer, call callback if necessary */ if (subs->transfer_done >= runtime->period_size) { subs->transfer_done -= runtime->period_size; snd_pcm_period_elapsed(subs->pcm_substream); } return 0; } /* * prepare urb for playback data pipe * * we copy the data directly from the pcm buffer. * the current position to be copied is held in hwptr field. * since a urb can handle only a single linear buffer, if the total * transferred area overflows the buffer boundary, we cannot send * it directly from the buffer. thus the data is once copied to * a temporary buffer and urb points to that. */ static int usX2Y_urb_play_prepare(snd_usX2Y_substream_t *subs, struct urb *cap_urb, struct urb *urb) { int count, counts, pack; usX2Ydev_t* usX2Y = subs->usX2Y; snd_pcm_runtime_t *runtime = subs->pcm_substream->runtime; count = 0; for (pack = 0; pack < NRPACKS; pack++) { /* calculate the size of a packet */ counts = cap_urb->iso_frame_desc[pack].actual_length / usX2Y->stride; count += counts; if (counts < 43 || counts > 50) { snd_printk("should not be here with counts=%i\n", counts); return -EPIPE; } /* set up descriptor */ urb->iso_frame_desc[pack].offset = pack ? urb->iso_frame_desc[pack - 1].offset + urb->iso_frame_desc[pack - 1].length : 0; urb->iso_frame_desc[pack].length = counts * usX2Y->stride; } if (subs->hwptr + count > runtime->buffer_size) { /* err, the transferred area goes over buffer boundary. * copy the data to the temp buffer. */ int len; len = runtime->buffer_size - subs->hwptr; urb->transfer_buffer = subs->tmpbuf; memcpy(subs->tmpbuf, runtime->dma_area + subs->hwptr * usX2Y->stride, len * usX2Y->stride); memcpy(subs->tmpbuf + len * usX2Y->stride, runtime->dma_area, (count - len) * usX2Y->stride); subs->hwptr += count; subs->hwptr -= runtime->buffer_size; } else { /* set the buffer pointer */ urb->transfer_buffer = runtime->dma_area + subs->hwptr * usX2Y->stride; if ((subs->hwptr += count) >= runtime->buffer_size) subs->hwptr -= runtime->buffer_size; } urb->transfer_buffer_length = count * usX2Y->stride; return 0; } /* * process after playback data complete * * update the current position and call callback if a period is processed. */ inline static int usX2Y_urb_play_retire(snd_usX2Y_substream_t *subs, struct urb *urb) { snd_pcm_runtime_t *runtime = subs->pcm_substream->runtime; int len = (urb->iso_frame_desc[0].actual_length #if NRPACKS > 1 + urb->iso_frame_desc[1].actual_length #endif ) / subs->usX2Y->stride; subs->transfer_done += len; subs->hwptr_done += len; if (subs->hwptr_done >= runtime->buffer_size) subs->hwptr_done -= runtime->buffer_size; if (subs->transfer_done >= runtime->period_size) { subs->transfer_done -= runtime->period_size; snd_pcm_period_elapsed(subs->pcm_substream); } return 0; } inline static int usX2Y_urb_submit(snd_usX2Y_substream_t *subs, struct urb *urb, int frame) { int err; if (!urb) return -ENODEV; urb->start_frame = (frame + NRURBS*NRPACKS) & (1024 - 1); urb->hcpriv = NULL; urb->dev = subs->usX2Y->chip.dev; /* we need to set this at each time */ if ((err = usb_submit_urb(urb, GFP_ATOMIC)) < 0) { snd_printk("%i\n", err); return err; } else { subs->submitted_urbs++; if (subs->next_urb_complete < 0) subs->next_urb_complete = 0; } return 0; } static inline int frame_distance(int from, int to) { int distance = to - from; if (distance < -512) distance += 1024; else if (distance > 511) distance -= 1024; return distance; } static void usX2Y_subs_set_next_urb_complete(snd_usX2Y_substream_t *subs) { int next_urb_complete = subs->next_urb_complete + 1; int distance; if (next_urb_complete >= NRURBS) next_urb_complete = 0; distance = frame_distance(subs->completed_urb->start_frame, subs->urb[next_urb_complete]->start_frame); if (1 == distance) { subs->next_urb_complete = next_urb_complete; } else { snd_printdd("distance %i not set_nuc %i %i %i \n", distance, subs->endpoint, next_urb_complete, subs->urb[next_urb_complete]->status); subs->next_urb_complete = -1; } } static inline void usX2Y_usbframe_complete(snd_usX2Y_substream_t *capsubs, snd_usX2Y_substream_t *playbacksubs, int frame) { { struct urb *urb; if ((urb = playbacksubs->completed_urb)) { if (playbacksubs->prepared) usX2Y_urb_play_retire(playbacksubs, urb); usX2Y_subs_set_next_urb_complete(playbacksubs); } if (playbacksubs->running) { if (NULL == urb) urb = playbacksubs->urb[playbacksubs->next_urb_complete + 1]; if (urb && 0 == usX2Y_urb_play_prepare(playbacksubs, capsubs->completed_urb, urb)) { if (usX2Y_urb_submit(playbacksubs, urb, frame) < 0) return; } else snd_pcm_stop(playbacksubs->pcm_substream, SNDRV_PCM_STATE_XRUN); } playbacksubs->completed_urb = NULL; } if (capsubs->running) usX2Y_urb_capt_retire(capsubs); usX2Y_subs_set_next_urb_complete(capsubs); if (capsubs->prepared) usX2Y_urb_submit(capsubs, capsubs->completed_urb, frame); capsubs->completed_urb = NULL; } static void usX2Y_clients_stop(snd_usX2Y_substream_t *subs) { usX2Ydev_t *usX2Y = subs->usX2Y; int i; for (i = 0; i < 4; i++) { snd_usX2Y_substream_t *substream = usX2Y->substream[i]; if (substream && substream->running) snd_pcm_stop(substream->pcm_substream, SNDRV_PCM_STATE_XRUN); } } static void i_usX2Y_urb_complete(struct urb *urb, struct pt_regs *regs) { snd_usX2Y_substream_t *subs = (snd_usX2Y_substream_t*)urb->context; subs->submitted_urbs--; if (urb->status) { snd_printk("ep=%i stalled with status=%i\n", subs->endpoint, urb->status); subs->stalled = 1; usX2Y_clients_stop(subs); urb->status = 0; return; } if (urb == subs->urb[subs->next_urb_complete]) { subs->completed_urb = urb; } else { snd_printk("Sequence Error!(ep=%i;nuc=%i,frame=%i)\n", subs->endpoint, subs->next_urb_complete, urb->start_frame); subs->stalled = 1; usX2Y_clients_stop(subs); return; } if (waitqueue_active(&subs->wait_queue)) wake_up(&subs->wait_queue); { snd_usX2Y_substream_t *capsubs = subs->usX2Y->substream[SNDRV_PCM_STREAM_CAPTURE], *playbacksubs = subs->usX2Y->substream[SNDRV_PCM_STREAM_PLAYBACK]; if (capsubs->completed_urb && (playbacksubs->completed_urb || !playbacksubs->prepared || (playbacksubs->prepared && (playbacksubs->next_urb_complete < 0 || // not started yet frame_distance(capsubs->completed_urb->start_frame, playbacksubs->urb[playbacksubs->next_urb_complete]->start_frame) > 0 || // other expected later playbacksubs->stalled)))) usX2Y_usbframe_complete(capsubs, playbacksubs, urb->start_frame); } } static int usX2Y_urbs_capt_start(snd_usX2Y_substream_t *subs) { int i, err; for (i = 0; i < NRURBS; i++) { unsigned long pack; struct urb *urb = subs->urb[i]; urb->dev = subs->usX2Y->chip.dev; urb->transfer_flags = URB_ISO_ASAP; for (pack = 0; pack < NRPACKS; pack++) { urb->iso_frame_desc[pack].offset = subs->maxpacksize * pack; urb->iso_frame_desc[pack].length = subs->maxpacksize; } urb->transfer_buffer_length = subs->maxpacksize * NRPACKS; if ((err = usb_submit_urb(urb, GFP_ATOMIC)) < 0) { snd_printk (KERN_ERR "cannot submit datapipe for urb %d, err = %d\n", i, err); return -EPIPE; } else { subs->submitted_urbs++; } urb->transfer_flags = 0; } subs->stalled = 0; subs->next_urb_complete = 0; subs->prepared = 1; return 0; } /* * wait until all urbs are processed. */ static int usX2Y_urbs_wait_clear(snd_usX2Y_substream_t *subs) { int timeout = HZ; do { if (0 == subs->submitted_urbs) break; set_current_state(TASK_UNINTERRUPTIBLE); snd_printdd("snd_usX2Y_urbs_wait_clear waiting\n"); schedule_timeout(1); } while (--timeout > 0); if (subs->submitted_urbs) snd_printk(KERN_ERR "timeout: still %d active urbs..\n", subs->submitted_urbs); return 0; } /* * return the current pcm pointer. just return the hwptr_done value. */ static snd_pcm_uframes_t snd_usX2Y_pcm_pointer(snd_pcm_substream_t *substream) { snd_usX2Y_substream_t *subs = (snd_usX2Y_substream_t *)substream->runtime->private_data; return subs->hwptr_done; } /* * start/stop substream */ static int snd_usX2Y_pcm_trigger(snd_pcm_substream_t *substream, int cmd) { snd_usX2Y_substream_t *subs = (snd_usX2Y_substream_t *)substream->runtime->private_data; switch (cmd) { case SNDRV_PCM_TRIGGER_START: snd_printdd("snd_usX2Y_pcm_trigger(START)\n"); if (subs->usX2Y->substream[SNDRV_PCM_STREAM_CAPTURE]->stalled) return -EPIPE; else subs->running = 1; break; case SNDRV_PCM_TRIGGER_STOP: snd_printdd("snd_usX2Y_pcm_trigger(STOP)\n"); subs->running = 0; break; default: return -EINVAL; } return 0; } static void usX2Y_urb_release(struct urb** urb, int free_tb) { if (*urb) { if (free_tb) kfree((*urb)->transfer_buffer); usb_free_urb(*urb); *urb = NULL; } } /* * release a substream */ static void usX2Y_urbs_release(snd_usX2Y_substream_t *subs) { int i; snd_printdd("snd_usX2Y_urbs_release() %i\n", subs->endpoint); usX2Y_urbs_wait_clear(subs); for (i = 0; i < NRURBS; i++) usX2Y_urb_release(subs->urb + i, subs != subs->usX2Y->substream[SNDRV_PCM_STREAM_PLAYBACK]); if (subs->tmpbuf) { kfree(subs->tmpbuf); subs->tmpbuf = NULL; } } static void usX2Y_substream_prepare(snd_usX2Y_substream_t *subs) { snd_printdd("usX2Y_substream_prepare() ep=%i urb0=%p urb1=%p\n", subs->endpoint, subs->urb[0], subs->urb[1]); /* reset the pointer */ subs->hwptr = 0; subs->hwptr_done = 0; subs->transfer_done = 0; } /* * initialize a substream's urbs */ static int usX2Y_urbs_allocate(snd_usX2Y_substream_t *subs) { int i; int is_playback = subs == subs->usX2Y->substream[SNDRV_PCM_STREAM_PLAYBACK]; struct usb_device *dev = subs->usX2Y->chip.dev; snd_assert(!subs->prepared, return 0); if (is_playback) { /* allocate a temporary buffer for playback */ subs->datapipe = usb_sndisocpipe(dev, subs->endpoint); subs->maxpacksize = dev->epmaxpacketout[subs->endpoint]; if (NULL == subs->tmpbuf) { subs->tmpbuf = kcalloc(NRPACKS, subs->maxpacksize, GFP_KERNEL); if (NULL == subs->tmpbuf) { snd_printk(KERN_ERR "cannot malloc tmpbuf\n"); return -ENOMEM; } } } else { subs->datapipe = usb_rcvisocpipe(dev, subs->endpoint); subs->maxpacksize = dev->epmaxpacketin[subs->endpoint]; } /* allocate and initialize data urbs */ for (i = 0; i < NRURBS; i++) { struct urb** purb = subs->urb + i; if (*purb) continue; *purb = usb_alloc_urb(NRPACKS, GFP_KERNEL); if (NULL == *purb) { usX2Y_urbs_release(subs); return -ENOMEM; } if (!is_playback && !(*purb)->transfer_buffer) { /* allocate a capture buffer per urb */ (*purb)->transfer_buffer = kmalloc(subs->maxpacksize*NRPACKS, GFP_KERNEL); if (NULL == (*purb)->transfer_buffer) { usX2Y_urbs_release(subs); return -ENOMEM; } } (*purb)->dev = dev; (*purb)->pipe = subs->datapipe; (*purb)->number_of_packets = NRPACKS; (*purb)->context = subs; (*purb)->interval = 1; (*purb)->complete = snd_usb_complete_callback(i_usX2Y_urb_complete); } return 0; } static void i_usX2Y_04Int(struct urb* urb, struct pt_regs *regs) { usX2Ydev_t* usX2Y = urb->context; if (urb->status) { snd_printk("snd_usX2Y_04Int() urb->status=%i\n", urb->status); return; } if (0 == --usX2Y->US04->len) wake_up(&usX2Y->In04WaitQueue); } /* * allocate a buffer, setup samplerate * * so far we use a physically linear buffer although packetize transfer * doesn't need a continuous area. * if sg buffer is supported on the later version of alsa, we'll follow * that. */ static struct s_c2 { char c1, c2; } SetRate44100[] = { { 0x14, 0x08}, // this line sets 44100, well actually a little less { 0x18, 0x40}, // only tascam / frontier design knows the further lines ....... { 0x18, 0x42}, { 0x18, 0x45}, { 0x18, 0x46}, { 0x18, 0x48}, { 0x18, 0x4A}, { 0x18, 0x4C}, { 0x18, 0x4E}, { 0x18, 0x50}, { 0x18, 0x52}, { 0x18, 0x54}, { 0x18, 0x56}, { 0x18, 0x58}, { 0x18, 0x5A}, { 0x18, 0x5C}, { 0x18, 0x5E}, { 0x18, 0x60}, { 0x18, 0x62}, { 0x18, 0x64}, { 0x18, 0x66}, { 0x18, 0x68}, { 0x18, 0x6A}, { 0x18, 0x6C}, { 0x18, 0x6E}, { 0x18, 0x70}, { 0x18, 0x72}, { 0x18, 0x74}, { 0x18, 0x76}, { 0x18, 0x78}, { 0x18, 0x7A}, { 0x18, 0x7C}, { 0x18, 0x7E} }; static struct s_c2 SetRate48000[] = { { 0x14, 0x09}, // this line sets 48000, well actually a little less { 0x18, 0x40}, // only tascam / frontier design knows the further lines ....... { 0x18, 0x42}, { 0x18, 0x45}, { 0x18, 0x46}, { 0x18, 0x48}, { 0x18, 0x4A}, { 0x18, 0x4C}, { 0x18, 0x4E}, { 0x18, 0x50}, { 0x18, 0x52}, { 0x18, 0x54}, { 0x18, 0x56}, { 0x18, 0x58}, { 0x18, 0x5A}, { 0x18, 0x5C}, { 0x18, 0x5E}, { 0x18, 0x60}, { 0x18, 0x62}, { 0x18, 0x64}, { 0x18, 0x66}, { 0x18, 0x68}, { 0x18, 0x6A}, { 0x18, 0x6C}, { 0x18, 0x6E}, { 0x18, 0x70}, { 0x18, 0x73}, { 0x18, 0x74}, { 0x18, 0x76}, { 0x18, 0x78}, { 0x18, 0x7A}, { 0x18, 0x7C}, { 0x18, 0x7E} }; #define NOOF_SETRATE_URBS ARRAY_SIZE(SetRate48000) static int usX2Y_rate_set(usX2Ydev_t *usX2Y, int rate) { int err = 0, i; snd_usX2Y_urbSeq_t *us = NULL; int *usbdata = NULL; DECLARE_WAITQUEUE(wait, current); struct s_c2 *ra = rate == 48000 ? SetRate48000 : SetRate44100; if (usX2Y->rate != rate) { do { us = kmalloc(sizeof(*us) + sizeof(struct urb*) * NOOF_SETRATE_URBS, GFP_KERNEL); if (NULL == us) { err = -ENOMEM; break; } memset(us, 0, sizeof(*us) + sizeof(struct urb*) * NOOF_SETRATE_URBS); usbdata = kmalloc(sizeof(int)*NOOF_SETRATE_URBS, GFP_KERNEL); if (NULL == usbdata) { err = -ENOMEM; break; } for (i = 0; i < NOOF_SETRATE_URBS; ++i) { if (NULL == (us->urb[i] = usb_alloc_urb(0, GFP_KERNEL))) { err = -ENOMEM; break; } ((char*)(usbdata + i))[0] = ra[i].c1; ((char*)(usbdata + i))[1] = ra[i].c2; usb_fill_bulk_urb(us->urb[i], usX2Y->chip.dev, usb_sndbulkpipe(usX2Y->chip.dev, 4), usbdata + i, 2, i_usX2Y_04Int, usX2Y); #ifdef OLD_USB us->urb[i]->transfer_flags = USB_QUEUE_BULK; #endif } if (err) break; add_wait_queue(&usX2Y->In04WaitQueue, &wait); set_current_state(TASK_INTERRUPTIBLE); us->submitted = 0; us->len = NOOF_SETRATE_URBS; usX2Y->US04 = us; do { signed long timeout = schedule_timeout(HZ/2); if (signal_pending(current)) { err = -ERESTARTSYS; break; } if (0 == timeout) { err = -ENODEV; break; } usX2Y->rate = rate; usX2Y->refframes = rate == 48000 ? 47 : 44; } while (0); remove_wait_queue(&usX2Y->In04WaitQueue, &wait); } while (0); if (us) { us->submitted = 2*NOOF_SETRATE_URBS; for (i = 0; i < NOOF_SETRATE_URBS; ++i) { usb_unlink_urb(us->urb[i]); usb_free_urb(us->urb[i]); } usX2Y->US04 = NULL; kfree(usbdata); kfree(us); } } return err; } static int usX2Y_format_set(usX2Ydev_t *usX2Y, snd_pcm_format_t format) { int alternate, unlink_err, err; struct list_head* p; if (format == SNDRV_PCM_FORMAT_S24_3LE) { alternate = 2; usX2Y->stride = 6; } else { alternate = 1; usX2Y->stride = 4; } list_for_each(p, &usX2Y->chip.midi_list) { snd_usbmidi_input_stop(p); } unlink_err = usb_unlink_urb(usX2Y->In04urb); if ((err = usb_set_interface(usX2Y->chip.dev, 0, alternate))) { snd_printk("usb_set_interface error \n"); return err; } if (0 == unlink_err) { usX2Y->In04urb->dev = usX2Y->chip.dev; err = usb_submit_urb(usX2Y->In04urb, GFP_KERNEL); } list_for_each(p, &usX2Y->chip.midi_list) { snd_usbmidi_input_start(p); } usX2Y->format = format; usX2Y->rate = 0; return err; } static int snd_usX2Y_pcm_hw_params(snd_pcm_substream_t *substream, snd_pcm_hw_params_t *hw_params) { int err = 0; unsigned int rate = params_rate(hw_params); snd_pcm_format_t format = params_format(hw_params); snd_printdd("snd_usX2Y_hw_params(%p, %p)\n", substream, hw_params); { // all pcm substreams off one usX2Y have to operate at the same rate & format snd_card_t *card = substream->pstr->pcm->card; struct list_head *list; list_for_each(list, &card->devices) { snd_device_t *dev; snd_pcm_t *pcm; int s; dev = snd_device(list); if (dev->type != SNDRV_DEV_PCM) continue; pcm = dev->device_data; for (s = 0; s < 2; ++s) { snd_pcm_substream_t *test_substream; test_substream = pcm->streams[s].substream; if (test_substream && test_substream != substream && test_substream->runtime && ((test_substream->runtime->format && test_substream->runtime->format != format) || (test_substream->runtime->rate && test_substream->runtime->rate != rate))) return -EINVAL; } } } if (0 > (err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)))) { snd_printk("snd_pcm_lib_malloc_pages(%p, %i) returned %i\n", substream, params_buffer_bytes(hw_params), err); return err; } return 0; } /* * free the buffer */ static int snd_usX2Y_pcm_hw_free(snd_pcm_substream_t *substream) { snd_pcm_runtime_t *runtime = substream->runtime; snd_usX2Y_substream_t *subs = (snd_usX2Y_substream_t *)runtime->private_data; snd_printdd("snd_usX2Y_hw_free(%p)\n", substream); if (SNDRV_PCM_STREAM_PLAYBACK == substream->stream) { snd_usX2Y_substream_t *cap_subs = subs->usX2Y->substream[SNDRV_PCM_STREAM_CAPTURE]; subs->prepared = 0; usX2Y_urbs_release(subs); if (!cap_subs->pcm_substream || !cap_subs->pcm_substream->runtime || !cap_subs->pcm_substream->runtime->status || cap_subs->pcm_substream->runtime->status->state < SNDRV_PCM_STATE_PREPARED) { cap_subs->prepared = 0; usX2Y_urbs_release(cap_subs); } } else { snd_usX2Y_substream_t *playback_subs = subs->usX2Y->substream[SNDRV_PCM_STREAM_PLAYBACK]; if (!playback_subs->prepared) { subs->prepared = 0; usX2Y_urbs_release(subs); } } return snd_pcm_lib_free_pages(substream); } /* * prepare callback * * set format and initialize urbs */ static int snd_usX2Y_pcm_prepare(snd_pcm_substream_t *substream) { snd_pcm_runtime_t *runtime = substream->runtime; snd_usX2Y_substream_t *subs = (snd_usX2Y_substream_t *)runtime->private_data; snd_usX2Y_substream_t *capsubs = subs->usX2Y->substream[SNDRV_PCM_STREAM_CAPTURE]; int err = 0; snd_printdd("snd_usX2Y_pcm_prepare(%p)\n", substream); // Start hardware streams // SyncStream first.... if (! capsubs->prepared) { if (subs->usX2Y->format != runtime->format) if ((err = usX2Y_format_set(subs->usX2Y, runtime->format)) < 0) return err; if (subs->usX2Y->rate != runtime->rate) if ((err = usX2Y_rate_set(subs->usX2Y, runtime->rate)) < 0) return err; snd_printdd("starting capture pipe for playpipe\n"); usX2Y_urbs_allocate(capsubs); capsubs->completed_urb = NULL; { DECLARE_WAITQUEUE(wait, current); add_wait_queue(&capsubs->wait_queue, &wait); if (0 <= (err = usX2Y_urbs_capt_start(capsubs))) { signed long timeout; set_current_state(TASK_INTERRUPTIBLE); timeout = schedule_timeout(HZ/4); if (signal_pending(current)) err = -ERESTARTSYS; else { snd_printdd("%li\n", HZ/4 - timeout); if (0 == timeout) err = -EPIPE; } } remove_wait_queue(&capsubs->wait_queue, &wait); if (0 > err) return err; } } if (subs != capsubs) { int u; if (!subs->prepared) { if ((err = usX2Y_urbs_allocate(subs)) < 0) return err; subs->prepared = 1; } while (subs->submitted_urbs) for (u = 0; u < NRURBS; u++) { snd_printdd("%i\n", subs->urb[u]->status); while(subs->urb[u]->status || NULL != subs->urb[u]->hcpriv) { signed long timeout; snd_printdd("ep=%i waiting for urb=%p status=%i hcpriv=%p\n", subs->endpoint, subs->urb[u], subs->urb[u]->status, subs->urb[u]->hcpriv); set_current_state(TASK_INTERRUPTIBLE); timeout = schedule_timeout(HZ/10); if (signal_pending(current)) { return -ERESTARTSYS; } } } subs->completed_urb = NULL; subs->next_urb_complete = -1; subs->stalled = 0; } usX2Y_substream_prepare(subs); return err; } static snd_pcm_hardware_t snd_usX2Y_2c = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP_VALID), .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_3LE, .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000, .rate_min = 44100, .rate_max = 48000, .channels_min = 2, .channels_max = 2, .buffer_bytes_max = (2*128*1024), .period_bytes_min = 64, .period_bytes_max = (128*1024), .periods_min = 2, .periods_max = 1024, .fifo_size = 0 }; static int snd_usX2Y_pcm_open(snd_pcm_substream_t *substream) { snd_usX2Y_substream_t *subs = ((snd_usX2Y_substream_t **) snd_pcm_substream_chip(substream))[substream->stream]; snd_pcm_runtime_t *runtime = substream->runtime; runtime->hw = snd_usX2Y_2c; runtime->private_data = subs; subs->pcm_substream = substream; snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_TIME, 1000, 200000); return 0; } static int snd_usX2Y_pcm_close(snd_pcm_substream_t *substream) { snd_pcm_runtime_t *runtime = substream->runtime; snd_usX2Y_substream_t *subs = (snd_usX2Y_substream_t *)runtime->private_data; int err = 0; subs->pcm_substream = NULL; return err; } static snd_pcm_ops_t snd_usX2Y_pcm_ops = { .open = snd_usX2Y_pcm_open, .close = snd_usX2Y_pcm_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_usX2Y_pcm_hw_params, .hw_free = snd_usX2Y_pcm_hw_free, .prepare = snd_usX2Y_pcm_prepare, .trigger = snd_usX2Y_pcm_trigger, .pointer = snd_usX2Y_pcm_pointer, }; /* * free a usb stream instance */ static void usX2Y_audio_stream_free(snd_usX2Y_substream_t **usX2Y_substream) { if (NULL != usX2Y_substream[SNDRV_PCM_STREAM_PLAYBACK]) { kfree(usX2Y_substream[SNDRV_PCM_STREAM_PLAYBACK]); usX2Y_substream[SNDRV_PCM_STREAM_PLAYBACK] = NULL; } kfree(usX2Y_substream[SNDRV_PCM_STREAM_CAPTURE]); usX2Y_substream[SNDRV_PCM_STREAM_CAPTURE] = NULL; } static void snd_usX2Y_pcm_private_free(snd_pcm_t *pcm) { snd_usX2Y_substream_t **usX2Y_stream = pcm->private_data; if (usX2Y_stream) { snd_pcm_lib_preallocate_free_for_all(pcm); usX2Y_audio_stream_free(usX2Y_stream); } } static int usX2Y_audio_stream_new(snd_card_t *card, int playback_endpoint, int capture_endpoint) { snd_pcm_t *pcm; int err, i; snd_usX2Y_substream_t **usX2Y_substream = usX2Y(card)->substream + 2 * usX2Y(card)->chip.pcm_devs; for (i = playback_endpoint ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE; i <= SNDRV_PCM_STREAM_CAPTURE; ++i) { usX2Y_substream[i] = kcalloc(1, sizeof(snd_usX2Y_substream_t), GFP_KERNEL); if (NULL == usX2Y_substream[i]) { snd_printk(KERN_ERR "cannot malloc\n"); return -ENOMEM; } init_waitqueue_head(&usX2Y_substream[i]->wait_queue); usX2Y_substream[i]->usX2Y = usX2Y(card); } if (playback_endpoint) usX2Y_substream[SNDRV_PCM_STREAM_PLAYBACK]->endpoint = playback_endpoint; usX2Y_substream[SNDRV_PCM_STREAM_CAPTURE]->endpoint = capture_endpoint; err = snd_pcm_new(card, NAME_ALLCAPS" Audio", usX2Y(card)->chip.pcm_devs, playback_endpoint ? 1 : 0, 1, &pcm); if (err < 0) { usX2Y_audio_stream_free(usX2Y_substream); return err; } if (playback_endpoint) snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_usX2Y_pcm_ops); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_usX2Y_pcm_ops); pcm->private_data = usX2Y_substream; pcm->private_free = snd_usX2Y_pcm_private_free; pcm->info_flags = 0; sprintf(pcm->name, NAME_ALLCAPS" Audio #%d", usX2Y(card)->chip.pcm_devs); if ((playback_endpoint && 0 > (err = snd_pcm_lib_preallocate_pages(pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream, SNDRV_DMA_TYPE_CONTINUOUS, snd_dma_continuous_data(GFP_KERNEL), 64*1024, 128*1024))) || 0 > (err = snd_pcm_lib_preallocate_pages(pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream, SNDRV_DMA_TYPE_CONTINUOUS, snd_dma_continuous_data(GFP_KERNEL), 64*1024, 128*1024))) { snd_usX2Y_pcm_private_free(pcm); return err; } usX2Y(card)->chip.pcm_devs++; return 0; } /* * free the chip instance * * here we have to do not much, since pcm and controls are already freed * */ static int snd_usX2Y_device_dev_free(snd_device_t *device) { return 0; } /* * create a chip instance and set its names. */ int usX2Y_audio_create(snd_card_t* card) { int err = 0; static snd_device_ops_t ops = { .dev_free = snd_usX2Y_device_dev_free, }; INIT_LIST_HEAD(&usX2Y(card)->chip.pcm_list); if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, usX2Y(card), &ops)) < 0) { // snd_usX2Y_audio_free(usX2Y(card)); return err; } if (0 > (err = usX2Y_audio_stream_new(card, 0xA, 0x8))) return err; if (usX2Y(card)->chip.dev->descriptor.idProduct == USB_ID_US428) if (0 > (err = usX2Y_audio_stream_new(card, 0, 0xA))) return err; if (usX2Y(card)->chip.dev->descriptor.idProduct != USB_ID_US122) err = usX2Y_rate_set(usX2Y(card), 44100); // Lets us428 recognize output-volume settings, disturbs us122. return err; }