From 75d05ad65b8e78bfc9f894c6db7ff2692b3d673f Mon Sep 17 00:00:00 2001 From: Sapan Bhatia Date: Fri, 29 Jan 2010 22:27:24 +0000 Subject: [PATCH] Version of patch that compiles, and links. To test on Monday. --- linux-2.6-591-chopstix-intern.patch | 9330 +-------------------------- 1 file changed, 21 insertions(+), 9309 deletions(-) diff --git a/linux-2.6-591-chopstix-intern.patch b/linux-2.6-591-chopstix-intern.patch index 2dd4cacaf..d1c851ac4 100644 --- a/linux-2.6-591-chopstix-intern.patch +++ b/linux-2.6-591-chopstix-intern.patch @@ -340,7 +340,7 @@ diff -Nurb linux-2.6.27-590/include/linux/sched.h.rej linux-2.6.27-591/include/l + diff -Nurb linux-2.6.27-590/kernel/sched.c linux-2.6.27-591/kernel/sched.c --- linux-2.6.27-590/kernel/sched.c 2010-01-29 16:29:48.000000000 -0500 -+++ linux-2.6.27-591/kernel/sched.c 2010-01-29 17:30:42.000000000 -0500 ++++ linux-2.6.27-591/kernel/sched.c 2010-01-29 17:38:44.000000000 -0500 @@ -10,7 +10,7 @@ * 1998-11-19 Implemented schedule_timeout() and related stuff * by Andrea Arcangeli @@ -360,19 +360,37 @@ diff -Nurb linux-2.6.27-590/kernel/sched.c linux-2.6.27-591/kernel/sched.c /* * Convert user-nice values [ -20 ... 0 ... 19 ] * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], -@@ -4428,6 +4431,11 @@ +@@ -4428,6 +4431,29 @@ } } +#ifdef CONFIG_CHOPSTIX +void (*rec_event)(void *,unsigned int) = NULL; +EXPORT_SYMBOL(rec_event); ++ ++struct event_spec { ++ unsigned long pc; ++ unsigned long dcookie; ++ unsigned int count; ++ unsigned int reason; ++}; ++ ++/* To support safe calling from asm */ ++asmlinkage void rec_event_asm (struct event *event_signature_in, unsigned int count) { ++ struct pt_regs *regs; ++ struct event_spec *es = event_signature_in->event_data; ++ regs = task_pt_regs(current); ++ event_signature_in->task=current; ++ es->pc=regs->ip; ++ event_signature_in->count=1; ++ (*rec_event)(event_signature_in, count); ++} +#endif + /* * schedule() is the main scheduler function. */ -@@ -5369,6 +5377,7 @@ +@@ -5369,6 +5395,7 @@ get_task_struct(p); read_unlock(&tasklist_lock); @@ -380,9312 +398,6 @@ diff -Nurb linux-2.6.27-590/kernel/sched.c linux-2.6.27-591/kernel/sched.c retval = -EPERM; if ((current->euid != p->euid) && (current->euid != p->uid) && !capable(CAP_SYS_NICE)) -diff -Nurb linux-2.6.27-590/kernel/sched.c.orig linux-2.6.27-591/kernel/sched.c.orig ---- linux-2.6.27-590/kernel/sched.c.orig 1969-12-31 19:00:00.000000000 -0500 -+++ linux-2.6.27-591/kernel/sched.c.orig 2010-01-29 16:30:22.000000000 -0500 -@@ -0,0 +1,9302 @@ -+/* -+ * kernel/sched.c -+ * -+ * Kernel scheduler and related syscalls -+ * -+ * Copyright (C) 1991-2002 Linus Torvalds -+ * -+ * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and -+ * make semaphores SMP safe -+ * 1998-11-19 Implemented schedule_timeout() and related stuff -+ * by Andrea Arcangeli -+ * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: -+ * hybrid priority-list and round-robin deventn with -+ * an array-switch method of distributing timeslices -+ * and per-CPU runqueues. Cleanups and useful suggestions -+ * by Davide Libenzi, preemptible kernel bits by Robert Love. -+ * 2003-09-03 Interactivity tuning by Con Kolivas. -+ * 2004-04-02 Scheduler domains code by Nick Piggin -+ * 2007-04-15 Work begun on replacing all interactivity tuning with a -+ * fair scheduling design by Con Kolivas. -+ * 2007-05-05 Load balancing (smp-nice) and other improvements -+ * by Peter Williams -+ * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith -+ * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri -+ * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, -+ * Thomas Gleixner, Mike Kravetz -+ */ -+ -+#include -+#include -+#include -+#include -+#include -+#include -+#include -+#include -+#include -+#include -+#include -+#include -+#include -+#include -+#include -+#include -+#include -+#include -+#include -+#include -+#include -+#include -+#include -+#include -+#include -+#include -+#include -+#include -+#include -+#include -+#include -+#include -+#include -+#include -+#include -+#include -+#include -+#include -+#include -+#include -+#include -+#include -+#include -+#include -+#include -+#include -+#include -+ -+#include -+#include -+ -+#include "sched_cpupri.h" -+ -+#define INTERRUPTIBLE -1 -+#define RUNNING 0 -+ -+/* -+ * Convert user-nice values [ -20 ... 0 ... 19 ] -+ * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], -+ * and back. -+ */ -+#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20) -+#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20) -+#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio) -+ -+/* -+ * 'User priority' is the nice value converted to something we -+ * can work with better when scaling various scheduler parameters, -+ * it's a [ 0 ... 39 ] range. -+ */ -+#define USER_PRIO(p) ((p)-MAX_RT_PRIO) -+#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio) -+#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO)) -+ -+/* -+ * Helpers for converting nanosecond timing to jiffy resolution -+ */ -+#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) -+ -+#define NICE_0_LOAD SCHED_LOAD_SCALE -+#define NICE_0_SHIFT SCHED_LOAD_SHIFT -+ -+/* -+ * These are the 'tuning knobs' of the scheduler: -+ * -+ * default timeslice is 100 msecs (used only for SCHED_RR tasks). -+ * Timeslices get refilled after they expire. -+ */ -+#define DEF_TIMESLICE (100 * HZ / 1000) -+ -+/* -+ * single value that denotes runtime == period, ie unlimited time. -+ */ -+#define RUNTIME_INF ((u64)~0ULL) -+ -+#ifdef CONFIG_SMP -+/* -+ * Divide a load by a sched group cpu_power : (load / sg->__cpu_power) -+ * Since cpu_power is a 'constant', we can use a reciprocal divide. -+ */ -+static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load) -+{ -+ return reciprocal_divide(load, sg->reciprocal_cpu_power); -+} -+ -+/* -+ * Each time a sched group cpu_power is changed, -+ * we must compute its reciprocal value -+ */ -+static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val) -+{ -+ sg->__cpu_power += val; -+ sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power); -+} -+#endif -+ -+static inline int rt_policy(int policy) -+{ -+ if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR)) -+ return 1; -+ return 0; -+} -+ -+static inline int task_has_rt_policy(struct task_struct *p) -+{ -+ return rt_policy(p->policy); -+} -+ -+/* -+ * This is the priority-queue data structure of the RT scheduling class: -+ */ -+struct rt_prio_array { -+ DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ -+ struct list_head queue[MAX_RT_PRIO]; -+}; -+ -+struct rt_bandwidth { -+ /* nests inside the rq lock: */ -+ spinlock_t rt_runtime_lock; -+ ktime_t rt_period; -+ u64 rt_runtime; -+ struct hrtimer rt_period_timer; -+}; -+ -+static struct rt_bandwidth def_rt_bandwidth; -+ -+static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); -+ -+static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) -+{ -+ struct rt_bandwidth *rt_b = -+ container_of(timer, struct rt_bandwidth, rt_period_timer); -+ ktime_t now; -+ int overrun; -+ int idle = 0; -+ -+ for (;;) { -+ now = hrtimer_cb_get_time(timer); -+ overrun = hrtimer_forward(timer, now, rt_b->rt_period); -+ -+ if (!overrun) -+ break; -+ -+ idle = do_sched_rt_period_timer(rt_b, overrun); -+ } -+ -+ return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; -+} -+ -+static -+void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) -+{ -+ rt_b->rt_period = ns_to_ktime(period); -+ rt_b->rt_runtime = runtime; -+ -+ spin_lock_init(&rt_b->rt_runtime_lock); -+ -+ hrtimer_init(&rt_b->rt_period_timer, -+ CLOCK_MONOTONIC, HRTIMER_MODE_REL); -+ rt_b->rt_period_timer.function = sched_rt_period_timer; -+ rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED; -+} -+ -+static void start_rt_bandwidth(struct rt_bandwidth *rt_b) -+{ -+ ktime_t now; -+ -+ if (rt_b->rt_runtime == RUNTIME_INF) -+ return; -+ -+ if (hrtimer_active(&rt_b->rt_period_timer)) -+ return; -+ -+ spin_lock(&rt_b->rt_runtime_lock); -+ for (;;) { -+ if (hrtimer_active(&rt_b->rt_period_timer)) -+ break; -+ -+ now = hrtimer_cb_get_time(&rt_b->rt_period_timer); -+ hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period); -+ hrtimer_start(&rt_b->rt_period_timer, -+ rt_b->rt_period_timer.expires, -+ HRTIMER_MODE_ABS); -+ } -+ spin_unlock(&rt_b->rt_runtime_lock); -+} -+ -+#ifdef CONFIG_RT_GROUP_SCHED -+static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) -+{ -+ hrtimer_cancel(&rt_b->rt_period_timer); -+} -+#endif -+ -+/* -+ * sched_domains_mutex serializes calls to arch_init_sched_domains, -+ * detach_destroy_domains and partition_sched_domains. -+ */ -+static DEFINE_MUTEX(sched_domains_mutex); -+ -+#ifdef CONFIG_GROUP_SCHED -+ -+#include -+ -+struct cfs_rq; -+ -+static LIST_HEAD(task_groups); -+ -+/* task group related information */ -+struct task_group { -+#ifdef CONFIG_CGROUP_SCHED -+ struct cgroup_subsys_state css; -+#endif -+ -+#ifdef CONFIG_FAIR_GROUP_SCHED -+ /* schedulable entities of this group on each cpu */ -+ struct sched_entity **se; -+ /* runqueue "owned" by this group on each cpu */ -+ struct cfs_rq **cfs_rq; -+ unsigned long shares; -+#endif -+ -+#ifdef CONFIG_RT_GROUP_SCHED -+ struct sched_rt_entity **rt_se; -+ struct rt_rq **rt_rq; -+ -+ struct rt_bandwidth rt_bandwidth; -+#endif -+ -+ struct rcu_head rcu; -+ struct list_head list; -+ -+ struct task_group *parent; -+ struct list_head siblings; -+ struct list_head children; -+}; -+ -+#ifdef CONFIG_USER_SCHED -+ -+/* -+ * Root task group. -+ * Every UID task group (including init_task_group aka UID-0) will -+ * be a child to this group. -+ */ -+struct task_group root_task_group; -+ -+#ifdef CONFIG_FAIR_GROUP_SCHED -+/* Default task group's sched entity on each cpu */ -+static DEFINE_PER_CPU(struct sched_entity, init_sched_entity); -+/* Default task group's cfs_rq on each cpu */ -+static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp; -+#endif /* CONFIG_FAIR_GROUP_SCHED */ -+ -+#ifdef CONFIG_RT_GROUP_SCHED -+static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity); -+static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp; -+#endif /* CONFIG_RT_GROUP_SCHED */ -+#else /* !CONFIG_FAIR_GROUP_SCHED */ -+#define root_task_group init_task_group -+#endif /* CONFIG_FAIR_GROUP_SCHED */ -+ -+/* task_group_lock serializes add/remove of task groups and also changes to -+ * a task group's cpu shares. -+ */ -+static DEFINE_SPINLOCK(task_group_lock); -+ -+#ifdef CONFIG_FAIR_GROUP_SCHED -+#ifdef CONFIG_USER_SCHED -+# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD) -+#else /* !CONFIG_USER_SCHED */ -+# define INIT_TASK_GROUP_LOAD NICE_0_LOAD -+#endif /* CONFIG_USER_SCHED */ -+ -+/* -+ * A weight of 0 or 1 can cause arithmetics problems. -+ * A weight of a cfs_rq is the sum of weights of which entities -+ * are queued on this cfs_rq, so a weight of a entity should not be -+ * too large, so as the shares value of a task group. -+ * (The default weight is 1024 - so there's no practical -+ * limitation from this.) -+ */ -+#define MIN_SHARES 2 -+#define MAX_SHARES (1UL << 18) -+ -+static int init_task_group_load = INIT_TASK_GROUP_LOAD; -+#endif -+ -+/* Default task group. -+ * Every task in system belong to this group at bootup. -+ */ -+struct task_group init_task_group; -+ -+/* return group to which a task belongs */ -+static inline struct task_group *task_group(struct task_struct *p) -+{ -+ struct task_group *tg; -+ -+#ifdef CONFIG_USER_SCHED -+ tg = p->user->tg; -+#elif defined(CONFIG_CGROUP_SCHED) -+ tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id), -+ struct task_group, css); -+#else -+ tg = &init_task_group; -+#endif -+ return tg; -+} -+ -+/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ -+static inline void set_task_rq(struct task_struct *p, unsigned int cpu) -+{ -+#ifdef CONFIG_FAIR_GROUP_SCHED -+ p->se.cfs_rq = task_group(p)->cfs_rq[cpu]; -+ p->se.parent = task_group(p)->se[cpu]; -+#endif -+ -+#ifdef CONFIG_RT_GROUP_SCHED -+ p->rt.rt_rq = task_group(p)->rt_rq[cpu]; -+ p->rt.parent = task_group(p)->rt_se[cpu]; -+#endif -+} -+ -+#else -+ -+static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } -+static inline struct task_group *task_group(struct task_struct *p) -+{ -+ return NULL; -+} -+ -+#endif /* CONFIG_GROUP_SCHED */ -+ -+/* CFS-related fields in a runqueue */ -+struct cfs_rq { -+ struct load_weight load; -+ unsigned long nr_running; -+ -+ u64 exec_clock; -+ u64 min_vruntime; -+ u64 pair_start; -+ -+ struct rb_root tasks_timeline; -+ struct rb_node *rb_leftmost; -+ -+ struct list_head tasks; -+ struct list_head *balance_iterator; -+ -+ /* -+ * 'curr' points to currently running entity on this cfs_rq. -+ * It is set to NULL otherwise (i.e when none are currently running). -+ */ -+ struct sched_entity *curr, *next; -+ -+ unsigned long nr_spread_over; -+ -+#ifdef CONFIG_FAIR_GROUP_SCHED -+ struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */ -+ -+ /* -+ * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in -+ * a hierarchy). Non-leaf lrqs hold other higher schedulable entities -+ * (like users, containers etc.) -+ * -+ * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This -+ * list is used during load balance. -+ */ -+ struct list_head leaf_cfs_rq_list; -+ struct task_group *tg; /* group that "owns" this runqueue */ -+ -+#ifdef CONFIG_SMP -+ /* -+ * the part of load.weight contributed by tasks -+ */ -+ unsigned long task_weight; -+ -+ /* -+ * h_load = weight * f(tg) -+ * -+ * Where f(tg) is the recursive weight fraction assigned to -+ * this group. -+ */ -+ unsigned long h_load; -+ -+ /* -+ * this cpu's part of tg->shares -+ */ -+ unsigned long shares; -+ -+ /* -+ * load.weight at the time we set shares -+ */ -+ unsigned long rq_weight; -+#endif -+#endif -+}; -+ -+/* Real-Time classes' related field in a runqueue: */ -+struct rt_rq { -+ struct rt_prio_array active; -+ unsigned long rt_nr_running; -+#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED -+ int highest_prio; /* highest queued rt task prio */ -+#endif -+#ifdef CONFIG_SMP -+ unsigned long rt_nr_migratory; -+ int overloaded; -+#endif -+ int rt_throttled; -+ u64 rt_time; -+ u64 rt_runtime; -+ /* Nests inside the rq lock: */ -+ spinlock_t rt_runtime_lock; -+ -+#ifdef CONFIG_RT_GROUP_SCHED -+ unsigned long rt_nr_boosted; -+ -+ struct rq *rq; -+ struct list_head leaf_rt_rq_list; -+ struct task_group *tg; -+ struct sched_rt_entity *rt_se; -+#endif -+}; -+ -+#ifdef CONFIG_SMP -+ -+/* -+ * We add the notion of a root-domain which will be used to define per-domain -+ * variables. Each exclusive cpuset essentially defines an island domain by -+ * fully partitioning the member cpus from any other cpuset. Whenever a new -+ * exclusive cpuset is created, we also create and attach a new root-domain -+ * object. -+ * -+ */ -+struct root_domain { -+ atomic_t refcount; -+ cpumask_t span; -+ cpumask_t online; -+ -+ /* -+ * The "RT overload" flag: it gets set if a CPU has more than -+ * one runnable RT task. -+ */ -+ cpumask_t rto_mask; -+ atomic_t rto_count; -+#ifdef CONFIG_SMP -+ struct cpupri cpupri; -+#endif -+}; -+ -+/* -+ * By default the system creates a single root-domain with all cpus as -+ * members (mimicking the global state we have today). -+ */ -+static struct root_domain def_root_domain; -+ -+#endif -+ unsigned long norm_time; -+ unsigned long idle_time; -+#ifdef CONFIG_VSERVER_IDLETIME -+ int idle_skip; -+#endif -+#ifdef CONFIG_VSERVER_HARDCPU -+ struct list_head hold_queue; -+ unsigned long nr_onhold; -+ int idle_tokens; -+#endif -+ -+/* -+ * This is the main, per-CPU runqueue data structure. -+ * -+ * Locking rule: those places that want to lock multiple runqueues -+ * (such as the load balancing or the thread migration code), lock -+ * acquire operations must be ordered by ascending &runqueue. -+ */ -+struct rq { -+ /* runqueue lock: */ -+ spinlock_t lock; -+ -+ /* -+ * nr_running and cpu_load should be in the same cacheline because -+ * remote CPUs use both these fields when doing load calculation. -+ */ -+ unsigned long nr_running; -+ #define CPU_LOAD_IDX_MAX 5 -+ unsigned long cpu_load[CPU_LOAD_IDX_MAX]; -+ unsigned char idle_at_tick; -+#ifdef CONFIG_NO_HZ -+ unsigned long last_tick_seen; -+ unsigned char in_nohz_recently; -+#endif -+ /* capture load from *all* tasks on this cpu: */ -+ struct load_weight load; -+ unsigned long nr_load_updates; -+ u64 nr_switches; -+ -+ struct cfs_rq cfs; -+ struct rt_rq rt; -+ -+#ifdef CONFIG_FAIR_GROUP_SCHED -+ /* list of leaf cfs_rq on this cpu: */ -+ struct list_head leaf_cfs_rq_list; -+#endif -+#ifdef CONFIG_RT_GROUP_SCHED -+ struct list_head leaf_rt_rq_list; -+#endif -+ -+ /* -+ * This is part of a global counter where only the total sum -+ * over all CPUs matters. A task can increase this counter on -+ * one CPU and if it got migrated afterwards it may decrease -+ * it on another CPU. Always updated under the runqueue lock: -+ */ -+ unsigned long nr_uninterruptible; -+ -+ struct task_struct *curr, *idle; -+ unsigned long next_balance; -+ struct mm_struct *prev_mm; -+ -+ u64 clock; -+ -+ atomic_t nr_iowait; -+ -+#ifdef CONFIG_SMP -+ struct root_domain *rd; -+ struct sched_domain *sd; -+ -+ /* For active balancing */ -+ int active_balance; -+ int push_cpu; -+ /* cpu of this runqueue: */ -+ int cpu; -+ int online; -+ -+ unsigned long avg_load_per_task; -+ -+ struct task_struct *migration_thread; -+ struct list_head migration_queue; -+#endif -+ -+#ifdef CONFIG_SCHED_HRTICK -+#ifdef CONFIG_SMP -+ int hrtick_csd_pending; -+ struct call_single_data hrtick_csd; -+#endif -+ struct hrtimer hrtick_timer; -+#endif -+ -+#ifdef CONFIG_SCHEDSTATS -+ /* latency stats */ -+ struct sched_info rq_sched_info; -+ -+ /* sys_sched_yield() stats */ -+ unsigned int yld_exp_empty; -+ unsigned int yld_act_empty; -+ unsigned int yld_both_empty; -+ unsigned int yld_count; -+ -+ /* schedule() stats */ -+ unsigned int sched_switch; -+ unsigned int sched_count; -+ unsigned int sched_goidle; -+ -+ /* try_to_wake_up() stats */ -+ unsigned int ttwu_count; -+ unsigned int ttwu_local; -+ -+ /* BKL stats */ -+ unsigned int bkl_count; -+#endif -+}; -+ -+static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); -+ -+static inline void check_preempt_curr(struct rq *rq, struct task_struct *p) -+{ -+ rq->curr->sched_class->check_preempt_curr(rq, p); -+} -+ -+static inline int cpu_of(struct rq *rq) -+{ -+#ifdef CONFIG_SMP -+ return rq->cpu; -+#else -+ return 0; -+#endif -+} -+ -+/* -+ * The domain tree (rq->sd) is protected by RCU's quiescent state transition. -+ * See detach_destroy_domains: synchronize_sched for details. -+ * -+ * The domain tree of any CPU may only be accessed from within -+ * preempt-disabled sections. -+ */ -+#define for_each_domain(cpu, __sd) \ -+ for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent) -+ -+#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) -+#define this_rq() (&__get_cpu_var(runqueues)) -+#define task_rq(p) cpu_rq(task_cpu(p)) -+#define cpu_curr(cpu) (cpu_rq(cpu)->curr) -+ -+static inline void update_rq_clock(struct rq *rq) -+{ -+ rq->clock = sched_clock_cpu(cpu_of(rq)); -+} -+ -+/* -+ * Tunables that become constants when CONFIG_SCHED_DEBUG is off: -+ */ -+#ifdef CONFIG_SCHED_DEBUG -+# define const_debug __read_mostly -+#else -+# define const_debug static const -+#endif -+ -+/** -+ * runqueue_is_locked -+ * -+ * Returns true if the current cpu runqueue is locked. -+ * This interface allows printk to be called with the runqueue lock -+ * held and know whether or not it is OK to wake up the klogd. -+ */ -+int runqueue_is_locked(void) -+{ -+ int cpu = get_cpu(); -+ struct rq *rq = cpu_rq(cpu); -+ int ret; -+ -+ ret = spin_is_locked(&rq->lock); -+ put_cpu(); -+ return ret; -+} -+ -+/* -+ * Debugging: various feature bits -+ */ -+ -+#define SCHED_FEAT(name, enabled) \ -+ __SCHED_FEAT_##name , -+ -+enum { -+#include "sched_features.h" -+}; -+ -+#undef SCHED_FEAT -+ -+#define SCHED_FEAT(name, enabled) \ -+ (1UL << __SCHED_FEAT_##name) * enabled | -+ -+const_debug unsigned int sysctl_sched_features = -+#include "sched_features.h" -+ 0; -+ -+#undef SCHED_FEAT -+ -+#ifdef CONFIG_SCHED_DEBUG -+#define SCHED_FEAT(name, enabled) \ -+ #name , -+ -+static __read_mostly char *sched_feat_names[] = { -+#include "sched_features.h" -+ NULL -+}; -+ -+#undef SCHED_FEAT -+ -+static int sched_feat_open(struct inode *inode, struct file *filp) -+{ -+ filp->private_data = inode->i_private; -+ return 0; -+} -+ -+static ssize_t -+sched_feat_read(struct file *filp, char __user *ubuf, -+ size_t cnt, loff_t *ppos) -+{ -+ char *buf; -+ int r = 0; -+ int len = 0; -+ int i; -+ -+ for (i = 0; sched_feat_names[i]; i++) { -+ len += strlen(sched_feat_names[i]); -+ len += 4; -+ } -+ -+ buf = kmalloc(len + 2, GFP_KERNEL); -+ if (!buf) -+ return -ENOMEM; -+ -+ for (i = 0; sched_feat_names[i]; i++) { -+ if (sysctl_sched_features & (1UL << i)) -+ r += sprintf(buf + r, "%s ", sched_feat_names[i]); -+ else -+ r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]); -+ } -+ -+ r += sprintf(buf + r, "\n"); -+ WARN_ON(r >= len + 2); -+ -+ r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r); -+ -+ kfree(buf); -+ -+ return r; -+} -+ -+static ssize_t -+sched_feat_write(struct file *filp, const char __user *ubuf, -+ size_t cnt, loff_t *ppos) -+{ -+ char buf[64]; -+ char *cmp = buf; -+ int neg = 0; -+ int i; -+ -+ if (cnt > 63) -+ cnt = 63; -+ -+ if (copy_from_user(&buf, ubuf, cnt)) -+ return -EFAULT; -+ -+ buf[cnt] = 0; -+ -+ if (strncmp(buf, "NO_", 3) == 0) { -+ neg = 1; -+ cmp += 3; -+ } -+ -+ for (i = 0; sched_feat_names[i]; i++) { -+ int len = strlen(sched_feat_names[i]); -+ -+ if (strncmp(cmp, sched_feat_names[i], len) == 0) { -+ if (neg) -+ sysctl_sched_features &= ~(1UL << i); -+ else -+ sysctl_sched_features |= (1UL << i); -+ break; -+ } -+ } -+ -+ if (!sched_feat_names[i]) -+ return -EINVAL; -+ -+ filp->f_pos += cnt; -+ -+ return cnt; -+} -+ -+static struct file_operations sched_feat_fops = { -+ .open = sched_feat_open, -+ .read = sched_feat_read, -+ .write = sched_feat_write, -+}; -+ -+static __init int sched_init_debug(void) -+{ -+ debugfs_create_file("sched_features", 0644, NULL, NULL, -+ &sched_feat_fops); -+ -+ return 0; -+} -+late_initcall(sched_init_debug); -+ -+#endif -+ -+#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) -+ -+/* -+ * Number of tasks to iterate in a single balance run. -+ * Limited because this is done with IRQs disabled. -+ */ -+const_debug unsigned int sysctl_sched_nr_migrate = 32; -+ -+/* -+ * ratelimit for updating the group shares. -+ * default: 0.25ms -+ */ -+unsigned int sysctl_sched_shares_ratelimit = 250000; -+ -+/* -+ * period over which we measure -rt task cpu usage in us. -+ * default: 1s -+ */ -+unsigned int sysctl_sched_rt_period = 1000000; -+ -+static __read_mostly int scheduler_running; -+ -+/* -+ * part of the period that we allow rt tasks to run in us. -+ * default: 0.95s -+ */ -+int sysctl_sched_rt_runtime = 950000; -+ -+static inline u64 global_rt_period(void) -+{ -+ return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; -+} -+ -+static inline u64 global_rt_runtime(void) -+{ -+ if (sysctl_sched_rt_runtime < 0) -+ return RUNTIME_INF; -+ -+ return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; -+} -+ -+#ifndef prepare_arch_switch -+# define prepare_arch_switch(next) do { } while (0) -+#endif -+#ifndef finish_arch_switch -+# define finish_arch_switch(prev) do { } while (0) -+#endif -+ -+static inline int task_current(struct rq *rq, struct task_struct *p) -+{ -+ return rq->curr == p; -+} -+ -+#ifndef __ARCH_WANT_UNLOCKED_CTXSW -+static inline int task_running(struct rq *rq, struct task_struct *p) -+{ -+ return task_current(rq, p); -+} -+ -+static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) -+{ -+} -+ -+static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) -+{ -+#ifdef CONFIG_DEBUG_SPINLOCK -+ /* this is a valid case when another task releases the spinlock */ -+ rq->lock.owner = current; -+#endif -+ /* -+ * If we are tracking spinlock dependencies then we have to -+ * fix up the runqueue lock - which gets 'carried over' from -+ * prev into current: -+ */ -+ spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); -+ -+ spin_unlock_irq(&rq->lock); -+} -+ -+#else /* __ARCH_WANT_UNLOCKED_CTXSW */ -+static inline int task_running(struct rq *rq, struct task_struct *p) -+{ -+#ifdef CONFIG_SMP -+ return p->oncpu; -+#else -+ return task_current(rq, p); -+#endif -+} -+ -+static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) -+{ -+#ifdef CONFIG_SMP -+ /* -+ * We can optimise this out completely for !SMP, because the -+ * SMP rebalancing from interrupt is the only thing that cares -+ * here. -+ */ -+ next->oncpu = 1; -+#endif -+#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW -+ spin_unlock_irq(&rq->lock); -+#else -+ spin_unlock(&rq->lock); -+#endif -+} -+ -+static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) -+{ -+#ifdef CONFIG_SMP -+ /* -+ * After ->oncpu is cleared, the task can be moved to a different CPU. -+ * We must ensure this doesn't happen until the switch is completely -+ * finished. -+ */ -+ smp_wmb(); -+ prev->oncpu = 0; -+#endif -+#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW -+ local_irq_enable(); -+#endif -+} -+#endif /* __ARCH_WANT_UNLOCKED_CTXSW */ -+ -+/* -+ * __task_rq_lock - lock the runqueue a given task resides on. -+ * Must be called interrupts disabled. -+ */ -+static inline struct rq *__task_rq_lock(struct task_struct *p) -+ __acquires(rq->lock) -+{ -+ for (;;) { -+ struct rq *rq = task_rq(p); -+ spin_lock(&rq->lock); -+ if (likely(rq == task_rq(p))) -+ return rq; -+ spin_unlock(&rq->lock); -+ } -+} -+ -+/* -+ * task_rq_lock - lock the runqueue a given task resides on and disable -+ * interrupts. Note the ordering: we can safely lookup the task_rq without -+ * explicitly disabling preemption. -+ */ -+static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) -+ __acquires(rq->lock) -+{ -+ struct rq *rq; -+ -+ for (;;) { -+ local_irq_save(*flags); -+ rq = task_rq(p); -+ spin_lock(&rq->lock); -+ if (likely(rq == task_rq(p))) -+ return rq; -+ spin_unlock_irqrestore(&rq->lock, *flags); -+ } -+} -+ -+static void __task_rq_unlock(struct rq *rq) -+ __releases(rq->lock) -+{ -+ spin_unlock(&rq->lock); -+} -+ -+static inline void task_rq_unlock(struct rq *rq, unsigned long *flags) -+ __releases(rq->lock) -+{ -+ spin_unlock_irqrestore(&rq->lock, *flags); -+} -+ -+/* -+ * this_rq_lock - lock this runqueue and disable interrupts. -+ */ -+static struct rq *this_rq_lock(void) -+ __acquires(rq->lock) -+{ -+ struct rq *rq; -+ -+ local_irq_disable(); -+ rq = this_rq(); -+ spin_lock(&rq->lock); -+ -+ return rq; -+} -+ -+#ifdef CONFIG_SCHED_HRTICK -+/* -+ * Use HR-timers to deliver accurate preemption points. -+ * -+ * Its all a bit involved since we cannot program an hrt while holding the -+ * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a -+ * reschedule event. -+ * -+ * When we get rescheduled we reprogram the hrtick_timer outside of the -+ * rq->lock. -+ */ -+ -+/* -+ * Use hrtick when: -+ * - enabled by features -+ * - hrtimer is actually high res -+ */ -+static inline int hrtick_enabled(struct rq *rq) -+{ -+ if (!sched_feat(HRTICK)) -+ return 0; -+ if (!cpu_active(cpu_of(rq))) -+ return 0; -+ return hrtimer_is_hres_active(&rq->hrtick_timer); -+} -+ -+static void hrtick_clear(struct rq *rq) -+{ -+ if (hrtimer_active(&rq->hrtick_timer)) -+ hrtimer_cancel(&rq->hrtick_timer); -+} -+ -+/* -+ * High-resolution timer tick. -+ * Runs from hardirq context with interrupts disabled. -+ */ -+static enum hrtimer_restart hrtick(struct hrtimer *timer) -+{ -+ struct rq *rq = container_of(timer, struct rq, hrtick_timer); -+ -+ WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); -+ -+ spin_lock(&rq->lock); -+ update_rq_clock(rq); -+ rq->curr->sched_class->task_tick(rq, rq->curr, 1); -+ spin_unlock(&rq->lock); -+ -+ return HRTIMER_NORESTART; -+} -+ -+#ifdef CONFIG_SMP -+/* -+ * called from hardirq (IPI) context -+ */ -+static void __hrtick_start(void *arg) -+{ -+ struct rq *rq = arg; -+ -+ spin_lock(&rq->lock); -+ hrtimer_restart(&rq->hrtick_timer); -+ rq->hrtick_csd_pending = 0; -+ spin_unlock(&rq->lock); -+} -+ -+/* -+ * Called to set the hrtick timer state. -+ * -+ * called with rq->lock held and irqs disabled -+ */ -+static void hrtick_start(struct rq *rq, u64 delay) -+{ -+ struct hrtimer *timer = &rq->hrtick_timer; -+ ktime_t time = ktime_add_ns(timer->base->get_time(), delay); -+ -+ timer->expires = time; -+ -+ if (rq == this_rq()) { -+ hrtimer_restart(timer); -+ } else if (!rq->hrtick_csd_pending) { -+ __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd); -+ rq->hrtick_csd_pending = 1; -+ } -+} -+ -+static int -+hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) -+{ -+ int cpu = (int)(long)hcpu; -+ -+ switch (action) { -+ case CPU_UP_CANCELED: -+ case CPU_UP_CANCELED_FROZEN: -+ case CPU_DOWN_PREPARE: -+ case CPU_DOWN_PREPARE_FROZEN: -+ case CPU_DEAD: -+ case CPU_DEAD_FROZEN: -+ hrtick_clear(cpu_rq(cpu)); -+ return NOTIFY_OK; -+ } -+ -+ return NOTIFY_DONE; -+} -+ -+static __init void init_hrtick(void) -+{ -+ hotcpu_notifier(hotplug_hrtick, 0); -+} -+#else -+/* -+ * Called to set the hrtick timer state. -+ * -+ * called with rq->lock held and irqs disabled -+ */ -+static void hrtick_start(struct rq *rq, u64 delay) -+{ -+ hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL); -+} -+ -+static void init_hrtick(void) -+{ -+} -+#endif /* CONFIG_SMP */ -+ -+static void init_rq_hrtick(struct rq *rq) -+{ -+#ifdef CONFIG_SMP -+ rq->hrtick_csd_pending = 0; -+ -+ rq->hrtick_csd.flags = 0; -+ rq->hrtick_csd.func = __hrtick_start; -+ rq->hrtick_csd.info = rq; -+#endif -+ -+ hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); -+ rq->hrtick_timer.function = hrtick; -+ rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU; -+} -+#else -+static inline void hrtick_clear(struct rq *rq) -+{ -+} -+ -+static inline void init_rq_hrtick(struct rq *rq) -+{ -+} -+ -+static inline void init_hrtick(void) -+{ -+} -+#endif -+ -+/* -+ * resched_task - mark a task 'to be rescheduled now'. -+ * -+ * On UP this means the setting of the need_resched flag, on SMP it -+ * might also involve a cross-CPU call to trigger the scheduler on -+ * the target CPU. -+ */ -+#ifdef CONFIG_SMP -+ -+#ifndef tsk_is_polling -+#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG) -+#endif -+ -+static void resched_task(struct task_struct *p) -+{ -+ int cpu; -+ -+ assert_spin_locked(&task_rq(p)->lock); -+ -+ if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED))) -+ return; -+ -+ set_tsk_thread_flag(p, TIF_NEED_RESCHED); -+ -+ cpu = task_cpu(p); -+ if (cpu == smp_processor_id()) -+ return; -+ -+ /* NEED_RESCHED must be visible before we test polling */ -+ smp_mb(); -+ if (!tsk_is_polling(p)) -+ smp_send_reschedule(cpu); -+} -+ -+static void resched_cpu(int cpu) -+{ -+ struct rq *rq = cpu_rq(cpu); -+ unsigned long flags; -+ -+ if (!spin_trylock_irqsave(&rq->lock, flags)) -+ return; -+ resched_task(cpu_curr(cpu)); -+ spin_unlock_irqrestore(&rq->lock, flags); -+} -+ -+#ifdef CONFIG_NO_HZ -+/* -+ * When add_timer_on() enqueues a timer into the timer wheel of an -+ * idle CPU then this timer might expire before the next timer event -+ * which is scheduled to wake up that CPU. In case of a completely -+ * idle system the next event might even be infinite time into the -+ * future. wake_up_idle_cpu() ensures that the CPU is woken up and -+ * leaves the inner idle loop so the newly added timer is taken into -+ * account when the CPU goes back to idle and evaluates the timer -+ * wheel for the next timer event. -+ */ -+void wake_up_idle_cpu(int cpu) -+{ -+ struct rq *rq = cpu_rq(cpu); -+ -+ if (cpu == smp_processor_id()) -+ return; -+ -+ /* -+ * This is safe, as this function is called with the timer -+ * wheel base lock of (cpu) held. When the CPU is on the way -+ * to idle and has not yet set rq->curr to idle then it will -+ * be serialized on the timer wheel base lock and take the new -+ * timer into account automatically. -+ */ -+ if (rq->curr != rq->idle) -+ return; -+ -+ /* -+ * We can set TIF_RESCHED on the idle task of the other CPU -+ * lockless. The worst case is that the other CPU runs the -+ * idle task through an additional NOOP schedule() -+ */ -+ set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED); -+ -+ /* NEED_RESCHED must be visible before we test polling */ -+ smp_mb(); -+ if (!tsk_is_polling(rq->idle)) -+ smp_send_reschedule(cpu); -+} -+#endif /* CONFIG_NO_HZ */ -+ -+#else /* !CONFIG_SMP */ -+static void resched_task(struct task_struct *p) -+{ -+ assert_spin_locked(&task_rq(p)->lock); -+ set_tsk_need_resched(p); -+} -+#endif /* CONFIG_SMP */ -+ -+#if BITS_PER_LONG == 32 -+# define WMULT_CONST (~0UL) -+#else -+# define WMULT_CONST (1UL << 32) -+#endif -+ -+#define WMULT_SHIFT 32 -+ -+/* -+ * Shift right and round: -+ */ -+#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y)) -+ -+/* -+ * delta *= weight / lw -+ */ -+static unsigned long -+calc_delta_mine(unsigned long delta_exec, unsigned long weight, -+ struct load_weight *lw) -+{ -+ u64 tmp; -+ -+ if (!lw->inv_weight) { -+ if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST)) -+ lw->inv_weight = 1; -+ else -+ lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2) -+ / (lw->weight+1); -+ } -+ -+ tmp = (u64)delta_exec * weight; -+ /* -+ * Check whether we'd overflow the 64-bit multiplication: -+ */ -+ if (unlikely(tmp > WMULT_CONST)) -+ tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight, -+ WMULT_SHIFT/2); -+ else -+ tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT); -+ -+ return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX); -+} -+ -+static inline void update_load_add(struct load_weight *lw, unsigned long inc) -+{ -+ lw->weight += inc; -+ lw->inv_weight = 0; -+} -+ -+static inline void update_load_sub(struct load_weight *lw, unsigned long dec) -+{ -+ lw->weight -= dec; -+ lw->inv_weight = 0; -+} -+ -+/* -+ * To aid in avoiding the subversion of "niceness" due to uneven distribution -+ * of tasks with abnormal "nice" values across CPUs the contribution that -+ * each task makes to its run queue's load is weighted according to its -+ * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a -+ * scaled version of the new time slice allocation that they receive on time -+ * slice expiry etc. -+ */ -+ -+#define WEIGHT_IDLEPRIO 2 -+#define WMULT_IDLEPRIO (1 << 31) -+ -+/* -+ * Nice levels are multiplicative, with a gentle 10% change for every -+ * nice level changed. I.e. when a CPU-bound task goes from nice 0 to -+ * nice 1, it will get ~10% less CPU time than another CPU-bound task -+ * that remained on nice 0. -+ * -+ * The "10% effect" is relative and cumulative: from _any_ nice level, -+ * if you go up 1 level, it's -10% CPU usage, if you go down 1 level -+ * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. -+ * If a task goes up by ~10% and another task goes down by ~10% then -+ * the relative distance between them is ~25%.) -+ */ -+static const int prio_to_weight[40] = { -+ /* -20 */ 88761, 71755, 56483, 46273, 36291, -+ /* -15 */ 29154, 23254, 18705, 14949, 11916, -+ /* -10 */ 9548, 7620, 6100, 4904, 3906, -+ /* -5 */ 3121, 2501, 1991, 1586, 1277, -+ /* 0 */ 1024, 820, 655, 526, 423, -+ /* 5 */ 335, 272, 215, 172, 137, -+ /* 10 */ 110, 87, 70, 56, 45, -+ /* 15 */ 36, 29, 23, 18, 15, -+}; -+ -+/* -+ * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated. -+ * -+ * In cases where the weight does not change often, we can use the -+ * precalculated inverse to speed up arithmetics by turning divisions -+ * into multiplications: -+ */ -+static const u32 prio_to_wmult[40] = { -+ /* -20 */ 48388, 59856, 76040, 92818, 118348, -+ /* -15 */ 147320, 184698, 229616, 287308, 360437, -+ /* -10 */ 449829, 563644, 704093, 875809, 1099582, -+ /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, -+ /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, -+ /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, -+ /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, -+ /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, -+}; -+ -+static void activate_task(struct rq *rq, struct task_struct *p, int wakeup); -+ -+/* -+ * runqueue iterator, to support SMP load-balancing between different -+ * scheduling classes, without having to expose their internal data -+ * structures to the load-balancing proper: -+ */ -+struct rq_iterator { -+ void *arg; -+ struct task_struct *(*start)(void *); -+ struct task_struct *(*next)(void *); -+}; -+ -+#ifdef CONFIG_SMP -+static unsigned long -+balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, -+ unsigned long max_load_move, struct sched_domain *sd, -+ enum cpu_idle_type idle, int *all_pinned, -+ int *this_best_prio, struct rq_iterator *iterator); -+ -+static int -+iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, -+ struct sched_domain *sd, enum cpu_idle_type idle, -+ struct rq_iterator *iterator); -+#endif -+ -+#ifdef CONFIG_CGROUP_CPUACCT -+static void cpuacct_charge(struct task_struct *tsk, u64 cputime); -+#else -+static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {} -+#endif -+ -+static inline void inc_cpu_load(struct rq *rq, unsigned long load) -+{ -+ update_load_add(&rq->load, load); -+} -+ -+static inline void dec_cpu_load(struct rq *rq, unsigned long load) -+{ -+ update_load_sub(&rq->load, load); -+} -+ -+#ifdef CONFIG_SMP -+static unsigned long source_load(int cpu, int type); -+static unsigned long target_load(int cpu, int type); -+static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd); -+ -+static unsigned long cpu_avg_load_per_task(int cpu) -+{ -+ struct rq *rq = cpu_rq(cpu); -+ -+ if (rq->nr_running) -+ rq->avg_load_per_task = rq->load.weight / rq->nr_running; -+ -+ return rq->avg_load_per_task; -+} -+ -+#ifdef CONFIG_FAIR_GROUP_SCHED -+ -+typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *); -+ -+/* -+ * Iterate the full tree, calling @down when first entering a node and @up when -+ * leaving it for the final time. -+ */ -+static void -+walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd) -+{ -+ struct task_group *parent, *child; -+ -+ rcu_read_lock(); -+ parent = &root_task_group; -+down: -+ (*down)(parent, cpu, sd); -+ list_for_each_entry_rcu(child, &parent->children, siblings) { -+ parent = child; -+ goto down; -+ -+up: -+ continue; -+ } -+ (*up)(parent, cpu, sd); -+ -+ child = parent; -+ parent = parent->parent; -+ if (parent) -+ goto up; -+ rcu_read_unlock(); -+} -+ -+static void __set_se_shares(struct sched_entity *se, unsigned long shares); -+ -+/* -+ * Calculate and set the cpu's group shares. -+ */ -+static void -+__update_group_shares_cpu(struct task_group *tg, int cpu, -+ unsigned long sd_shares, unsigned long sd_rq_weight) -+{ -+ int boost = 0; -+ unsigned long shares; -+ unsigned long rq_weight; -+ -+ if (!tg->se[cpu]) -+ return; -+ -+ rq_weight = tg->cfs_rq[cpu]->load.weight; -+ -+ /* -+ * If there are currently no tasks on the cpu pretend there is one of -+ * average load so that when a new task gets to run here it will not -+ * get delayed by group starvation. -+ */ -+ if (!rq_weight) { -+ boost = 1; -+ rq_weight = NICE_0_LOAD; -+ } -+ -+ if (unlikely(rq_weight > sd_rq_weight)) -+ rq_weight = sd_rq_weight; -+ -+ /* -+ * \Sum shares * rq_weight -+ * shares = ----------------------- -+ * \Sum rq_weight -+ * -+ */ -+ shares = (sd_shares * rq_weight) / (sd_rq_weight + 1); -+ -+ /* -+ * record the actual number of shares, not the boosted amount. -+ */ -+ tg->cfs_rq[cpu]->shares = boost ? 0 : shares; -+ tg->cfs_rq[cpu]->rq_weight = rq_weight; -+ -+ if (shares < MIN_SHARES) -+ shares = MIN_SHARES; -+ else if (shares > MAX_SHARES) -+ shares = MAX_SHARES; -+ -+ __set_se_shares(tg->se[cpu], shares); -+} -+ -+/* -+ * Re-compute the task group their per cpu shares over the given domain. -+ * This needs to be done in a bottom-up fashion because the rq weight of a -+ * parent group depends on the shares of its child groups. -+ */ -+static void -+tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd) -+{ -+ unsigned long rq_weight = 0; -+ unsigned long shares = 0; -+ int i; -+ -+ for_each_cpu_mask(i, sd->span) { -+ rq_weight += tg->cfs_rq[i]->load.weight; -+ shares += tg->cfs_rq[i]->shares; -+ } -+ -+ if ((!shares && rq_weight) || shares > tg->shares) -+ shares = tg->shares; -+ -+ if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE)) -+ shares = tg->shares; -+ -+ if (!rq_weight) -+ rq_weight = cpus_weight(sd->span) * NICE_0_LOAD; -+ -+ for_each_cpu_mask(i, sd->span) { -+ struct rq *rq = cpu_rq(i); -+ unsigned long flags; -+ -+ spin_lock_irqsave(&rq->lock, flags); -+ __update_group_shares_cpu(tg, i, shares, rq_weight); -+ spin_unlock_irqrestore(&rq->lock, flags); -+ } -+} -+ -+/* -+ * Compute the cpu's hierarchical load factor for each task group. -+ * This needs to be done in a top-down fashion because the load of a child -+ * group is a fraction of its parents load. -+ */ -+static void -+tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd) -+{ -+ unsigned long load; -+ -+ if (!tg->parent) { -+ load = cpu_rq(cpu)->load.weight; -+ } else { -+ load = tg->parent->cfs_rq[cpu]->h_load; -+ load *= tg->cfs_rq[cpu]->shares; -+ load /= tg->parent->cfs_rq[cpu]->load.weight + 1; -+ } -+ -+ tg->cfs_rq[cpu]->h_load = load; -+} -+ -+static void -+tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd) -+{ -+} -+ -+static void update_shares(struct sched_domain *sd) -+{ -+ u64 now = cpu_clock(raw_smp_processor_id()); -+ s64 elapsed = now - sd->last_update; -+ -+ if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) { -+ sd->last_update = now; -+ walk_tg_tree(tg_nop, tg_shares_up, 0, sd); -+ } -+} -+ -+static void update_shares_locked(struct rq *rq, struct sched_domain *sd) -+{ -+ spin_unlock(&rq->lock); -+ update_shares(sd); -+ spin_lock(&rq->lock); -+} -+ -+static void update_h_load(int cpu) -+{ -+ walk_tg_tree(tg_load_down, tg_nop, cpu, NULL); -+} -+ -+#else -+ -+static inline void update_shares(struct sched_domain *sd) -+{ -+} -+ -+static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd) -+{ -+} -+ -+#endif -+ -+#endif -+ -+#ifdef CONFIG_FAIR_GROUP_SCHED -+static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares) -+{ -+#ifdef CONFIG_SMP -+ cfs_rq->shares = shares; -+#endif -+} -+#endif -+ -+#include "sched_stats.h" -+#include "sched_idletask.c" -+#include "sched_fair.c" -+#include "sched_rt.c" -+#ifdef CONFIG_SCHED_DEBUG -+# include "sched_debug.c" -+#endif -+ -+#define sched_class_highest (&rt_sched_class) -+#define for_each_class(class) \ -+ for (class = sched_class_highest; class; class = class->next) -+ -+static void inc_nr_running(struct rq *rq) -+{ -+ rq->nr_running++; -+} -+ -+static void dec_nr_running(struct rq *rq) -+{ -+ rq->nr_running--; -+} -+ -+static void set_load_weight(struct task_struct *p) -+{ -+ if (task_has_rt_policy(p)) { -+ p->se.load.weight = prio_to_weight[0] * 2; -+ p->se.load.inv_weight = prio_to_wmult[0] >> 1; -+ return; -+ } -+ -+ /* -+ * SCHED_IDLE tasks get minimal weight: -+ */ -+ if (p->policy == SCHED_IDLE) { -+ p->se.load.weight = WEIGHT_IDLEPRIO; -+ p->se.load.inv_weight = WMULT_IDLEPRIO; -+ return; -+ } -+ -+ p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO]; -+ p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO]; -+} -+ -+static void update_avg(u64 *avg, u64 sample) -+{ -+ s64 diff = sample - *avg; -+ *avg += diff >> 3; -+} -+ -+static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup) -+{ -+ // BUG_ON(p->state & TASK_ONHOLD); -+ sched_info_queued(p); -+ p->sched_class->enqueue_task(rq, p, wakeup); -+ p->se.on_rq = 1; -+} -+ -+static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep) -+{ -+ if (sleep && p->se.last_wakeup) { -+ update_avg(&p->se.avg_overlap, -+ p->se.sum_exec_runtime - p->se.last_wakeup); -+ p->se.last_wakeup = 0; -+ } -+ -+ sched_info_dequeued(p); -+ p->sched_class->dequeue_task(rq, p, sleep); -+ p->se.on_rq = 0; -+} -+ -+/* -+ * __normal_prio - return the priority that is based on the static prio -+ */ -+static inline int __normal_prio(struct task_struct *p) -+{ -+ return p->static_prio; -+} -+ -+/* -+ * Calculate the expected normal priority: i.e. priority -+ * without taking RT-inheritance into account. Might be -+ * boosted by interactivity modifiers. Changes upon fork, -+ * setprio syscalls, and whenever the interactivity -+ * estimator recalculates. -+ */ -+static inline int normal_prio(struct task_struct *p) -+{ -+ int prio; -+ -+ if (task_has_rt_policy(p)) -+ prio = MAX_RT_PRIO-1 - p->rt_priority; -+ else -+ prio = __normal_prio(p); -+ return prio; -+} -+ -+/* -+ * Calculate the current priority, i.e. the priority -+ * taken into account by the scheduler. This value might -+ * be boosted by RT tasks, or might be boosted by -+ * interactivity modifiers. Will be RT if the task got -+ * RT-boosted. If not then it returns p->normal_prio. -+ */ -+static int effective_prio(struct task_struct *p) -+{ -+ p->normal_prio = normal_prio(p); -+ /* -+ * If we are RT tasks or we were boosted to RT priority, -+ * keep the priority unchanged. Otherwise, update priority -+ * to the normal priority: -+ */ -+ if (!rt_prio(p->prio)) -+ return p->normal_prio; -+ return p->prio; -+} -+ -+/* -+ * activate_task - move a task to the runqueue. -+ */ -+static void activate_task(struct rq *rq, struct task_struct *p, int wakeup) -+{ -+ if (task_contributes_to_load(p)) -+ rq->nr_uninterruptible--; -+ -+ enqueue_task(rq, p, wakeup); -+ inc_nr_running(rq); -+} -+ -+/* -+ * deactivate_task - remove a task from the runqueue. -+ */ -+static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep) -+{ -+ if (task_contributes_to_load(p)) -+ rq->nr_uninterruptible++; -+ -+ dequeue_task(rq, p, sleep); -+ dec_nr_running(rq); -+} -+ -+/** -+ * task_curr - is this task currently executing on a CPU? -+ * @p: the task in question. -+ */ -+inline int task_curr(const struct task_struct *p) -+{ -+ return cpu_curr(task_cpu(p)) == p; -+} -+ -+static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) -+{ -+ set_task_rq(p, cpu); -+#ifdef CONFIG_SMP -+ /* -+ * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be -+ * successfuly executed on another CPU. We must ensure that updates of -+ * per-task data have been completed by this moment. -+ */ -+ smp_wmb(); -+ task_thread_info(p)->cpu = cpu; -+#endif -+} -+ -+static inline void check_class_changed(struct rq *rq, struct task_struct *p, -+ const struct sched_class *prev_class, -+ int oldprio, int running) -+{ -+ if (prev_class != p->sched_class) { -+ if (prev_class->switched_from) -+ prev_class->switched_from(rq, p, running); -+ p->sched_class->switched_to(rq, p, running); -+ } else -+ p->sched_class->prio_changed(rq, p, oldprio, running); -+} -+ -+#ifdef CONFIG_SMP -+ -+/* Used instead of source_load when we know the type == 0 */ -+static unsigned long weighted_cpuload(const int cpu) -+{ -+ return cpu_rq(cpu)->load.weight; -+} -+ -+/* -+ * Is this task likely cache-hot: -+ */ -+static int -+task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) -+{ -+ s64 delta; -+ -+ /* -+ * Buddy candidates are cache hot: -+ */ -+ if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next)) -+ return 1; -+ -+ if (p->sched_class != &fair_sched_class) -+ return 0; -+ -+ if (sysctl_sched_migration_cost == -1) -+ return 1; -+ if (sysctl_sched_migration_cost == 0) -+ return 0; -+ -+ delta = now - p->se.exec_start; -+ -+ return delta < (s64)sysctl_sched_migration_cost; -+} -+ -+ -+void set_task_cpu(struct task_struct *p, unsigned int new_cpu) -+{ -+ int old_cpu = task_cpu(p); -+ struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu); -+ struct cfs_rq *old_cfsrq = task_cfs_rq(p), -+ *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu); -+ u64 clock_offset; -+ -+ clock_offset = old_rq->clock - new_rq->clock; -+ -+#ifdef CONFIG_SCHEDSTATS -+ if (p->se.wait_start) -+ p->se.wait_start -= clock_offset; -+ if (p->se.sleep_start) -+ p->se.sleep_start -= clock_offset; -+ if (p->se.block_start) -+ p->se.block_start -= clock_offset; -+ if (old_cpu != new_cpu) { -+ schedstat_inc(p, se.nr_migrations); -+ if (task_hot(p, old_rq->clock, NULL)) -+ schedstat_inc(p, se.nr_forced2_migrations); -+ } -+#endif -+ p->se.vruntime -= old_cfsrq->min_vruntime - -+ new_cfsrq->min_vruntime; -+ -+ __set_task_cpu(p, new_cpu); -+} -+ -+struct migration_req { -+ struct list_head list; -+ -+ struct task_struct *task; -+ int dest_cpu; -+ -+ struct completion done; -+}; -+ -+#include "sched_mon.h" -+ -+ -+/* -+ * The task's runqueue lock must be held. -+ * Returns true if you have to wait for migration thread. -+ */ -+static int -+migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req) -+{ -+ struct rq *rq = task_rq(p); -+ -+ vxm_migrate_task(p, rq, dest_cpu); -+ /* -+ * If the task is not on a runqueue (and not running), then -+ * it is sufficient to simply update the task's cpu field. -+ */ -+ if (!p->se.on_rq && !task_running(rq, p)) { -+ set_task_cpu(p, dest_cpu); -+ return 0; -+ } -+ -+ init_completion(&req->done); -+ req->task = p; -+ req->dest_cpu = dest_cpu; -+ list_add(&req->list, &rq->migration_queue); -+ -+ return 1; -+} -+ -+/* -+ * wait_task_inactive - wait for a thread to unschedule. -+ * -+ * If @match_state is nonzero, it's the @p->state value just checked and -+ * not expected to change. If it changes, i.e. @p might have woken up, -+ * then return zero. When we succeed in waiting for @p to be off its CPU, -+ * we return a positive number (its total switch count). If a second call -+ * a short while later returns the same number, the caller can be sure that -+ * @p has remained unscheduled the whole time. -+ * -+ * The caller must ensure that the task *will* unschedule sometime soon, -+ * else this function might spin for a *long* time. This function can't -+ * be called with interrupts off, or it may introduce deadlock with -+ * smp_call_function() if an IPI is sent by the same process we are -+ * waiting to become inactive. -+ */ -+unsigned long wait_task_inactive(struct task_struct *p, long match_state) -+{ -+ unsigned long flags; -+ int running, on_rq; -+ unsigned long ncsw; -+ struct rq *rq; -+ -+ for (;;) { -+ /* -+ * We do the initial early heuristics without holding -+ * any task-queue locks at all. We'll only try to get -+ * the runqueue lock when things look like they will -+ * work out! -+ */ -+ rq = task_rq(p); -+ -+ /* -+ * If the task is actively running on another CPU -+ * still, just relax and busy-wait without holding -+ * any locks. -+ * -+ * NOTE! Since we don't hold any locks, it's not -+ * even sure that "rq" stays as the right runqueue! -+ * But we don't care, since "task_running()" will -+ * return false if the runqueue has changed and p -+ * is actually now running somewhere else! -+ */ -+ while (task_running(rq, p)) { -+ if (match_state && unlikely(p->state != match_state)) -+ return 0; -+ cpu_relax(); -+ } -+ -+ /* -+ * Ok, time to look more closely! We need the rq -+ * lock now, to be *sure*. If we're wrong, we'll -+ * just go back and repeat. -+ */ -+ rq = task_rq_lock(p, &flags); -+ running = task_running(rq, p); -+ on_rq = p->se.on_rq; -+ ncsw = 0; -+ if (!match_state || p->state == match_state) { -+ ncsw = p->nivcsw + p->nvcsw; -+ if (unlikely(!ncsw)) -+ ncsw = 1; -+ } -+ task_rq_unlock(rq, &flags); -+ -+ /* -+ * If it changed from the expected state, bail out now. -+ */ -+ if (unlikely(!ncsw)) -+ break; -+ -+ /* -+ * Was it really running after all now that we -+ * checked with the proper locks actually held? -+ * -+ * Oops. Go back and try again.. -+ */ -+ if (unlikely(running)) { -+ cpu_relax(); -+ continue; -+ } -+ -+ /* -+ * It's not enough that it's not actively running, -+ * it must be off the runqueue _entirely_, and not -+ * preempted! -+ * -+ * So if it wa still runnable (but just not actively -+ * running right now), it's preempted, and we should -+ * yield - it could be a while. -+ */ -+ if (unlikely(on_rq)) { -+ schedule_timeout_uninterruptible(1); -+ continue; -+ } -+ -+ /* -+ * Ahh, all good. It wasn't running, and it wasn't -+ * runnable, which means that it will never become -+ * running in the future either. We're all done! -+ */ -+ break; -+ } -+ -+ return ncsw; -+} -+ -+/*** -+ * kick_process - kick a running thread to enter/exit the kernel -+ * @p: the to-be-kicked thread -+ * -+ * Cause a process which is running on another CPU to enter -+ * kernel-mode, without any delay. (to get signals handled.) -+ * -+ * NOTE: this function doesnt have to take the runqueue lock, -+ * because all it wants to ensure is that the remote task enters -+ * the kernel. If the IPI races and the task has been migrated -+ * to another CPU then no harm is done and the purpose has been -+ * achieved as well. -+ */ -+void kick_process(struct task_struct *p) -+{ -+ int cpu; -+ -+ preempt_disable(); -+ cpu = task_cpu(p); -+ if ((cpu != smp_processor_id()) && task_curr(p)) -+ smp_send_reschedule(cpu); -+ preempt_enable(); -+} -+ -+/* -+ * Return a low guess at the load of a migration-source cpu weighted -+ * according to the scheduling class and "nice" value. -+ * -+ * We want to under-estimate the load of migration sources, to -+ * balance conservatively. -+ */ -+static unsigned long source_load(int cpu, int type) -+{ -+ struct rq *rq = cpu_rq(cpu); -+ unsigned long total = weighted_cpuload(cpu); -+ -+ if (type == 0 || !sched_feat(LB_BIAS)) -+ return total; -+ -+ return min(rq->cpu_load[type-1], total); -+} -+ -+/* -+ * Return a high guess at the load of a migration-target cpu weighted -+ * according to the scheduling class and "nice" value. -+ */ -+static unsigned long target_load(int cpu, int type) -+{ -+ struct rq *rq = cpu_rq(cpu); -+ unsigned long total = weighted_cpuload(cpu); -+ -+ if (type == 0 || !sched_feat(LB_BIAS)) -+ return total; -+ -+ return max(rq->cpu_load[type-1], total); -+} -+ -+/* -+ * find_idlest_group finds and returns the least busy CPU group within the -+ * domain. -+ */ -+static struct sched_group * -+find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) -+{ -+ struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups; -+ unsigned long min_load = ULONG_MAX, this_load = 0; -+ int load_idx = sd->forkexec_idx; -+ int imbalance = 100 + (sd->imbalance_pct-100)/2; -+ -+ do { -+ unsigned long load, avg_load; -+ int local_group; -+ int i; -+ -+ /* Skip over this group if it has no CPUs allowed */ -+ if (!cpus_intersects(group->cpumask, p->cpus_allowed)) -+ continue; -+ -+ local_group = cpu_isset(this_cpu, group->cpumask); -+ -+ /* Tally up the load of all CPUs in the group */ -+ avg_load = 0; -+ -+ for_each_cpu_mask_nr(i, group->cpumask) { -+ /* Bias balancing toward cpus of our domain */ -+ if (local_group) -+ load = source_load(i, load_idx); -+ else -+ load = target_load(i, load_idx); -+ -+ avg_load += load; -+ } -+ -+ /* Adjust by relative CPU power of the group */ -+ avg_load = sg_div_cpu_power(group, -+ avg_load * SCHED_LOAD_SCALE); -+ -+ if (local_group) { -+ this_load = avg_load; -+ this = group; -+ } else if (avg_load < min_load) { -+ min_load = avg_load; -+ idlest = group; -+ } -+ } while (group = group->next, group != sd->groups); -+ -+ if (!idlest || 100*this_load < imbalance*min_load) -+ return NULL; -+ return idlest; -+} -+ -+/* -+ * find_idlest_cpu - find the idlest cpu among the cpus in group. -+ */ -+static int -+find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu, -+ cpumask_t *tmp) -+{ -+ unsigned long load, min_load = ULONG_MAX; -+ int idlest = -1; -+ int i; -+ -+ /* Traverse only the allowed CPUs */ -+ cpus_and(*tmp, group->cpumask, p->cpus_allowed); -+ -+ for_each_cpu_mask_nr(i, *tmp) { -+ load = weighted_cpuload(i); -+ -+ if (load < min_load || (load == min_load && i == this_cpu)) { -+ min_load = load; -+ idlest = i; -+ } -+ } -+ -+ return idlest; -+} -+ -+/* -+ * sched_balance_self: balance the current task (running on cpu) in domains -+ * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and -+ * SD_BALANCE_EXEC. -+ * -+ * Balance, ie. select the least loaded group. -+ * -+ * Returns the target CPU number, or the same CPU if no balancing is needed. -+ * -+ * preempt must be disabled. -+ */ -+static int sched_balance_self(int cpu, int flag) -+{ -+ struct task_struct *t = current; -+ struct sched_domain *tmp, *sd = NULL; -+ -+ for_each_domain(cpu, tmp) { -+ /* -+ * If power savings logic is enabled for a domain, stop there. -+ */ -+ if (tmp->flags & SD_POWERSAVINGS_BALANCE) -+ break; -+ if (tmp->flags & flag) -+ sd = tmp; -+ } -+ -+ if (sd) -+ update_shares(sd); -+ -+ while (sd) { -+ cpumask_t span, tmpmask; -+ struct sched_group *group; -+ int new_cpu, weight; -+ -+ if (!(sd->flags & flag)) { -+ sd = sd->child; -+ continue; -+ } -+ -+ span = sd->span; -+ group = find_idlest_group(sd, t, cpu); -+ if (!group) { -+ sd = sd->child; -+ continue; -+ } -+ -+ new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask); -+ if (new_cpu == -1 || new_cpu == cpu) { -+ /* Now try balancing at a lower domain level of cpu */ -+ sd = sd->child; -+ continue; -+ } -+ -+ /* Now try balancing at a lower domain level of new_cpu */ -+ cpu = new_cpu; -+ sd = NULL; -+ weight = cpus_weight(span); -+ for_each_domain(cpu, tmp) { -+ if (weight <= cpus_weight(tmp->span)) -+ break; -+ if (tmp->flags & flag) -+ sd = tmp; -+ } -+ /* while loop will break here if sd == NULL */ -+ } -+ -+ return cpu; -+} -+ -+#endif /* CONFIG_SMP */ -+ -+/*** -+ * try_to_wake_up - wake up a thread -+ * @p: the to-be-woken-up thread -+ * @state: the mask of task states that can be woken -+ * @sync: do a synchronous wakeup? -+ * -+ * Put it on the run-queue if it's not already there. The "current" -+ * thread is always on the run-queue (except when the actual -+ * re-schedule is in progress), and as such you're allowed to do -+ * the simpler "current->state = TASK_RUNNING" to mark yourself -+ * runnable without the overhead of this. -+ * -+ * returns failure only if the task is already active. -+ */ -+static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync) -+{ -+ int cpu, orig_cpu, this_cpu, success = 0; -+ unsigned long flags; -+ long old_state; -+ struct rq *rq; -+ -+ if (!sched_feat(SYNC_WAKEUPS)) -+ sync = 0; -+ -+#ifdef CONFIG_SMP -+ if (sched_feat(LB_WAKEUP_UPDATE)) { -+ struct sched_domain *sd; -+ -+ this_cpu = raw_smp_processor_id(); -+ cpu = task_cpu(p); -+ -+ for_each_domain(this_cpu, sd) { -+ if (cpu_isset(cpu, sd->span)) { -+ update_shares(sd); -+ break; -+ } -+ } -+ } -+#endif -+ -+ smp_wmb(); -+ rq = task_rq_lock(p, &flags); -+ old_state = p->state; -+ if (!(old_state & state)) -+ goto out; -+ -+ if (p->se.on_rq) -+ goto out_running; -+ -+ cpu = task_cpu(p); -+ orig_cpu = cpu; -+ this_cpu = smp_processor_id(); -+ -+#ifdef CONFIG_SMP -+ if (unlikely(task_running(rq, p))) -+ goto out_activate; -+ -+ cpu = p->sched_class->select_task_rq(p, sync); -+ if (cpu != orig_cpu) { -+ set_task_cpu(p, cpu); -+ task_rq_unlock(rq, &flags); -+ /* might preempt at this point */ -+ rq = task_rq_lock(p, &flags); -+ old_state = p->state; -+ -+ /* we need to unhold suspended tasks -+ if (old_state & TASK_ONHOLD) { -+ vx_unhold_task(p, rq); -+ old_state = p->state; -+ } */ -+ if (!(old_state & state)) -+ goto out; -+ if (p->se.on_rq) -+ goto out_running; -+ -+ this_cpu = smp_processor_id(); -+ cpu = task_cpu(p); -+ } -+ -+#ifdef CONFIG_SCHEDSTATS -+ schedstat_inc(rq, ttwu_count); -+ if (cpu == this_cpu) -+ schedstat_inc(rq, ttwu_local); -+ else { -+ struct sched_domain *sd; -+ for_each_domain(this_cpu, sd) { -+ if (cpu_isset(cpu, sd->span)) { -+ schedstat_inc(sd, ttwu_wake_remote); -+ break; -+ } -+ } -+ } -+#endif /* CONFIG_SCHEDSTATS */ -+ -+out_activate: -+#endif /* CONFIG_SMP */ -+ schedstat_inc(p, se.nr_wakeups); -+ if (sync) -+ schedstat_inc(p, se.nr_wakeups_sync); -+ if (orig_cpu != cpu) -+ schedstat_inc(p, se.nr_wakeups_migrate); -+ if (cpu == this_cpu) -+ schedstat_inc(p, se.nr_wakeups_local); -+ else -+ schedstat_inc(p, se.nr_wakeups_remote); -+ update_rq_clock(rq); -+ activate_task(rq, p, 1); -+ success = 1; -+ -+out_running: -+ trace_mark(kernel_sched_wakeup, -+ "pid %d state %ld ## rq %p task %p rq->curr %p", -+ p->pid, p->state, rq, p, rq->curr); -+ check_preempt_curr(rq, p); -+ -+ p->state = TASK_RUNNING; -+#ifdef CONFIG_SMP -+ if (p->sched_class->task_wake_up) -+ p->sched_class->task_wake_up(rq, p); -+#endif -+out: -+ current->se.last_wakeup = current->se.sum_exec_runtime; -+ -+ task_rq_unlock(rq, &flags); -+ -+ return success; -+} -+ -+int wake_up_process(struct task_struct *p) -+{ -+ return try_to_wake_up(p, TASK_ALL, 0); -+} -+EXPORT_SYMBOL(wake_up_process); -+ -+int wake_up_state(struct task_struct *p, unsigned int state) -+{ -+ return try_to_wake_up(p, state, 0); -+} -+ -+/* -+ * Perform scheduler related setup for a newly forked process p. -+ * p is forked by current. -+ * -+ * __sched_fork() is basic setup used by init_idle() too: -+ */ -+static void __sched_fork(struct task_struct *p) -+{ -+ p->se.exec_start = 0; -+ p->se.sum_exec_runtime = 0; -+ p->se.prev_sum_exec_runtime = 0; -+ p->se.last_wakeup = 0; -+ p->se.avg_overlap = 0; -+ -+#ifdef CONFIG_SCHEDSTATS -+ p->se.wait_start = 0; -+ p->se.sum_sleep_runtime = 0; -+ p->se.sleep_start = 0; -+ p->se.block_start = 0; -+ p->se.sleep_max = 0; -+ p->se.block_max = 0; -+ p->se.exec_max = 0; -+ p->se.slice_max = 0; -+ p->se.wait_max = 0; -+#endif -+ -+ INIT_LIST_HEAD(&p->rt.run_list); -+ p->se.on_rq = 0; -+ INIT_LIST_HEAD(&p->se.group_node); -+ -+#ifdef CONFIG_PREEMPT_NOTIFIERS -+ INIT_HLIST_HEAD(&p->preempt_notifiers); -+#endif -+ -+ /* -+ * We mark the process as running here, but have not actually -+ * inserted it onto the runqueue yet. This guarantees that -+ * nobody will actually run it, and a signal or other external -+ * event cannot wake it up and insert it on the runqueue either. -+ */ -+ p->state = TASK_RUNNING; -+} -+ -+/* -+ * fork()/clone()-time setup: -+ */ -+void sched_fork(struct task_struct *p, int clone_flags) -+{ -+ int cpu = get_cpu(); -+ -+ __sched_fork(p); -+ -+#ifdef CONFIG_SMP -+ cpu = sched_balance_self(cpu, SD_BALANCE_FORK); -+#endif -+ set_task_cpu(p, cpu); -+ -+ /* -+ * Make sure we do not leak PI boosting priority to the child: -+ */ -+ p->prio = current->normal_prio; -+ if (!rt_prio(p->prio)) -+ p->sched_class = &fair_sched_class; -+ -+#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) -+ if (likely(sched_info_on())) -+ memset(&p->sched_info, 0, sizeof(p->sched_info)); -+#endif -+#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) -+ p->oncpu = 0; -+#endif -+#ifdef CONFIG_PREEMPT -+ /* Want to start with kernel preemption disabled. */ -+ task_thread_info(p)->preempt_count = 1; -+#endif -+ put_cpu(); -+} -+ -+/* -+ * wake_up_new_task - wake up a newly created task for the first time. -+ * -+ * This function will do some initial scheduler statistics housekeeping -+ * that must be done for every newly created context, then puts the task -+ * on the runqueue and wakes it. -+ */ -+void wake_up_new_task(struct task_struct *p, unsigned long clone_flags) -+{ -+ unsigned long flags; -+ struct rq *rq; -+ -+ rq = task_rq_lock(p, &flags); -+ BUG_ON(p->state != TASK_RUNNING); -+ update_rq_clock(rq); -+ -+ p->prio = effective_prio(p); -+ -+ if (!p->sched_class->task_new || !current->se.on_rq) { -+ activate_task(rq, p, 0); -+ } else { -+ /* -+ * Let the scheduling class do new task startup -+ * management (if any): -+ */ -+ p->sched_class->task_new(rq, p); -+ inc_nr_running(rq); -+ } -+ trace_mark(kernel_sched_wakeup_new, -+ "pid %d state %ld ## rq %p task %p rq->curr %p", -+ p->pid, p->state, rq, p, rq->curr); -+ check_preempt_curr(rq, p); -+#ifdef CONFIG_SMP -+ if (p->sched_class->task_wake_up) -+ p->sched_class->task_wake_up(rq, p); -+#endif -+ task_rq_unlock(rq, &flags); -+} -+ -+#ifdef CONFIG_PREEMPT_NOTIFIERS -+ -+/** -+ * preempt_notifier_register - tell me when current is being being preempted & rescheduled -+ * @notifier: notifier struct to register -+ */ -+void preempt_notifier_register(struct preempt_notifier *notifier) -+{ -+ hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); -+} -+EXPORT_SYMBOL_GPL(preempt_notifier_register); -+ -+/** -+ * preempt_notifier_unregister - no longer interested in preemption notifications -+ * @notifier: notifier struct to unregister -+ * -+ * This is safe to call from within a preemption notifier. -+ */ -+void preempt_notifier_unregister(struct preempt_notifier *notifier) -+{ -+ hlist_del(¬ifier->link); -+} -+EXPORT_SYMBOL_GPL(preempt_notifier_unregister); -+ -+static void fire_sched_in_preempt_notifiers(struct task_struct *curr) -+{ -+ struct preempt_notifier *notifier; -+ struct hlist_node *node; -+ -+ hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) -+ notifier->ops->sched_in(notifier, raw_smp_processor_id()); -+} -+ -+static void -+fire_sched_out_preempt_notifiers(struct task_struct *curr, -+ struct task_struct *next) -+{ -+ struct preempt_notifier *notifier; -+ struct hlist_node *node; -+ -+ hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) -+ notifier->ops->sched_out(notifier, next); -+} -+ -+#else /* !CONFIG_PREEMPT_NOTIFIERS */ -+ -+static void fire_sched_in_preempt_notifiers(struct task_struct *curr) -+{ -+} -+ -+static void -+fire_sched_out_preempt_notifiers(struct task_struct *curr, -+ struct task_struct *next) -+{ -+} -+ -+#endif /* CONFIG_PREEMPT_NOTIFIERS */ -+ -+/** -+ * prepare_task_switch - prepare to switch tasks -+ * @rq: the runqueue preparing to switch -+ * @prev: the current task that is being switched out -+ * @next: the task we are going to switch to. -+ * -+ * This is called with the rq lock held and interrupts off. It must -+ * be paired with a subsequent finish_task_switch after the context -+ * switch. -+ * -+ * prepare_task_switch sets up locking and calls architecture specific -+ * hooks. -+ */ -+static inline void -+prepare_task_switch(struct rq *rq, struct task_struct *prev, -+ struct task_struct *next) -+{ -+ fire_sched_out_preempt_notifiers(prev, next); -+ prepare_lock_switch(rq, next); -+ prepare_arch_switch(next); -+} -+ -+/** -+ * finish_task_switch - clean up after a task-switch -+ * @rq: runqueue associated with task-switch -+ * @prev: the thread we just switched away from. -+ * -+ * finish_task_switch must be called after the context switch, paired -+ * with a prepare_task_switch call before the context switch. -+ * finish_task_switch will reconcile locking set up by prepare_task_switch, -+ * and do any other architecture-specific cleanup actions. -+ * -+ * Note that we may have delayed dropping an mm in context_switch(). If -+ * so, we finish that here outside of the runqueue lock. (Doing it -+ * with the lock held can cause deadlocks; see schedule() for -+ * details.) -+ */ -+static void finish_task_switch(struct rq *rq, struct task_struct *prev) -+ __releases(rq->lock) -+{ -+ struct mm_struct *mm = rq->prev_mm; -+ long prev_state; -+ -+ rq->prev_mm = NULL; -+ -+ /* -+ * A task struct has one reference for the use as "current". -+ * If a task dies, then it sets TASK_DEAD in tsk->state and calls -+ * schedule one last time. The schedule call will never return, and -+ * the scheduled task must drop that reference. -+ * The test for TASK_DEAD must occur while the runqueue locks are -+ * still held, otherwise prev could be scheduled on another cpu, die -+ * there before we look at prev->state, and then the reference would -+ * be dropped twice. -+ * Manfred Spraul -+ */ -+ prev_state = prev->state; -+ finish_arch_switch(prev); -+ finish_lock_switch(rq, prev); -+#ifdef CONFIG_SMP -+ if (current->sched_class->post_schedule) -+ current->sched_class->post_schedule(rq); -+#endif -+ -+ fire_sched_in_preempt_notifiers(current); -+ if (mm) -+ mmdrop(mm); -+ if (unlikely(prev_state == TASK_DEAD)) { -+ /* -+ * Remove function-return probe instances associated with this -+ * task and put them back on the free list. -+ */ -+ kprobe_flush_task(prev); -+ put_task_struct(prev); -+ } -+} -+ -+/** -+ * schedule_tail - first thing a freshly forked thread must call. -+ * @prev: the thread we just switched away from. -+ */ -+asmlinkage void schedule_tail(struct task_struct *prev) -+ __releases(rq->lock) -+{ -+ struct rq *rq = this_rq(); -+ -+ finish_task_switch(rq, prev); -+#ifdef __ARCH_WANT_UNLOCKED_CTXSW -+ /* In this case, finish_task_switch does not reenable preemption */ -+ preempt_enable(); -+#endif -+ if (current->set_child_tid) -+ put_user(task_pid_vnr(current), current->set_child_tid); -+} -+ -+/* -+ * context_switch - switch to the new MM and the new -+ * thread's register state. -+ */ -+static inline void -+context_switch(struct rq *rq, struct task_struct *prev, -+ struct task_struct *next) -+{ -+ struct mm_struct *mm, *oldmm; -+ -+ prepare_task_switch(rq, prev, next); -+ trace_mark(kernel_sched_schedule, -+ "prev_pid %d next_pid %d prev_state %ld " -+ "## rq %p prev %p next %p", -+ prev->pid, next->pid, prev->state, -+ rq, prev, next); -+ mm = next->mm; -+ oldmm = prev->active_mm; -+ /* -+ * For paravirt, this is coupled with an exit in switch_to to -+ * combine the page table reload and the switch backend into -+ * one hypercall. -+ */ -+ arch_enter_lazy_cpu_mode(); -+ -+ if (unlikely(!mm)) { -+ next->active_mm = oldmm; -+ atomic_inc(&oldmm->mm_count); -+ enter_lazy_tlb(oldmm, next); -+ } else -+ switch_mm(oldmm, mm, next); -+ -+ if (unlikely(!prev->mm)) { -+ prev->active_mm = NULL; -+ rq->prev_mm = oldmm; -+ } -+ /* -+ * Since the runqueue lock will be released by the next -+ * task (which is an invalid locking op but in the case -+ * of the scheduler it's an obvious special-case), so we -+ * do an early lockdep release here: -+ */ -+#ifndef __ARCH_WANT_UNLOCKED_CTXSW -+ spin_release(&rq->lock.dep_map, 1, _THIS_IP_); -+#endif -+ -+ /* Here we just switch the register state and the stack. */ -+ switch_to(prev, next, prev); -+ -+ barrier(); -+ /* -+ * this_rq must be evaluated again because prev may have moved -+ * CPUs since it called schedule(), thus the 'rq' on its stack -+ * frame will be invalid. -+ */ -+ finish_task_switch(this_rq(), prev); -+} -+ -+/* -+ * nr_running, nr_uninterruptible and nr_context_switches: -+ * -+ * externally visible scheduler statistics: current number of runnable -+ * threads, current number of uninterruptible-sleeping threads, total -+ * number of context switches performed since bootup. -+ */ -+unsigned long nr_running(void) -+{ -+ unsigned long i, sum = 0; -+ -+ for_each_online_cpu(i) -+ sum += cpu_rq(i)->nr_running; -+ -+ return sum; -+} -+ -+unsigned long nr_uninterruptible(void) -+{ -+ unsigned long i, sum = 0; -+ -+ for_each_possible_cpu(i) -+ sum += cpu_rq(i)->nr_uninterruptible; -+ -+ /* -+ * Since we read the counters lockless, it might be slightly -+ * inaccurate. Do not allow it to go below zero though: -+ */ -+ if (unlikely((long)sum < 0)) -+ sum = 0; -+ -+ return sum; -+} -+ -+unsigned long long nr_context_switches(void) -+{ -+ int i; -+ unsigned long long sum = 0; -+ -+ for_each_possible_cpu(i) -+ sum += cpu_rq(i)->nr_switches; -+ -+ return sum; -+} -+ -+unsigned long nr_iowait(void) -+{ -+ unsigned long i, sum = 0; -+ -+ for_each_possible_cpu(i) -+ sum += atomic_read(&cpu_rq(i)->nr_iowait); -+ -+ return sum; -+} -+ -+unsigned long nr_active(void) -+{ -+ unsigned long i, running = 0, uninterruptible = 0; -+ -+ for_each_online_cpu(i) { -+ running += cpu_rq(i)->nr_running; -+ uninterruptible += cpu_rq(i)->nr_uninterruptible; -+ } -+ -+ if (unlikely((long)uninterruptible < 0)) -+ uninterruptible = 0; -+ -+ return running + uninterruptible; -+} -+ -+/* -+ * Update rq->cpu_load[] statistics. This function is usually called every -+ * scheduler tick (TICK_NSEC). -+ */ -+static void update_cpu_load(struct rq *this_rq) -+{ -+ unsigned long this_load = this_rq->load.weight; -+ int i, scale; -+ -+ this_rq->nr_load_updates++; -+ -+ /* Update our load: */ -+ for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { -+ unsigned long old_load, new_load; -+ -+ /* scale is effectively 1 << i now, and >> i divides by scale */ -+ -+ old_load = this_rq->cpu_load[i]; -+ new_load = this_load; -+ /* -+ * Round up the averaging division if load is increasing. This -+ * prevents us from getting stuck on 9 if the load is 10, for -+ * example. -+ */ -+ if (new_load > old_load) -+ new_load += scale-1; -+ this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i; -+ } -+} -+ -+#ifdef CONFIG_SMP -+ -+/* -+ * double_rq_lock - safely lock two runqueues -+ * -+ * Note this does not disable interrupts like task_rq_lock, -+ * you need to do so manually before calling. -+ */ -+static void double_rq_lock(struct rq *rq1, struct rq *rq2) -+ __acquires(rq1->lock) -+ __acquires(rq2->lock) -+{ -+ BUG_ON(!irqs_disabled()); -+ if (rq1 == rq2) { -+ spin_lock(&rq1->lock); -+ __acquire(rq2->lock); /* Fake it out ;) */ -+ } else { -+ if (rq1 < rq2) { -+ spin_lock(&rq1->lock); -+ spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); -+ } else { -+ spin_lock(&rq2->lock); -+ spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); -+ } -+ } -+ update_rq_clock(rq1); -+ update_rq_clock(rq2); -+} -+ -+/* -+ * double_rq_unlock - safely unlock two runqueues -+ * -+ * Note this does not restore interrupts like task_rq_unlock, -+ * you need to do so manually after calling. -+ */ -+static void double_rq_unlock(struct rq *rq1, struct rq *rq2) -+ __releases(rq1->lock) -+ __releases(rq2->lock) -+{ -+ spin_unlock(&rq1->lock); -+ if (rq1 != rq2) -+ spin_unlock(&rq2->lock); -+ else -+ __release(rq2->lock); -+} -+ -+/* -+ * double_lock_balance - lock the busiest runqueue, this_rq is locked already. -+ */ -+static int double_lock_balance(struct rq *this_rq, struct rq *busiest) -+ __releases(this_rq->lock) -+ __acquires(busiest->lock) -+ __acquires(this_rq->lock) -+{ -+ int ret = 0; -+ -+ if (unlikely(!irqs_disabled())) { -+ /* printk() doesn't work good under rq->lock */ -+ spin_unlock(&this_rq->lock); -+ BUG_ON(1); -+ } -+ if (unlikely(!spin_trylock(&busiest->lock))) { -+ if (busiest < this_rq) { -+ spin_unlock(&this_rq->lock); -+ spin_lock(&busiest->lock); -+ spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING); -+ ret = 1; -+ } else -+ spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING); -+ } -+ return ret; -+} -+ -+static void double_unlock_balance(struct rq *this_rq, struct rq *busiest) -+ __releases(busiest->lock) -+{ -+ spin_unlock(&busiest->lock); -+ lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); -+} -+ -+/* -+ * If dest_cpu is allowed for this process, migrate the task to it. -+ * This is accomplished by forcing the cpu_allowed mask to only -+ * allow dest_cpu, which will force the cpu onto dest_cpu. Then -+ * the cpu_allowed mask is restored. -+ */ -+static void sched_migrate_task(struct task_struct *p, int dest_cpu) -+{ -+ struct migration_req req; -+ unsigned long flags; -+ struct rq *rq; -+ -+ rq = task_rq_lock(p, &flags); -+ if (!cpu_isset(dest_cpu, p->cpus_allowed) -+ || unlikely(!cpu_active(dest_cpu))) -+ goto out; -+ -+ /* force the process onto the specified CPU */ -+ if (migrate_task(p, dest_cpu, &req)) { -+ /* Need to wait for migration thread (might exit: take ref). */ -+ struct task_struct *mt = rq->migration_thread; -+ -+ get_task_struct(mt); -+ task_rq_unlock(rq, &flags); -+ wake_up_process(mt); -+ put_task_struct(mt); -+ wait_for_completion(&req.done); -+ -+ return; -+ } -+out: -+ task_rq_unlock(rq, &flags); -+} -+ -+/* -+ * sched_exec - execve() is a valuable balancing opportunity, because at -+ * this point the task has the smallest effective memory and cache footprint. -+ */ -+void sched_exec(void) -+{ -+ int new_cpu, this_cpu = get_cpu(); -+ new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC); -+ put_cpu(); -+ if (new_cpu != this_cpu) -+ sched_migrate_task(current, new_cpu); -+} -+ -+/* -+ * pull_task - move a task from a remote runqueue to the local runqueue. -+ * Both runqueues must be locked. -+ */ -+static void pull_task(struct rq *src_rq, struct task_struct *p, -+ struct rq *this_rq, int this_cpu) -+{ -+ deactivate_task(src_rq, p, 0); -+ set_task_cpu(p, this_cpu); -+ activate_task(this_rq, p, 0); -+ /* -+ * Note that idle threads have a prio of MAX_PRIO, for this test -+ * to be always true for them. -+ */ -+ check_preempt_curr(this_rq, p); -+} -+ -+/* -+ * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? -+ */ -+static -+int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, -+ struct sched_domain *sd, enum cpu_idle_type idle, -+ int *all_pinned) -+{ -+ /* -+ * We do not migrate tasks that are: -+ * 1) running (obviously), or -+ * 2) cannot be migrated to this CPU due to cpus_allowed, or -+ * 3) are cache-hot on their current CPU. -+ */ -+ if (!cpu_isset(this_cpu, p->cpus_allowed)) { -+ schedstat_inc(p, se.nr_failed_migrations_affine); -+ return 0; -+ } -+ *all_pinned = 0; -+ -+ if (task_running(rq, p)) { -+ schedstat_inc(p, se.nr_failed_migrations_running); -+ return 0; -+ } -+ -+ /* -+ * Aggressive migration if: -+ * 1) task is cache cold, or -+ * 2) too many balance attempts have failed. -+ */ -+ -+ if (!task_hot(p, rq->clock, sd) || -+ sd->nr_balance_failed > sd->cache_nice_tries) { -+#ifdef CONFIG_SCHEDSTATS -+ if (task_hot(p, rq->clock, sd)) { -+ schedstat_inc(sd, lb_hot_gained[idle]); -+ schedstat_inc(p, se.nr_forced_migrations); -+ } -+#endif -+ return 1; -+ } -+ -+ if (task_hot(p, rq->clock, sd)) { -+ schedstat_inc(p, se.nr_failed_migrations_hot); -+ return 0; -+ } -+ return 1; -+} -+ -+static unsigned long -+balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, -+ unsigned long max_load_move, struct sched_domain *sd, -+ enum cpu_idle_type idle, int *all_pinned, -+ int *this_best_prio, struct rq_iterator *iterator) -+{ -+ int loops = 0, pulled = 0, pinned = 0; -+ struct task_struct *p; -+ long rem_load_move = max_load_move; -+ -+ if (max_load_move == 0) -+ goto out; -+ -+ pinned = 1; -+ -+ /* -+ * Start the load-balancing iterator: -+ */ -+ p = iterator->start(iterator->arg); -+next: -+ if (!p || loops++ > sysctl_sched_nr_migrate) -+ goto out; -+ -+ if ((p->se.load.weight >> 1) > rem_load_move || -+ !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) { -+ p = iterator->next(iterator->arg); -+ goto next; -+ } -+ -+ pull_task(busiest, p, this_rq, this_cpu); -+ pulled++; -+ rem_load_move -= p->se.load.weight; -+ -+ /* -+ * We only want to steal up to the prescribed amount of weighted load. -+ */ -+ if (rem_load_move > 0) { -+ if (p->prio < *this_best_prio) -+ *this_best_prio = p->prio; -+ p = iterator->next(iterator->arg); -+ goto next; -+ } -+out: -+ /* -+ * Right now, this is one of only two places pull_task() is called, -+ * so we can safely collect pull_task() stats here rather than -+ * inside pull_task(). -+ */ -+ schedstat_add(sd, lb_gained[idle], pulled); -+ -+ if (all_pinned) -+ *all_pinned = pinned; -+ -+ return max_load_move - rem_load_move; -+} -+ -+/* -+ * move_tasks tries to move up to max_load_move weighted load from busiest to -+ * this_rq, as part of a balancing operation within domain "sd". -+ * Returns 1 if successful and 0 otherwise. -+ * -+ * Called with both runqueues locked. -+ */ -+static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, -+ unsigned long max_load_move, -+ struct sched_domain *sd, enum cpu_idle_type idle, -+ int *all_pinned) -+{ -+ const struct sched_class *class = sched_class_highest; -+ unsigned long total_load_moved = 0; -+ int this_best_prio = this_rq->curr->prio; -+ -+ do { -+ total_load_moved += -+ class->load_balance(this_rq, this_cpu, busiest, -+ max_load_move - total_load_moved, -+ sd, idle, all_pinned, &this_best_prio); -+ class = class->next; -+ -+ if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) -+ break; -+ -+ } while (class && max_load_move > total_load_moved); -+ -+ return total_load_moved > 0; -+} -+ -+static int -+iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, -+ struct sched_domain *sd, enum cpu_idle_type idle, -+ struct rq_iterator *iterator) -+{ -+ struct task_struct *p = iterator->start(iterator->arg); -+ int pinned = 0; -+ -+ while (p) { -+ if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) { -+ pull_task(busiest, p, this_rq, this_cpu); -+ /* -+ * Right now, this is only the second place pull_task() -+ * is called, so we can safely collect pull_task() -+ * stats here rather than inside pull_task(). -+ */ -+ schedstat_inc(sd, lb_gained[idle]); -+ -+ return 1; -+ } -+ p = iterator->next(iterator->arg); -+ } -+ -+ return 0; -+} -+ -+/* -+ * move_one_task tries to move exactly one task from busiest to this_rq, as -+ * part of active balancing operations within "domain". -+ * Returns 1 if successful and 0 otherwise. -+ * -+ * Called with both runqueues locked. -+ */ -+static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, -+ struct sched_domain *sd, enum cpu_idle_type idle) -+{ -+ const struct sched_class *class; -+ -+ for (class = sched_class_highest; class; class = class->next) -+ if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle)) -+ return 1; -+ -+ return 0; -+} -+ -+/* -+ * find_busiest_group finds and returns the busiest CPU group within the -+ * domain. It calculates and returns the amount of weighted load which -+ * should be moved to restore balance via the imbalance parameter. -+ */ -+static struct sched_group * -+find_busiest_group(struct sched_domain *sd, int this_cpu, -+ unsigned long *imbalance, enum cpu_idle_type idle, -+ int *sd_idle, const cpumask_t *cpus, int *balance) -+{ -+ struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups; -+ unsigned long max_load, avg_load, total_load, this_load, total_pwr; -+ unsigned long max_pull; -+ unsigned long busiest_load_per_task, busiest_nr_running; -+ unsigned long this_load_per_task, this_nr_running; -+ int load_idx, group_imb = 0; -+#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) -+ int power_savings_balance = 1; -+ unsigned long leader_nr_running = 0, min_load_per_task = 0; -+ unsigned long min_nr_running = ULONG_MAX; -+ struct sched_group *group_min = NULL, *group_leader = NULL; -+#endif -+ -+ max_load = this_load = total_load = total_pwr = 0; -+ busiest_load_per_task = busiest_nr_running = 0; -+ this_load_per_task = this_nr_running = 0; -+ -+ if (idle == CPU_NOT_IDLE) -+ load_idx = sd->busy_idx; -+ else if (idle == CPU_NEWLY_IDLE) -+ load_idx = sd->newidle_idx; -+ else -+ load_idx = sd->idle_idx; -+ -+ do { -+ unsigned long load, group_capacity, max_cpu_load, min_cpu_load; -+ int local_group; -+ int i; -+ int __group_imb = 0; -+ unsigned int balance_cpu = -1, first_idle_cpu = 0; -+ unsigned long sum_nr_running, sum_weighted_load; -+ unsigned long sum_avg_load_per_task; -+ unsigned long avg_load_per_task; -+ -+ local_group = cpu_isset(this_cpu, group->cpumask); -+ -+ if (local_group) -+ balance_cpu = first_cpu(group->cpumask); -+ -+ /* Tally up the load of all CPUs in the group */ -+ sum_weighted_load = sum_nr_running = avg_load = 0; -+ sum_avg_load_per_task = avg_load_per_task = 0; -+ -+ max_cpu_load = 0; -+ min_cpu_load = ~0UL; -+ -+ for_each_cpu_mask_nr(i, group->cpumask) { -+ struct rq *rq; -+ -+ if (!cpu_isset(i, *cpus)) -+ continue; -+ -+ rq = cpu_rq(i); -+ -+ if (*sd_idle && rq->nr_running) -+ *sd_idle = 0; -+ -+ /* Bias balancing toward cpus of our domain */ -+ if (local_group) { -+ if (idle_cpu(i) && !first_idle_cpu) { -+ first_idle_cpu = 1; -+ balance_cpu = i; -+ } -+ -+ load = target_load(i, load_idx); -+ } else { -+ load = source_load(i, load_idx); -+ if (load > max_cpu_load) -+ max_cpu_load = load; -+ if (min_cpu_load > load) -+ min_cpu_load = load; -+ } -+ -+ avg_load += load; -+ sum_nr_running += rq->nr_running; -+ sum_weighted_load += weighted_cpuload(i); -+ -+ sum_avg_load_per_task += cpu_avg_load_per_task(i); -+ } -+ -+ /* -+ * First idle cpu or the first cpu(busiest) in this sched group -+ * is eligible for doing load balancing at this and above -+ * domains. In the newly idle case, we will allow all the cpu's -+ * to do the newly idle load balance. -+ */ -+ if (idle != CPU_NEWLY_IDLE && local_group && -+ balance_cpu != this_cpu && balance) { -+ *balance = 0; -+ goto ret; -+ } -+ -+ total_load += avg_load; -+ total_pwr += group->__cpu_power; -+ -+ /* Adjust by relative CPU power of the group */ -+ avg_load = sg_div_cpu_power(group, -+ avg_load * SCHED_LOAD_SCALE); -+ -+ -+ /* -+ * Consider the group unbalanced when the imbalance is larger -+ * than the average weight of two tasks. -+ * -+ * APZ: with cgroup the avg task weight can vary wildly and -+ * might not be a suitable number - should we keep a -+ * normalized nr_running number somewhere that negates -+ * the hierarchy? -+ */ -+ avg_load_per_task = sg_div_cpu_power(group, -+ sum_avg_load_per_task * SCHED_LOAD_SCALE); -+ -+ if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task) -+ __group_imb = 1; -+ -+ group_capacity = group->__cpu_power / SCHED_LOAD_SCALE; -+ -+ if (local_group) { -+ this_load = avg_load; -+ this = group; -+ this_nr_running = sum_nr_running; -+ this_load_per_task = sum_weighted_load; -+ } else if (avg_load > max_load && -+ (sum_nr_running > group_capacity || __group_imb)) { -+ max_load = avg_load; -+ busiest = group; -+ busiest_nr_running = sum_nr_running; -+ busiest_load_per_task = sum_weighted_load; -+ group_imb = __group_imb; -+ } -+ -+#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) -+ /* -+ * Busy processors will not participate in power savings -+ * balance. -+ */ -+ if (idle == CPU_NOT_IDLE || -+ !(sd->flags & SD_POWERSAVINGS_BALANCE)) -+ goto group_next; -+ -+ /* -+ * If the local group is idle or completely loaded -+ * no need to do power savings balance at this domain -+ */ -+ if (local_group && (this_nr_running >= group_capacity || -+ !this_nr_running)) -+ power_savings_balance = 0; -+ -+ /* -+ * If a group is already running at full capacity or idle, -+ * don't include that group in power savings calculations -+ */ -+ if (!power_savings_balance || sum_nr_running >= group_capacity -+ || !sum_nr_running) -+ goto group_next; -+ -+ /* -+ * Calculate the group which has the least non-idle load. -+ * This is the group from where we need to pick up the load -+ * for saving power -+ */ -+ if ((sum_nr_running < min_nr_running) || -+ (sum_nr_running == min_nr_running && -+ first_cpu(group->cpumask) < -+ first_cpu(group_min->cpumask))) { -+ group_min = group; -+ min_nr_running = sum_nr_running; -+ min_load_per_task = sum_weighted_load / -+ sum_nr_running; -+ } -+ -+ /* -+ * Calculate the group which is almost near its -+ * capacity but still has some space to pick up some load -+ * from other group and save more power -+ */ -+ if (sum_nr_running <= group_capacity - 1) { -+ if (sum_nr_running > leader_nr_running || -+ (sum_nr_running == leader_nr_running && -+ first_cpu(group->cpumask) > -+ first_cpu(group_leader->cpumask))) { -+ group_leader = group; -+ leader_nr_running = sum_nr_running; -+ } -+ } -+group_next: -+#endif -+ group = group->next; -+ } while (group != sd->groups); -+ -+ if (!busiest || this_load >= max_load || busiest_nr_running == 0) -+ goto out_balanced; -+ -+ avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr; -+ -+ if (this_load >= avg_load || -+ 100*max_load <= sd->imbalance_pct*this_load) -+ goto out_balanced; -+ -+ busiest_load_per_task /= busiest_nr_running; -+ if (group_imb) -+ busiest_load_per_task = min(busiest_load_per_task, avg_load); -+ -+ /* -+ * We're trying to get all the cpus to the average_load, so we don't -+ * want to push ourselves above the average load, nor do we wish to -+ * reduce the max loaded cpu below the average load, as either of these -+ * actions would just result in more rebalancing later, and ping-pong -+ * tasks around. Thus we look for the minimum possible imbalance. -+ * Negative imbalances (*we* are more loaded than anyone else) will -+ * be counted as no imbalance for these purposes -- we can't fix that -+ * by pulling tasks to us. Be careful of negative numbers as they'll -+ * appear as very large values with unsigned longs. -+ */ -+ if (max_load <= busiest_load_per_task) -+ goto out_balanced; -+ -+ /* -+ * In the presence of smp nice balancing, certain scenarios can have -+ * max load less than avg load(as we skip the groups at or below -+ * its cpu_power, while calculating max_load..) -+ */ -+ if (max_load < avg_load) { -+ *imbalance = 0; -+ goto small_imbalance; -+ } -+ -+ /* Don't want to pull so many tasks that a group would go idle */ -+ max_pull = min(max_load - avg_load, max_load - busiest_load_per_task); -+ -+ /* How much load to actually move to equalise the imbalance */ -+ *imbalance = min(max_pull * busiest->__cpu_power, -+ (avg_load - this_load) * this->__cpu_power) -+ / SCHED_LOAD_SCALE; -+ -+ /* -+ * if *imbalance is less than the average load per runnable task -+ * there is no gaurantee that any tasks will be moved so we'll have -+ * a think about bumping its value to force at least one task to be -+ * moved -+ */ -+ if (*imbalance < busiest_load_per_task) { -+ unsigned long tmp, pwr_now, pwr_move; -+ unsigned int imbn; -+ -+small_imbalance: -+ pwr_move = pwr_now = 0; -+ imbn = 2; -+ if (this_nr_running) { -+ this_load_per_task /= this_nr_running; -+ if (busiest_load_per_task > this_load_per_task) -+ imbn = 1; -+ } else -+ this_load_per_task = cpu_avg_load_per_task(this_cpu); -+ -+ if (max_load - this_load + 2*busiest_load_per_task >= -+ busiest_load_per_task * imbn) { -+ *imbalance = busiest_load_per_task; -+ return busiest; -+ } -+ -+ /* -+ * OK, we don't have enough imbalance to justify moving tasks, -+ * however we may be able to increase total CPU power used by -+ * moving them. -+ */ -+ -+ pwr_now += busiest->__cpu_power * -+ min(busiest_load_per_task, max_load); -+ pwr_now += this->__cpu_power * -+ min(this_load_per_task, this_load); -+ pwr_now /= SCHED_LOAD_SCALE; -+ -+ /* Amount of load we'd subtract */ -+ tmp = sg_div_cpu_power(busiest, -+ busiest_load_per_task * SCHED_LOAD_SCALE); -+ if (max_load > tmp) -+ pwr_move += busiest->__cpu_power * -+ min(busiest_load_per_task, max_load - tmp); -+ -+ /* Amount of load we'd add */ -+ if (max_load * busiest->__cpu_power < -+ busiest_load_per_task * SCHED_LOAD_SCALE) -+ tmp = sg_div_cpu_power(this, -+ max_load * busiest->__cpu_power); -+ else -+ tmp = sg_div_cpu_power(this, -+ busiest_load_per_task * SCHED_LOAD_SCALE); -+ pwr_move += this->__cpu_power * -+ min(this_load_per_task, this_load + tmp); -+ pwr_move /= SCHED_LOAD_SCALE; -+ -+ /* Move if we gain throughput */ -+ if (pwr_move > pwr_now) -+ *imbalance = busiest_load_per_task; -+ } -+ -+ return busiest; -+ -+out_balanced: -+#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) -+ if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) -+ goto ret; -+ -+ if (this == group_leader && group_leader != group_min) { -+ *imbalance = min_load_per_task; -+ return group_min; -+ } -+#endif -+ret: -+ *imbalance = 0; -+ return NULL; -+} -+ -+/* -+ * find_busiest_queue - find the busiest runqueue among the cpus in group. -+ */ -+static struct rq * -+find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle, -+ unsigned long imbalance, const cpumask_t *cpus) -+{ -+ struct rq *busiest = NULL, *rq; -+ unsigned long max_load = 0; -+ int i; -+ -+ for_each_cpu_mask_nr(i, group->cpumask) { -+ unsigned long wl; -+ -+ if (!cpu_isset(i, *cpus)) -+ continue; -+ -+ rq = cpu_rq(i); -+ wl = weighted_cpuload(i); -+ -+ if (rq->nr_running == 1 && wl > imbalance) -+ continue; -+ -+ if (wl > max_load) { -+ max_load = wl; -+ busiest = rq; -+ } -+ } -+ -+ return busiest; -+} -+ -+/* -+ * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but -+ * so long as it is large enough. -+ */ -+#define MAX_PINNED_INTERVAL 512 -+ -+/* -+ * Check this_cpu to ensure it is balanced within domain. Attempt to move -+ * tasks if there is an imbalance. -+ */ -+static int load_balance(int this_cpu, struct rq *this_rq, -+ struct sched_domain *sd, enum cpu_idle_type idle, -+ int *balance, cpumask_t *cpus) -+{ -+ int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0; -+ struct sched_group *group; -+ unsigned long imbalance; -+ struct rq *busiest; -+ unsigned long flags; -+ -+ cpus_setall(*cpus); -+ -+ /* -+ * When power savings policy is enabled for the parent domain, idle -+ * sibling can pick up load irrespective of busy siblings. In this case, -+ * let the state of idle sibling percolate up as CPU_IDLE, instead of -+ * portraying it as CPU_NOT_IDLE. -+ */ -+ if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER && -+ !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) -+ sd_idle = 1; -+ -+ schedstat_inc(sd, lb_count[idle]); -+ -+redo: -+ update_shares(sd); -+ group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle, -+ cpus, balance); -+ -+ if (*balance == 0) -+ goto out_balanced; -+ -+ if (!group) { -+ schedstat_inc(sd, lb_nobusyg[idle]); -+ goto out_balanced; -+ } -+ -+ busiest = find_busiest_queue(group, idle, imbalance, cpus); -+ if (!busiest) { -+ schedstat_inc(sd, lb_nobusyq[idle]); -+ goto out_balanced; -+ } -+ -+ BUG_ON(busiest == this_rq); -+ -+ schedstat_add(sd, lb_imbalance[idle], imbalance); -+ -+ ld_moved = 0; -+ if (busiest->nr_running > 1) { -+ /* -+ * Attempt to move tasks. If find_busiest_group has found -+ * an imbalance but busiest->nr_running <= 1, the group is -+ * still unbalanced. ld_moved simply stays zero, so it is -+ * correctly treated as an imbalance. -+ */ -+ local_irq_save(flags); -+ double_rq_lock(this_rq, busiest); -+ ld_moved = move_tasks(this_rq, this_cpu, busiest, -+ imbalance, sd, idle, &all_pinned); -+ double_rq_unlock(this_rq, busiest); -+ local_irq_restore(flags); -+ -+ /* -+ * some other cpu did the load balance for us. -+ */ -+ if (ld_moved && this_cpu != smp_processor_id()) -+ resched_cpu(this_cpu); -+ -+ /* All tasks on this runqueue were pinned by CPU affinity */ -+ if (unlikely(all_pinned)) { -+ cpu_clear(cpu_of(busiest), *cpus); -+ if (!cpus_empty(*cpus)) -+ goto redo; -+ goto out_balanced; -+ } -+ } -+ -+ if (!ld_moved) { -+ schedstat_inc(sd, lb_failed[idle]); -+ sd->nr_balance_failed++; -+ -+ if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) { -+ -+ spin_lock_irqsave(&busiest->lock, flags); -+ -+ /* don't kick the migration_thread, if the curr -+ * task on busiest cpu can't be moved to this_cpu -+ */ -+ if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) { -+ spin_unlock_irqrestore(&busiest->lock, flags); -+ all_pinned = 1; -+ goto out_one_pinned; -+ } -+ -+ if (!busiest->active_balance) { -+ busiest->active_balance = 1; -+ busiest->push_cpu = this_cpu; -+ active_balance = 1; -+ } -+ spin_unlock_irqrestore(&busiest->lock, flags); -+ if (active_balance) -+ wake_up_process(busiest->migration_thread); -+ -+ /* -+ * We've kicked active balancing, reset the failure -+ * counter. -+ */ -+ sd->nr_balance_failed = sd->cache_nice_tries+1; -+ } -+ } else -+ sd->nr_balance_failed = 0; -+ -+ if (likely(!active_balance)) { -+ /* We were unbalanced, so reset the balancing interval */ -+ sd->balance_interval = sd->min_interval; -+ } else { -+ /* -+ * If we've begun active balancing, start to back off. This -+ * case may not be covered by the all_pinned logic if there -+ * is only 1 task on the busy runqueue (because we don't call -+ * move_tasks). -+ */ -+ if (sd->balance_interval < sd->max_interval) -+ sd->balance_interval *= 2; -+ } -+ -+ if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER && -+ !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) -+ ld_moved = -1; -+ -+ goto out; -+ -+out_balanced: -+ schedstat_inc(sd, lb_balanced[idle]); -+ -+ sd->nr_balance_failed = 0; -+ -+out_one_pinned: -+ /* tune up the balancing interval */ -+ if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) || -+ (sd->balance_interval < sd->max_interval)) -+ sd->balance_interval *= 2; -+ -+ if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && -+ !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) -+ ld_moved = -1; -+ else -+ ld_moved = 0; -+out: -+ if (ld_moved) -+ update_shares(sd); -+ return ld_moved; -+} -+ -+/* -+ * Check this_cpu to ensure it is balanced within domain. Attempt to move -+ * tasks if there is an imbalance. -+ * -+ * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE). -+ * this_rq is locked. -+ */ -+static int -+load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd, -+ cpumask_t *cpus) -+{ -+ struct sched_group *group; -+ struct rq *busiest = NULL; -+ unsigned long imbalance; -+ int ld_moved = 0; -+ int sd_idle = 0; -+ int all_pinned = 0; -+ -+ cpus_setall(*cpus); -+ -+ /* -+ * When power savings policy is enabled for the parent domain, idle -+ * sibling can pick up load irrespective of busy siblings. In this case, -+ * let the state of idle sibling percolate up as IDLE, instead of -+ * portraying it as CPU_NOT_IDLE. -+ */ -+ if (sd->flags & SD_SHARE_CPUPOWER && -+ !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) -+ sd_idle = 1; -+ -+ schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]); -+redo: -+ update_shares_locked(this_rq, sd); -+ group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE, -+ &sd_idle, cpus, NULL); -+ if (!group) { -+ schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]); -+ goto out_balanced; -+ } -+ -+ busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus); -+ if (!busiest) { -+ schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]); -+ goto out_balanced; -+ } -+ -+ BUG_ON(busiest == this_rq); -+ -+ schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance); -+ -+ ld_moved = 0; -+ if (busiest->nr_running > 1) { -+ /* Attempt to move tasks */ -+ double_lock_balance(this_rq, busiest); -+ /* this_rq->clock is already updated */ -+ update_rq_clock(busiest); -+ ld_moved = move_tasks(this_rq, this_cpu, busiest, -+ imbalance, sd, CPU_NEWLY_IDLE, -+ &all_pinned); -+ double_unlock_balance(this_rq, busiest); -+ -+ if (unlikely(all_pinned)) { -+ cpu_clear(cpu_of(busiest), *cpus); -+ if (!cpus_empty(*cpus)) -+ goto redo; -+ } -+ } -+ -+ if (!ld_moved) { -+ schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]); -+ if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && -+ !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) -+ return -1; -+ } else -+ sd->nr_balance_failed = 0; -+ -+ update_shares_locked(this_rq, sd); -+ return ld_moved; -+ -+out_balanced: -+ schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]); -+ if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && -+ !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) -+ return -1; -+ sd->nr_balance_failed = 0; -+ -+ return 0; -+} -+ -+/* -+ * idle_balance is called by schedule() if this_cpu is about to become -+ * idle. Attempts to pull tasks from other CPUs. -+ */ -+static void idle_balance(int this_cpu, struct rq *this_rq) -+{ -+ struct sched_domain *sd; -+ int pulled_task = -1; -+ unsigned long next_balance = jiffies + HZ; -+ cpumask_t tmpmask; -+ -+ for_each_domain(this_cpu, sd) { -+ unsigned long interval; -+ -+ if (!(sd->flags & SD_LOAD_BALANCE)) -+ continue; -+ -+ if (sd->flags & SD_BALANCE_NEWIDLE) -+ /* If we've pulled tasks over stop searching: */ -+ pulled_task = load_balance_newidle(this_cpu, this_rq, -+ sd, &tmpmask); -+ -+ interval = msecs_to_jiffies(sd->balance_interval); -+ if (time_after(next_balance, sd->last_balance + interval)) -+ next_balance = sd->last_balance + interval; -+ if (pulled_task) -+ break; -+ } -+ if (pulled_task || time_after(jiffies, this_rq->next_balance)) { -+ /* -+ * We are going idle. next_balance may be set based on -+ * a busy processor. So reset next_balance. -+ */ -+ this_rq->next_balance = next_balance; -+ } -+} -+ -+/* -+ * active_load_balance is run by migration threads. It pushes running tasks -+ * off the busiest CPU onto idle CPUs. It requires at least 1 task to be -+ * running on each physical CPU where possible, and avoids physical / -+ * logical imbalances. -+ * -+ * Called with busiest_rq locked. -+ */ -+static void active_load_balance(struct rq *busiest_rq, int busiest_cpu) -+{ -+ int target_cpu = busiest_rq->push_cpu; -+ struct sched_domain *sd; -+ struct rq *target_rq; -+ -+ /* Is there any task to move? */ -+ if (busiest_rq->nr_running <= 1) -+ return; -+ -+ target_rq = cpu_rq(target_cpu); -+ -+ /* -+ * This condition is "impossible", if it occurs -+ * we need to fix it. Originally reported by -+ * Bjorn Helgaas on a 128-cpu setup. -+ */ -+ BUG_ON(busiest_rq == target_rq); -+ -+ /* move a task from busiest_rq to target_rq */ -+ double_lock_balance(busiest_rq, target_rq); -+ update_rq_clock(busiest_rq); -+ update_rq_clock(target_rq); -+ -+ /* Search for an sd spanning us and the target CPU. */ -+ for_each_domain(target_cpu, sd) { -+ if ((sd->flags & SD_LOAD_BALANCE) && -+ cpu_isset(busiest_cpu, sd->span)) -+ break; -+ } -+ -+ if (likely(sd)) { -+ schedstat_inc(sd, alb_count); -+ -+ if (move_one_task(target_rq, target_cpu, busiest_rq, -+ sd, CPU_IDLE)) -+ schedstat_inc(sd, alb_pushed); -+ else -+ schedstat_inc(sd, alb_failed); -+ } -+ double_unlock_balance(busiest_rq, target_rq); -+} -+ -+#ifdef CONFIG_NO_HZ -+static struct { -+ atomic_t load_balancer; -+ cpumask_t cpu_mask; -+} nohz ____cacheline_aligned = { -+ .load_balancer = ATOMIC_INIT(-1), -+ .cpu_mask = CPU_MASK_NONE, -+}; -+ -+/* -+ * This routine will try to nominate the ilb (idle load balancing) -+ * owner among the cpus whose ticks are stopped. ilb owner will do the idle -+ * load balancing on behalf of all those cpus. If all the cpus in the system -+ * go into this tickless mode, then there will be no ilb owner (as there is -+ * no need for one) and all the cpus will sleep till the next wakeup event -+ * arrives... -+ * -+ * For the ilb owner, tick is not stopped. And this tick will be used -+ * for idle load balancing. ilb owner will still be part of -+ * nohz.cpu_mask.. -+ * -+ * While stopping the tick, this cpu will become the ilb owner if there -+ * is no other owner. And will be the owner till that cpu becomes busy -+ * or if all cpus in the system stop their ticks at which point -+ * there is no need for ilb owner. -+ * -+ * When the ilb owner becomes busy, it nominates another owner, during the -+ * next busy scheduler_tick() -+ */ -+int select_nohz_load_balancer(int stop_tick) -+{ -+ int cpu = smp_processor_id(); -+ -+ if (stop_tick) { -+ cpu_set(cpu, nohz.cpu_mask); -+ cpu_rq(cpu)->in_nohz_recently = 1; -+ -+ /* -+ * If we are going offline and still the leader, give up! -+ */ -+ if (!cpu_active(cpu) && -+ atomic_read(&nohz.load_balancer) == cpu) { -+ if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) -+ BUG(); -+ return 0; -+ } -+ -+ /* time for ilb owner also to sleep */ -+ if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) { -+ if (atomic_read(&nohz.load_balancer) == cpu) -+ atomic_set(&nohz.load_balancer, -1); -+ return 0; -+ } -+ -+ if (atomic_read(&nohz.load_balancer) == -1) { -+ /* make me the ilb owner */ -+ if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1) -+ return 1; -+ } else if (atomic_read(&nohz.load_balancer) == cpu) -+ return 1; -+ } else { -+ if (!cpu_isset(cpu, nohz.cpu_mask)) -+ return 0; -+ -+ cpu_clear(cpu, nohz.cpu_mask); -+ -+ if (atomic_read(&nohz.load_balancer) == cpu) -+ if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) -+ BUG(); -+ } -+ return 0; -+} -+#endif -+ -+static DEFINE_SPINLOCK(balancing); -+ -+/* -+ * It checks each scheduling domain to see if it is due to be balanced, -+ * and initiates a balancing operation if so. -+ * -+ * Balancing parameters are set up in arch_init_sched_domains. -+ */ -+static void rebalance_domains(int cpu, enum cpu_idle_type idle) -+{ -+ int balance = 1; -+ struct rq *rq = cpu_rq(cpu); -+ unsigned long interval; -+ struct sched_domain *sd; -+ /* Earliest time when we have to do rebalance again */ -+ unsigned long next_balance = jiffies + 60*HZ; -+ int update_next_balance = 0; -+ int need_serialize; -+ cpumask_t tmp; -+ -+ for_each_domain(cpu, sd) { -+ if (!(sd->flags & SD_LOAD_BALANCE)) -+ continue; -+ -+ interval = sd->balance_interval; -+ if (idle != CPU_IDLE) -+ interval *= sd->busy_factor; -+ -+ /* scale ms to jiffies */ -+ interval = msecs_to_jiffies(interval); -+ if (unlikely(!interval)) -+ interval = 1; -+ if (interval > HZ*NR_CPUS/10) -+ interval = HZ*NR_CPUS/10; -+ -+ need_serialize = sd->flags & SD_SERIALIZE; -+ -+ if (need_serialize) { -+ if (!spin_trylock(&balancing)) -+ goto out; -+ } -+ -+ if (time_after_eq(jiffies, sd->last_balance + interval)) { -+ if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) { -+ /* -+ * We've pulled tasks over so either we're no -+ * longer idle, or one of our SMT siblings is -+ * not idle. -+ */ -+ idle = CPU_NOT_IDLE; -+ } -+ sd->last_balance = jiffies; -+ } -+ if (need_serialize) -+ spin_unlock(&balancing); -+out: -+ if (time_after(next_balance, sd->last_balance + interval)) { -+ next_balance = sd->last_balance + interval; -+ update_next_balance = 1; -+ } -+ -+ /* -+ * Stop the load balance at this level. There is another -+ * CPU in our sched group which is doing load balancing more -+ * actively. -+ */ -+ if (!balance) -+ break; -+ } -+ -+ /* -+ * next_balance will be updated only when there is a need. -+ * When the cpu is attached to null domain for ex, it will not be -+ * updated. -+ */ -+ if (likely(update_next_balance)) -+ rq->next_balance = next_balance; -+} -+ -+/* -+ * run_rebalance_domains is triggered when needed from the scheduler tick. -+ * In CONFIG_NO_HZ case, the idle load balance owner will do the -+ * rebalancing for all the cpus for whom scheduler ticks are stopped. -+ */ -+static void run_rebalance_domains(struct softirq_action *h) -+{ -+ int this_cpu = smp_processor_id(); -+ struct rq *this_rq = cpu_rq(this_cpu); -+ enum cpu_idle_type idle = this_rq->idle_at_tick ? -+ CPU_IDLE : CPU_NOT_IDLE; -+ -+ rebalance_domains(this_cpu, idle); -+ -+#ifdef CONFIG_NO_HZ -+ /* -+ * If this cpu is the owner for idle load balancing, then do the -+ * balancing on behalf of the other idle cpus whose ticks are -+ * stopped. -+ */ -+ if (this_rq->idle_at_tick && -+ atomic_read(&nohz.load_balancer) == this_cpu) { -+ cpumask_t cpus = nohz.cpu_mask; -+ struct rq *rq; -+ int balance_cpu; -+ -+ cpu_clear(this_cpu, cpus); -+ for_each_cpu_mask_nr(balance_cpu, cpus) { -+ /* -+ * If this cpu gets work to do, stop the load balancing -+ * work being done for other cpus. Next load -+ * balancing owner will pick it up. -+ */ -+ if (need_resched()) -+ break; -+ -+ rebalance_domains(balance_cpu, CPU_IDLE); -+ -+ rq = cpu_rq(balance_cpu); -+ if (time_after(this_rq->next_balance, rq->next_balance)) -+ this_rq->next_balance = rq->next_balance; -+ } -+ } -+#endif -+} -+ -+/* -+ * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. -+ * -+ * In case of CONFIG_NO_HZ, this is the place where we nominate a new -+ * idle load balancing owner or decide to stop the periodic load balancing, -+ * if the whole system is idle. -+ */ -+static inline void trigger_load_balance(struct rq *rq, int cpu) -+{ -+#ifdef CONFIG_NO_HZ -+ /* -+ * If we were in the nohz mode recently and busy at the current -+ * scheduler tick, then check if we need to nominate new idle -+ * load balancer. -+ */ -+ if (rq->in_nohz_recently && !rq->idle_at_tick) { -+ rq->in_nohz_recently = 0; -+ -+ if (atomic_read(&nohz.load_balancer) == cpu) { -+ cpu_clear(cpu, nohz.cpu_mask); -+ atomic_set(&nohz.load_balancer, -1); -+ } -+ -+ if (atomic_read(&nohz.load_balancer) == -1) { -+ /* -+ * simple selection for now: Nominate the -+ * first cpu in the nohz list to be the next -+ * ilb owner. -+ * -+ * TBD: Traverse the sched domains and nominate -+ * the nearest cpu in the nohz.cpu_mask. -+ */ -+ int ilb = first_cpu(nohz.cpu_mask); -+ -+ if (ilb < nr_cpu_ids) -+ resched_cpu(ilb); -+ } -+ } -+ -+ /* -+ * If this cpu is idle and doing idle load balancing for all the -+ * cpus with ticks stopped, is it time for that to stop? -+ */ -+ if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu && -+ cpus_weight(nohz.cpu_mask) == num_online_cpus()) { -+ resched_cpu(cpu); -+ return; -+ } -+ -+ /* -+ * If this cpu is idle and the idle load balancing is done by -+ * someone else, then no need raise the SCHED_SOFTIRQ -+ */ -+ if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu && -+ cpu_isset(cpu, nohz.cpu_mask)) -+ return; -+#endif -+ if (time_after_eq(jiffies, rq->next_balance)) -+ raise_softirq(SCHED_SOFTIRQ); -+} -+ -+#else /* CONFIG_SMP */ -+ -+/* -+ * on UP we do not need to balance between CPUs: -+ */ -+static inline void idle_balance(int cpu, struct rq *rq) -+{ -+} -+ -+#endif -+ -+DEFINE_PER_CPU(struct kernel_stat, kstat); -+ -+EXPORT_PER_CPU_SYMBOL(kstat); -+ -+/* -+ * Return p->sum_exec_runtime plus any more ns on the sched_clock -+ * that have not yet been banked in case the task is currently running. -+ */ -+unsigned long long task_sched_runtime(struct task_struct *p) -+{ -+ unsigned long flags; -+ u64 ns, delta_exec; -+ struct rq *rq; -+ -+ rq = task_rq_lock(p, &flags); -+ ns = p->se.sum_exec_runtime; -+ if (task_current(rq, p)) { -+ update_rq_clock(rq); -+ delta_exec = rq->clock - p->se.exec_start; -+ if ((s64)delta_exec > 0) -+ ns += delta_exec; -+ } -+ task_rq_unlock(rq, &flags); -+ -+ return ns; -+} -+ -+/* -+ * Account user cpu time to a process. -+ * @p: the process that the cpu time gets accounted to -+ * @cputime: the cpu time spent in user space since the last update -+ */ -+void account_user_time(struct task_struct *p, cputime_t cputime) -+{ -+ struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; -+ struct vx_info *vxi = p->vx_info; /* p is _always_ current */ -+ cputime64_t tmp; -+ int nice = (TASK_NICE(p) > 0); -+ -+ p->utime = cputime_add(p->utime, cputime); -+ vx_account_user(vxi, cputime, nice); -+ -+ /* Add user time to cpustat. */ -+ tmp = cputime_to_cputime64(cputime); -+ if (nice) -+ cpustat->nice = cputime64_add(cpustat->nice, tmp); -+ else -+ cpustat->user = cputime64_add(cpustat->user, tmp); -+ /* Account for user time used */ -+ acct_update_integrals(p); -+} -+ -+/* -+ * Account guest cpu time to a process. -+ * @p: the process that the cpu time gets accounted to -+ * @cputime: the cpu time spent in virtual machine since the last update -+ */ -+static void account_guest_time(struct task_struct *p, cputime_t cputime) -+{ -+ cputime64_t tmp; -+ struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; -+ -+ tmp = cputime_to_cputime64(cputime); -+ -+ p->utime = cputime_add(p->utime, cputime); -+ p->gtime = cputime_add(p->gtime, cputime); -+ -+ cpustat->user = cputime64_add(cpustat->user, tmp); -+ cpustat->guest = cputime64_add(cpustat->guest, tmp); -+} -+ -+/* -+ * Account scaled user cpu time to a process. -+ * @p: the process that the cpu time gets accounted to -+ * @cputime: the cpu time spent in user space since the last update -+ */ -+void account_user_time_scaled(struct task_struct *p, cputime_t cputime) -+{ -+ p->utimescaled = cputime_add(p->utimescaled, cputime); -+} -+ -+/* -+ * Account system cpu time to a process. -+ * @p: the process that the cpu time gets accounted to -+ * @hardirq_offset: the offset to subtract from hardirq_count() -+ * @cputime: the cpu time spent in kernel space since the last update -+ */ -+void account_system_time(struct task_struct *p, int hardirq_offset, -+ cputime_t cputime) -+{ -+ struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; -+ struct vx_info *vxi = p->vx_info; /* p is _always_ current */ -+ struct rq *rq = this_rq(); -+ cputime64_t tmp; -+ -+ if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { -+ account_guest_time(p, cputime); -+ return; -+ } -+ -+ p->stime = cputime_add(p->stime, cputime); -+ vx_account_system(vxi, cputime, (p == rq->idle)); -+ -+ /* Add system time to cpustat. */ -+ tmp = cputime_to_cputime64(cputime); -+ if (hardirq_count() - hardirq_offset) -+ cpustat->irq = cputime64_add(cpustat->irq, tmp); -+ else if (softirq_count()) -+ cpustat->softirq = cputime64_add(cpustat->softirq, tmp); -+ else if (p != rq->idle) -+ cpustat->system = cputime64_add(cpustat->system, tmp); -+ else if (atomic_read(&rq->nr_iowait) > 0) -+ cpustat->iowait = cputime64_add(cpustat->iowait, tmp); -+ else -+ cpustat->idle = cputime64_add(cpustat->idle, tmp); -+ /* Account for system time used */ -+ acct_update_integrals(p); -+} -+ -+/* -+ * Account scaled system cpu time to a process. -+ * @p: the process that the cpu time gets accounted to -+ * @hardirq_offset: the offset to subtract from hardirq_count() -+ * @cputime: the cpu time spent in kernel space since the last update -+ */ -+void account_system_time_scaled(struct task_struct *p, cputime_t cputime) -+{ -+ p->stimescaled = cputime_add(p->stimescaled, cputime); -+} -+ -+/* -+ * Account for involuntary wait time. -+ * @p: the process from which the cpu time has been stolen -+ * @steal: the cpu time spent in involuntary wait -+ */ -+void account_steal_time(struct task_struct *p, cputime_t steal) -+{ -+ struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; -+ cputime64_t tmp = cputime_to_cputime64(steal); -+ struct rq *rq = this_rq(); -+ -+ if (p == rq->idle) { -+ p->stime = cputime_add(p->stime, steal); -+ if (atomic_read(&rq->nr_iowait) > 0) -+ cpustat->iowait = cputime64_add(cpustat->iowait, tmp); -+ else -+ cpustat->idle = cputime64_add(cpustat->idle, tmp); -+ } else -+ cpustat->steal = cputime64_add(cpustat->steal, tmp); -+} -+ -+/* -+ * Use precise platform statistics if available: -+ */ -+#ifdef CONFIG_VIRT_CPU_ACCOUNTING -+cputime_t task_utime(struct task_struct *p) -+{ -+ return p->utime; -+} -+ -+cputime_t task_stime(struct task_struct *p) -+{ -+ return p->stime; -+} -+#else -+cputime_t task_utime(struct task_struct *p) -+{ -+ clock_t utime = cputime_to_clock_t(p->utime), -+ total = utime + cputime_to_clock_t(p->stime); -+ u64 temp; -+ -+ /* -+ * Use CFS's precise accounting: -+ */ -+ temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime); -+ -+ if (total) { -+ temp *= utime; -+ do_div(temp, total); -+ } -+ utime = (clock_t)temp; -+ -+ p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime)); -+ return p->prev_utime; -+} -+ -+cputime_t task_stime(struct task_struct *p) -+{ -+ clock_t stime; -+ -+ /* -+ * Use CFS's precise accounting. (we subtract utime from -+ * the total, to make sure the total observed by userspace -+ * grows monotonically - apps rely on that): -+ */ -+ stime = nsec_to_clock_t(p->se.sum_exec_runtime) - -+ cputime_to_clock_t(task_utime(p)); -+ -+ if (stime >= 0) -+ p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime)); -+ -+ return p->prev_stime; -+} -+#endif -+ -+inline cputime_t task_gtime(struct task_struct *p) -+{ -+ return p->gtime; -+} -+ -+/* -+ * This function gets called by the timer code, with HZ frequency. -+ * We call it with interrupts disabled. -+ * -+ * It also gets called by the fork code, when changing the parent's -+ * timeslices. -+ */ -+void scheduler_tick(void) -+{ -+ int cpu = smp_processor_id(); -+ struct rq *rq = cpu_rq(cpu); -+ struct task_struct *curr = rq->curr; -+ -+ sched_clock_tick(); -+ -+ spin_lock(&rq->lock); -+ update_rq_clock(rq); -+ update_cpu_load(rq); -+ curr->sched_class->task_tick(rq, curr, 0); -+ spin_unlock(&rq->lock); -+ -+#ifdef CONFIG_SMP -+ rq->idle_at_tick = idle_cpu(cpu); -+ trigger_load_balance(rq, cpu); -+#endif -+} -+ -+#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ -+ defined(CONFIG_PREEMPT_TRACER)) -+ -+static inline unsigned long get_parent_ip(unsigned long addr) -+{ -+ if (in_lock_functions(addr)) { -+ addr = CALLER_ADDR2; -+ if (in_lock_functions(addr)) -+ addr = CALLER_ADDR3; -+ } -+ return addr; -+} -+ -+void __kprobes add_preempt_count(int val) -+{ -+#ifdef CONFIG_DEBUG_PREEMPT -+ /* -+ * Underflow? -+ */ -+ if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) -+ return; -+#endif -+ preempt_count() += val; -+#ifdef CONFIG_DEBUG_PREEMPT -+ /* -+ * Spinlock count overflowing soon? -+ */ -+ DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= -+ PREEMPT_MASK - 10); -+#endif -+ if (preempt_count() == val) -+ trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); -+} -+EXPORT_SYMBOL(add_preempt_count); -+ -+void __kprobes sub_preempt_count(int val) -+{ -+#ifdef CONFIG_DEBUG_PREEMPT -+ /* -+ * Underflow? -+ */ -+ if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) -+ return; -+ /* -+ * Is the spinlock portion underflowing? -+ */ -+ if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && -+ !(preempt_count() & PREEMPT_MASK))) -+ return; -+#endif -+ -+ if (preempt_count() == val) -+ trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); -+ preempt_count() -= val; -+} -+EXPORT_SYMBOL(sub_preempt_count); -+ -+#endif -+ -+/* -+ * Print scheduling while atomic bug: -+ */ -+static noinline void __schedule_bug(struct task_struct *prev) -+{ -+ struct pt_regs *regs = get_irq_regs(); -+ -+ printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", -+ prev->comm, prev->pid, preempt_count()); -+ -+ debug_show_held_locks(prev); -+ print_modules(); -+ if (irqs_disabled()) -+ print_irqtrace_events(prev); -+ -+ if (regs) -+ show_regs(regs); -+ else -+ dump_stack(); -+} -+ -+/* -+ * Various schedule()-time debugging checks and statistics: -+ */ -+static inline void schedule_debug(struct task_struct *prev) -+{ -+ /* -+ * Test if we are atomic. Since do_exit() needs to call into -+ * schedule() atomically, we ignore that path for now. -+ * Otherwise, whine if we are scheduling when we should not be. -+ */ -+ if (unlikely(in_atomic_preempt_off() && !prev->exit_state)) -+ __schedule_bug(prev); -+ -+ profile_hit(SCHED_PROFILING, __builtin_return_address(0)); -+ -+ schedstat_inc(this_rq(), sched_count); -+#ifdef CONFIG_SCHEDSTATS -+ if (unlikely(prev->lock_depth >= 0)) { -+ schedstat_inc(this_rq(), bkl_count); -+ schedstat_inc(prev, sched_info.bkl_count); -+ } -+#endif -+} -+ -+/* -+ * Pick up the highest-prio task: -+ */ -+static inline struct task_struct * -+pick_next_task(struct rq *rq, struct task_struct *prev) -+{ -+ const struct sched_class *class; -+ struct task_struct *p; -+ -+ /* -+ * Optimization: we know that if all tasks are in -+ * the fair class we can call that function directly: -+ */ -+ if (likely(rq->nr_running == rq->cfs.nr_running)) { -+ p = fair_sched_class.pick_next_task(rq); -+ if (likely(p)) -+ return p; -+ } -+ -+ class = sched_class_highest; -+ for ( ; ; ) { -+ p = class->pick_next_task(rq); -+ if (p) -+ return p; -+ /* -+ * Will never be NULL as the idle class always -+ * returns a non-NULL p: -+ */ -+ class = class->next; -+ } -+} -+ -+/* -+ * schedule() is the main scheduler function. -+ */ -+asmlinkage void __sched schedule(void) -+{ -+ struct task_struct *prev, *next; -+ unsigned long *switch_count; -+ struct rq *rq; -+ int cpu; -+ -+need_resched: -+ preempt_disable(); -+ cpu = smp_processor_id(); -+ rq = cpu_rq(cpu); -+ rcu_qsctr_inc(cpu); -+ prev = rq->curr; -+ switch_count = &prev->nivcsw; -+ -+ release_kernel_lock(prev); -+need_resched_nonpreemptible: -+ -+ schedule_debug(prev); -+ -+ if (sched_feat(HRTICK)) -+ hrtick_clear(rq); -+ -+ /* -+ * Do the rq-clock update outside the rq lock: -+ */ -+ local_irq_disable(); -+ update_rq_clock(rq); -+ spin_lock(&rq->lock); -+ clear_tsk_need_resched(prev); -+ -+ if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { -+ if (unlikely(signal_pending_state(prev->state, prev))) -+ prev->state = TASK_RUNNING; -+ else -+ deactivate_task(rq, prev, 1); -+ switch_count = &prev->nvcsw; -+ } -+ -+#ifdef CONFIG_SMP -+ if (prev->sched_class->pre_schedule) -+ prev->sched_class->pre_schedule(rq, prev); -+#endif -+ -+ if (unlikely(!rq->nr_running)) -+ idle_balance(cpu, rq); -+ -+ prev->sched_class->put_prev_task(rq, prev); -+ next = pick_next_task(rq, prev); -+ -+ if (likely(prev != next)) { -+ sched_info_switch(prev, next); -+ -+ rq->nr_switches++; -+ rq->curr = next; -+ ++*switch_count; -+ -+ context_switch(rq, prev, next); /* unlocks the rq */ -+ /* -+ * the context switch might have flipped the stack from under -+ * us, hence refresh the local variables. -+ */ -+ cpu = smp_processor_id(); -+ rq = cpu_rq(cpu); -+ } else -+ spin_unlock_irq(&rq->lock); -+ -+ if (unlikely(reacquire_kernel_lock(current) < 0)) -+ goto need_resched_nonpreemptible; -+ -+ preempt_enable_no_resched(); -+ if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) -+ goto need_resched; -+} -+EXPORT_SYMBOL(schedule); -+ -+#ifdef CONFIG_PREEMPT -+/* -+ * this is the entry point to schedule() from in-kernel preemption -+ * off of preempt_enable. Kernel preemptions off return from interrupt -+ * occur there and call schedule directly. -+ */ -+asmlinkage void __sched preempt_schedule(void) -+{ -+ struct thread_info *ti = current_thread_info(); -+ -+ /* -+ * If there is a non-zero preempt_count or interrupts are disabled, -+ * we do not want to preempt the current task. Just return.. -+ */ -+ if (likely(ti->preempt_count || irqs_disabled())) -+ return; -+ -+ do { -+ add_preempt_count(PREEMPT_ACTIVE); -+ schedule(); -+ sub_preempt_count(PREEMPT_ACTIVE); -+ -+ /* -+ * Check again in case we missed a preemption opportunity -+ * between schedule and now. -+ */ -+ barrier(); -+ } while (unlikely(test_thread_flag(TIF_NEED_RESCHED))); -+} -+EXPORT_SYMBOL(preempt_schedule); -+ -+/* -+ * this is the entry point to schedule() from kernel preemption -+ * off of irq context. -+ * Note, that this is called and return with irqs disabled. This will -+ * protect us against recursive calling from irq. -+ */ -+asmlinkage void __sched preempt_schedule_irq(void) -+{ -+ struct thread_info *ti = current_thread_info(); -+ -+ /* Catch callers which need to be fixed */ -+ BUG_ON(ti->preempt_count || !irqs_disabled()); -+ -+ do { -+ add_preempt_count(PREEMPT_ACTIVE); -+ local_irq_enable(); -+ schedule(); -+ local_irq_disable(); -+ sub_preempt_count(PREEMPT_ACTIVE); -+ -+ /* -+ * Check again in case we missed a preemption opportunity -+ * between schedule and now. -+ */ -+ barrier(); -+ } while (unlikely(test_thread_flag(TIF_NEED_RESCHED))); -+} -+ -+#endif /* CONFIG_PREEMPT */ -+ -+int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, -+ void *key) -+{ -+ return try_to_wake_up(curr->private, mode, sync); -+} -+EXPORT_SYMBOL(default_wake_function); -+ -+/* -+ * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just -+ * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve -+ * number) then we wake all the non-exclusive tasks and one exclusive task. -+ * -+ * There are circumstances in which we can try to wake a task which has already -+ * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns -+ * zero in this (rare) case, and we handle it by continuing to scan the queue. -+ */ -+static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, -+ int nr_exclusive, int sync, void *key) -+{ -+ wait_queue_t *curr, *next; -+ -+ list_for_each_entry_safe(curr, next, &q->task_list, task_list) { -+ unsigned flags = curr->flags; -+ -+ if (curr->func(curr, mode, sync, key) && -+ (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) -+ break; -+ } -+} -+ -+/** -+ * __wake_up - wake up threads blocked on a waitqueue. -+ * @q: the waitqueue -+ * @mode: which threads -+ * @nr_exclusive: how many wake-one or wake-many threads to wake up -+ * @key: is directly passed to the wakeup function -+ */ -+void __wake_up(wait_queue_head_t *q, unsigned int mode, -+ int nr_exclusive, void *key) -+{ -+ unsigned long flags; -+ -+ spin_lock_irqsave(&q->lock, flags); -+ __wake_up_common(q, mode, nr_exclusive, 0, key); -+ spin_unlock_irqrestore(&q->lock, flags); -+} -+EXPORT_SYMBOL(__wake_up); -+ -+/* -+ * Same as __wake_up but called with the spinlock in wait_queue_head_t held. -+ */ -+void __wake_up_locked(wait_queue_head_t *q, unsigned int mode) -+{ -+ __wake_up_common(q, mode, 1, 0, NULL); -+} -+ -+/** -+ * __wake_up_sync - wake up threads blocked on a waitqueue. -+ * @q: the waitqueue -+ * @mode: which threads -+ * @nr_exclusive: how many wake-one or wake-many threads to wake up -+ * -+ * The sync wakeup differs that the waker knows that it will schedule -+ * away soon, so while the target thread will be woken up, it will not -+ * be migrated to another CPU - ie. the two threads are 'synchronized' -+ * with each other. This can prevent needless bouncing between CPUs. -+ * -+ * On UP it can prevent extra preemption. -+ */ -+void -+__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) -+{ -+ unsigned long flags; -+ int sync = 1; -+ -+ if (unlikely(!q)) -+ return; -+ -+ if (unlikely(!nr_exclusive)) -+ sync = 0; -+ -+ spin_lock_irqsave(&q->lock, flags); -+ __wake_up_common(q, mode, nr_exclusive, sync, NULL); -+ spin_unlock_irqrestore(&q->lock, flags); -+} -+EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ -+ -+void complete(struct completion *x) -+{ -+ unsigned long flags; -+ -+ spin_lock_irqsave(&x->wait.lock, flags); -+ x->done++; -+ __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL); -+ spin_unlock_irqrestore(&x->wait.lock, flags); -+} -+EXPORT_SYMBOL(complete); -+ -+void complete_all(struct completion *x) -+{ -+ unsigned long flags; -+ -+ spin_lock_irqsave(&x->wait.lock, flags); -+ x->done += UINT_MAX/2; -+ __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL); -+ spin_unlock_irqrestore(&x->wait.lock, flags); -+} -+EXPORT_SYMBOL(complete_all); -+ -+static inline long __sched -+do_wait_for_common(struct completion *x, long timeout, int state) -+{ -+ if (!x->done) { -+ DECLARE_WAITQUEUE(wait, current); -+ -+ wait.flags |= WQ_FLAG_EXCLUSIVE; -+ __add_wait_queue_tail(&x->wait, &wait); -+ do { -+ if ((state == TASK_INTERRUPTIBLE && -+ signal_pending(current)) || -+ (state == TASK_KILLABLE && -+ fatal_signal_pending(current))) { -+ timeout = -ERESTARTSYS; -+ break; -+ } -+ __set_current_state(state); -+ spin_unlock_irq(&x->wait.lock); -+ timeout = schedule_timeout(timeout); -+ spin_lock_irq(&x->wait.lock); -+ } while (!x->done && timeout); -+ __remove_wait_queue(&x->wait, &wait); -+ if (!x->done) -+ return timeout; -+ } -+ x->done--; -+ return timeout ?: 1; -+} -+ -+static long __sched -+wait_for_common(struct completion *x, long timeout, int state) -+{ -+ might_sleep(); -+ -+ spin_lock_irq(&x->wait.lock); -+ timeout = do_wait_for_common(x, timeout, state); -+ spin_unlock_irq(&x->wait.lock); -+ return timeout; -+} -+ -+void __sched wait_for_completion(struct completion *x) -+{ -+ wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); -+} -+EXPORT_SYMBOL(wait_for_completion); -+ -+unsigned long __sched -+wait_for_completion_timeout(struct completion *x, unsigned long timeout) -+{ -+ return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE); -+} -+EXPORT_SYMBOL(wait_for_completion_timeout); -+ -+int __sched wait_for_completion_interruptible(struct completion *x) -+{ -+ long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE); -+ if (t == -ERESTARTSYS) -+ return t; -+ return 0; -+} -+EXPORT_SYMBOL(wait_for_completion_interruptible); -+ -+unsigned long __sched -+wait_for_completion_interruptible_timeout(struct completion *x, -+ unsigned long timeout) -+{ -+ return wait_for_common(x, timeout, TASK_INTERRUPTIBLE); -+} -+EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); -+ -+int __sched wait_for_completion_killable(struct completion *x) -+{ -+ long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE); -+ if (t == -ERESTARTSYS) -+ return t; -+ return 0; -+} -+EXPORT_SYMBOL(wait_for_completion_killable); -+ -+/** -+ * try_wait_for_completion - try to decrement a completion without blocking -+ * @x: completion structure -+ * -+ * Returns: 0 if a decrement cannot be done without blocking -+ * 1 if a decrement succeeded. -+ * -+ * If a completion is being used as a counting completion, -+ * attempt to decrement the counter without blocking. This -+ * enables us to avoid waiting if the resource the completion -+ * is protecting is not available. -+ */ -+bool try_wait_for_completion(struct completion *x) -+{ -+ int ret = 1; -+ -+ spin_lock_irq(&x->wait.lock); -+ if (!x->done) -+ ret = 0; -+ else -+ x->done--; -+ spin_unlock_irq(&x->wait.lock); -+ return ret; -+} -+EXPORT_SYMBOL(try_wait_for_completion); -+ -+/** -+ * completion_done - Test to see if a completion has any waiters -+ * @x: completion structure -+ * -+ * Returns: 0 if there are waiters (wait_for_completion() in progress) -+ * 1 if there are no waiters. -+ * -+ */ -+bool completion_done(struct completion *x) -+{ -+ int ret = 1; -+ -+ spin_lock_irq(&x->wait.lock); -+ if (!x->done) -+ ret = 0; -+ spin_unlock_irq(&x->wait.lock); -+ return ret; -+} -+EXPORT_SYMBOL(completion_done); -+ -+static long __sched -+sleep_on_common(wait_queue_head_t *q, int state, long timeout) -+{ -+ unsigned long flags; -+ wait_queue_t wait; -+ -+ init_waitqueue_entry(&wait, current); -+ -+ __set_current_state(state); -+ -+ spin_lock_irqsave(&q->lock, flags); -+ __add_wait_queue(q, &wait); -+ spin_unlock(&q->lock); -+ timeout = schedule_timeout(timeout); -+ spin_lock_irq(&q->lock); -+ __remove_wait_queue(q, &wait); -+ spin_unlock_irqrestore(&q->lock, flags); -+ -+ return timeout; -+} -+ -+void __sched interruptible_sleep_on(wait_queue_head_t *q) -+{ -+ sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); -+} -+EXPORT_SYMBOL(interruptible_sleep_on); -+ -+long __sched -+interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) -+{ -+ return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout); -+} -+EXPORT_SYMBOL(interruptible_sleep_on_timeout); -+ -+void __sched sleep_on(wait_queue_head_t *q) -+{ -+ sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); -+} -+EXPORT_SYMBOL(sleep_on); -+ -+long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) -+{ -+ return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout); -+} -+EXPORT_SYMBOL(sleep_on_timeout); -+ -+#ifdef CONFIG_RT_MUTEXES -+ -+/* -+ * rt_mutex_setprio - set the current priority of a task -+ * @p: task -+ * @prio: prio value (kernel-internal form) -+ * -+ * This function changes the 'effective' priority of a task. It does -+ * not touch ->normal_prio like __setscheduler(). -+ * -+ * Used by the rt_mutex code to implement priority inheritance logic. -+ */ -+void rt_mutex_setprio(struct task_struct *p, int prio) -+{ -+ unsigned long flags; -+ int oldprio, on_rq, running; -+ struct rq *rq; -+ const struct sched_class *prev_class = p->sched_class; -+ -+ BUG_ON(prio < 0 || prio > MAX_PRIO); -+ -+ rq = task_rq_lock(p, &flags); -+ update_rq_clock(rq); -+ -+ oldprio = p->prio; -+ on_rq = p->se.on_rq; -+ running = task_current(rq, p); -+ if (on_rq) -+ dequeue_task(rq, p, 0); -+ if (running) -+ p->sched_class->put_prev_task(rq, p); -+ -+ if (rt_prio(prio)) -+ p->sched_class = &rt_sched_class; -+ else -+ p->sched_class = &fair_sched_class; -+ -+ p->prio = prio; -+ -+ if (running) -+ p->sched_class->set_curr_task(rq); -+ if (on_rq) { -+ enqueue_task(rq, p, 0); -+ -+ check_class_changed(rq, p, prev_class, oldprio, running); -+ } -+ task_rq_unlock(rq, &flags); -+} -+ -+#endif -+ -+void set_user_nice(struct task_struct *p, long nice) -+{ -+ int old_prio, delta, on_rq; -+ unsigned long flags; -+ struct rq *rq; -+ -+ if (TASK_NICE(p) == nice || nice < -20 || nice > 19) -+ return; -+ /* -+ * We have to be careful, if called from sys_setpriority(), -+ * the task might be in the middle of scheduling on another CPU. -+ */ -+ rq = task_rq_lock(p, &flags); -+ update_rq_clock(rq); -+ /* -+ * The RT priorities are set via sched_setscheduler(), but we still -+ * allow the 'normal' nice value to be set - but as expected -+ * it wont have any effect on scheduling until the task is -+ * SCHED_FIFO/SCHED_RR: -+ */ -+ if (task_has_rt_policy(p)) { -+ p->static_prio = NICE_TO_PRIO(nice); -+ goto out_unlock; -+ } -+ on_rq = p->se.on_rq; -+ if (on_rq) -+ dequeue_task(rq, p, 0); -+ -+ p->static_prio = NICE_TO_PRIO(nice); -+ set_load_weight(p); -+ old_prio = p->prio; -+ p->prio = effective_prio(p); -+ delta = p->prio - old_prio; -+ -+ if (on_rq) { -+ enqueue_task(rq, p, 0); -+ /* -+ * If the task increased its priority or is running and -+ * lowered its priority, then reschedule its CPU: -+ */ -+ if (delta < 0 || (delta > 0 && task_running(rq, p))) -+ resched_task(rq->curr); -+ } -+out_unlock: -+ task_rq_unlock(rq, &flags); -+} -+EXPORT_SYMBOL(set_user_nice); -+ -+/* -+ * can_nice - check if a task can reduce its nice value -+ * @p: task -+ * @nice: nice value -+ */ -+int can_nice(const struct task_struct *p, const int nice) -+{ -+ /* convert nice value [19,-20] to rlimit style value [1,40] */ -+ int nice_rlim = 20 - nice; -+ -+ return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur || -+ capable(CAP_SYS_NICE)); -+} -+ -+#ifdef __ARCH_WANT_SYS_NICE -+ -+/* -+ * sys_nice - change the priority of the current process. -+ * @increment: priority increment -+ * -+ * sys_setpriority is a more generic, but much slower function that -+ * does similar things. -+ */ -+SYSCALL_DEFINE1(nice, int, increment) -+{ -+ long nice, retval; -+ -+ /* -+ * Setpriority might change our priority at the same moment. -+ * We don't have to worry. Conceptually one call occurs first -+ * and we have a single winner. -+ */ -+ if (increment < -40) -+ increment = -40; -+ if (increment > 40) -+ increment = 40; -+ -+ nice = PRIO_TO_NICE(current->static_prio) + increment; -+ if (nice < -20) -+ nice = -20; -+ if (nice > 19) -+ nice = 19; -+ -+ if (increment < 0 && !can_nice(current, nice)) -+ return vx_flags(VXF_IGNEG_NICE, 0) ? 0 : -EPERM; -+ -+ retval = security_task_setnice(current, nice); -+ if (retval) -+ return retval; -+ -+ set_user_nice(current, nice); -+ return 0; -+} -+ -+#endif -+ -+/** -+ * task_prio - return the priority value of a given task. -+ * @p: the task in question. -+ * -+ * This is the priority value as seen by users in /proc. -+ * RT tasks are offset by -200. Normal tasks are centered -+ * around 0, value goes from -16 to +15. -+ */ -+int task_prio(const struct task_struct *p) -+{ -+ return p->prio - MAX_RT_PRIO; -+} -+ -+/** -+ * task_nice - return the nice value of a given task. -+ * @p: the task in question. -+ */ -+int task_nice(const struct task_struct *p) -+{ -+ return TASK_NICE(p); -+} -+EXPORT_SYMBOL(task_nice); -+ -+/** -+ * idle_cpu - is a given cpu idle currently? -+ * @cpu: the processor in question. -+ */ -+int idle_cpu(int cpu) -+{ -+ return cpu_curr(cpu) == cpu_rq(cpu)->idle; -+} -+ -+/** -+ * idle_task - return the idle task for a given cpu. -+ * @cpu: the processor in question. -+ */ -+struct task_struct *idle_task(int cpu) -+{ -+ return cpu_rq(cpu)->idle; -+} -+ -+/** -+ * find_process_by_pid - find a process with a matching PID value. -+ * @pid: the pid in question. -+ */ -+static struct task_struct *find_process_by_pid(pid_t pid) -+{ -+ return pid ? find_task_by_vpid(pid) : current; -+} -+ -+/* Actually do priority change: must hold rq lock. */ -+static void -+__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio) -+{ -+ BUG_ON(p->se.on_rq); -+ -+ p->policy = policy; -+ switch (p->policy) { -+ case SCHED_NORMAL: -+ case SCHED_BATCH: -+ case SCHED_IDLE: -+ p->sched_class = &fair_sched_class; -+ break; -+ case SCHED_FIFO: -+ case SCHED_RR: -+ p->sched_class = &rt_sched_class; -+ break; -+ } -+ -+ p->rt_priority = prio; -+ p->normal_prio = normal_prio(p); -+ /* we are holding p->pi_lock already */ -+ p->prio = rt_mutex_getprio(p); -+ set_load_weight(p); -+} -+ -+static int __sched_setscheduler(struct task_struct *p, int policy, -+ struct sched_param *param, bool user) -+{ -+ int retval, oldprio, oldpolicy = -1, on_rq, running; -+ unsigned long flags; -+ const struct sched_class *prev_class = p->sched_class; -+ struct rq *rq; -+ -+ /* may grab non-irq protected spin_locks */ -+ BUG_ON(in_interrupt()); -+recheck: -+ /* double check policy once rq lock held */ -+ if (policy < 0) -+ policy = oldpolicy = p->policy; -+ else if (policy != SCHED_FIFO && policy != SCHED_RR && -+ policy != SCHED_NORMAL && policy != SCHED_BATCH && -+ policy != SCHED_IDLE) -+ return -EINVAL; -+ /* -+ * Valid priorities for SCHED_FIFO and SCHED_RR are -+ * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, -+ * SCHED_BATCH and SCHED_IDLE is 0. -+ */ -+ if (param->sched_priority < 0 || -+ (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) || -+ (!p->mm && param->sched_priority > MAX_RT_PRIO-1)) -+ return -EINVAL; -+ if (rt_policy(policy) != (param->sched_priority != 0)) -+ return -EINVAL; -+ -+ /* -+ * Allow unprivileged RT tasks to decrease priority: -+ */ -+ if (user && !capable(CAP_SYS_NICE)) { -+ if (rt_policy(policy)) { -+ unsigned long rlim_rtprio; -+ -+ if (!lock_task_sighand(p, &flags)) -+ return -ESRCH; -+ rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur; -+ unlock_task_sighand(p, &flags); -+ -+ /* can't set/change the rt policy */ -+ if (policy != p->policy && !rlim_rtprio) -+ return -EPERM; -+ -+ /* can't increase priority */ -+ if (param->sched_priority > p->rt_priority && -+ param->sched_priority > rlim_rtprio) -+ return -EPERM; -+ } -+ /* -+ * Like positive nice levels, dont allow tasks to -+ * move out of SCHED_IDLE either: -+ */ -+ if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) -+ return -EPERM; -+ -+ /* can't change other user's priorities */ -+ if ((current->euid != p->euid) && -+ (current->euid != p->uid)) -+ return -EPERM; -+ } -+ -+ if (user) { -+#ifdef CONFIG_RT_GROUP_SCHED -+ /* -+ * Do not allow realtime tasks into groups that have no runtime -+ * assigned. -+ */ -+ if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0) -+ return -EPERM; -+#endif -+ -+ retval = security_task_setscheduler(p, policy, param); -+ if (retval) -+ return retval; -+ } -+ -+ /* -+ * make sure no PI-waiters arrive (or leave) while we are -+ * changing the priority of the task: -+ */ -+ spin_lock_irqsave(&p->pi_lock, flags); -+ /* -+ * To be able to change p->policy safely, the apropriate -+ * runqueue lock must be held. -+ */ -+ rq = __task_rq_lock(p); -+ /* recheck policy now with rq lock held */ -+ if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { -+ policy = oldpolicy = -1; -+ __task_rq_unlock(rq); -+ spin_unlock_irqrestore(&p->pi_lock, flags); -+ goto recheck; -+ } -+ update_rq_clock(rq); -+ on_rq = p->se.on_rq; -+ running = task_current(rq, p); -+ if (on_rq) -+ deactivate_task(rq, p, 0); -+ if (running) -+ p->sched_class->put_prev_task(rq, p); -+ -+ oldprio = p->prio; -+ __setscheduler(rq, p, policy, param->sched_priority); -+ -+ if (running) -+ p->sched_class->set_curr_task(rq); -+ if (on_rq) { -+ activate_task(rq, p, 0); -+ -+ check_class_changed(rq, p, prev_class, oldprio, running); -+ } -+ __task_rq_unlock(rq); -+ spin_unlock_irqrestore(&p->pi_lock, flags); -+ -+ rt_mutex_adjust_pi(p); -+ -+ return 0; -+} -+ -+/** -+ * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. -+ * @p: the task in question. -+ * @policy: new policy. -+ * @param: structure containing the new RT priority. -+ * -+ * NOTE that the task may be already dead. -+ */ -+int sched_setscheduler(struct task_struct *p, int policy, -+ struct sched_param *param) -+{ -+ return __sched_setscheduler(p, policy, param, true); -+} -+EXPORT_SYMBOL_GPL(sched_setscheduler); -+ -+/** -+ * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. -+ * @p: the task in question. -+ * @policy: new policy. -+ * @param: structure containing the new RT priority. -+ * -+ * Just like sched_setscheduler, only don't bother checking if the -+ * current context has permission. For example, this is needed in -+ * stop_machine(): we create temporary high priority worker threads, -+ * but our caller might not have that capability. -+ */ -+int sched_setscheduler_nocheck(struct task_struct *p, int policy, -+ struct sched_param *param) -+{ -+ return __sched_setscheduler(p, policy, param, false); -+} -+ -+static int -+do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) -+{ -+ struct sched_param lparam; -+ struct task_struct *p; -+ int retval; -+ -+ if (!param || pid < 0) -+ return -EINVAL; -+ if (copy_from_user(&lparam, param, sizeof(struct sched_param))) -+ return -EFAULT; -+ -+ rcu_read_lock(); -+ retval = -ESRCH; -+ p = find_process_by_pid(pid); -+ if (p != NULL) -+ retval = sched_setscheduler(p, policy, &lparam); -+ rcu_read_unlock(); -+ -+ return retval; -+} -+ -+/** -+ * sys_sched_setscheduler - set/change the scheduler policy and RT priority -+ * @pid: the pid in question. -+ * @policy: new policy. -+ * @param: structure containing the new RT priority. -+ */ -+SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, -+ struct sched_param __user *, param) -+{ -+ /* negative values for policy are not valid */ -+ if (policy < 0) -+ return -EINVAL; -+ -+ return do_sched_setscheduler(pid, policy, param); -+} -+ -+/** -+ * sys_sched_setparam - set/change the RT priority of a thread -+ * @pid: the pid in question. -+ * @param: structure containing the new RT priority. -+ */ -+SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) -+{ -+ return do_sched_setscheduler(pid, -1, param); -+} -+ -+/** -+ * sys_sched_getscheduler - get the policy (scheduling class) of a thread -+ * @pid: the pid in question. -+ */ -+SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) -+{ -+ struct task_struct *p; -+ int retval; -+ -+ if (pid < 0) -+ return -EINVAL; -+ -+ retval = -ESRCH; -+ read_lock(&tasklist_lock); -+ p = find_process_by_pid(pid); -+ if (p) { -+ retval = security_task_getscheduler(p); -+ if (!retval) -+ retval = p->policy; -+ } -+ read_unlock(&tasklist_lock); -+ return retval; -+} -+ -+/** -+ * sys_sched_getscheduler - get the RT priority of a thread -+ * @pid: the pid in question. -+ * @param: structure containing the RT priority. -+ */ -+SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) -+{ -+ struct sched_param lp; -+ struct task_struct *p; -+ int retval; -+ -+ if (!param || pid < 0) -+ return -EINVAL; -+ -+ read_lock(&tasklist_lock); -+ p = find_process_by_pid(pid); -+ retval = -ESRCH; -+ if (!p) -+ goto out_unlock; -+ -+ retval = security_task_getscheduler(p); -+ if (retval) -+ goto out_unlock; -+ -+ lp.sched_priority = p->rt_priority; -+ read_unlock(&tasklist_lock); -+ -+ /* -+ * This one might sleep, we cannot do it with a spinlock held ... -+ */ -+ retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; -+ -+ return retval; -+ -+out_unlock: -+ read_unlock(&tasklist_lock); -+ return retval; -+} -+ -+long sched_setaffinity(pid_t pid, const cpumask_t *in_mask) -+{ -+ cpumask_t cpus_allowed; -+ cpumask_t new_mask = *in_mask; -+ struct task_struct *p; -+ int retval; -+ -+ get_online_cpus(); -+ read_lock(&tasklist_lock); -+ -+ p = find_process_by_pid(pid); -+ if (!p) { -+ read_unlock(&tasklist_lock); -+ put_online_cpus(); -+ return -ESRCH; -+ } -+ -+ /* -+ * It is not safe to call set_cpus_allowed with the -+ * tasklist_lock held. We will bump the task_struct's -+ * usage count and then drop tasklist_lock. -+ */ -+ get_task_struct(p); -+ read_unlock(&tasklist_lock); -+ -+ -+ retval = -EPERM; -+ if ((current->euid != p->euid) && (current->euid != p->uid) && -+ !capable(CAP_SYS_NICE)) -+ goto out_unlock; -+ -+ retval = security_task_setscheduler(p, 0, NULL); -+ if (retval) -+ goto out_unlock; -+ -+ cpuset_cpus_allowed(p, &cpus_allowed); -+ cpus_and(new_mask, new_mask, cpus_allowed); -+ again: -+ retval = set_cpus_allowed_ptr(p, &new_mask); -+ -+ if (!retval) { -+ cpuset_cpus_allowed(p, &cpus_allowed); -+ if (!cpus_subset(new_mask, cpus_allowed)) { -+ /* -+ * We must have raced with a concurrent cpuset -+ * update. Just reset the cpus_allowed to the -+ * cpuset's cpus_allowed -+ */ -+ new_mask = cpus_allowed; -+ goto again; -+ } -+ } -+out_unlock: -+ put_task_struct(p); -+ put_online_cpus(); -+ return retval; -+} -+ -+static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, -+ cpumask_t *new_mask) -+{ -+ if (len < sizeof(cpumask_t)) { -+ memset(new_mask, 0, sizeof(cpumask_t)); -+ } else if (len > sizeof(cpumask_t)) { -+ len = sizeof(cpumask_t); -+ } -+ return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; -+} -+ -+/** -+ * sys_sched_setaffinity - set the cpu affinity of a process -+ * @pid: pid of the process -+ * @len: length in bytes of the bitmask pointed to by user_mask_ptr -+ * @user_mask_ptr: user-space pointer to the new cpu mask -+ */ -+SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, -+ unsigned long __user *, user_mask_ptr) -+{ -+ cpumask_t new_mask; -+ int retval; -+ -+ retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask); -+ if (retval) -+ return retval; -+ -+ return sched_setaffinity(pid, &new_mask); -+} -+ -+long sched_getaffinity(pid_t pid, cpumask_t *mask) -+{ -+ struct task_struct *p; -+ int retval; -+ -+ get_online_cpus(); -+ read_lock(&tasklist_lock); -+ -+ retval = -ESRCH; -+ p = find_process_by_pid(pid); -+ if (!p) -+ goto out_unlock; -+ -+ retval = security_task_getscheduler(p); -+ if (retval) -+ goto out_unlock; -+ -+ cpus_and(*mask, p->cpus_allowed, cpu_online_map); -+ -+out_unlock: -+ read_unlock(&tasklist_lock); -+ put_online_cpus(); -+ -+ return retval; -+} -+ -+/** -+ * sys_sched_getaffinity - get the cpu affinity of a process -+ * @pid: pid of the process -+ * @len: length in bytes of the bitmask pointed to by user_mask_ptr -+ * @user_mask_ptr: user-space pointer to hold the current cpu mask -+ */ -+SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, -+ unsigned long __user *, user_mask_ptr) -+{ -+ int ret; -+ cpumask_t mask; -+ -+ if (len < sizeof(cpumask_t)) -+ return -EINVAL; -+ -+ ret = sched_getaffinity(pid, &mask); -+ if (ret < 0) -+ return ret; -+ -+ if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t))) -+ return -EFAULT; -+ -+ return sizeof(cpumask_t); -+} -+ -+/** -+ * sys_sched_yield - yield the current processor to other threads. -+ * -+ * This function yields the current CPU to other tasks. If there are no -+ * other threads running on this CPU then this function will return. -+ */ -+SYSCALL_DEFINE0(sched_yield) -+{ -+ struct rq *rq = this_rq_lock(); -+ -+ schedstat_inc(rq, yld_count); -+ current->sched_class->yield_task(rq); -+ -+ /* -+ * Since we are going to call schedule() anyway, there's -+ * no need to preempt or enable interrupts: -+ */ -+ __release(rq->lock); -+ spin_release(&rq->lock.dep_map, 1, _THIS_IP_); -+ _raw_spin_unlock(&rq->lock); -+ preempt_enable_no_resched(); -+ -+ schedule(); -+ -+ return 0; -+} -+ -+static void __cond_resched(void) -+{ -+#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP -+ __might_sleep(__FILE__, __LINE__); -+#endif -+ /* -+ * The BKS might be reacquired before we have dropped -+ * PREEMPT_ACTIVE, which could trigger a second -+ * cond_resched() call. -+ */ -+ do { -+ add_preempt_count(PREEMPT_ACTIVE); -+ schedule(); -+ sub_preempt_count(PREEMPT_ACTIVE); -+ } while (need_resched()); -+} -+ -+int __sched _cond_resched(void) -+{ -+ if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) && -+ system_state == SYSTEM_RUNNING) { -+ __cond_resched(); -+ return 1; -+ } -+ return 0; -+} -+EXPORT_SYMBOL(_cond_resched); -+ -+/* -+ * cond_resched_lock() - if a reschedule is pending, drop the given lock, -+ * call schedule, and on return reacquire the lock. -+ * -+ * This works OK both with and without CONFIG_PREEMPT. We do strange low-level -+ * operations here to prevent schedule() from being called twice (once via -+ * spin_unlock(), once by hand). -+ */ -+int cond_resched_lock(spinlock_t *lock) -+{ -+ int resched = need_resched() && system_state == SYSTEM_RUNNING; -+ int ret = 0; -+ -+ if (spin_needbreak(lock) || resched) { -+ spin_unlock(lock); -+ if (resched && need_resched()) -+ __cond_resched(); -+ else -+ cpu_relax(); -+ ret = 1; -+ spin_lock(lock); -+ } -+ return ret; -+} -+EXPORT_SYMBOL(cond_resched_lock); -+ -+int __sched cond_resched_softirq(void) -+{ -+ BUG_ON(!in_softirq()); -+ -+ if (need_resched() && system_state == SYSTEM_RUNNING) { -+ local_bh_enable(); -+ __cond_resched(); -+ local_bh_disable(); -+ return 1; -+ } -+ return 0; -+} -+EXPORT_SYMBOL(cond_resched_softirq); -+ -+/** -+ * yield - yield the current processor to other threads. -+ * -+ * This is a shortcut for kernel-space yielding - it marks the -+ * thread runnable and calls sys_sched_yield(). -+ */ -+void __sched yield(void) -+{ -+ set_current_state(TASK_RUNNING); -+ sys_sched_yield(); -+} -+EXPORT_SYMBOL(yield); -+ -+/* -+ * This task is about to go to sleep on IO. Increment rq->nr_iowait so -+ * that process accounting knows that this is a task in IO wait state. -+ * -+ * But don't do that if it is a deliberate, throttling IO wait (this task -+ * has set its backing_dev_info: the queue against which it should throttle) -+ */ -+void __sched io_schedule(void) -+{ -+ struct rq *rq = &__raw_get_cpu_var(runqueues); -+ -+ delayacct_blkio_start(); -+ atomic_inc(&rq->nr_iowait); -+ schedule(); -+ atomic_dec(&rq->nr_iowait); -+ delayacct_blkio_end(); -+} -+EXPORT_SYMBOL(io_schedule); -+ -+long __sched io_schedule_timeout(long timeout) -+{ -+ struct rq *rq = &__raw_get_cpu_var(runqueues); -+ long ret; -+ -+ delayacct_blkio_start(); -+ atomic_inc(&rq->nr_iowait); -+ ret = schedule_timeout(timeout); -+ atomic_dec(&rq->nr_iowait); -+ delayacct_blkio_end(); -+ return ret; -+} -+ -+/** -+ * sys_sched_get_priority_max - return maximum RT priority. -+ * @policy: scheduling class. -+ * -+ * this syscall returns the maximum rt_priority that can be used -+ * by a given scheduling class. -+ */ -+SYSCALL_DEFINE1(sched_get_priority_max, int, policy) -+{ -+ int ret = -EINVAL; -+ -+ switch (policy) { -+ case SCHED_FIFO: -+ case SCHED_RR: -+ ret = MAX_USER_RT_PRIO-1; -+ break; -+ case SCHED_NORMAL: -+ case SCHED_BATCH: -+ case SCHED_IDLE: -+ ret = 0; -+ break; -+ } -+ return ret; -+} -+ -+/** -+ * sys_sched_get_priority_min - return minimum RT priority. -+ * @policy: scheduling class. -+ * -+ * this syscall returns the minimum rt_priority that can be used -+ * by a given scheduling class. -+ */ -+SYSCALL_DEFINE1(sched_get_priority_min, int, policy) -+{ -+ int ret = -EINVAL; -+ -+ switch (policy) { -+ case SCHED_FIFO: -+ case SCHED_RR: -+ ret = 1; -+ break; -+ case SCHED_NORMAL: -+ case SCHED_BATCH: -+ case SCHED_IDLE: -+ ret = 0; -+ } -+ return ret; -+} -+ -+/** -+ * sys_sched_rr_get_interval - return the default timeslice of a process. -+ * @pid: pid of the process. -+ * @interval: userspace pointer to the timeslice value. -+ * -+ * this syscall writes the default timeslice value of a given process -+ * into the user-space timespec buffer. A value of '0' means infinity. -+ */ -+SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, -+ struct timespec __user *, interval) -+{ -+ struct task_struct *p; -+ unsigned int time_slice; -+ int retval; -+ struct timespec t; -+ -+ if (pid < 0) -+ return -EINVAL; -+ -+ retval = -ESRCH; -+ read_lock(&tasklist_lock); -+ p = find_process_by_pid(pid); -+ if (!p) -+ goto out_unlock; -+ -+ retval = security_task_getscheduler(p); -+ if (retval) -+ goto out_unlock; -+ -+ /* -+ * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER -+ * tasks that are on an otherwise idle runqueue: -+ */ -+ time_slice = 0; -+ if (p->policy == SCHED_RR) { -+ time_slice = DEF_TIMESLICE; -+ } else if (p->policy != SCHED_FIFO) { -+ struct sched_entity *se = &p->se; -+ unsigned long flags; -+ struct rq *rq; -+ -+ rq = task_rq_lock(p, &flags); -+ if (rq->cfs.load.weight) -+ time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se)); -+ task_rq_unlock(rq, &flags); -+ } -+ read_unlock(&tasklist_lock); -+ jiffies_to_timespec(time_slice, &t); -+ retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; -+ return retval; -+ -+out_unlock: -+ read_unlock(&tasklist_lock); -+ return retval; -+} -+ -+static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; -+ -+void sched_show_task(struct task_struct *p) -+{ -+ unsigned long free = 0; -+ unsigned state; -+ -+ state = p->state ? __ffs(p->state) + 1 : 0; -+ printk(KERN_INFO "%-13.13s %c", p->comm, -+ state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); -+#if BITS_PER_LONG == 32 -+ if (state == TASK_RUNNING) -+ printk(KERN_CONT " running "); -+ else -+ printk(KERN_CONT " %08lx ", thread_saved_pc(p)); -+#else -+ if (state == TASK_RUNNING) -+ printk(KERN_CONT " running task "); -+ else -+ printk(KERN_CONT " %016lx ", thread_saved_pc(p)); -+#endif -+#ifdef CONFIG_DEBUG_STACK_USAGE -+ { -+ unsigned long *n = end_of_stack(p); -+ while (!*n) -+ n++; -+ free = (unsigned long)n - (unsigned long)end_of_stack(p); -+ } -+#endif -+ printk(KERN_CONT "%5lu %5d %6d\n", free, -+ task_pid_nr(p), task_pid_nr(p->real_parent)); -+ -+ show_stack(p, NULL); -+} -+ -+void show_state_filter(unsigned long state_filter) -+{ -+ struct task_struct *g, *p; -+ -+#if BITS_PER_LONG == 32 -+ printk(KERN_INFO -+ " task PC stack pid father\n"); -+#else -+ printk(KERN_INFO -+ " task PC stack pid father\n"); -+#endif -+ read_lock(&tasklist_lock); -+ do_each_thread(g, p) { -+ /* -+ * reset the NMI-timeout, listing all files on a slow -+ * console might take alot of time: -+ */ -+ touch_nmi_watchdog(); -+ if (!state_filter || (p->state & state_filter)) -+ sched_show_task(p); -+ } while_each_thread(g, p); -+ -+ touch_all_softlockup_watchdogs(); -+ -+#ifdef CONFIG_SCHED_DEBUG -+ sysrq_sched_debug_show(); -+#endif -+ read_unlock(&tasklist_lock); -+ /* -+ * Only show locks if all tasks are dumped: -+ */ -+ if (state_filter == -1) -+ debug_show_all_locks(); -+} -+ -+void __cpuinit init_idle_bootup_task(struct task_struct *idle) -+{ -+ idle->sched_class = &idle_sched_class; -+} -+ -+/** -+ * init_idle - set up an idle thread for a given CPU -+ * @idle: task in question -+ * @cpu: cpu the idle task belongs to -+ * -+ * NOTE: this function does not set the idle thread's NEED_RESCHED -+ * flag, to make booting more robust. -+ */ -+void __cpuinit init_idle(struct task_struct *idle, int cpu) -+{ -+ struct rq *rq = cpu_rq(cpu); -+ unsigned long flags; -+ -+ __sched_fork(idle); -+ idle->se.exec_start = sched_clock(); -+ -+ idle->prio = idle->normal_prio = MAX_PRIO; -+ idle->cpus_allowed = cpumask_of_cpu(cpu); -+ __set_task_cpu(idle, cpu); -+ -+ spin_lock_irqsave(&rq->lock, flags); -+ rq->curr = rq->idle = idle; -+#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) -+ idle->oncpu = 1; -+#endif -+ spin_unlock_irqrestore(&rq->lock, flags); -+ -+ /* Set the preempt count _outside_ the spinlocks! */ -+#if defined(CONFIG_PREEMPT) -+ task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0); -+#else -+ task_thread_info(idle)->preempt_count = 0; -+#endif -+ /* -+ * The idle tasks have their own, simple scheduling class: -+ */ -+ idle->sched_class = &idle_sched_class; -+} -+ -+/* -+ * In a system that switches off the HZ timer nohz_cpu_mask -+ * indicates which cpus entered this state. This is used -+ * in the rcu update to wait only for active cpus. For system -+ * which do not switch off the HZ timer nohz_cpu_mask should -+ * always be CPU_MASK_NONE. -+ */ -+cpumask_t nohz_cpu_mask = CPU_MASK_NONE; -+ -+/* -+ * Increase the granularity value when there are more CPUs, -+ * because with more CPUs the 'effective latency' as visible -+ * to users decreases. But the relationship is not linear, -+ * so pick a second-best guess by going with the log2 of the -+ * number of CPUs. -+ * -+ * This idea comes from the SD scheduler of Con Kolivas: -+ */ -+static inline void sched_init_granularity(void) -+{ -+ unsigned int factor = 1 + ilog2(num_online_cpus()); -+ const unsigned long limit = 200000000; -+ -+ sysctl_sched_min_granularity *= factor; -+ if (sysctl_sched_min_granularity > limit) -+ sysctl_sched_min_granularity = limit; -+ -+ sysctl_sched_latency *= factor; -+ if (sysctl_sched_latency > limit) -+ sysctl_sched_latency = limit; -+ -+ sysctl_sched_wakeup_granularity *= factor; -+ -+ sysctl_sched_shares_ratelimit *= factor; -+} -+ -+#ifdef CONFIG_SMP -+/* -+ * This is how migration works: -+ * -+ * 1) we queue a struct migration_req structure in the source CPU's -+ * runqueue and wake up that CPU's migration thread. -+ * 2) we down() the locked semaphore => thread blocks. -+ * 3) migration thread wakes up (implicitly it forces the migrated -+ * thread off the CPU) -+ * 4) it gets the migration request and checks whether the migrated -+ * task is still in the wrong runqueue. -+ * 5) if it's in the wrong runqueue then the migration thread removes -+ * it and puts it into the right queue. -+ * 6) migration thread up()s the semaphore. -+ * 7) we wake up and the migration is done. -+ */ -+ -+/* -+ * Change a given task's CPU affinity. Migrate the thread to a -+ * proper CPU and schedule it away if the CPU it's executing on -+ * is removed from the allowed bitmask. -+ * -+ * NOTE: the caller must have a valid reference to the task, the -+ * task must not exit() & deallocate itself prematurely. The -+ * call is not atomic; no spinlocks may be held. -+ */ -+int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask) -+{ -+ struct migration_req req; -+ unsigned long flags; -+ struct rq *rq; -+ int ret = 0; -+ -+ rq = task_rq_lock(p, &flags); -+ if (!cpus_intersects(*new_mask, cpu_online_map)) { -+ ret = -EINVAL; -+ goto out; -+ } -+ -+ if (unlikely((p->flags & PF_THREAD_BOUND) && p != current && -+ !cpus_equal(p->cpus_allowed, *new_mask))) { -+ ret = -EINVAL; -+ goto out; -+ } -+ -+ if (p->sched_class->set_cpus_allowed) -+ p->sched_class->set_cpus_allowed(p, new_mask); -+ else { -+ p->cpus_allowed = *new_mask; -+ p->rt.nr_cpus_allowed = cpus_weight(*new_mask); -+ } -+ -+ /* Can the task run on the task's current CPU? If so, we're done */ -+ if (cpu_isset(task_cpu(p), *new_mask)) -+ goto out; -+ -+ if (migrate_task(p, any_online_cpu(*new_mask), &req)) { -+ /* Need help from migration thread: drop lock and wait. */ -+ task_rq_unlock(rq, &flags); -+ wake_up_process(rq->migration_thread); -+ wait_for_completion(&req.done); -+ tlb_migrate_finish(p->mm); -+ return 0; -+ } -+out: -+ task_rq_unlock(rq, &flags); -+ -+ return ret; -+} -+EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); -+ -+/* -+ * Move (not current) task off this cpu, onto dest cpu. We're doing -+ * this because either it can't run here any more (set_cpus_allowed() -+ * away from this CPU, or CPU going down), or because we're -+ * attempting to rebalance this task on exec (sched_exec). -+ * -+ * So we race with normal scheduler movements, but that's OK, as long -+ * as the task is no longer on this CPU. -+ * -+ * Returns non-zero if task was successfully migrated. -+ */ -+static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) -+{ -+ struct rq *rq_dest, *rq_src; -+ int ret = 0, on_rq; -+ -+ if (unlikely(!cpu_active(dest_cpu))) -+ return ret; -+ -+ rq_src = cpu_rq(src_cpu); -+ rq_dest = cpu_rq(dest_cpu); -+ -+ double_rq_lock(rq_src, rq_dest); -+ /* Already moved. */ -+ if (task_cpu(p) != src_cpu) -+ goto done; -+ /* Affinity changed (again). */ -+ if (!cpu_isset(dest_cpu, p->cpus_allowed)) -+ goto fail; -+ -+ on_rq = p->se.on_rq; -+ if (on_rq) -+ deactivate_task(rq_src, p, 0); -+ -+ set_task_cpu(p, dest_cpu); -+ if (on_rq) { -+ activate_task(rq_dest, p, 0); -+ check_preempt_curr(rq_dest, p); -+ } -+done: -+ ret = 1; -+fail: -+ double_rq_unlock(rq_src, rq_dest); -+ return ret; -+} -+ -+/* -+ * migration_thread - this is a highprio system thread that performs -+ * thread migration by bumping thread off CPU then 'pushing' onto -+ * another runqueue. -+ */ -+static int migration_thread(void *data) -+{ -+ int cpu = (long)data; -+ struct rq *rq; -+ -+ rq = cpu_rq(cpu); -+ BUG_ON(rq->migration_thread != current); -+ -+ set_current_state(TASK_INTERRUPTIBLE); -+ while (!kthread_should_stop()) { -+ struct migration_req *req; -+ struct list_head *head; -+ -+ spin_lock_irq(&rq->lock); -+ -+ if (cpu_is_offline(cpu)) { -+ spin_unlock_irq(&rq->lock); -+ goto wait_to_die; -+ } -+ -+ if (rq->active_balance) { -+ active_load_balance(rq, cpu); -+ rq->active_balance = 0; -+ } -+ -+ head = &rq->migration_queue; -+ -+ if (list_empty(head)) { -+ spin_unlock_irq(&rq->lock); -+ schedule(); -+ set_current_state(TASK_INTERRUPTIBLE); -+ continue; -+ } -+ req = list_entry(head->next, struct migration_req, list); -+ list_del_init(head->next); -+ -+ spin_unlock(&rq->lock); -+ __migrate_task(req->task, cpu, req->dest_cpu); -+ local_irq_enable(); -+ -+ complete(&req->done); -+ } -+ __set_current_state(TASK_RUNNING); -+ return 0; -+ -+wait_to_die: -+ /* Wait for kthread_stop */ -+ set_current_state(TASK_INTERRUPTIBLE); -+ while (!kthread_should_stop()) { -+ schedule(); -+ set_current_state(TASK_INTERRUPTIBLE); -+ } -+ __set_current_state(TASK_RUNNING); -+ return 0; -+} -+ -+#ifdef CONFIG_HOTPLUG_CPU -+ -+static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu) -+{ -+ int ret; -+ -+ local_irq_disable(); -+ ret = __migrate_task(p, src_cpu, dest_cpu); -+ local_irq_enable(); -+ return ret; -+} -+ -+/* -+ * Figure out where task on dead CPU should go, use force if necessary. -+ * NOTE: interrupts should be disabled by the caller -+ */ -+static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p) -+{ -+ unsigned long flags; -+ cpumask_t mask; -+ struct rq *rq; -+ int dest_cpu; -+ -+ do { -+ /* On same node? */ -+ mask = node_to_cpumask(cpu_to_node(dead_cpu)); -+ cpus_and(mask, mask, p->cpus_allowed); -+ dest_cpu = any_online_cpu(mask); -+ -+ /* On any allowed CPU? */ -+ if (dest_cpu >= nr_cpu_ids) -+ dest_cpu = any_online_cpu(p->cpus_allowed); -+ -+ /* No more Mr. Nice Guy. */ -+ if (dest_cpu >= nr_cpu_ids) { -+ cpumask_t cpus_allowed; -+ -+ cpuset_cpus_allowed_locked(p, &cpus_allowed); -+ /* -+ * Try to stay on the same cpuset, where the -+ * current cpuset may be a subset of all cpus. -+ * The cpuset_cpus_allowed_locked() variant of -+ * cpuset_cpus_allowed() will not block. It must be -+ * called within calls to cpuset_lock/cpuset_unlock. -+ */ -+ rq = task_rq_lock(p, &flags); -+ p->cpus_allowed = cpus_allowed; -+ dest_cpu = any_online_cpu(p->cpus_allowed); -+ task_rq_unlock(rq, &flags); -+ -+ /* -+ * Don't tell them about moving exiting tasks or -+ * kernel threads (both mm NULL), since they never -+ * leave kernel. -+ */ -+ if (p->mm && printk_ratelimit()) { -+ printk(KERN_INFO "process %d (%s) no " -+ "longer affine to cpu%d\n", -+ task_pid_nr(p), p->comm, dead_cpu); -+ } -+ } -+ } while (!__migrate_task_irq(p, dead_cpu, dest_cpu)); -+} -+ -+/* -+ * While a dead CPU has no uninterruptible tasks queued at this point, -+ * it might still have a nonzero ->nr_uninterruptible counter, because -+ * for performance reasons the counter is not stricly tracking tasks to -+ * their home CPUs. So we just add the counter to another CPU's counter, -+ * to keep the global sum constant after CPU-down: -+ */ -+static void migrate_nr_uninterruptible(struct rq *rq_src) -+{ -+ struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR)); -+ unsigned long flags; -+ -+ local_irq_save(flags); -+ double_rq_lock(rq_src, rq_dest); -+ rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible; -+ rq_src->nr_uninterruptible = 0; -+ double_rq_unlock(rq_src, rq_dest); -+ local_irq_restore(flags); -+} -+ -+/* Run through task list and migrate tasks from the dead cpu. */ -+static void migrate_live_tasks(int src_cpu) -+{ -+ struct task_struct *p, *t; -+ -+ read_lock(&tasklist_lock); -+ -+ do_each_thread(t, p) { -+ if (p == current) -+ continue; -+ -+ if (task_cpu(p) == src_cpu) -+ move_task_off_dead_cpu(src_cpu, p); -+ } while_each_thread(t, p); -+ -+ read_unlock(&tasklist_lock); -+} -+ -+/* -+ * Schedules idle task to be the next runnable task on current CPU. -+ * It does so by boosting its priority to highest possible. -+ * Used by CPU offline code. -+ */ -+void sched_idle_next(void) -+{ -+ int this_cpu = smp_processor_id(); -+ struct rq *rq = cpu_rq(this_cpu); -+ struct task_struct *p = rq->idle; -+ unsigned long flags; -+ -+ /* cpu has to be offline */ -+ BUG_ON(cpu_online(this_cpu)); -+ -+ /* -+ * Strictly not necessary since rest of the CPUs are stopped by now -+ * and interrupts disabled on the current cpu. -+ */ -+ spin_lock_irqsave(&rq->lock, flags); -+ -+ __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1); -+ -+ update_rq_clock(rq); -+ activate_task(rq, p, 0); -+ -+ spin_unlock_irqrestore(&rq->lock, flags); -+} -+ -+/* -+ * Ensures that the idle task is using init_mm right before its cpu goes -+ * offline. -+ */ -+void idle_task_exit(void) -+{ -+ struct mm_struct *mm = current->active_mm; -+ -+ BUG_ON(cpu_online(smp_processor_id())); -+ -+ if (mm != &init_mm) -+ switch_mm(mm, &init_mm, current); -+ mmdrop(mm); -+} -+ -+/* called under rq->lock with disabled interrupts */ -+static void migrate_dead(unsigned int dead_cpu, struct task_struct *p) -+{ -+ struct rq *rq = cpu_rq(dead_cpu); -+ -+ /* Must be exiting, otherwise would be on tasklist. */ -+ BUG_ON(!p->exit_state); -+ -+ /* Cannot have done final schedule yet: would have vanished. */ -+ BUG_ON(p->state == TASK_DEAD); -+ -+ get_task_struct(p); -+ -+ /* -+ * Drop lock around migration; if someone else moves it, -+ * that's OK. No task can be added to this CPU, so iteration is -+ * fine. -+ */ -+ spin_unlock_irq(&rq->lock); -+ move_task_off_dead_cpu(dead_cpu, p); -+ spin_lock_irq(&rq->lock); -+ -+ put_task_struct(p); -+} -+ -+/* release_task() removes task from tasklist, so we won't find dead tasks. */ -+static void migrate_dead_tasks(unsigned int dead_cpu) -+{ -+ struct rq *rq = cpu_rq(dead_cpu); -+ struct task_struct *next; -+ -+ for ( ; ; ) { -+ if (!rq->nr_running) -+ break; -+ update_rq_clock(rq); -+ next = pick_next_task(rq, rq->curr); -+ if (!next) -+ break; -+ next->sched_class->put_prev_task(rq, next); -+ migrate_dead(dead_cpu, next); -+ -+ } -+} -+#endif /* CONFIG_HOTPLUG_CPU */ -+ -+#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) -+ -+static struct ctl_table sd_ctl_dir[] = { -+ { -+ .procname = "sched_domain", -+ .mode = 0555, -+ }, -+ {0, }, -+}; -+ -+static struct ctl_table sd_ctl_root[] = { -+ { -+ .ctl_name = CTL_KERN, -+ .procname = "kernel", -+ .mode = 0555, -+ .child = sd_ctl_dir, -+ }, -+ {0, }, -+}; -+ -+static struct ctl_table *sd_alloc_ctl_entry(int n) -+{ -+ struct ctl_table *entry = -+ kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); -+ -+ return entry; -+} -+ -+static void sd_free_ctl_entry(struct ctl_table **tablep) -+{ -+ struct ctl_table *entry; -+ -+ /* -+ * In the intermediate directories, both the child directory and -+ * procname are dynamically allocated and could fail but the mode -+ * will always be set. In the lowest directory the names are -+ * static strings and all have proc handlers. -+ */ -+ for (entry = *tablep; entry->mode; entry++) { -+ if (entry->child) -+ sd_free_ctl_entry(&entry->child); -+ if (entry->proc_handler == NULL) -+ kfree(entry->procname); -+ } -+ -+ kfree(*tablep); -+ *tablep = NULL; -+} -+ -+static void -+set_table_entry(struct ctl_table *entry, -+ const char *procname, void *data, int maxlen, -+ mode_t mode, proc_handler *proc_handler) -+{ -+ entry->procname = procname; -+ entry->data = data; -+ entry->maxlen = maxlen; -+ entry->mode = mode; -+ entry->proc_handler = proc_handler; -+} -+ -+static struct ctl_table * -+sd_alloc_ctl_domain_table(struct sched_domain *sd) -+{ -+ struct ctl_table *table = sd_alloc_ctl_entry(12); -+ -+ if (table == NULL) -+ return NULL; -+ -+ set_table_entry(&table[0], "min_interval", &sd->min_interval, -+ sizeof(long), 0644, proc_doulongvec_minmax); -+ set_table_entry(&table[1], "max_interval", &sd->max_interval, -+ sizeof(long), 0644, proc_doulongvec_minmax); -+ set_table_entry(&table[2], "busy_idx", &sd->busy_idx, -+ sizeof(int), 0644, proc_dointvec_minmax); -+ set_table_entry(&table[3], "idle_idx", &sd->idle_idx, -+ sizeof(int), 0644, proc_dointvec_minmax); -+ set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, -+ sizeof(int), 0644, proc_dointvec_minmax); -+ set_table_entry(&table[5], "wake_idx", &sd->wake_idx, -+ sizeof(int), 0644, proc_dointvec_minmax); -+ set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, -+ sizeof(int), 0644, proc_dointvec_minmax); -+ set_table_entry(&table[7], "busy_factor", &sd->busy_factor, -+ sizeof(int), 0644, proc_dointvec_minmax); -+ set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, -+ sizeof(int), 0644, proc_dointvec_minmax); -+ set_table_entry(&table[9], "cache_nice_tries", -+ &sd->cache_nice_tries, -+ sizeof(int), 0644, proc_dointvec_minmax); -+ set_table_entry(&table[10], "flags", &sd->flags, -+ sizeof(int), 0644, proc_dointvec_minmax); -+ /* &table[11] is terminator */ -+ -+ return table; -+} -+ -+static ctl_table *sd_alloc_ctl_cpu_table(int cpu) -+{ -+ struct ctl_table *entry, *table; -+ struct sched_domain *sd; -+ int domain_num = 0, i; -+ char buf[32]; -+ -+ for_each_domain(cpu, sd) -+ domain_num++; -+ entry = table = sd_alloc_ctl_entry(domain_num + 1); -+ if (table == NULL) -+ return NULL; -+ -+ i = 0; -+ for_each_domain(cpu, sd) { -+ snprintf(buf, 32, "domain%d", i); -+ entry->procname = kstrdup(buf, GFP_KERNEL); -+ entry->mode = 0555; -+ entry->child = sd_alloc_ctl_domain_table(sd); -+ entry++; -+ i++; -+ } -+ return table; -+} -+ -+static struct ctl_table_header *sd_sysctl_header; -+static void register_sched_domain_sysctl(void) -+{ -+ int i, cpu_num = num_online_cpus(); -+ struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); -+ char buf[32]; -+ -+ WARN_ON(sd_ctl_dir[0].child); -+ sd_ctl_dir[0].child = entry; -+ -+ if (entry == NULL) -+ return; -+ -+ for_each_online_cpu(i) { -+ snprintf(buf, 32, "cpu%d", i); -+ entry->procname = kstrdup(buf, GFP_KERNEL); -+ entry->mode = 0555; -+ entry->child = sd_alloc_ctl_cpu_table(i); -+ entry++; -+ } -+ -+ WARN_ON(sd_sysctl_header); -+ sd_sysctl_header = register_sysctl_table(sd_ctl_root); -+} -+ -+/* may be called multiple times per register */ -+static void unregister_sched_domain_sysctl(void) -+{ -+ if (sd_sysctl_header) -+ unregister_sysctl_table(sd_sysctl_header); -+ sd_sysctl_header = NULL; -+ if (sd_ctl_dir[0].child) -+ sd_free_ctl_entry(&sd_ctl_dir[0].child); -+} -+#else -+static void register_sched_domain_sysctl(void) -+{ -+} -+static void unregister_sched_domain_sysctl(void) -+{ -+} -+#endif -+ -+static void set_rq_online(struct rq *rq) -+{ -+ if (!rq->online) { -+ const struct sched_class *class; -+ -+ cpu_set(rq->cpu, rq->rd->online); -+ rq->online = 1; -+ -+ for_each_class(class) { -+ if (class->rq_online) -+ class->rq_online(rq); -+ } -+ } -+} -+ -+static void set_rq_offline(struct rq *rq) -+{ -+ if (rq->online) { -+ const struct sched_class *class; -+ -+ for_each_class(class) { -+ if (class->rq_offline) -+ class->rq_offline(rq); -+ } -+ -+ cpu_clear(rq->cpu, rq->rd->online); -+ rq->online = 0; -+ } -+} -+ -+/* -+ * migration_call - callback that gets triggered when a CPU is added. -+ * Here we can start up the necessary migration thread for the new CPU. -+ */ -+static int __cpuinit -+migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) -+{ -+ struct task_struct *p; -+ int cpu = (long)hcpu; -+ unsigned long flags; -+ struct rq *rq; -+ -+ switch (action) { -+ -+ case CPU_UP_PREPARE: -+ case CPU_UP_PREPARE_FROZEN: -+ p = kthread_create(migration_thread, hcpu, "migration/%d", cpu); -+ if (IS_ERR(p)) -+ return NOTIFY_BAD; -+ kthread_bind(p, cpu); -+ /* Must be high prio: stop_machine expects to yield to it. */ -+ rq = task_rq_lock(p, &flags); -+ __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1); -+ task_rq_unlock(rq, &flags); -+ cpu_rq(cpu)->migration_thread = p; -+ break; -+ -+ case CPU_ONLINE: -+ case CPU_ONLINE_FROZEN: -+ /* Strictly unnecessary, as first user will wake it. */ -+ wake_up_process(cpu_rq(cpu)->migration_thread); -+ -+ /* Update our root-domain */ -+ rq = cpu_rq(cpu); -+ spin_lock_irqsave(&rq->lock, flags); -+ if (rq->rd) { -+ BUG_ON(!cpu_isset(cpu, rq->rd->span)); -+ -+ set_rq_online(rq); -+ } -+ spin_unlock_irqrestore(&rq->lock, flags); -+ break; -+ -+#ifdef CONFIG_HOTPLUG_CPU -+ case CPU_UP_CANCELED: -+ case CPU_UP_CANCELED_FROZEN: -+ if (!cpu_rq(cpu)->migration_thread) -+ break; -+ /* Unbind it from offline cpu so it can run. Fall thru. */ -+ kthread_bind(cpu_rq(cpu)->migration_thread, -+ any_online_cpu(cpu_online_map)); -+ kthread_stop(cpu_rq(cpu)->migration_thread); -+ cpu_rq(cpu)->migration_thread = NULL; -+ break; -+ -+ case CPU_DEAD: -+ case CPU_DEAD_FROZEN: -+ cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */ -+ migrate_live_tasks(cpu); -+ rq = cpu_rq(cpu); -+ kthread_stop(rq->migration_thread); -+ rq->migration_thread = NULL; -+ /* Idle task back to normal (off runqueue, low prio) */ -+ spin_lock_irq(&rq->lock); -+ update_rq_clock(rq); -+ deactivate_task(rq, rq->idle, 0); -+ rq->idle->static_prio = MAX_PRIO; -+ __setscheduler(rq, rq->idle, SCHED_NORMAL, 0); -+ rq->idle->sched_class = &idle_sched_class; -+ migrate_dead_tasks(cpu); -+ spin_unlock_irq(&rq->lock); -+ cpuset_unlock(); -+ migrate_nr_uninterruptible(rq); -+ BUG_ON(rq->nr_running != 0); -+ -+ /* -+ * No need to migrate the tasks: it was best-effort if -+ * they didn't take sched_hotcpu_mutex. Just wake up -+ * the requestors. -+ */ -+ spin_lock_irq(&rq->lock); -+ while (!list_empty(&rq->migration_queue)) { -+ struct migration_req *req; -+ -+ req = list_entry(rq->migration_queue.next, -+ struct migration_req, list); -+ list_del_init(&req->list); -+ spin_unlock_irq(&rq->lock); -+ complete(&req->done); -+ spin_lock_irq(&rq->lock); -+ } -+ spin_unlock_irq(&rq->lock); -+ break; -+ -+ case CPU_DYING: -+ case CPU_DYING_FROZEN: -+ /* Update our root-domain */ -+ rq = cpu_rq(cpu); -+ spin_lock_irqsave(&rq->lock, flags); -+ if (rq->rd) { -+ BUG_ON(!cpu_isset(cpu, rq->rd->span)); -+ set_rq_offline(rq); -+ } -+ spin_unlock_irqrestore(&rq->lock, flags); -+ break; -+#endif -+ } -+ return NOTIFY_OK; -+} -+ -+/* Register at highest priority so that task migration (migrate_all_tasks) -+ * happens before everything else. -+ */ -+static struct notifier_block __cpuinitdata migration_notifier = { -+ .notifier_call = migration_call, -+ .priority = 10 -+}; -+ -+static int __init migration_init(void) -+{ -+ void *cpu = (void *)(long)smp_processor_id(); -+ int err; -+ -+ /* Start one for the boot CPU: */ -+ err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); -+ BUG_ON(err == NOTIFY_BAD); -+ migration_call(&migration_notifier, CPU_ONLINE, cpu); -+ register_cpu_notifier(&migration_notifier); -+ -+ return err; -+} -+early_initcall(migration_init); -+#endif -+ -+#ifdef CONFIG_SMP -+ -+#ifdef CONFIG_SCHED_DEBUG -+ -+static inline const char *sd_level_to_string(enum sched_domain_level lvl) -+{ -+ switch (lvl) { -+ case SD_LV_NONE: -+ return "NONE"; -+ case SD_LV_SIBLING: -+ return "SIBLING"; -+ case SD_LV_MC: -+ return "MC"; -+ case SD_LV_CPU: -+ return "CPU"; -+ case SD_LV_NODE: -+ return "NODE"; -+ case SD_LV_ALLNODES: -+ return "ALLNODES"; -+ case SD_LV_MAX: -+ return "MAX"; -+ -+ } -+ return "MAX"; -+} -+ -+static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, -+ cpumask_t *groupmask) -+{ -+ struct sched_group *group = sd->groups; -+ char str[256]; -+ -+ cpulist_scnprintf(str, sizeof(str), sd->span); -+ cpus_clear(*groupmask); -+ -+ printk(KERN_DEBUG "%*s domain %d: ", level, "", level); -+ -+ if (!(sd->flags & SD_LOAD_BALANCE)) { -+ printk("does not load-balance\n"); -+ if (sd->parent) -+ printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" -+ " has parent"); -+ return -1; -+ } -+ -+ printk(KERN_CONT "span %s level %s\n", -+ str, sd_level_to_string(sd->level)); -+ -+ if (!cpu_isset(cpu, sd->span)) { -+ printk(KERN_ERR "ERROR: domain->span does not contain " -+ "CPU%d\n", cpu); -+ } -+ if (!cpu_isset(cpu, group->cpumask)) { -+ printk(KERN_ERR "ERROR: domain->groups does not contain" -+ " CPU%d\n", cpu); -+ } -+ -+ printk(KERN_DEBUG "%*s groups:", level + 1, ""); -+ do { -+ if (!group) { -+ printk("\n"); -+ printk(KERN_ERR "ERROR: group is NULL\n"); -+ break; -+ } -+ -+ if (!group->__cpu_power) { -+ printk(KERN_CONT "\n"); -+ printk(KERN_ERR "ERROR: domain->cpu_power not " -+ "set\n"); -+ break; -+ } -+ -+ if (!cpus_weight(group->cpumask)) { -+ printk(KERN_CONT "\n"); -+ printk(KERN_ERR "ERROR: empty group\n"); -+ break; -+ } -+ -+ if (cpus_intersects(*groupmask, group->cpumask)) { -+ printk(KERN_CONT "\n"); -+ printk(KERN_ERR "ERROR: repeated CPUs\n"); -+ break; -+ } -+ -+ cpus_or(*groupmask, *groupmask, group->cpumask); -+ -+ cpulist_scnprintf(str, sizeof(str), group->cpumask); -+ printk(KERN_CONT " %s", str); -+ -+ group = group->next; -+ } while (group != sd->groups); -+ printk(KERN_CONT "\n"); -+ -+ if (!cpus_equal(sd->span, *groupmask)) -+ printk(KERN_ERR "ERROR: groups don't span domain->span\n"); -+ -+ if (sd->parent && !cpus_subset(*groupmask, sd->parent->span)) -+ printk(KERN_ERR "ERROR: parent span is not a superset " -+ "of domain->span\n"); -+ return 0; -+} -+ -+static void sched_domain_debug(struct sched_domain *sd, int cpu) -+{ -+ cpumask_t *groupmask; -+ int level = 0; -+ -+ if (!sd) { -+ printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); -+ return; -+ } -+ -+ printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); -+ -+ groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL); -+ if (!groupmask) { -+ printk(KERN_DEBUG "Cannot load-balance (out of memory)\n"); -+ return; -+ } -+ -+ for (;;) { -+ if (sched_domain_debug_one(sd, cpu, level, groupmask)) -+ break; -+ level++; -+ sd = sd->parent; -+ if (!sd) -+ break; -+ } -+ kfree(groupmask); -+} -+#else /* !CONFIG_SCHED_DEBUG */ -+# define sched_domain_debug(sd, cpu) do { } while (0) -+#endif /* CONFIG_SCHED_DEBUG */ -+ -+static int sd_degenerate(struct sched_domain *sd) -+{ -+ if (cpus_weight(sd->span) == 1) -+ return 1; -+ -+ /* Following flags need at least 2 groups */ -+ if (sd->flags & (SD_LOAD_BALANCE | -+ SD_BALANCE_NEWIDLE | -+ SD_BALANCE_FORK | -+ SD_BALANCE_EXEC | -+ SD_SHARE_CPUPOWER | -+ SD_SHARE_PKG_RESOURCES)) { -+ if (sd->groups != sd->groups->next) -+ return 0; -+ } -+ -+ /* Following flags don't use groups */ -+ if (sd->flags & (SD_WAKE_IDLE | -+ SD_WAKE_AFFINE | -+ SD_WAKE_BALANCE)) -+ return 0; -+ -+ return 1; -+} -+ -+static int -+sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) -+{ -+ unsigned long cflags = sd->flags, pflags = parent->flags; -+ -+ if (sd_degenerate(parent)) -+ return 1; -+ -+ if (!cpus_equal(sd->span, parent->span)) -+ return 0; -+ -+ /* Does parent contain flags not in child? */ -+ /* WAKE_BALANCE is a subset of WAKE_AFFINE */ -+ if (cflags & SD_WAKE_AFFINE) -+ pflags &= ~SD_WAKE_BALANCE; -+ /* Flags needing groups don't count if only 1 group in parent */ -+ if (parent->groups == parent->groups->next) { -+ pflags &= ~(SD_LOAD_BALANCE | -+ SD_BALANCE_NEWIDLE | -+ SD_BALANCE_FORK | -+ SD_BALANCE_EXEC | -+ SD_SHARE_CPUPOWER | -+ SD_SHARE_PKG_RESOURCES); -+ } -+ if (~cflags & pflags) -+ return 0; -+ -+ return 1; -+} -+ -+static void rq_attach_root(struct rq *rq, struct root_domain *rd) -+{ -+ unsigned long flags; -+ -+ spin_lock_irqsave(&rq->lock, flags); -+ -+ if (rq->rd) { -+ struct root_domain *old_rd = rq->rd; -+ -+ if (cpu_isset(rq->cpu, old_rd->online)) -+ set_rq_offline(rq); -+ -+ cpu_clear(rq->cpu, old_rd->span); -+ -+ if (atomic_dec_and_test(&old_rd->refcount)) -+ kfree(old_rd); -+ } -+ -+ atomic_inc(&rd->refcount); -+ rq->rd = rd; -+ -+ cpu_set(rq->cpu, rd->span); -+ if (cpu_isset(rq->cpu, cpu_online_map)) -+ set_rq_online(rq); -+ -+ spin_unlock_irqrestore(&rq->lock, flags); -+} -+ -+static void init_rootdomain(struct root_domain *rd) -+{ -+ memset(rd, 0, sizeof(*rd)); -+ -+ cpus_clear(rd->span); -+ cpus_clear(rd->online); -+ -+ cpupri_init(&rd->cpupri); -+} -+ -+static void init_defrootdomain(void) -+{ -+ init_rootdomain(&def_root_domain); -+ atomic_set(&def_root_domain.refcount, 1); -+} -+ -+static struct root_domain *alloc_rootdomain(void) -+{ -+ struct root_domain *rd; -+ -+ rd = kmalloc(sizeof(*rd), GFP_KERNEL); -+ if (!rd) -+ return NULL; -+ -+ init_rootdomain(rd); -+ -+ return rd; -+} -+ -+/* -+ * Attach the domain 'sd' to 'cpu' as its base domain. Callers must -+ * hold the hotplug lock. -+ */ -+static void -+cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) -+{ -+ struct rq *rq = cpu_rq(cpu); -+ struct sched_domain *tmp; -+ -+ /* Remove the sched domains which do not contribute to scheduling. */ -+ for (tmp = sd; tmp; ) { -+ struct sched_domain *parent = tmp->parent; -+ if (!parent) -+ break; -+ -+ if (sd_parent_degenerate(tmp, parent)) { -+ tmp->parent = parent->parent; -+ if (parent->parent) -+ parent->parent->child = tmp; -+ } else -+ tmp = tmp->parent; -+ } -+ -+ if (sd && sd_degenerate(sd)) { -+ sd = sd->parent; -+ if (sd) -+ sd->child = NULL; -+ } -+ -+ sched_domain_debug(sd, cpu); -+ -+ rq_attach_root(rq, rd); -+ rcu_assign_pointer(rq->sd, sd); -+} -+ -+/* cpus with isolated domains */ -+static cpumask_t cpu_isolated_map = CPU_MASK_NONE; -+ -+/* Setup the mask of cpus configured for isolated domains */ -+static int __init isolated_cpu_setup(char *str) -+{ -+ static int __initdata ints[NR_CPUS]; -+ int i; -+ -+ str = get_options(str, ARRAY_SIZE(ints), ints); -+ cpus_clear(cpu_isolated_map); -+ for (i = 1; i <= ints[0]; i++) -+ if (ints[i] < NR_CPUS) -+ cpu_set(ints[i], cpu_isolated_map); -+ return 1; -+} -+ -+__setup("isolcpus=", isolated_cpu_setup); -+ -+/* -+ * init_sched_build_groups takes the cpumask we wish to span, and a pointer -+ * to a function which identifies what group(along with sched group) a CPU -+ * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS -+ * (due to the fact that we keep track of groups covered with a cpumask_t). -+ * -+ * init_sched_build_groups will build a circular linked list of the groups -+ * covered by the given span, and will set each group's ->cpumask correctly, -+ * and ->cpu_power to 0. -+ */ -+static void -+init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map, -+ int (*group_fn)(int cpu, const cpumask_t *cpu_map, -+ struct sched_group **sg, -+ cpumask_t *tmpmask), -+ cpumask_t *covered, cpumask_t *tmpmask) -+{ -+ struct sched_group *first = NULL, *last = NULL; -+ int i; -+ -+ cpus_clear(*covered); -+ -+ for_each_cpu_mask_nr(i, *span) { -+ struct sched_group *sg; -+ int group = group_fn(i, cpu_map, &sg, tmpmask); -+ int j; -+ -+ if (cpu_isset(i, *covered)) -+ continue; -+ -+ cpus_clear(sg->cpumask); -+ sg->__cpu_power = 0; -+ -+ for_each_cpu_mask_nr(j, *span) { -+ if (group_fn(j, cpu_map, NULL, tmpmask) != group) -+ continue; -+ -+ cpu_set(j, *covered); -+ cpu_set(j, sg->cpumask); -+ } -+ if (!first) -+ first = sg; -+ if (last) -+ last->next = sg; -+ last = sg; -+ } -+ last->next = first; -+} -+ -+#define SD_NODES_PER_DOMAIN 16 -+ -+#ifdef CONFIG_NUMA -+ -+/** -+ * find_next_best_node - find the next node to include in a sched_domain -+ * @node: node whose sched_domain we're building -+ * @used_nodes: nodes already in the sched_domain -+ * -+ * Find the next node to include in a given scheduling domain. Simply -+ * finds the closest node not already in the @used_nodes map. -+ * -+ * Should use nodemask_t. -+ */ -+static int find_next_best_node(int node, nodemask_t *used_nodes) -+{ -+ int i, n, val, min_val, best_node = 0; -+ -+ min_val = INT_MAX; -+ -+ for (i = 0; i < nr_node_ids; i++) { -+ /* Start at @node */ -+ n = (node + i) % nr_node_ids; -+ -+ if (!nr_cpus_node(n)) -+ continue; -+ -+ /* Skip already used nodes */ -+ if (node_isset(n, *used_nodes)) -+ continue; -+ -+ /* Simple min distance search */ -+ val = node_distance(node, n); -+ -+ if (val < min_val) { -+ min_val = val; -+ best_node = n; -+ } -+ } -+ -+ node_set(best_node, *used_nodes); -+ return best_node; -+} -+ -+/** -+ * sched_domain_node_span - get a cpumask for a node's sched_domain -+ * @node: node whose cpumask we're constructing -+ * @span: resulting cpumask -+ * -+ * Given a node, construct a good cpumask for its sched_domain to span. It -+ * should be one that prevents unnecessary balancing, but also spreads tasks -+ * out optimally. -+ */ -+static void sched_domain_node_span(int node, cpumask_t *span) -+{ -+ nodemask_t used_nodes; -+ node_to_cpumask_ptr(nodemask, node); -+ int i; -+ -+ cpus_clear(*span); -+ nodes_clear(used_nodes); -+ -+ cpus_or(*span, *span, *nodemask); -+ node_set(node, used_nodes); -+ -+ for (i = 1; i < SD_NODES_PER_DOMAIN; i++) { -+ int next_node = find_next_best_node(node, &used_nodes); -+ -+ node_to_cpumask_ptr_next(nodemask, next_node); -+ cpus_or(*span, *span, *nodemask); -+ } -+} -+#endif /* CONFIG_NUMA */ -+ -+int sched_smt_power_savings = 0, sched_mc_power_savings = 0; -+ -+/* -+ * SMT sched-domains: -+ */ -+#ifdef CONFIG_SCHED_SMT -+static DEFINE_PER_CPU(struct sched_domain, cpu_domains); -+static DEFINE_PER_CPU(struct sched_group, sched_group_cpus); -+ -+static int -+cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg, -+ cpumask_t *unused) -+{ -+ if (sg) -+ *sg = &per_cpu(sched_group_cpus, cpu); -+ return cpu; -+} -+#endif /* CONFIG_SCHED_SMT */ -+ -+/* -+ * multi-core sched-domains: -+ */ -+#ifdef CONFIG_SCHED_MC -+static DEFINE_PER_CPU(struct sched_domain, core_domains); -+static DEFINE_PER_CPU(struct sched_group, sched_group_core); -+#endif /* CONFIG_SCHED_MC */ -+ -+#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT) -+static int -+cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg, -+ cpumask_t *mask) -+{ -+ int group; -+ -+ *mask = per_cpu(cpu_sibling_map, cpu); -+ cpus_and(*mask, *mask, *cpu_map); -+ group = first_cpu(*mask); -+ if (sg) -+ *sg = &per_cpu(sched_group_core, group); -+ return group; -+} -+#elif defined(CONFIG_SCHED_MC) -+static int -+cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg, -+ cpumask_t *unused) -+{ -+ if (sg) -+ *sg = &per_cpu(sched_group_core, cpu); -+ return cpu; -+} -+#endif -+ -+static DEFINE_PER_CPU(struct sched_domain, phys_domains); -+static DEFINE_PER_CPU(struct sched_group, sched_group_phys); -+ -+static int -+cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg, -+ cpumask_t *mask) -+{ -+ int group; -+#ifdef CONFIG_SCHED_MC -+ *mask = cpu_coregroup_map(cpu); -+ cpus_and(*mask, *mask, *cpu_map); -+ group = first_cpu(*mask); -+#elif defined(CONFIG_SCHED_SMT) -+ *mask = per_cpu(cpu_sibling_map, cpu); -+ cpus_and(*mask, *mask, *cpu_map); -+ group = first_cpu(*mask); -+#else -+ group = cpu; -+#endif -+ if (sg) -+ *sg = &per_cpu(sched_group_phys, group); -+ return group; -+} -+ -+#ifdef CONFIG_NUMA -+/* -+ * The init_sched_build_groups can't handle what we want to do with node -+ * groups, so roll our own. Now each node has its own list of groups which -+ * gets dynamically allocated. -+ */ -+static DEFINE_PER_CPU(struct sched_domain, node_domains); -+static struct sched_group ***sched_group_nodes_bycpu; -+ -+static DEFINE_PER_CPU(struct sched_domain, allnodes_domains); -+static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes); -+ -+static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map, -+ struct sched_group **sg, cpumask_t *nodemask) -+{ -+ int group; -+ -+ *nodemask = node_to_cpumask(cpu_to_node(cpu)); -+ cpus_and(*nodemask, *nodemask, *cpu_map); -+ group = first_cpu(*nodemask); -+ -+ if (sg) -+ *sg = &per_cpu(sched_group_allnodes, group); -+ return group; -+} -+ -+static void init_numa_sched_groups_power(struct sched_group *group_head) -+{ -+ struct sched_group *sg = group_head; -+ int j; -+ -+ if (!sg) -+ return; -+ do { -+ for_each_cpu_mask_nr(j, sg->cpumask) { -+ struct sched_domain *sd; -+ -+ sd = &per_cpu(phys_domains, j); -+ if (j != first_cpu(sd->groups->cpumask)) { -+ /* -+ * Only add "power" once for each -+ * physical package. -+ */ -+ continue; -+ } -+ -+ sg_inc_cpu_power(sg, sd->groups->__cpu_power); -+ } -+ sg = sg->next; -+ } while (sg != group_head); -+} -+#endif /* CONFIG_NUMA */ -+ -+#ifdef CONFIG_NUMA -+/* Free memory allocated for various sched_group structures */ -+static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask) -+{ -+ int cpu, i; -+ -+ for_each_cpu_mask_nr(cpu, *cpu_map) { -+ struct sched_group **sched_group_nodes -+ = sched_group_nodes_bycpu[cpu]; -+ -+ if (!sched_group_nodes) -+ continue; -+ -+ for (i = 0; i < nr_node_ids; i++) { -+ struct sched_group *oldsg, *sg = sched_group_nodes[i]; -+ -+ *nodemask = node_to_cpumask(i); -+ cpus_and(*nodemask, *nodemask, *cpu_map); -+ if (cpus_empty(*nodemask)) -+ continue; -+ -+ if (sg == NULL) -+ continue; -+ sg = sg->next; -+next_sg: -+ oldsg = sg; -+ sg = sg->next; -+ kfree(oldsg); -+ if (oldsg != sched_group_nodes[i]) -+ goto next_sg; -+ } -+ kfree(sched_group_nodes); -+ sched_group_nodes_bycpu[cpu] = NULL; -+ } -+} -+#else /* !CONFIG_NUMA */ -+static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask) -+{ -+} -+#endif /* CONFIG_NUMA */ -+ -+/* -+ * Initialize sched groups cpu_power. -+ * -+ * cpu_power indicates the capacity of sched group, which is used while -+ * distributing the load between different sched groups in a sched domain. -+ * Typically cpu_power for all the groups in a sched domain will be same unless -+ * there are asymmetries in the topology. If there are asymmetries, group -+ * having more cpu_power will pickup more load compared to the group having -+ * less cpu_power. -+ * -+ * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents -+ * the maximum number of tasks a group can handle in the presence of other idle -+ * or lightly loaded groups in the same sched domain. -+ */ -+static void init_sched_groups_power(int cpu, struct sched_domain *sd) -+{ -+ struct sched_domain *child; -+ struct sched_group *group; -+ -+ WARN_ON(!sd || !sd->groups); -+ -+ if (cpu != first_cpu(sd->groups->cpumask)) -+ return; -+ -+ child = sd->child; -+ -+ sd->groups->__cpu_power = 0; -+ -+ /* -+ * For perf policy, if the groups in child domain share resources -+ * (for example cores sharing some portions of the cache hierarchy -+ * or SMT), then set this domain groups cpu_power such that each group -+ * can handle only one task, when there are other idle groups in the -+ * same sched domain. -+ */ -+ if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) && -+ (child->flags & -+ (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) { -+ sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE); -+ return; -+ } -+ -+ /* -+ * add cpu_power of each child group to this groups cpu_power -+ */ -+ group = child->groups; -+ do { -+ sg_inc_cpu_power(sd->groups, group->__cpu_power); -+ group = group->next; -+ } while (group != child->groups); -+} -+ -+/* -+ * Initializers for schedule domains -+ * Non-inlined to reduce accumulated stack pressure in build_sched_domains() -+ */ -+ -+#define SD_INIT(sd, type) sd_init_##type(sd) -+#define SD_INIT_FUNC(type) \ -+static noinline void sd_init_##type(struct sched_domain *sd) \ -+{ \ -+ memset(sd, 0, sizeof(*sd)); \ -+ *sd = SD_##type##_INIT; \ -+ sd->level = SD_LV_##type; \ -+} -+ -+SD_INIT_FUNC(CPU) -+#ifdef CONFIG_NUMA -+ SD_INIT_FUNC(ALLNODES) -+ SD_INIT_FUNC(NODE) -+#endif -+#ifdef CONFIG_SCHED_SMT -+ SD_INIT_FUNC(SIBLING) -+#endif -+#ifdef CONFIG_SCHED_MC -+ SD_INIT_FUNC(MC) -+#endif -+ -+/* -+ * To minimize stack usage kmalloc room for cpumasks and share the -+ * space as the usage in build_sched_domains() dictates. Used only -+ * if the amount of space is significant. -+ */ -+struct allmasks { -+ cpumask_t tmpmask; /* make this one first */ -+ union { -+ cpumask_t nodemask; -+ cpumask_t this_sibling_map; -+ cpumask_t this_core_map; -+ }; -+ cpumask_t send_covered; -+ -+#ifdef CONFIG_NUMA -+ cpumask_t domainspan; -+ cpumask_t covered; -+ cpumask_t notcovered; -+#endif -+}; -+ -+#if NR_CPUS > 128 -+#define SCHED_CPUMASK_ALLOC 1 -+#define SCHED_CPUMASK_FREE(v) kfree(v) -+#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v -+#else -+#define SCHED_CPUMASK_ALLOC 0 -+#define SCHED_CPUMASK_FREE(v) -+#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v -+#endif -+ -+#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \ -+ ((unsigned long)(a) + offsetof(struct allmasks, v)) -+ -+static int default_relax_domain_level = -1; -+ -+static int __init setup_relax_domain_level(char *str) -+{ -+ unsigned long val; -+ -+ val = simple_strtoul(str, NULL, 0); -+ if (val < SD_LV_MAX) -+ default_relax_domain_level = val; -+ -+ return 1; -+} -+__setup("relax_domain_level=", setup_relax_domain_level); -+ -+static void set_domain_attribute(struct sched_domain *sd, -+ struct sched_domain_attr *attr) -+{ -+ int request; -+ -+ if (!attr || attr->relax_domain_level < 0) { -+ if (default_relax_domain_level < 0) -+ return; -+ else -+ request = default_relax_domain_level; -+ } else -+ request = attr->relax_domain_level; -+ if (request < sd->level) { -+ /* turn off idle balance on this domain */ -+ sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE); -+ } else { -+ /* turn on idle balance on this domain */ -+ sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE); -+ } -+} -+ -+/* -+ * Build sched domains for a given set of cpus and attach the sched domains -+ * to the individual cpus -+ */ -+static int __build_sched_domains(const cpumask_t *cpu_map, -+ struct sched_domain_attr *attr) -+{ -+ int i; -+ struct root_domain *rd; -+ SCHED_CPUMASK_DECLARE(allmasks); -+ cpumask_t *tmpmask; -+#ifdef CONFIG_NUMA -+ struct sched_group **sched_group_nodes = NULL; -+ int sd_allnodes = 0; -+ -+ /* -+ * Allocate the per-node list of sched groups -+ */ -+ sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *), -+ GFP_KERNEL); -+ if (!sched_group_nodes) { -+ printk(KERN_WARNING "Can not alloc sched group node list\n"); -+ return -ENOMEM; -+ } -+#endif -+ -+ rd = alloc_rootdomain(); -+ if (!rd) { -+ printk(KERN_WARNING "Cannot alloc root domain\n"); -+#ifdef CONFIG_NUMA -+ kfree(sched_group_nodes); -+#endif -+ return -ENOMEM; -+ } -+ -+#if SCHED_CPUMASK_ALLOC -+ /* get space for all scratch cpumask variables */ -+ allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL); -+ if (!allmasks) { -+ printk(KERN_WARNING "Cannot alloc cpumask array\n"); -+ kfree(rd); -+#ifdef CONFIG_NUMA -+ kfree(sched_group_nodes); -+#endif -+ return -ENOMEM; -+ } -+#endif -+ tmpmask = (cpumask_t *)allmasks; -+ -+ -+#ifdef CONFIG_NUMA -+ sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes; -+#endif -+ -+ /* -+ * Set up domains for cpus specified by the cpu_map. -+ */ -+ for_each_cpu_mask_nr(i, *cpu_map) { -+ struct sched_domain *sd = NULL, *p; -+ SCHED_CPUMASK_VAR(nodemask, allmasks); -+ -+ *nodemask = node_to_cpumask(cpu_to_node(i)); -+ cpus_and(*nodemask, *nodemask, *cpu_map); -+ -+#ifdef CONFIG_NUMA -+ if (cpus_weight(*cpu_map) > -+ SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) { -+ sd = &per_cpu(allnodes_domains, i); -+ SD_INIT(sd, ALLNODES); -+ set_domain_attribute(sd, attr); -+ sd->span = *cpu_map; -+ cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask); -+ p = sd; -+ sd_allnodes = 1; -+ } else -+ p = NULL; -+ -+ sd = &per_cpu(node_domains, i); -+ SD_INIT(sd, NODE); -+ set_domain_attribute(sd, attr); -+ sched_domain_node_span(cpu_to_node(i), &sd->span); -+ sd->parent = p; -+ if (p) -+ p->child = sd; -+ cpus_and(sd->span, sd->span, *cpu_map); -+#endif -+ -+ p = sd; -+ sd = &per_cpu(phys_domains, i); -+ SD_INIT(sd, CPU); -+ set_domain_attribute(sd, attr); -+ sd->span = *nodemask; -+ sd->parent = p; -+ if (p) -+ p->child = sd; -+ cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask); -+ -+#ifdef CONFIG_SCHED_MC -+ p = sd; -+ sd = &per_cpu(core_domains, i); -+ SD_INIT(sd, MC); -+ set_domain_attribute(sd, attr); -+ sd->span = cpu_coregroup_map(i); -+ cpus_and(sd->span, sd->span, *cpu_map); -+ sd->parent = p; -+ p->child = sd; -+ cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask); -+#endif -+ -+#ifdef CONFIG_SCHED_SMT -+ p = sd; -+ sd = &per_cpu(cpu_domains, i); -+ SD_INIT(sd, SIBLING); -+ set_domain_attribute(sd, attr); -+ sd->span = per_cpu(cpu_sibling_map, i); -+ cpus_and(sd->span, sd->span, *cpu_map); -+ sd->parent = p; -+ p->child = sd; -+ cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask); -+#endif -+ } -+ -+#ifdef CONFIG_SCHED_SMT -+ /* Set up CPU (sibling) groups */ -+ for_each_cpu_mask_nr(i, *cpu_map) { -+ SCHED_CPUMASK_VAR(this_sibling_map, allmasks); -+ SCHED_CPUMASK_VAR(send_covered, allmasks); -+ -+ *this_sibling_map = per_cpu(cpu_sibling_map, i); -+ cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map); -+ if (i != first_cpu(*this_sibling_map)) -+ continue; -+ -+ init_sched_build_groups(this_sibling_map, cpu_map, -+ &cpu_to_cpu_group, -+ send_covered, tmpmask); -+ } -+#endif -+ -+#ifdef CONFIG_SCHED_MC -+ /* Set up multi-core groups */ -+ for_each_cpu_mask_nr(i, *cpu_map) { -+ SCHED_CPUMASK_VAR(this_core_map, allmasks); -+ SCHED_CPUMASK_VAR(send_covered, allmasks); -+ -+ *this_core_map = cpu_coregroup_map(i); -+ cpus_and(*this_core_map, *this_core_map, *cpu_map); -+ if (i != first_cpu(*this_core_map)) -+ continue; -+ -+ init_sched_build_groups(this_core_map, cpu_map, -+ &cpu_to_core_group, -+ send_covered, tmpmask); -+ } -+#endif -+ -+ /* Set up physical groups */ -+ for (i = 0; i < nr_node_ids; i++) { -+ SCHED_CPUMASK_VAR(nodemask, allmasks); -+ SCHED_CPUMASK_VAR(send_covered, allmasks); -+ -+ *nodemask = node_to_cpumask(i); -+ cpus_and(*nodemask, *nodemask, *cpu_map); -+ if (cpus_empty(*nodemask)) -+ continue; -+ -+ init_sched_build_groups(nodemask, cpu_map, -+ &cpu_to_phys_group, -+ send_covered, tmpmask); -+ } -+ -+#ifdef CONFIG_NUMA -+ /* Set up node groups */ -+ if (sd_allnodes) { -+ SCHED_CPUMASK_VAR(send_covered, allmasks); -+ -+ init_sched_build_groups(cpu_map, cpu_map, -+ &cpu_to_allnodes_group, -+ send_covered, tmpmask); -+ } -+ -+ for (i = 0; i < nr_node_ids; i++) { -+ /* Set up node groups */ -+ struct sched_group *sg, *prev; -+ SCHED_CPUMASK_VAR(nodemask, allmasks); -+ SCHED_CPUMASK_VAR(domainspan, allmasks); -+ SCHED_CPUMASK_VAR(covered, allmasks); -+ int j; -+ -+ *nodemask = node_to_cpumask(i); -+ cpus_clear(*covered); -+ -+ cpus_and(*nodemask, *nodemask, *cpu_map); -+ if (cpus_empty(*nodemask)) { -+ sched_group_nodes[i] = NULL; -+ continue; -+ } -+ -+ sched_domain_node_span(i, domainspan); -+ cpus_and(*domainspan, *domainspan, *cpu_map); -+ -+ sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i); -+ if (!sg) { -+ printk(KERN_WARNING "Can not alloc domain group for " -+ "node %d\n", i); -+ goto error; -+ } -+ sched_group_nodes[i] = sg; -+ for_each_cpu_mask_nr(j, *nodemask) { -+ struct sched_domain *sd; -+ -+ sd = &per_cpu(node_domains, j); -+ sd->groups = sg; -+ } -+ sg->__cpu_power = 0; -+ sg->cpumask = *nodemask; -+ sg->next = sg; -+ cpus_or(*covered, *covered, *nodemask); -+ prev = sg; -+ -+ for (j = 0; j < nr_node_ids; j++) { -+ SCHED_CPUMASK_VAR(notcovered, allmasks); -+ int n = (i + j) % nr_node_ids; -+ node_to_cpumask_ptr(pnodemask, n); -+ -+ cpus_complement(*notcovered, *covered); -+ cpus_and(*tmpmask, *notcovered, *cpu_map); -+ cpus_and(*tmpmask, *tmpmask, *domainspan); -+ if (cpus_empty(*tmpmask)) -+ break; -+ -+ cpus_and(*tmpmask, *tmpmask, *pnodemask); -+ if (cpus_empty(*tmpmask)) -+ continue; -+ -+ sg = kmalloc_node(sizeof(struct sched_group), -+ GFP_KERNEL, i); -+ if (!sg) { -+ printk(KERN_WARNING -+ "Can not alloc domain group for node %d\n", j); -+ goto error; -+ } -+ sg->__cpu_power = 0; -+ sg->cpumask = *tmpmask; -+ sg->next = prev->next; -+ cpus_or(*covered, *covered, *tmpmask); -+ prev->next = sg; -+ prev = sg; -+ } -+ } -+#endif -+ -+ /* Calculate CPU power for physical packages and nodes */ -+#ifdef CONFIG_SCHED_SMT -+ for_each_cpu_mask_nr(i, *cpu_map) { -+ struct sched_domain *sd = &per_cpu(cpu_domains, i); -+ -+ init_sched_groups_power(i, sd); -+ } -+#endif -+#ifdef CONFIG_SCHED_MC -+ for_each_cpu_mask_nr(i, *cpu_map) { -+ struct sched_domain *sd = &per_cpu(core_domains, i); -+ -+ init_sched_groups_power(i, sd); -+ } -+#endif -+ -+ for_each_cpu_mask_nr(i, *cpu_map) { -+ struct sched_domain *sd = &per_cpu(phys_domains, i); -+ -+ init_sched_groups_power(i, sd); -+ } -+ -+#ifdef CONFIG_NUMA -+ for (i = 0; i < nr_node_ids; i++) -+ init_numa_sched_groups_power(sched_group_nodes[i]); -+ -+ if (sd_allnodes) { -+ struct sched_group *sg; -+ -+ cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg, -+ tmpmask); -+ init_numa_sched_groups_power(sg); -+ } -+#endif -+ -+ /* Attach the domains */ -+ for_each_cpu_mask_nr(i, *cpu_map) { -+ struct sched_domain *sd; -+#ifdef CONFIG_SCHED_SMT -+ sd = &per_cpu(cpu_domains, i); -+#elif defined(CONFIG_SCHED_MC) -+ sd = &per_cpu(core_domains, i); -+#else -+ sd = &per_cpu(phys_domains, i); -+#endif -+ cpu_attach_domain(sd, rd, i); -+ } -+ -+ SCHED_CPUMASK_FREE((void *)allmasks); -+ return 0; -+ -+#ifdef CONFIG_NUMA -+error: -+ free_sched_groups(cpu_map, tmpmask); -+ SCHED_CPUMASK_FREE((void *)allmasks); -+ return -ENOMEM; -+#endif -+} -+ -+static int build_sched_domains(const cpumask_t *cpu_map) -+{ -+ return __build_sched_domains(cpu_map, NULL); -+} -+ -+static cpumask_t *doms_cur; /* current sched domains */ -+static int ndoms_cur; /* number of sched domains in 'doms_cur' */ -+static struct sched_domain_attr *dattr_cur; -+ /* attribues of custom domains in 'doms_cur' */ -+ -+/* -+ * Special case: If a kmalloc of a doms_cur partition (array of -+ * cpumask_t) fails, then fallback to a single sched domain, -+ * as determined by the single cpumask_t fallback_doms. -+ */ -+static cpumask_t fallback_doms; -+ -+void __attribute__((weak)) arch_update_cpu_topology(void) -+{ -+} -+ -+/* -+ * Set up scheduler domains and groups. Callers must hold the hotplug lock. -+ * For now this just excludes isolated cpus, but could be used to -+ * exclude other special cases in the future. -+ */ -+static int arch_init_sched_domains(const cpumask_t *cpu_map) -+{ -+ int err; -+ -+ arch_update_cpu_topology(); -+ ndoms_cur = 1; -+ doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL); -+ if (!doms_cur) -+ doms_cur = &fallback_doms; -+ cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map); -+ dattr_cur = NULL; -+ err = build_sched_domains(doms_cur); -+ register_sched_domain_sysctl(); -+ -+ return err; -+} -+ -+static void arch_destroy_sched_domains(const cpumask_t *cpu_map, -+ cpumask_t *tmpmask) -+{ -+ free_sched_groups(cpu_map, tmpmask); -+} -+ -+/* -+ * Detach sched domains from a group of cpus specified in cpu_map -+ * These cpus will now be attached to the NULL domain -+ */ -+static void detach_destroy_domains(const cpumask_t *cpu_map) -+{ -+ cpumask_t tmpmask; -+ int i; -+ -+ unregister_sched_domain_sysctl(); -+ -+ for_each_cpu_mask_nr(i, *cpu_map) -+ cpu_attach_domain(NULL, &def_root_domain, i); -+ synchronize_sched(); -+ arch_destroy_sched_domains(cpu_map, &tmpmask); -+} -+ -+/* handle null as "default" */ -+static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, -+ struct sched_domain_attr *new, int idx_new) -+{ -+ struct sched_domain_attr tmp; -+ -+ /* fast path */ -+ if (!new && !cur) -+ return 1; -+ -+ tmp = SD_ATTR_INIT; -+ return !memcmp(cur ? (cur + idx_cur) : &tmp, -+ new ? (new + idx_new) : &tmp, -+ sizeof(struct sched_domain_attr)); -+} -+ -+/* -+ * Partition sched domains as specified by the 'ndoms_new' -+ * cpumasks in the array doms_new[] of cpumasks. This compares -+ * doms_new[] to the current sched domain partitioning, doms_cur[]. -+ * It destroys each deleted domain and builds each new domain. -+ * -+ * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'. -+ * The masks don't intersect (don't overlap.) We should setup one -+ * sched domain for each mask. CPUs not in any of the cpumasks will -+ * not be load balanced. If the same cpumask appears both in the -+ * current 'doms_cur' domains and in the new 'doms_new', we can leave -+ * it as it is. -+ * -+ * The passed in 'doms_new' should be kmalloc'd. This routine takes -+ * ownership of it and will kfree it when done with it. If the caller -+ * failed the kmalloc call, then it can pass in doms_new == NULL && -+ * ndoms_new == 1, and partition_sched_domains() will fallback to -+ * the single partition 'fallback_doms', it also forces the domains -+ * to be rebuilt. -+ * -+ * If doms_new == NULL it will be replaced with cpu_online_map. -+ * ndoms_new == 0 is a special case for destroying existing domains, -+ * and it will not create the default domain. -+ * -+ * Call with hotplug lock held -+ */ -+void partition_sched_domains(int ndoms_new, cpumask_t *doms_new, -+ struct sched_domain_attr *dattr_new) -+{ -+ int i, j, n; -+ -+ mutex_lock(&sched_domains_mutex); -+ -+ /* always unregister in case we don't destroy any domains */ -+ unregister_sched_domain_sysctl(); -+ -+ n = doms_new ? ndoms_new : 0; -+ -+ /* Destroy deleted domains */ -+ for (i = 0; i < ndoms_cur; i++) { -+ for (j = 0; j < n; j++) { -+ if (cpus_equal(doms_cur[i], doms_new[j]) -+ && dattrs_equal(dattr_cur, i, dattr_new, j)) -+ goto match1; -+ } -+ /* no match - a current sched domain not in new doms_new[] */ -+ detach_destroy_domains(doms_cur + i); -+match1: -+ ; -+ } -+ -+ if (doms_new == NULL) { -+ ndoms_cur = 0; -+ doms_new = &fallback_doms; -+ cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map); -+ dattr_new = NULL; -+ } -+ -+ /* Build new domains */ -+ for (i = 0; i < ndoms_new; i++) { -+ for (j = 0; j < ndoms_cur; j++) { -+ if (cpus_equal(doms_new[i], doms_cur[j]) -+ && dattrs_equal(dattr_new, i, dattr_cur, j)) -+ goto match2; -+ } -+ /* no match - add a new doms_new */ -+ __build_sched_domains(doms_new + i, -+ dattr_new ? dattr_new + i : NULL); -+match2: -+ ; -+ } -+ -+ /* Remember the new sched domains */ -+ if (doms_cur != &fallback_doms) -+ kfree(doms_cur); -+ kfree(dattr_cur); /* kfree(NULL) is safe */ -+ doms_cur = doms_new; -+ dattr_cur = dattr_new; -+ ndoms_cur = ndoms_new; -+ -+ register_sched_domain_sysctl(); -+ -+ mutex_unlock(&sched_domains_mutex); -+} -+ -+#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) -+int arch_reinit_sched_domains(void) -+{ -+ get_online_cpus(); -+ -+ /* Destroy domains first to force the rebuild */ -+ partition_sched_domains(0, NULL, NULL); -+ -+ rebuild_sched_domains(); -+ put_online_cpus(); -+ -+ return 0; -+} -+ -+static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt) -+{ -+ int ret; -+ -+ if (buf[0] != '0' && buf[0] != '1') -+ return -EINVAL; -+ -+ if (smt) -+ sched_smt_power_savings = (buf[0] == '1'); -+ else -+ sched_mc_power_savings = (buf[0] == '1'); -+ -+ ret = arch_reinit_sched_domains(); -+ -+ return ret ? ret : count; -+} -+ -+#ifdef CONFIG_SCHED_MC -+static ssize_t sched_mc_power_savings_show(struct sysdev_class *class, -+ char *page) -+{ -+ return sprintf(page, "%u\n", sched_mc_power_savings); -+} -+static ssize_t sched_mc_power_savings_store(struct sysdev_class *class, -+ const char *buf, size_t count) -+{ -+ return sched_power_savings_store(buf, count, 0); -+} -+static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644, -+ sched_mc_power_savings_show, -+ sched_mc_power_savings_store); -+#endif -+ -+#ifdef CONFIG_SCHED_SMT -+static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev, -+ char *page) -+{ -+ return sprintf(page, "%u\n", sched_smt_power_savings); -+} -+static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev, -+ const char *buf, size_t count) -+{ -+ return sched_power_savings_store(buf, count, 1); -+} -+static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644, -+ sched_smt_power_savings_show, -+ sched_smt_power_savings_store); -+#endif -+ -+int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls) -+{ -+ int err = 0; -+ -+#ifdef CONFIG_SCHED_SMT -+ if (smt_capable()) -+ err = sysfs_create_file(&cls->kset.kobj, -+ &attr_sched_smt_power_savings.attr); -+#endif -+#ifdef CONFIG_SCHED_MC -+ if (!err && mc_capable()) -+ err = sysfs_create_file(&cls->kset.kobj, -+ &attr_sched_mc_power_savings.attr); -+#endif -+ return err; -+} -+#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ -+ -+#ifndef CONFIG_CPUSETS -+/* -+ * Add online and remove offline CPUs from the scheduler domains. -+ * When cpusets are enabled they take over this function. -+ */ -+static int update_sched_domains(struct notifier_block *nfb, -+ unsigned long action, void *hcpu) -+{ -+ switch (action) { -+ case CPU_ONLINE: -+ case CPU_ONLINE_FROZEN: -+ case CPU_DEAD: -+ case CPU_DEAD_FROZEN: -+ partition_sched_domains(1, NULL, NULL); -+ return NOTIFY_OK; -+ -+ default: -+ return NOTIFY_DONE; -+ } -+} -+#endif -+ -+static int update_runtime(struct notifier_block *nfb, -+ unsigned long action, void *hcpu) -+{ -+ int cpu = (int)(long)hcpu; -+ -+ switch (action) { -+ case CPU_DOWN_PREPARE: -+ case CPU_DOWN_PREPARE_FROZEN: -+ disable_runtime(cpu_rq(cpu)); -+ return NOTIFY_OK; -+ -+ case CPU_DOWN_FAILED: -+ case CPU_DOWN_FAILED_FROZEN: -+ case CPU_ONLINE: -+ case CPU_ONLINE_FROZEN: -+ enable_runtime(cpu_rq(cpu)); -+ return NOTIFY_OK; -+ -+ default: -+ return NOTIFY_DONE; -+ } -+} -+ -+void __init sched_init_smp(void) -+{ -+ cpumask_t non_isolated_cpus; -+ -+#if defined(CONFIG_NUMA) -+ sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **), -+ GFP_KERNEL); -+ BUG_ON(sched_group_nodes_bycpu == NULL); -+#endif -+ get_online_cpus(); -+ mutex_lock(&sched_domains_mutex); -+ arch_init_sched_domains(&cpu_online_map); -+ cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map); -+ if (cpus_empty(non_isolated_cpus)) -+ cpu_set(smp_processor_id(), non_isolated_cpus); -+ mutex_unlock(&sched_domains_mutex); -+ put_online_cpus(); -+ -+#ifndef CONFIG_CPUSETS -+ /* XXX: Theoretical race here - CPU may be hotplugged now */ -+ hotcpu_notifier(update_sched_domains, 0); -+#endif -+ -+ /* RT runtime code needs to handle some hotplug events */ -+ hotcpu_notifier(update_runtime, 0); -+ -+ init_hrtick(); -+ -+ /* Move init over to a non-isolated CPU */ -+ if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0) -+ BUG(); -+ sched_init_granularity(); -+} -+#else -+void __init sched_init_smp(void) -+{ -+ sched_init_granularity(); -+} -+#endif /* CONFIG_SMP */ -+ -+int in_sched_functions(unsigned long addr) -+{ -+ return in_lock_functions(addr) || -+ (addr >= (unsigned long)__sched_text_start -+ && addr < (unsigned long)__sched_text_end); -+} -+ -+static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq) -+{ -+ cfs_rq->tasks_timeline = RB_ROOT; -+ INIT_LIST_HEAD(&cfs_rq->tasks); -+#ifdef CONFIG_FAIR_GROUP_SCHED -+ cfs_rq->rq = rq; -+#endif -+ cfs_rq->min_vruntime = (u64)(-(1LL << 20)); -+} -+ -+static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq) -+{ -+ struct rt_prio_array *array; -+ int i; -+ -+ array = &rt_rq->active; -+ for (i = 0; i < MAX_RT_PRIO; i++) { -+ INIT_LIST_HEAD(array->queue + i); -+ __clear_bit(i, array->bitmap); -+ } -+ /* delimiter for bitsearch: */ -+ __set_bit(MAX_RT_PRIO, array->bitmap); -+ -+#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED -+ rt_rq->highest_prio = MAX_RT_PRIO; -+#endif -+#ifdef CONFIG_SMP -+ rt_rq->rt_nr_migratory = 0; -+ rt_rq->overloaded = 0; -+#endif -+ -+ rt_rq->rt_time = 0; -+ rt_rq->rt_throttled = 0; -+ rt_rq->rt_runtime = 0; -+ spin_lock_init(&rt_rq->rt_runtime_lock); -+ -+#ifdef CONFIG_RT_GROUP_SCHED -+ rt_rq->rt_nr_boosted = 0; -+ rt_rq->rq = rq; -+#endif -+} -+ -+#ifdef CONFIG_FAIR_GROUP_SCHED -+static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, -+ struct sched_entity *se, int cpu, int add, -+ struct sched_entity *parent) -+{ -+ struct rq *rq = cpu_rq(cpu); -+ tg->cfs_rq[cpu] = cfs_rq; -+ init_cfs_rq(cfs_rq, rq); -+ cfs_rq->tg = tg; -+ if (add) -+ list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list); -+ -+ tg->se[cpu] = se; -+ /* se could be NULL for init_task_group */ -+ if (!se) -+ return; -+ -+ if (!parent) -+ se->cfs_rq = &rq->cfs; -+ else -+ se->cfs_rq = parent->my_q; -+ -+ se->my_q = cfs_rq; -+ se->load.weight = tg->shares; -+ se->load.inv_weight = 0; -+ se->parent = parent; -+} -+#endif -+ -+#ifdef CONFIG_RT_GROUP_SCHED -+static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, -+ struct sched_rt_entity *rt_se, int cpu, int add, -+ struct sched_rt_entity *parent) -+{ -+ struct rq *rq = cpu_rq(cpu); -+ -+ tg->rt_rq[cpu] = rt_rq; -+ init_rt_rq(rt_rq, rq); -+ rt_rq->tg = tg; -+ rt_rq->rt_se = rt_se; -+ rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; -+ if (add) -+ list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list); -+ -+ tg->rt_se[cpu] = rt_se; -+ if (!rt_se) -+ return; -+ -+ if (!parent) -+ rt_se->rt_rq = &rq->rt; -+ else -+ rt_se->rt_rq = parent->my_q; -+ -+ rt_se->my_q = rt_rq; -+ rt_se->parent = parent; -+ INIT_LIST_HEAD(&rt_se->run_list); -+} -+#endif -+ -+void __init sched_init(void) -+{ -+ int i, j; -+ unsigned long alloc_size = 0, ptr; -+ -+#ifdef CONFIG_FAIR_GROUP_SCHED -+ alloc_size += 2 * nr_cpu_ids * sizeof(void **); -+#endif -+#ifdef CONFIG_RT_GROUP_SCHED -+ alloc_size += 2 * nr_cpu_ids * sizeof(void **); -+#endif -+#ifdef CONFIG_USER_SCHED -+ alloc_size *= 2; -+#endif -+ /* -+ * As sched_init() is called before page_alloc is setup, -+ * we use alloc_bootmem(). -+ */ -+ if (alloc_size) { -+ ptr = (unsigned long)alloc_bootmem(alloc_size); -+ -+#ifdef CONFIG_FAIR_GROUP_SCHED -+ init_task_group.se = (struct sched_entity **)ptr; -+ ptr += nr_cpu_ids * sizeof(void **); -+ -+ init_task_group.cfs_rq = (struct cfs_rq **)ptr; -+ ptr += nr_cpu_ids * sizeof(void **); -+ -+#ifdef CONFIG_USER_SCHED -+ root_task_group.se = (struct sched_entity **)ptr; -+ ptr += nr_cpu_ids * sizeof(void **); -+ -+ root_task_group.cfs_rq = (struct cfs_rq **)ptr; -+ ptr += nr_cpu_ids * sizeof(void **); -+#endif /* CONFIG_USER_SCHED */ -+#endif /* CONFIG_FAIR_GROUP_SCHED */ -+#ifdef CONFIG_RT_GROUP_SCHED -+ init_task_group.rt_se = (struct sched_rt_entity **)ptr; -+ ptr += nr_cpu_ids * sizeof(void **); -+ -+ init_task_group.rt_rq = (struct rt_rq **)ptr; -+ ptr += nr_cpu_ids * sizeof(void **); -+ -+#ifdef CONFIG_USER_SCHED -+ root_task_group.rt_se = (struct sched_rt_entity **)ptr; -+ ptr += nr_cpu_ids * sizeof(void **); -+ -+ root_task_group.rt_rq = (struct rt_rq **)ptr; -+ ptr += nr_cpu_ids * sizeof(void **); -+#endif /* CONFIG_USER_SCHED */ -+#endif /* CONFIG_RT_GROUP_SCHED */ -+ } -+ -+#ifdef CONFIG_SMP -+ init_defrootdomain(); -+#endif -+ -+ init_rt_bandwidth(&def_rt_bandwidth, -+ global_rt_period(), global_rt_runtime()); -+ -+#ifdef CONFIG_RT_GROUP_SCHED -+ init_rt_bandwidth(&init_task_group.rt_bandwidth, -+ global_rt_period(), global_rt_runtime()); -+#ifdef CONFIG_USER_SCHED -+ init_rt_bandwidth(&root_task_group.rt_bandwidth, -+ global_rt_period(), RUNTIME_INF); -+#endif /* CONFIG_USER_SCHED */ -+#endif /* CONFIG_RT_GROUP_SCHED */ -+ -+#ifdef CONFIG_GROUP_SCHED -+ list_add(&init_task_group.list, &task_groups); -+ INIT_LIST_HEAD(&init_task_group.children); -+ -+#ifdef CONFIG_USER_SCHED -+ INIT_LIST_HEAD(&root_task_group.children); -+ init_task_group.parent = &root_task_group; -+ list_add(&init_task_group.siblings, &root_task_group.children); -+#endif /* CONFIG_USER_SCHED */ -+#endif /* CONFIG_GROUP_SCHED */ -+ -+ for_each_possible_cpu(i) { -+ struct rq *rq; -+ -+ rq = cpu_rq(i); -+ spin_lock_init(&rq->lock); -+ rq->nr_running = 0; -+ init_cfs_rq(&rq->cfs, rq); -+ init_rt_rq(&rq->rt, rq); -+#ifdef CONFIG_FAIR_GROUP_SCHED -+ init_task_group.shares = init_task_group_load; -+ INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); -+#ifdef CONFIG_CGROUP_SCHED -+ /* -+ * How much cpu bandwidth does init_task_group get? -+ * -+ * In case of task-groups formed thr' the cgroup filesystem, it -+ * gets 100% of the cpu resources in the system. This overall -+ * system cpu resource is divided among the tasks of -+ * init_task_group and its child task-groups in a fair manner, -+ * based on each entity's (task or task-group's) weight -+ * (se->load.weight). -+ * -+ * In other words, if init_task_group has 10 tasks of weight -+ * 1024) and two child groups A0 and A1 (of weight 1024 each), -+ * then A0's share of the cpu resource is: -+ * -+ * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% -+ * -+ * We achieve this by letting init_task_group's tasks sit -+ * directly in rq->cfs (i.e init_task_group->se[] = NULL). -+ */ -+ init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL); -+#elif defined CONFIG_USER_SCHED -+ root_task_group.shares = NICE_0_LOAD; -+ init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL); -+ /* -+ * In case of task-groups formed thr' the user id of tasks, -+ * init_task_group represents tasks belonging to root user. -+ * Hence it forms a sibling of all subsequent groups formed. -+ * In this case, init_task_group gets only a fraction of overall -+ * system cpu resource, based on the weight assigned to root -+ * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished -+ * by letting tasks of init_task_group sit in a separate cfs_rq -+ * (init_cfs_rq) and having one entity represent this group of -+ * tasks in rq->cfs (i.e init_task_group->se[] != NULL). -+ */ -+ init_tg_cfs_entry(&init_task_group, -+ &per_cpu(init_cfs_rq, i), -+ &per_cpu(init_sched_entity, i), i, 1, -+ root_task_group.se[i]); -+ -+#endif -+#endif /* CONFIG_FAIR_GROUP_SCHED */ -+ -+ rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; -+#ifdef CONFIG_RT_GROUP_SCHED -+ INIT_LIST_HEAD(&rq->leaf_rt_rq_list); -+#ifdef CONFIG_CGROUP_SCHED -+ init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL); -+#elif defined CONFIG_USER_SCHED -+ init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL); -+ init_tg_rt_entry(&init_task_group, -+ &per_cpu(init_rt_rq, i), -+ &per_cpu(init_sched_rt_entity, i), i, 1, -+ root_task_group.rt_se[i]); -+#endif -+#endif -+ -+ for (j = 0; j < CPU_LOAD_IDX_MAX; j++) -+ rq->cpu_load[j] = 0; -+#ifdef CONFIG_SMP -+ rq->sd = NULL; -+ rq->rd = NULL; -+ rq->active_balance = 0; -+ rq->next_balance = jiffies; -+ rq->push_cpu = 0; -+ rq->cpu = i; -+ rq->online = 0; -+ rq->migration_thread = NULL; -+ INIT_LIST_HEAD(&rq->migration_queue); -+ rq_attach_root(rq, &def_root_domain); -+#endif -+ init_rq_hrtick(rq); -+ atomic_set(&rq->nr_iowait, 0); -+ } -+ -+ set_load_weight(&init_task); -+ -+#ifdef CONFIG_PREEMPT_NOTIFIERS -+ INIT_HLIST_HEAD(&init_task.preempt_notifiers); -+#endif -+ -+#ifdef CONFIG_SMP -+ open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); -+#endif -+ -+#ifdef CONFIG_RT_MUTEXES -+ plist_head_init(&init_task.pi_waiters, &init_task.pi_lock); -+#endif -+ -+ /* -+ * The boot idle thread does lazy MMU switching as well: -+ */ -+ atomic_inc(&init_mm.mm_count); -+ enter_lazy_tlb(&init_mm, current); -+ -+ /* -+ * Make us the idle thread. Technically, schedule() should not be -+ * called from this thread, however somewhere below it might be, -+ * but because we are the idle thread, we just pick up running again -+ * when this runqueue becomes "idle". -+ */ -+ init_idle(current, smp_processor_id()); -+ /* -+ * During early bootup we pretend to be a normal task: -+ */ -+ current->sched_class = &fair_sched_class; -+ -+ scheduler_running = 1; -+} -+ -+#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP -+void __might_sleep(char *file, int line) -+{ -+#ifdef in_atomic -+ static unsigned long prev_jiffy; /* ratelimiting */ -+ -+ if ((in_atomic() || irqs_disabled()) && -+ system_state == SYSTEM_RUNNING && !oops_in_progress) { -+ if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) -+ return; -+ prev_jiffy = jiffies; -+ printk(KERN_ERR "BUG: sleeping function called from invalid" -+ " context at %s:%d\n", file, line); -+ printk("in_atomic():%d, irqs_disabled():%d\n", -+ in_atomic(), irqs_disabled()); -+ debug_show_held_locks(current); -+ if (irqs_disabled()) -+ print_irqtrace_events(current); -+ dump_stack(); -+ } -+#endif -+} -+EXPORT_SYMBOL(__might_sleep); -+#endif -+ -+#ifdef CONFIG_MAGIC_SYSRQ -+static void normalize_task(struct rq *rq, struct task_struct *p) -+{ -+ int on_rq; -+ -+ update_rq_clock(rq); -+ on_rq = p->se.on_rq; -+ if (on_rq) -+ deactivate_task(rq, p, 0); -+ __setscheduler(rq, p, SCHED_NORMAL, 0); -+ if (on_rq) { -+ activate_task(rq, p, 0); -+ resched_task(rq->curr); -+ } -+} -+ -+void normalize_rt_tasks(void) -+{ -+ struct task_struct *g, *p; -+ unsigned long flags; -+ struct rq *rq; -+ -+ read_lock_irqsave(&tasklist_lock, flags); -+ do_each_thread(g, p) { -+ /* -+ * Only normalize user tasks: -+ */ -+ if (!p->mm) -+ continue; -+ -+ p->se.exec_start = 0; -+#ifdef CONFIG_SCHEDSTATS -+ p->se.wait_start = 0; -+ p->se.sleep_start = 0; -+ p->se.block_start = 0; -+#endif -+ -+ if (!rt_task(p)) { -+ /* -+ * Renice negative nice level userspace -+ * tasks back to 0: -+ */ -+ if (TASK_NICE(p) < 0 && p->mm) -+ set_user_nice(p, 0); -+ continue; -+ } -+ -+ spin_lock(&p->pi_lock); -+ rq = __task_rq_lock(p); -+ -+ normalize_task(rq, p); -+ -+ __task_rq_unlock(rq); -+ spin_unlock(&p->pi_lock); -+ } while_each_thread(g, p); -+ -+ read_unlock_irqrestore(&tasklist_lock, flags); -+} -+ -+#endif /* CONFIG_MAGIC_SYSRQ */ -+ -+#ifdef CONFIG_IA64 -+/* -+ * These functions are only useful for the IA64 MCA handling. -+ * -+ * They can only be called when the whole system has been -+ * stopped - every CPU needs to be quiescent, and no scheduling -+ * activity can take place. Using them for anything else would -+ * be a serious bug, and as a result, they aren't even visible -+ * under any other configuration. -+ */ -+ -+/** -+ * curr_task - return the current task for a given cpu. -+ * @cpu: the processor in question. -+ * -+ * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! -+ */ -+struct task_struct *curr_task(int cpu) -+{ -+ return cpu_curr(cpu); -+} -+ -+/** -+ * set_curr_task - set the current task for a given cpu. -+ * @cpu: the processor in question. -+ * @p: the task pointer to set. -+ * -+ * Description: This function must only be used when non-maskable interrupts -+ * are serviced on a separate stack. It allows the architecture to switch the -+ * notion of the current task on a cpu in a non-blocking manner. This function -+ * must be called with all CPU's synchronized, and interrupts disabled, the -+ * and caller must save the original value of the current task (see -+ * curr_task() above) and restore that value before reenabling interrupts and -+ * re-starting the system. -+ * -+ * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! -+ */ -+void set_curr_task(int cpu, struct task_struct *p) -+{ -+ cpu_curr(cpu) = p; -+} -+ -+#endif -+ -+#ifdef CONFIG_FAIR_GROUP_SCHED -+static void free_fair_sched_group(struct task_group *tg) -+{ -+ int i; -+ -+ for_each_possible_cpu(i) { -+ if (tg->cfs_rq) -+ kfree(tg->cfs_rq[i]); -+ if (tg->se) -+ kfree(tg->se[i]); -+ } -+ -+ kfree(tg->cfs_rq); -+ kfree(tg->se); -+} -+ -+static -+int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) -+{ -+ struct cfs_rq *cfs_rq; -+ struct sched_entity *se, *parent_se; -+ struct rq *rq; -+ int i; -+ -+ tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); -+ if (!tg->cfs_rq) -+ goto err; -+ tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); -+ if (!tg->se) -+ goto err; -+ -+ tg->shares = NICE_0_LOAD; -+ -+ for_each_possible_cpu(i) { -+ rq = cpu_rq(i); -+ -+ cfs_rq = kmalloc_node(sizeof(struct cfs_rq), -+ GFP_KERNEL|__GFP_ZERO, cpu_to_node(i)); -+ if (!cfs_rq) -+ goto err; -+ -+ se = kmalloc_node(sizeof(struct sched_entity), -+ GFP_KERNEL|__GFP_ZERO, cpu_to_node(i)); -+ if (!se) -+ goto err; -+ -+ parent_se = parent ? parent->se[i] : NULL; -+ init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se); -+ } -+ -+ return 1; -+ -+ err: -+ return 0; -+} -+ -+static inline void register_fair_sched_group(struct task_group *tg, int cpu) -+{ -+ list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list, -+ &cpu_rq(cpu)->leaf_cfs_rq_list); -+} -+ -+static inline void unregister_fair_sched_group(struct task_group *tg, int cpu) -+{ -+ list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list); -+} -+#else /* !CONFG_FAIR_GROUP_SCHED */ -+static inline void free_fair_sched_group(struct task_group *tg) -+{ -+} -+ -+static inline -+int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) -+{ -+ return 1; -+} -+ -+static inline void register_fair_sched_group(struct task_group *tg, int cpu) -+{ -+} -+ -+static inline void unregister_fair_sched_group(struct task_group *tg, int cpu) -+{ -+} -+#endif /* CONFIG_FAIR_GROUP_SCHED */ -+ -+#ifdef CONFIG_RT_GROUP_SCHED -+static void free_rt_sched_group(struct task_group *tg) -+{ -+ int i; -+ -+ destroy_rt_bandwidth(&tg->rt_bandwidth); -+ -+ for_each_possible_cpu(i) { -+ if (tg->rt_rq) -+ kfree(tg->rt_rq[i]); -+ if (tg->rt_se) -+ kfree(tg->rt_se[i]); -+ } -+ -+ kfree(tg->rt_rq); -+ kfree(tg->rt_se); -+} -+ -+static -+int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) -+{ -+ struct rt_rq *rt_rq; -+ struct sched_rt_entity *rt_se, *parent_se; -+ struct rq *rq; -+ int i; -+ -+ tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL); -+ if (!tg->rt_rq) -+ goto err; -+ tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL); -+ if (!tg->rt_se) -+ goto err; -+ -+ init_rt_bandwidth(&tg->rt_bandwidth, -+ ktime_to_ns(def_rt_bandwidth.rt_period), 0); -+ -+ for_each_possible_cpu(i) { -+ rq = cpu_rq(i); -+ -+ rt_rq = kmalloc_node(sizeof(struct rt_rq), -+ GFP_KERNEL|__GFP_ZERO, cpu_to_node(i)); -+ if (!rt_rq) -+ goto err; -+ -+ rt_se = kmalloc_node(sizeof(struct sched_rt_entity), -+ GFP_KERNEL|__GFP_ZERO, cpu_to_node(i)); -+ if (!rt_se) -+ goto err; -+ -+ parent_se = parent ? parent->rt_se[i] : NULL; -+ init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se); -+ } -+ -+ return 1; -+ -+ err: -+ return 0; -+} -+ -+static inline void register_rt_sched_group(struct task_group *tg, int cpu) -+{ -+ list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list, -+ &cpu_rq(cpu)->leaf_rt_rq_list); -+} -+ -+static inline void unregister_rt_sched_group(struct task_group *tg, int cpu) -+{ -+ list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list); -+} -+#else /* !CONFIG_RT_GROUP_SCHED */ -+static inline void free_rt_sched_group(struct task_group *tg) -+{ -+} -+ -+static inline -+int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) -+{ -+ return 1; -+} -+ -+static inline void register_rt_sched_group(struct task_group *tg, int cpu) -+{ -+} -+ -+static inline void unregister_rt_sched_group(struct task_group *tg, int cpu) -+{ -+} -+#endif /* CONFIG_RT_GROUP_SCHED */ -+ -+#ifdef CONFIG_GROUP_SCHED -+static void free_sched_group(struct task_group *tg) -+{ -+ free_fair_sched_group(tg); -+ free_rt_sched_group(tg); -+ kfree(tg); -+} -+ -+/* allocate runqueue etc for a new task group */ -+struct task_group *sched_create_group(struct task_group *parent) -+{ -+ struct task_group *tg; -+ unsigned long flags; -+ int i; -+ -+ tg = kzalloc(sizeof(*tg), GFP_KERNEL); -+ if (!tg) -+ return ERR_PTR(-ENOMEM); -+ -+ if (!alloc_fair_sched_group(tg, parent)) -+ goto err; -+ -+ if (!alloc_rt_sched_group(tg, parent)) -+ goto err; -+ -+ spin_lock_irqsave(&task_group_lock, flags); -+ for_each_possible_cpu(i) { -+ register_fair_sched_group(tg, i); -+ register_rt_sched_group(tg, i); -+ } -+ list_add_rcu(&tg->list, &task_groups); -+ -+ WARN_ON(!parent); /* root should already exist */ -+ -+ tg->parent = parent; -+ INIT_LIST_HEAD(&tg->children); -+ list_add_rcu(&tg->siblings, &parent->children); -+ spin_unlock_irqrestore(&task_group_lock, flags); -+ -+ return tg; -+ -+err: -+ free_sched_group(tg); -+ return ERR_PTR(-ENOMEM); -+} -+ -+/* rcu callback to free various structures associated with a task group */ -+static void free_sched_group_rcu(struct rcu_head *rhp) -+{ -+ /* now it should be safe to free those cfs_rqs */ -+ free_sched_group(container_of(rhp, struct task_group, rcu)); -+} -+ -+/* Destroy runqueue etc associated with a task group */ -+void sched_destroy_group(struct task_group *tg) -+{ -+ unsigned long flags; -+ int i; -+ -+ spin_lock_irqsave(&task_group_lock, flags); -+ for_each_possible_cpu(i) { -+ unregister_fair_sched_group(tg, i); -+ unregister_rt_sched_group(tg, i); -+ } -+ list_del_rcu(&tg->list); -+ list_del_rcu(&tg->siblings); -+ spin_unlock_irqrestore(&task_group_lock, flags); -+ -+ /* wait for possible concurrent references to cfs_rqs complete */ -+ call_rcu(&tg->rcu, free_sched_group_rcu); -+} -+ -+/* change task's runqueue when it moves between groups. -+ * The caller of this function should have put the task in its new group -+ * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to -+ * reflect its new group. -+ */ -+void sched_move_task(struct task_struct *tsk) -+{ -+ int on_rq, running; -+ unsigned long flags; -+ struct rq *rq; -+ -+ rq = task_rq_lock(tsk, &flags); -+ -+ update_rq_clock(rq); -+ -+ running = task_current(rq, tsk); -+ on_rq = tsk->se.on_rq; -+ -+ if (on_rq) -+ dequeue_task(rq, tsk, 0); -+ if (unlikely(running)) -+ tsk->sched_class->put_prev_task(rq, tsk); -+ -+ set_task_rq(tsk, task_cpu(tsk)); -+ -+#ifdef CONFIG_FAIR_GROUP_SCHED -+ if (tsk->sched_class->moved_group) -+ tsk->sched_class->moved_group(tsk); -+#endif -+ -+ if (unlikely(running)) -+ tsk->sched_class->set_curr_task(rq); -+ if (on_rq) -+ enqueue_task(rq, tsk, 0); -+ -+ task_rq_unlock(rq, &flags); -+} -+#endif /* CONFIG_GROUP_SCHED */ -+ -+#ifdef CONFIG_FAIR_GROUP_SCHED -+static void __set_se_shares(struct sched_entity *se, unsigned long shares) -+{ -+ struct cfs_rq *cfs_rq = se->cfs_rq; -+ int on_rq; -+ -+ on_rq = se->on_rq; -+ if (on_rq) -+ dequeue_entity(cfs_rq, se, 0); -+ -+ se->load.weight = shares; -+ se->load.inv_weight = 0; -+ -+ if (on_rq) -+ enqueue_entity(cfs_rq, se, 0); -+} -+ -+static void set_se_shares(struct sched_entity *se, unsigned long shares) -+{ -+ struct cfs_rq *cfs_rq = se->cfs_rq; -+ struct rq *rq = cfs_rq->rq; -+ unsigned long flags; -+ -+ spin_lock_irqsave(&rq->lock, flags); -+ __set_se_shares(se, shares); -+ spin_unlock_irqrestore(&rq->lock, flags); -+} -+ -+static DEFINE_MUTEX(shares_mutex); -+ -+int sched_group_set_shares(struct task_group *tg, unsigned long shares) -+{ -+ int i; -+ unsigned long flags; -+ -+ /* -+ * We can't change the weight of the root cgroup. -+ */ -+ if (!tg->se[0]) -+ return -EINVAL; -+ -+ if (shares < MIN_SHARES) -+ shares = MIN_SHARES; -+ else if (shares > MAX_SHARES) -+ shares = MAX_SHARES; -+ -+ mutex_lock(&shares_mutex); -+ if (tg->shares == shares) -+ goto done; -+ -+ spin_lock_irqsave(&task_group_lock, flags); -+ for_each_possible_cpu(i) -+ unregister_fair_sched_group(tg, i); -+ list_del_rcu(&tg->siblings); -+ spin_unlock_irqrestore(&task_group_lock, flags); -+ -+ /* wait for any ongoing reference to this group to finish */ -+ synchronize_sched(); -+ -+ /* -+ * Now we are free to modify the group's share on each cpu -+ * w/o tripping rebalance_share or load_balance_fair. -+ */ -+ tg->shares = shares; -+ for_each_possible_cpu(i) { -+ /* -+ * force a rebalance -+ */ -+ cfs_rq_set_shares(tg->cfs_rq[i], 0); -+ set_se_shares(tg->se[i], shares); -+ } -+ -+ /* -+ * Enable load balance activity on this group, by inserting it back on -+ * each cpu's rq->leaf_cfs_rq_list. -+ */ -+ spin_lock_irqsave(&task_group_lock, flags); -+ for_each_possible_cpu(i) -+ register_fair_sched_group(tg, i); -+ list_add_rcu(&tg->siblings, &tg->parent->children); -+ spin_unlock_irqrestore(&task_group_lock, flags); -+done: -+ mutex_unlock(&shares_mutex); -+ return 0; -+} -+ -+unsigned long sched_group_shares(struct task_group *tg) -+{ -+ return tg->shares; -+} -+#endif -+ -+#ifdef CONFIG_RT_GROUP_SCHED -+/* -+ * Ensure that the real time constraints are schedulable. -+ */ -+static DEFINE_MUTEX(rt_constraints_mutex); -+ -+static unsigned long to_ratio(u64 period, u64 runtime) -+{ -+ if (runtime == RUNTIME_INF) -+ return 1ULL << 16; -+ -+ return div64_u64(runtime << 16, period); -+} -+ -+#ifdef CONFIG_CGROUP_SCHED -+static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) -+{ -+ struct task_group *tgi, *parent = tg->parent; -+ unsigned long total = 0; -+ -+ if (!parent) { -+ if (global_rt_period() < period) -+ return 0; -+ -+ return to_ratio(period, runtime) < -+ to_ratio(global_rt_period(), global_rt_runtime()); -+ } -+ -+ if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period) -+ return 0; -+ -+ rcu_read_lock(); -+ list_for_each_entry_rcu(tgi, &parent->children, siblings) { -+ if (tgi == tg) -+ continue; -+ -+ total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period), -+ tgi->rt_bandwidth.rt_runtime); -+ } -+ rcu_read_unlock(); -+ -+ return total + to_ratio(period, runtime) <= -+ to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period), -+ parent->rt_bandwidth.rt_runtime); -+} -+#elif defined CONFIG_USER_SCHED -+static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) -+{ -+ struct task_group *tgi; -+ unsigned long total = 0; -+ unsigned long global_ratio = -+ to_ratio(global_rt_period(), global_rt_runtime()); -+ -+ rcu_read_lock(); -+ list_for_each_entry_rcu(tgi, &task_groups, list) { -+ if (tgi == tg) -+ continue; -+ -+ total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period), -+ tgi->rt_bandwidth.rt_runtime); -+ } -+ rcu_read_unlock(); -+ -+ return total + to_ratio(period, runtime) < global_ratio; -+} -+#endif -+ -+/* Must be called with tasklist_lock held */ -+static inline int tg_has_rt_tasks(struct task_group *tg) -+{ -+ struct task_struct *g, *p; -+ do_each_thread(g, p) { -+ if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg) -+ return 1; -+ } while_each_thread(g, p); -+ return 0; -+} -+ -+static int tg_set_bandwidth(struct task_group *tg, -+ u64 rt_period, u64 rt_runtime) -+{ -+ int i, err = 0; -+ -+ mutex_lock(&rt_constraints_mutex); -+ read_lock(&tasklist_lock); -+ if (rt_runtime == 0 && tg_has_rt_tasks(tg)) { -+ err = -EBUSY; -+ goto unlock; -+ } -+ if (!__rt_schedulable(tg, rt_period, rt_runtime)) { -+ err = -EINVAL; -+ goto unlock; -+ } -+ -+ spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); -+ tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); -+ tg->rt_bandwidth.rt_runtime = rt_runtime; -+ -+ for_each_possible_cpu(i) { -+ struct rt_rq *rt_rq = tg->rt_rq[i]; -+ -+ spin_lock(&rt_rq->rt_runtime_lock); -+ rt_rq->rt_runtime = rt_runtime; -+ spin_unlock(&rt_rq->rt_runtime_lock); -+ } -+ spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); -+ unlock: -+ read_unlock(&tasklist_lock); -+ mutex_unlock(&rt_constraints_mutex); -+ -+ return err; -+} -+ -+int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) -+{ -+ u64 rt_runtime, rt_period; -+ -+ rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); -+ rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; -+ if (rt_runtime_us < 0) -+ rt_runtime = RUNTIME_INF; -+ -+ return tg_set_bandwidth(tg, rt_period, rt_runtime); -+} -+ -+long sched_group_rt_runtime(struct task_group *tg) -+{ -+ u64 rt_runtime_us; -+ -+ if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) -+ return -1; -+ -+ rt_runtime_us = tg->rt_bandwidth.rt_runtime; -+ do_div(rt_runtime_us, NSEC_PER_USEC); -+ return rt_runtime_us; -+} -+ -+int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) -+{ -+ u64 rt_runtime, rt_period; -+ -+ rt_period = (u64)rt_period_us * NSEC_PER_USEC; -+ rt_runtime = tg->rt_bandwidth.rt_runtime; -+ -+ if (rt_period == 0) -+ return -EINVAL; -+ -+ return tg_set_bandwidth(tg, rt_period, rt_runtime); -+} -+ -+long sched_group_rt_period(struct task_group *tg) -+{ -+ u64 rt_period_us; -+ -+ rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); -+ do_div(rt_period_us, NSEC_PER_USEC); -+ return rt_period_us; -+} -+ -+static int sched_rt_global_constraints(void) -+{ -+ struct task_group *tg = &root_task_group; -+ u64 rt_runtime, rt_period; -+ int ret = 0; -+ -+ if (sysctl_sched_rt_period <= 0) -+ return -EINVAL; -+ -+ rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); -+ rt_runtime = tg->rt_bandwidth.rt_runtime; -+ -+ mutex_lock(&rt_constraints_mutex); -+ if (!__rt_schedulable(tg, rt_period, rt_runtime)) -+ ret = -EINVAL; -+ mutex_unlock(&rt_constraints_mutex); -+ -+ return ret; -+} -+#else /* !CONFIG_RT_GROUP_SCHED */ -+static int sched_rt_global_constraints(void) -+{ -+ unsigned long flags; -+ int i; -+ -+ if (sysctl_sched_rt_period <= 0) -+ return -EINVAL; -+ -+ spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); -+ for_each_possible_cpu(i) { -+ struct rt_rq *rt_rq = &cpu_rq(i)->rt; -+ -+ spin_lock(&rt_rq->rt_runtime_lock); -+ rt_rq->rt_runtime = global_rt_runtime(); -+ spin_unlock(&rt_rq->rt_runtime_lock); -+ } -+ spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); -+ -+ return 0; -+} -+#endif /* CONFIG_RT_GROUP_SCHED */ -+ -+int sched_rt_handler(struct ctl_table *table, int write, -+ struct file *filp, void __user *buffer, size_t *lenp, -+ loff_t *ppos) -+{ -+ int ret; -+ int old_period, old_runtime; -+ static DEFINE_MUTEX(mutex); -+ -+ mutex_lock(&mutex); -+ old_period = sysctl_sched_rt_period; -+ old_runtime = sysctl_sched_rt_runtime; -+ -+ ret = proc_dointvec(table, write, filp, buffer, lenp, ppos); -+ -+ if (!ret && write) { -+ ret = sched_rt_global_constraints(); -+ if (ret) { -+ sysctl_sched_rt_period = old_period; -+ sysctl_sched_rt_runtime = old_runtime; -+ } else { -+ def_rt_bandwidth.rt_runtime = global_rt_runtime(); -+ def_rt_bandwidth.rt_period = -+ ns_to_ktime(global_rt_period()); -+ } -+ } -+ mutex_unlock(&mutex); -+ -+ return ret; -+} -+ -+#ifdef CONFIG_CGROUP_SCHED -+ -+/* return corresponding task_group object of a cgroup */ -+static inline struct task_group *cgroup_tg(struct cgroup *cgrp) -+{ -+ return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id), -+ struct task_group, css); -+} -+ -+static struct cgroup_subsys_state * -+cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp) -+{ -+ struct task_group *tg, *parent; -+ -+ if (!cgrp->parent) { -+ /* This is early initialization for the top cgroup */ -+ init_task_group.css.cgroup = cgrp; -+ return &init_task_group.css; -+ } -+ -+ parent = cgroup_tg(cgrp->parent); -+ tg = sched_create_group(parent); -+ if (IS_ERR(tg)) -+ return ERR_PTR(-ENOMEM); -+ -+ /* Bind the cgroup to task_group object we just created */ -+ tg->css.cgroup = cgrp; -+ -+ return &tg->css; -+} -+ -+static void -+cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) -+{ -+ struct task_group *tg = cgroup_tg(cgrp); -+ -+ sched_destroy_group(tg); -+} -+ -+static int -+cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, -+ struct task_struct *tsk) -+{ -+#ifdef CONFIG_RT_GROUP_SCHED -+ /* Don't accept realtime tasks when there is no way for them to run */ -+ if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0) -+ return -EINVAL; -+#else -+ /* We don't support RT-tasks being in separate groups */ -+ if (tsk->sched_class != &fair_sched_class) -+ return -EINVAL; -+#endif -+ -+ return 0; -+} -+ -+static void -+cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, -+ struct cgroup *old_cont, struct task_struct *tsk) -+{ -+ sched_move_task(tsk); -+} -+ -+#ifdef CONFIG_FAIR_GROUP_SCHED -+static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype, -+ u64 shareval) -+{ -+ return sched_group_set_shares(cgroup_tg(cgrp), shareval); -+} -+ -+static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft) -+{ -+ struct task_group *tg = cgroup_tg(cgrp); -+ -+ return (u64) tg->shares; -+} -+#endif /* CONFIG_FAIR_GROUP_SCHED */ -+ -+#ifdef CONFIG_RT_GROUP_SCHED -+static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft, -+ s64 val) -+{ -+ return sched_group_set_rt_runtime(cgroup_tg(cgrp), val); -+} -+ -+static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft) -+{ -+ return sched_group_rt_runtime(cgroup_tg(cgrp)); -+} -+ -+static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype, -+ u64 rt_period_us) -+{ -+ return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us); -+} -+ -+static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft) -+{ -+ return sched_group_rt_period(cgroup_tg(cgrp)); -+} -+#endif /* CONFIG_RT_GROUP_SCHED */ -+ -+static struct cftype cpu_files[] = { -+#ifdef CONFIG_FAIR_GROUP_SCHED -+ { -+ .name = "shares", -+ .read_u64 = cpu_shares_read_u64, -+ .write_u64 = cpu_shares_write_u64, -+ }, -+#endif -+#ifdef CONFIG_RT_GROUP_SCHED -+ { -+ .name = "rt_runtime_us", -+ .read_s64 = cpu_rt_runtime_read, -+ .write_s64 = cpu_rt_runtime_write, -+ }, -+ { -+ .name = "rt_period_us", -+ .read_u64 = cpu_rt_period_read_uint, -+ .write_u64 = cpu_rt_period_write_uint, -+ }, -+#endif -+}; -+ -+static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont) -+{ -+ return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files)); -+} -+ -+struct cgroup_subsys cpu_cgroup_subsys = { -+ .name = "cpu", -+ .create = cpu_cgroup_create, -+ .destroy = cpu_cgroup_destroy, -+ .can_attach = cpu_cgroup_can_attach, -+ .attach = cpu_cgroup_attach, -+ .populate = cpu_cgroup_populate, -+ .subsys_id = cpu_cgroup_subsys_id, -+ .early_init = 1, -+}; -+ -+#endif /* CONFIG_CGROUP_SCHED */ -+ -+#ifdef CONFIG_CGROUP_CPUACCT -+ -+/* -+ * CPU accounting code for task groups. -+ * -+ * Based on the work by Paul Menage (menage@google.com) and Balbir Singh -+ * (balbir@in.ibm.com). -+ */ -+ -+/* track cpu usage of a group of tasks */ -+struct cpuacct { -+ struct cgroup_subsys_state css; -+ /* cpuusage holds pointer to a u64-type object on every cpu */ -+ u64 *cpuusage; -+}; -+ -+struct cgroup_subsys cpuacct_subsys; -+ -+/* return cpu accounting group corresponding to this container */ -+static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp) -+{ -+ return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id), -+ struct cpuacct, css); -+} -+ -+/* return cpu accounting group to which this task belongs */ -+static inline struct cpuacct *task_ca(struct task_struct *tsk) -+{ -+ return container_of(task_subsys_state(tsk, cpuacct_subsys_id), -+ struct cpuacct, css); -+} -+ -+/* create a new cpu accounting group */ -+static struct cgroup_subsys_state *cpuacct_create( -+ struct cgroup_subsys *ss, struct cgroup *cgrp) -+{ -+ struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL); -+ -+ if (!ca) -+ return ERR_PTR(-ENOMEM); -+ -+ ca->cpuusage = alloc_percpu(u64); -+ if (!ca->cpuusage) { -+ kfree(ca); -+ return ERR_PTR(-ENOMEM); -+ } -+ -+ return &ca->css; -+} -+ -+/* destroy an existing cpu accounting group */ -+static void -+cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) -+{ -+ struct cpuacct *ca = cgroup_ca(cgrp); -+ -+ free_percpu(ca->cpuusage); -+ kfree(ca); -+} -+ -+/* return total cpu usage (in nanoseconds) of a group */ -+static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft) -+{ -+ struct cpuacct *ca = cgroup_ca(cgrp); -+ u64 totalcpuusage = 0; -+ int i; -+ -+ for_each_possible_cpu(i) { -+ u64 *cpuusage = percpu_ptr(ca->cpuusage, i); -+ -+ /* -+ * Take rq->lock to make 64-bit addition safe on 32-bit -+ * platforms. -+ */ -+ spin_lock_irq(&cpu_rq(i)->lock); -+ totalcpuusage += *cpuusage; -+ spin_unlock_irq(&cpu_rq(i)->lock); -+ } -+ -+ return totalcpuusage; -+} -+ -+static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype, -+ u64 reset) -+{ -+ struct cpuacct *ca = cgroup_ca(cgrp); -+ int err = 0; -+ int i; -+ -+ if (reset) { -+ err = -EINVAL; -+ goto out; -+ } -+ -+ for_each_possible_cpu(i) { -+ u64 *cpuusage = percpu_ptr(ca->cpuusage, i); -+ -+ spin_lock_irq(&cpu_rq(i)->lock); -+ *cpuusage = 0; -+ spin_unlock_irq(&cpu_rq(i)->lock); -+ } -+out: -+ return err; -+} -+ -+static struct cftype files[] = { -+ { -+ .name = "usage", -+ .read_u64 = cpuusage_read, -+ .write_u64 = cpuusage_write, -+ }, -+}; -+ -+static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp) -+{ -+ return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files)); -+} -+ -+/* -+ * charge this task's execution time to its accounting group. -+ * -+ * called with rq->lock held. -+ */ -+static void cpuacct_charge(struct task_struct *tsk, u64 cputime) -+{ -+ struct cpuacct *ca; -+ -+ if (!cpuacct_subsys.active) -+ return; -+ -+ ca = task_ca(tsk); -+ if (ca) { -+ u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk)); -+ -+ *cpuusage += cputime; -+ } -+} -+ -+struct cgroup_subsys cpuacct_subsys = { -+ .name = "cpuacct", -+ .create = cpuacct_create, -+ .destroy = cpuacct_destroy, -+ .populate = cpuacct_populate, -+ .subsys_id = cpuacct_subsys_id, -+}; -+#endif /* CONFIG_CGROUP_CPUACCT */ diff -Nurb linux-2.6.27-590/kernel/sched.c.rej linux-2.6.27-591/kernel/sched.c.rej --- linux-2.6.27-590/kernel/sched.c.rej 1969-12-31 19:00:00.000000000 -0500 +++ linux-2.6.27-591/kernel/sched.c.rej 2010-01-29 16:30:22.000000000 -0500 -- 2.43.0