
NEPI v3.0 User Manual

Contents

Contents 2

1 FAQ 4

1.1 What is NEPI? . 4
1.2 What does a NEPI script look like ? 5
1.3 What does NEPI stands for? . 6
1.4 Who developed NEPI? . 6
1.5 Is it free? . 6
1.6 How can I contribute? . 6
1.7 How can I report a bug ? . 7
1.8 Where can I get more information ? . 7

2 Getting started 8

2.1 Dependencies . 8
2.2 The source code . 9
2.3 Install NEPI in your system . 9
2.4 Run experiments . 9

3 Introduction to NEPI 16

3.1 Experiment Description . 17
3.2 Experiment Life Cycle . 19
3.3 Resource Management: The EC & The RMs 21

4 The ExperimentController API 23

4.1 The experiment script . 23
4.2 The design API . 24
4.3 The execution API . 27

5 Supported resources 31

5.1 Linux resources . 31
5.2 Planetlab resources . 31

2

CONTENTS 3

5.3 OMF resources . 38

6 Debbuging 42

7 Release Cycle 43

7.1 The development branch . 43
7.2 Versioning . 43
7.3 The release process . 43

1

FAQ

1.1 What is NEPI?

NEPI is not a network simulator, nor an emulator or a testbed. NEPI is a Python
library that provides classes to describe and run network experiments on di�erent ex-
perimentation platforms (e.g. Planetlab, OMF wireless testbeds, network simulators,
etc).

Imagine that you want to run an experiment to test a distributed application you
just coded, on the Internet. You can use NEPI to deploy your application on PlanetLab
nodes, run the experiment, and collect result �les you might have generated during the
experiment (e.g. pcap �les from tcpudmps).

Sure, you could do this by coding your own BASH script, but it will probably take
more time and painful hours of debugging if you want to do it right. NEPI aims at
providing a re-usable code base to run network experiments on target experimentation
platforms, so to decrease the time you spend in developing platform speci�c scripts or
programs, and debugging them.

In a nut-shell, NEPI is a network experiment management framework which pro-
vides a simple way of describing network experiments, and the logic to automatically
deploy those experiments on the target experimentation environments. It also provides
the means to control the resources used in the experiment (e.g. Nodes, applications,
switches, virtual machines, routing table entries, etc) during experiment execution,
and to collect results generated by the experiment to a local repository.

The experiment deployment and control is done by the Experiment Controller (EC)
entity, which is responsible for the global orchestration of the experiment. The EC
knows nothing about how to manage speci�c resources (e.g. how to con�gure a net-
work interface in a PlanetLab node), instead it delegates those tasks to entities called
Resource Manager (RM).

The RMs are responsible of controlling single resources (e.g. a Linux host, an Open
vSwitched on PlanetLab nodes, etc). Di�erent types of resources will be controlled
by di�erent RMs, speci�cally adpated to control them. All RMs implement a same
external interface, that the EC uses to control them in a uniform way.

4

1.2. WHAT DOES A NEPI SCRIPT LOOK LIKE ? 5

NEPI is not magical, it can not control all existing resources on all existing ex-
perimentation platforms by default. However, potentially any resource could be con-
trolled by NEPI if the adequate Resource Manager is implemented for it. Fortunately,
NEPI already provides several Resource Managers for di�erent resources on a variety
of testbeds, and new Resource Manager classes can be extended from existing ones, to
control new types of resources.

The idea behind NEPI is to enable runing network experiments on potentially any
experimentation platform, using a single software tool, as opposite to using a dedicated
software for each platform. An additional perk is that you don't have to deal with
a lot of platform-speci�c gory details of setting up and con�guring the resources (e.g.
Creating a TAP device on Planetlab. If you ever had to do that, you know what I mean).
Also, you could combine resources from di�erent platforms in a same experiment, using
just one script.

So, 'One ring to rule them all', sorry I meant, 'One tool to control them all'... or
something like that. We though it was a good idea to abstract platform details behind
a common resource management interface, and let NEPI deal with the details and give
you back the results.

1.2 What does a NEPI script look like ?

Here is a very simple experiment example, which runs a PING to "nepi.inria.fr" from
a given host. Note that you will need to replace the hostname, username, and ssh_key
variables va to run the example.

from nepi.execution.ec import ExperimentController

ec = ExperimentController(exp_id = "myexperiment")

hostname = # Host that can be accessed with an SSH account

username = # SSH user account on host

ssh_key = # Path to SSH public key file to access host

node = ec.register_resource("LinuxNode")

ec.set(node , "hostname", hostname)

ec.set(node , "username", username)

ec.set(node , "identity", ssh_key)

app = ec.register_resource("LinuxApplication")

ec.set(app , "command", "ping -c3 nepi.inria.fr")

ec.register_connection(app , node)

ec.deploy ()

6 CHAPTER 1. FAQ

ec.wait_finished(app)

print ec.trace(app , "stdout")

ec.shutdown ()

1.3 What does NEPI stands for?

It stands for: Network Experiment Programming Interface.

1.4 Who developed NEPI?

NEPI was developed at INRIA, Sophia Antipolis France. A �rst prototype was im-
plemented in 2010. Versions 1.0 and 2.0 were released in 2011 and 2012, respectively.
The current version is 3.0, and it was completely redesigned and rewritten to broaden
the scope, and to include several new features, which will be described in detail in this
document. The following people has contributed to the project:

• NEPI version 3.0: Alina Quereilhac, Julien Tribino, Lucia Guevgeozian Odizzio,
Alexandros Kouvakas

• NEPI versions 1.0 and 2.0: Alina Quereilhac, Claudio Freire, Martin Ferrari,
Mathieu Lacage

• NEPI prototype: Martin Ferrari, Mathieu Lacage

• Other contributors: Dirk Hasselbalch

1.5 Is it free?

Yes, NEPI is free software. It is free to use, free to modify, free to share. NEPI v3.0 is
licensed under GPL v3, so you can do whatever you want with it, as long as you keep
the same license.

1.6 How can I contribute?

There are many ways you can contribute to the project. The �rst one is using it and
reporting bugs. You can report bugs on the NEPI bugzilla page at:

http://nepi.inria.fr/bugzilla

http://nepi.inria.fr/bugzilla

1.7. HOW CAN I REPORT A BUG ? 7

You can also become a part of the NEPI community and join our mailing lists:

• To subscribe to the users mailing list at nepi-users@inria.fr you can send an email
to sympa@inria.fr with subject Subscribe nepi-users <put-your-user-name-here>

• To subscribe to the developers mailing list at nepi-developers@inria.fr you can
send an email to sympa@inria.fr with subject Subscribe nepi-developers <put-

your-user-name-here>

To contribute with bug �xes and new features, please send your code patch to the
nepi-developers list.

1.7 How can I report a bug ?

To report a bug take a look at the NEPI bugzilla page at :
http://nepi.inria.fr/bugzilla

1.8 Where can I get more information ?

For more information visit NEPI web site at :
http://nepi.inria.fr

http://nepi.inria.fr/bugzilla
http://nepi.inria.fr

2

Getting started

NEPI is written in Python, so you will need to install Python before being able to run
experiments with NEPI. NEPI is known to work on Linux (Fedore, Debian, Ubuntu)
and Mac (OS X).

2.1 Dependencies

Dependencies for NEPI vary according to the features you want to enable. Make sure
the following dependencies are correctly installed in your system before using NEPI.

Mandatory dependencies:

• Python 2.6+

• Mercurial

Optional dependencies:

• SleekXMPP - Required to run experiments on OMF testbeds

Install dependencies on Debian/Ubuntu

$ sudo aptitude install -y python mercurial

Install dependencies on Fedora

$ sudo yum install -y python mercurial

Install dependencies on Mac

First install homebrew (http://mxcl.github.io/homebrew/), then install Python.

$ brew install python

8

http://mxcl.github.io/homebrew/

2.2. THE SOURCE CODE 9

Install SleekXMPP

You will need git to get the SleekXMPP sources.

$ git clone -b develop git://github.com/fritzy/SleekXMPP.git

$ cd SleekXMPP

$ sudo python setup.py install

2.2 The source code

To get NEPI's source code you will need Mercurial version control system. The Mer-
curial NEPI repo can also be browsed online at:

http://nepi.inria.fr/code/nepi/

Clone the repo

$ hg clone http://nepi.inria.fr/code/nepi -r nepi-3.0-release

2.3 Install NEPI in your system

You don't need to install NEPI in your system to be able to run experiments. However
this might be convenient if you don't plan to modify or extend the sources.

To install NEPI, just run make install in the NEPI source folder.

$ cd nepi

$ make install

If you are developing your own NEPI extensions, the installed NEPI version might
interfere with your work. In this case it is probably more convenient to tell Python
where to �nd the NEPI sources, using the PYTHONPATH environmental variable,
when you run a NEPI script.

$ PYTHONPATH=$PYTHONPATH:<path-to-nepi>/src python experiment.py

2.4 Run experiments

There are two ways you can use NEPI to run your experiments. The �rst one is writing
a Python script, which will import NEPI libraries, and run it. The second one is in
interactive mode by using Python console.

http://nepi.inria.fr/code/nepi/

10 CHAPTER 2. GETTING STARTED

Run from script

Writing a simple NEPI expeiment script is easy. Take a look at the example in the FAQ
section 1.2. Once you have written down the script, you can run it using Python. Note
that since NEPI is not yet installed in your system, you will need to export the path to
NEPI's source code to the PYTHONPATH environment variable, so that Python can
�nd NEPI's libraries.

$ export PYTHONPATH=<path-to-nepi>/src:$PYTHONPATH

$ python first-experiment.py

Run NEPI interactively

The IPython console can be used as an interactive interpreter to execute Python instruc-
tions. We can take advantage of this feature, to interactively run NEPI experiments.
We will use the IPython console for the example below.

You can easily install IPython on Debian, Ubuntu, Fedora or Mac as follows:

Debian/Ubuntu

$ sudo apt-get install ipython

Fedora

$ sudo yum install ipython

Mac

$ pip install ipython

Before starting, make sure to add Python and IPython source directory path to the
PYTHONPATH environment variable

$ export PYTHONPATH=$PYTHONPATH:/usr/local/lib/python:/usr/local/share/python/ipython

2.4. RUN EXPERIMENTS 11

Then you can start IPython as follows:

$ export PYTHONPATH=<path-to-nepi>/src:$PYTHONPATH

$ ipython

Python 2.7.3 (default, Jan 2 2013, 13:56:14)

Type "copyright", "credits" or "license" for more information.

IPython 0.13.1 -- An enhanced Interactive Python.

? -> Introduction and overview of IPython's features.

%quickref -> Quick reference.

help -> Python's own help system.

object? -> Details about 'object', use 'object??' for extra details.

If you want to paste many lines at once in IPython, you will need to type %cpaste

and �nish the paste block with .
The �rst thing we need to do to describe an experiment with NEPI is to import

the NEPI Python modules. In particular we need to import the ExperimentController
class. To do this type the following in the Python console:

from nepi.execution.ec import ExperimentController

After importing the ExperimentController class, it is possible to create a new in-
stance of an the ExperimentController (EC) for your experiment. The <exp-id> argu-
ment is the name you want to give the experiment to identify it and distinguish it from
other experiments.

ec = ExperimentController(exp_id = "<your -exp -id>")

Next we will de�ne two Python functions: add_node and add_app. The �rst one
to register LinuxNodes resources and the second one to register LinuxApplications
resources.

%cpaste

def add_node(ec, hostname , username , ssh_key):

node = ec.register_resource("LinuxNode")

ec.set(node , "hostname", hostname)

ec.set(node , "username", username)

ec.set(node , "identity", ssh_key)

ec.set(node , "cleanHome", True)

ec.set(node , "cleanProcesses", True)

return node

12 CHAPTER 2. GETTING STARTED

def add_app(ec , command , node):

app = ec.register_resource("LinuxApplication")

ec.set(app , "command", command)

ec.register_connection(app , node)

return app

--

The method register_resource registers a resource instance with the Experiment-
Controller. The method register_connection indicates that two resources will interact
during the experiment. Note that invoking add_node or add_app has no e�ect other
than informing the EC about the resources that will be used during the experiment.
The actual deployment of the experiment requires the method deploy to be invoked.

The LinuxNode resource exposes the hostname, username and identity attributes.
This attributes provide information about the SSH credentials needed to log in to the
Linux host. The hostname is the one that identi�es the physical host you want to
access during the experiment. The username must correspond to a valid account on
that host, and the identity attribute is the 'absolute' path to the SSH private key in
your local computer that allows you to log in to the host.

The command attribute of the LinuxApplication resource expects a BASH command
line string to be executed in the remote host. Apart from the command attribute, the
LinuxApplication resource exposes several other attributes that allow to upload, compile
and install arbitrary sources. The add_app function registers a connection between a
LinuxNode and a LinuxApplication.

Lets now use these functions to describe a simple experiment. Choose a host where
you have an account, and can access using SSH key authentication.

hostname = "<the -hostname >"

username = "<my-username >"

identity = " </home/myuser /.ssh/id_rsa >"

node = add_node(ec , hostname , username , ssh_key)

app = add_app(ec , "ping -c3 nepi.inria.fr", node)

The values returned by the functions add_node and add_app are global unique
identi�ers (guid) of the resources that were registered with the EC. The guid is used
to reference the ResourceManager associated to a registered resource (for instance to
retrieve results or change attribute values).

Now that we have registered some resources, we can ask the ExperimentController
(EC) to deploy them. Invoking the deploy command will not only con�gure the resource
but also automatically launch the applications.

2.4. RUN EXPERIMENTS 13

ec.deploy ()

After some seconds, we should see some output messages informing us about the
progress in the host deployment. If you now open another terminal and you connect
to the host using SSH (as indicated below), you should see that a directory for your
experiment has been created in the host. In the remote host you will see that two NEPI
directories were created in the $HOME directory: nepi-src and nepi-exp. The �rst one
is where NEPI will store �les that might be re used by many experiments (e.g. source
code, input �les) . The second directory nepi-exp, is where experiment speci�c �les
(e.g. results, deployment scripts) will be stored.

$ ssh -i identity username@hostname

Inside the nepi-exp directory, you will �nd another directory with the <exp-id>
assigned to your EC, and inside that directory you should �nd one directory named
node-1 which will contain the �les (e.g. result traces) associated to the LinuxNode
reosurce you just deployed. In fact for every resource deployed associated to that host
(e.g. each LinuxApplication), NEPI will create a directory to place �les related to it.
The name of the directory identi�es the type of resources (e.g. 'node', 'app', etc) and
it is followed by the global unique identi�er (guid).

We can see if a resource �nished deploying by querying its state through the EC

ec.state(app , hr=True)

Once a LinuxApplication has reached the state 'STARTED', we can retrieve the
'stdout' trace, which should contain the output of the PING command.

ec.trace(app , "stdout")

That is it. We can terminate the experiment by invoking the method shutdown.

ec.shutdown ()

De�ne a work�ow

Now that we have introduced to the basics of NEPI, we will register two more appli-
cations and de�ne a work�ow where one application will start after the other one has
�nished executing. For this we will use the EC register_condition method described
below:

14 CHAPTER 2. GETTING STARTED

register_condition(self , guids1 , action , guids2 , state , time=None):

Registers an action START , STOP or DEPLOY for all RM on list

guids1 to occur at time 'time' after all elements in list guids2

have reached state 'state'.

:param guids1: List of guids of RMs subjected to action

:type guids1: list

:param action: Action to perform (either START , STOP or DEPLOY

)

:type action: ResourceAction

:param guids2: List of guids of RMs to we waited for

:type guids2: list

:param state: State to wait for on RMs of list guids2 (STARTED

,

STOPPED , etc)

:type state: ResourceState

:param time: Time to wait after guids2 has reached status

:type time: string

To use the register_condition method we will need to import the ResourceState and
the ResourceAction classes

from nepi.execution.resource import ResourceState , ResourceAction

Then, we register the two applications. The �rst application will wait for 5 seconds
and the create a �le in the host called "greetings" with the content "HELLO WORLD".
The second application will read the content of the �le and output it to standard output.
If the �le doesn't exist il will instead output the string "FAILED".

app1 = add_app(ec , "sleep 5; echo 'HELLO WORLD!' > ~/ greetings", node)

app2 = add_app(ec , "cat ~/ greetings || echo 'FAILED '", node)

In order to guarantee that the second application is successful, we need to make
sure that the �rst application is executed �rst. For this we register a condition:

ec.register_condition (app2 , ResourceAction.START , app1 , ResourceState

.STOPPED)

We then deploy the two application:

2.4. RUN EXPERIMENTS 15

ec.deploy(guids=[app1 ,app2])

Finally, we retrieve the standard output of the second application, which should
return the string "HELLO WORLD!".

ec.trace(app2 , "stdout")

3

Introduction to NEPI

During the past decades, a wide variety of platforms to conduct network experiments,
including simulators, emulators and live testbeds, have been made available to the re-
search community. Some of these platforms are tailored for very speci�c use cases (e.g.
PlanetLab for very realistic Internet application level scenarios), while others support
more generic ones (e.g. ns-3 for controllable and repeatable experimentation). Never-
theless, no single platform is able to satisfy all possible scenarios, and so researchers
often rely on di�erent platforms to evaluate their ideas.

Given the huge diversity of available platforms, it is to be expected a big disparity
in the way to carry out an experiment between one platform and another. Indeed,
di�erent platforms provide their own mechanisms to access resources and di�erent tools
to conduct experiments. These tools vary widely, for instance, to run a ns-3 simulation it
is necessary to write a C++ program, while to conduct an experiment using PlanetLab
nodes, one must �rst provision resources through a special web service, and then connect
to the nodes using SSH to launch any applications involved in the experiment.

Mastering such diversity of tools can be a daunting task, but the complexity of con-
ducting network experiments is not only limited to having to master di�erent tools and
services. Designing and implementing the programs and scripts to run an experiment
can be a time consuming and di�cult task, specially if distributed resources need to
be synchronised to perform the right action at the right time. Detecting and handling
possible errors during experiment execution also posses a challenge, even more when
dealing with large size experiments. Additionally, di�culties related to instrumenting
the experiment and gathering the results must also be considered.

In this context, the challenges that NEPI addresses are manifold. Firstly, to sim-
plify the complexity of running network experiments. Secondly, to simplify the use
of di�erent experimentation platforms, allowing to easily switch from one to another.
Thirdly, to simplify the use of resources from di�erent platforms at the same time in a
single experiment.

The approach proposed by NEPI consists on exposing a generic API that researchers
can use to program experiments, and providing the libraries that can execute those
experiments on target network experimentation platforms. The API abstracts the re-

16

3.1. EXPERIMENT DESCRIPTION 17

searchers from the details required to actually run an experiment on a given platform,
while the libraries provide the code to automatically perform the steps necessary to
deploy the experiment and manage resources.

The API is generic enough to allow describing potentially any type of experiment,
while the architecture of the libraries was designed to be extensible to support arbitrary
platforms. A consequence of this is that any new platform can be supported in NEPI
without changing the API, in a way that is transparent to the users.

3.1 Experiment Description

NEPI represents experiments as graphs of interconnected resources. A resource is
an abstraction of any component that takes part of an experiment and that can be
controlled by NEPI. It can be a software or hardware component, it could be a virtual
machine, a switch, a remote application process, a sensor node, etc.

Resources in NEPI are described by a set of attributes, traces and connections. The
attributes de�ne the con�guration of the resource, the traces represent the results that
can be collected for that resource during the experiment and the connections represent
how a resource relates to other resources in the experiment.

Resource type: LinuxApplication

RR Resource Properties

Attributes
● Command
● Sources
● ...

Traces
● Stdout
● Stderr

Figure 3.1: Properties of a resource of type LinuxApplication

Examples of attributes are a linux hostname, an IP address to be assigned to a
network interface, a command to run as a remote application. Examples of traces are
the standard output or standard error of a running application, a tcpdump on a network
interface, etc.

18 CHAPTER 3. INTRODUCTION TO NEPI

Resources are also associated to a type (e.g. a Linux host, a Tap device on Planet-
Lab, an application running on a Linux host, etc). Di�erent types of resources expose
di�erent attributes and traces and can be connected to other speci�c types (e.g. A
resource representing a wireless channel can have an attribute SSID and be connected
to a Linux interface but not directly to a Linux host resource) Figure 3.1 exempli�es
this concept.

There are two di�erent types of connections between resources, the �rst one is used
to de�ne the topology graph of the experiment. This graph provides information about
which resources will interact with which other resources during the experiment (e.g.
application A should run in host B, and host B will be connected to wireless channel
D through a network interface C). Figure 3.2 shows a representation of the concept of
topology graph to describe the an experiment.

Link

Interface F Interface G

Application C

Node A Node B

Application S

Figure 3.2: A topology graph representation of an abstract experiment

The second type of connections (called conditions to di�erentiate them from the �rst
type) speci�es the dependencies graph. This graph is optional and imposes constraints
on the experiment work�ow, that is the order in which di�erent events occur during
the experiment. For instance, as depicted in Figure 3.3 a condition on the experiment
could specify that a server application has to start before a client application does, or
that an network interface needs to be stopped (go down) at a certain time after the
beginning of the experiment.

It is important to note, that the topology graph also de�nes implicit and compulsory
work�ow constraints (e.g. if an application is topologically connected to a host, the
host will always need to be up and running before an application can run on it). The
di�erence is that the dependency graph adds complementary constraints speci�ed by
the user, related to the behavior of the experiment.

This technique for modeling experiments is generic enough that can be used to

3.2. EXPERIMENT LIFE CYCLE 19

Application C Application S

AFTER
STARTEDSTART

ResourceAction ResourceState

Figure 3.3: A dependencies graph representation involving two applications resources
in an experiment

describe experiments involving resources from any experimentation environment (i.e.
testbed, simulator, emulator, etc). However, it does not provide by itself any informa-
tion about how to actually deploy and run an experiment using concrete resources.

3.2 Experiment Life Cycle

The Experiment Description by itself is not enough to conduct an experiment. In order
to run an experiment it is necessary to translate the description into concrete actions
and to perform these actions on the speci�c resources taking part of the experiment.
NEPI does this for the user in an automated manner.

Deployment Control Results

● Discover
● Provision
● Configure
● Synchronize
● Instrument
● Start

● Changes configuration
● Monitor status
● Detect errors
● Stop
● Release resources

● Query information
● Collect traces

Figure 3.4: Common stages of a network experiment life cycle

20 CHAPTER 3. INTRODUCTION TO NEPI

Given that di�erent resources will require performing actions in di�erent ways (e.g.
deploying an application on a Linux machine is di�erent than deploying a mobile wire-
less robot), NEPI abstracts the life cycle of resources into common stages associated
to generic actions, and allows to plug-in di�erent implementation of these actions for
di�erent types of resources. Figure 3.4 shows the three main stages of the network ex-
periment life cycle, Deployment, Control and Result (collection), and the actions that
are involved in each of them.

RELEASED

Initial state for all resources

A resource matching the
requirements has been identified *

Access to the resources has been
granted to the user *

The resource is configured and
ready to be used

The resource has started taking
part of the experiment

An error occurred and the resource
could not perform its task

Final state of all resources. The
resource is no longer in use

The resource is no longer taking
part in the experiment

* To achieve a uniform control interface, all resources
go through the same states. However, not all states

have a well defined meaning for all types of
resources.

STOPPEDSTOPPED

STARTEDSTARTED

READYREADY

PROVISIONEDPROVISIONED

DISCOVEREDDISCOVERED

NEWNEW

FAILEDFAILED

Figure 3.5: Resources state transitions

In order to be able to control di�erent types of resources in a uniform way, NEPI
assigns a generic state to each of these actions and expects all resources to follow the
same set of state transitions during the experiment life. The states and state transitions
are depicted in Figure 3.5.

It is important to note that NEPI does not require these states to be globally syn-
chronized for all resources (e.g. resources are not required to be all ready or started at
the same time). NEPI does not even require all resources to be declared and known at
the beginning of the experiment, making it possible to use an interactive deployment

mode, where new resources can de declared and deployed on the �y, according to the
experiment needs. This interactive mode can be useful to run experiments with the pur-
pose of exploring a new technology, or to use NEPI as an adaptive experimentation tool,
that could change an experiment according to external conditions or measurements.

3.3. RESOURCE MANAGEMENT: THE EC & THE RMS 21

3.3 Resource Management: The EC & The RMs

The Experiment Controller (EC) is the entity that is responsible for translating the
Experiment Description into a running experiment. It holds the topology and depen-

dencies graphs, and it exposes a generic experiment control API that the user can
invoke to deploy experiments, control resources and collect results.

AFTER
STARTEDSTART

Topology

Dependencies

ECEC API

 User
 Desktop

Figure 3.6: User interacting with the Experiment Controller

As shown in Figure 3.6, the user declares the resources and their dependencies
directly with the EC. When the user requests the EC to deploy a certain resource or a
group of resources, the EC will take care of performing all the necessary actions without
further user intervention, including the sequencing of actions to respect user de�ned
and topology speci�c dependencies, through internal scheduling mechanisms.

The EC is a generic entity responsible for the global orchestration of the experiment.
As such, it abstracts itself from the details of how to control concrete resources and
relies on other entities called Resource Managers (RM)s to perform resource speci�c
actions.

For each resource that the user registers in the topology graph, the EC will instantiate
a RM of a corresponding type. A RM is a resource speci�c controller and di�erent types
of resources require di�erent type of RMs, speci�cally adapted to manage them.

The EC communicates with the RMs through a well de�ned API that exposes the
necessary methods (actions) to achieve all the state transitions de�ned by the common
resource life-cycle. Each type of RM must provide a speci�c implementation for each
action and ensure that the correct state transition has been achieved for the resource
(e.g. upon invocation of the START action, the RM must take the necessary steps to
start the resource and set itself to state STARTED). This decoupling between the EC

22 CHAPTER 3. INTRODUCTION TO NEPI

and the RMs makes it possible to extend the control capabilities of NEPI to arbitrary
resources, as long as a RM can be implemented to support it.

As an example, a testbed X could allow to control host resources using a certain
API X, which could be accessed via HTTP, XMLRPC, or via any other protocol. In
order to allow NEPI to run experiments using this type of resource, it would su�ce to
create a new RM of type host X, which extends the common RM API, and implements
the API X to manage the resources.

Figure 3.7 illustrates how the user, the EC, the RMs and the resources collaborate
together to run an experiment.

RM

XMPP

 XMPP SSH

SSH

API x

API x

Resources

 User
 Desktop

RM RM
RM API

EC API EC

Figure 3.7: Resource management in NEPI

4

The ExperimentController API

The ExperimentController (EC) is the entity in charge of turning the experiment de-
scription into a running experiment. In order to do this the EC needs to know which
resources are to be used, how they should be con�gured and how resources relate to one
another. To this purpose the EC exposes methods to register resources, specify their
con�guration, and register dependencies between. These methods are part of the EC
design API. Likewise, in order to deploy and control resources, and collect data, the
EC exposes another set of methods, which form the execution API. These two APIs
are described in detail in the rest of this chapter.

4.1 The experiment script

NEPI is a Python-based language and all classes and functions can be used by importing
the nepi module from a Python script.

In particular, the ExperimentController class can be imported as follows:

from nepi.execution.ec import ExperimentController

Once this is done, an ExperimentController must be instantiated for the experi-
ment. The ExperimentController constructor receives the optional argument exp_id.
This argument is important because it de�nes the experiment identity and allows to
distinguish among di�erent experiments. If an experiment id is not explicitly given,
NEPI will automatically generate a unique id for the experiment.

ec = ExperimentController(exp_id = "my -exp -id")

The experiment id can always be retrieved as follows

exp_id = ec.exp_id

Since a same experiment can be ran more than one time, and this is often desirable
to obtain statistical data, the EC identi�es di�erent runs of an experiment with a

23

24 CHAPTER 4. THE EXPERIMENTCONTROLLER API

same exp_id with another attribute, the run_id. The run_id is a timestamp string
value, and in combination with the exp_id, it allows to uniquely identify an experiment
instance.

run_id = ec.run_id

4.2 The design API

Once an ExperimentController has been instantiated, it is possible to start describing
the experiment. The design API is the set of methods which allow to do so.

Registering resources

Every resource supported by NEPI is controlled by a speci�c ResourceManager (RM).
The RM instances are automatically created by the EC, and the user does not need to
interact with them directly.

Each type of RM is associated with a type_id which uniquely identi�es a concrete
kind of resource (e.g PlanetLab node, application that runs in a Linux machine, etc).
The type_ids are string identi�ers, and they are required to register a resource with
the EC.

To discover all the available RMs and their type_ids we can make use of the Re-
sourceFactory class. This class is a Singleton that holds the templates and information
of all the RMs supported by NEPI. We can retrieve this information as follows:

from nepi.execution.resource import ResourceFactory

for type_id in ResourceFactory.resource_types ():

rm_type = ResourceFactory.get_resource_type(type_id)

print type_id , ":", rm_type.get_help ()

Once the type_id of the resource is known, the registration of a new resource with
the EC is simple:

type_id = "SomeRMType"

guid = ec.register_resources(type_id)

When a resource is registered, the EC instantiates a RM of the requested type_id

and assigns a global unique identi�er (guid) to it. The guid is an incremental integer
number and it is the value returned by the register_resource method. The EC keeps
internal references to all RMs, which the user can reference using the corresponding
guid value.

4.2. THE DESIGN API 25

Attributes

ResourceManagers expose the con�gurable parameters of resources through a list of
attributes. An attribute can be seen as a name:value pair, that represents a certain
aspect of the resource (whether information or con�guration information).

It is possible to discover the list of attributes exposed by an RM type as follows:

from nepi.execution.resource import ResourceFactory

type_id = "SomeRMType"

rm_type = ResourceFactory.get_resource_type(type_id)

for attr in rm_type.get_attributes ():

print " ", attr.name , ":", attr.help

To con�gure or retrieve the value of a certain attribute of an registered resource we
can use the get and set methods of the EC.

old_value = ec.get(guid , "attr_name")

ec.set(guid , "attr_name", new_value)

new_value = ec.get(guid , "attr_name")

Since each RM type exposes the characteristics of a particular type of resource, it
is to be expected that di�erent RMs will have di�erent attributes. However, there a
particular attribute that is common to all RMs. This is the critical attribute, and it
is meant to indicate to the EC how it should behave when a failure occurs during the
experiment. The critical attribute has a default value of True, since all resources are
considered critical by default. When this attribute is set to False the EC will ignore
failures on that resource and carry on with the experiment. Otherwise, the EC will
immediately interrupt the experiment.

Traces

A Trace represent a stream of data collected during the experiment and associated to
a single resource. ResourceManagers expose a list of traces, which are identi�ed by
a name. Particular traces might or might not need activation, since some traces are
enabled by default.

It is possible to discover the list of traces exposed by an RM type as follows:

from nepi.execution.resource import ResourceFactory

type_id = "SomeRMType"

rm_type = ResourceFactory.get_resource_type(type_id)

for trace in rm_type.get_traces ():

26 CHAPTER 4. THE EXPERIMENTCONTROLLER API

print " ", trace.name , ":", trace.enabled

The enable_trace method allows to enable a speci�c trace for a RM instance

ec.enable_trace(guid , "trace -name")

print ec.trace_enabled(guid , "trace -name")

Registering connections

In order to describe the experiment set-up, a resources need to be associated at least
to one another. Through the process of connecting resources the topology graph is
constructed. A certain application might need to be con�gured and executed on a
certain node, and this must be indicated to the EC by connecting the application RM
to the node RM.

Connections are registered using the register_connection method, which receives
the guids of the two RM.

ec.register_connection(node_guid , app_guid)

The order in which the guids are given is not important, since the topology_graph
is not directed, and the corresponding RMs `know' internally how to interpret the
connection relationship.

Registering conditions

All ResourceMangers must go through the same sequence of state transitions. Associ-
ated to those states are the actions that trigger the transitions. As an example, a RM
will initially be in the state NEW. When the DEPLOY action is invoked, it will transi-
tion to the DISCOVERED, then PROVISIONED, then READY states. Likewise, the
action START will make a RM pass from state READY to STARTED, and the action
STOP will change a RM from state STARTED to STOPPED.

Using these states and actions, it is possible to specify work�ow dependencies be-
tween resources. For instance, it would be possible to indicate that one application
should start after another application by registering a condition with the EC.

from nepi.execution.resource import ResourceState , ResourceActions

ec.register_condition(app1_guid , ResourceAction.START , app2_guid ,

ResourceState.STARTED)

4.3. THE EXECUTION API 27

The above invocation should be read "Application 1 should START after application
2 has STARTED". It is also possible to indicate a relative time from the moment a
state change occurs to the moment the action should be taken as follows:

from nepi.execution.resource import ResourceState , ResourceActions

ec.register_condition(app1_guid , ResourceAction.START , app2_guid ,

ResourceState.STARTED , time = "5s")

This line should be read "Application 1 should START at least 5 seconds after ap-
plication 2 has STARTED".

Allowed actions are: DEPLOY, START and STOP.

Existing states are: NEW, DISCOVERED, PROVISIONED, READY, STARTED,
STOPPED, FAILED and RELEASED.

4.3 The execution API

After registering all the resources and connections and setting attributes and traces,
once the experiment we want to conduct has been described, we can proceed to run it.
To this purpose we make use of the execution methods exposed by the EC.

Deploying an experiment

Deploying an experiment is very easy, it only requires to invoke the deploy method of
the EC.

ec.deploy ()

Given the experiment description provided earlier, the EC will take care of auto-
matically performing all necessary actions to discover, provision, con�gure and start all
resources registered in the experiment.

Furthermore, NEPI does not restrict deployment to only one time, it allows to
continue to register, connect and con�gure resources and deploy them at any moment.
We call this feature interactive or dynamic deployment.

The deploy method can receive other optional arguments to customize deployment.
By default, the EC will deploy all registered RMs that are in state NEW. However, it
is possible to specify a subset of resources to be deployed using the guids argument.

28 CHAPTER 4. THE EXPERIMENTCONTROLLER API

ec.deploy(guids=[guid1 , guid2 , guid3])

Another useful argument of the deploy method is wait_all_ready. This argument
has a default value of True, and it is used as a barrier to force the START action to be
invoked on all RMs being deploy only after they have all reached the state READY.

ec.deploy(wait_all_ready=False)

Getting attributes

Attribute values can be retrieved at any moment during the experiment run, using the
get method. However, not all attributes can be modi�ed after a resource has been
deployed. The possibility of changing the value of a certain attribute depends strongly
on the RM and on the attribute itself. As an example, once a hostname has been
speci�ed for a certain Node RM, it might not be possible to change it after deployment.

attr_value = ec.get(guid , "attr -name")

Attributes have �ags that indicate whether their values can be changed and when
it is possible to change them (e.g. before or after deployment, or both). These �ags are
NoFlags (the attribute value can be modi�ed always), ReadOnly (the attribute value
can never be modi�ed), ExecReadOnly (the attribute value can only be modi�ed before
deployment). The �ags of a certain attribute can be validated as shown in the example
below, and the value of the attribute can be changed using the set method.

from nepi.execution.attribute import Flags

attr = ec.get_attribute(guid , "attr -name")

if not attr.has_flag(Flags.ReadOnly):

ec.set(guid , "attr -name", attr_value)

Quering the state

It is possible to query the state of any resource at any moment. The state of a resource
is requested using the state method. This method receives the optional parameter hr
to output the state in a human readable string format instead of an integer state code.

state_id = ec.state(guid)

4.3. THE EXECUTION API 29

Human readable state

state = ec.state(guid , hr = True)

Getting traces

After a ResourceManager has been deployed it is possible to get information about the
active traces and the trace streams of the generated data using the trace method.

Most traces are collected to a �le in the host where they are generated, the total
trace size and the �le path in the (remote) host can be retrieved as follows.

from nepi.execution.trace import TraceAttr

path = ec.trace(guid , "trace -name", TraceAttr.PATH)

size = ec.trace(guid , "trace -name", TraceAttr.SIZE)

The trace content can be retrieved in a stream, block by block.

trace_block = ec.trace(guid , "trace -name", TraceAttr.STREAM , block=1,

offset =0)

It is also possible to directly retrieve the complete trace content.

trace_stream = ec.trace(guid , "trace -name")

Using the trace method it is easy to collect all traces to the local user machine.

for trace in ec.get_traces(guid):

trace_stream = ec.trace(guid , "trace -name")

f = open("trace -name", "w")

f.write(trace_stream)

f.close ()

API reference

Further information about classes and method signatures can be found using the Python
help method. For this inspection work, we recommend to instantiate an Experiment-
Controller from an IPython console. This is an interactive console that allows to dy-
namically send input to the python interpreter.

If NEPI is not installed in the system, you will need to add the NEPI sources path
to the PYTHONPATH environmental variable before invoking ipython.

30 CHAPTER 4. THE EXPERIMENTCONTROLLER API

$ PYTHONPATH=$PYTHONPATH:src ipython

Python 2.7.3 (default , Jan 2 2013, 13:56:14)

Type "copyright", "credits" or "license" for more information.

IPython 0.13.1 -- An enhanced Interactive Python.

? -> Introduction and overview of IPython 's features.

%quickref -> Quick reference.

help -> Python 's own help system.

object? -> Details about 'object ', use 'object ??' for extra details.

In [1]: from nepi.execution.ec import ExperimentController

In [2]: ec = ExperimentController(exp_id = "test -tap")

In [3]: help(ec.set)

The example above will show the following information related to the set method
of the EC API.

Help on method set in module nepi.execution.ec:

set(self , guid , name , value) method of nepi.execution.ec.

ExperimentController instance

Modifies the value of the attribute with name 'name' on the RM

with guid 'guid'.

:param guid: Guid of the RM

:type guid: int

:param name: Name of the attribute

:type name: str

:param value: Value of the attribute

5

Supported resources

5.1 Linux resources

• Linux Node (Clean home, etc)

• SSH

• The directory structure

• Traces and collection

• Linux Application

• LinuxPing, LinuxTraceroute, etc

• CCNx

5.2 Planetlab resources

The Planetlab node resource inherits every feature of the Linux node, but adds the
ability to choose for your experiment, healthy nodes from the Planetlab testbed. By
healthy we mean alive nodes, accessible via ssh using your authentication information,
with a checked �lesystem in order to discard future problems during run-time.

How to get an account

Register

If you want to use nodes from the Planetlab testbed, �rst you need to have an account, if
you don't have one, you can register on the planetlab europe portal www.planet-lab.eu
(see Create an account).

31

32 CHAPTER 5. SUPPORTED RESOURCES

Add your account to a Slice

Then, in order to have access to the nodes needed for your experiment, you will need a
slice. A slice is a subset of the planetlab resources, capable of running an experiment.
Usually, once you own an account, you ask someone from your institue for a slice
creation. The granted person (called PI) can then create a slice for you or associate
you to an already existing slice.

Di�erences between PLE and PLC

Di�erent instamces of PlanetLab exist like PlanetLab Central, PlanetLab Europe, Plan-
etLab Japan,... PlanetLab Europe (PLE) is the European portion of the publicly
available PlanetLab (PLC) testbed. They main operational di�erence is related to cre-
dentials. If the testbed that issues the credentials is the european testbed, then for the
PlanetLab Europe nodes the user can query more status information. Having more in-
formation can be bene�cial when de�ning selection �lters for the nodes. Anyway, PLE
and PLC are federated, meaning the discovery and provisioning is always possible.

The Planetlab Node RM

In order for NEPI to select healthy nodes for your experiment and add them to your
slice, it is necessary to set three attributes after resource registration : username, pluser
and plpassword. username is the name to ssh login in your nodes, for Planetlab testbed
it will always be your slice name. pluser and plpassword are the user and password used
for authenticate yourself in the Planetlab web page (www.planet-lab.eu). For example,
when registering a Planetlab node for your experiment, the experiment description will
look a lot like this:

node = ec.register_resource("PlanetlabNode")

ec.set(node , "username", "institute_project")

ec.set(node , "pluser", "â��â��john.doe@institute.edu")

ec.set(node , "plpassword", "guessit")

When you log in with your credential to the Planetlab testbed portal (www.planet-
lab.eu), you should be able to see the slices associated to your user as well as the set of
nodes currently in your slices, and all the nodes provided by the testbed. Moreover, the
web page allows the user to browse these resources and �nd out more characteristics
about them. However, using the web site is not really convenient for large experiment
involving hundreds of nodes. NEPI can do this job for you.

The portal retrieves the node's information by quering a service called MyPLC,
NEPI queries the same service to e�ciently select the most suitable nodes for the
experiment. The user and password to query this service are the ones introduced
before as pluser, and plpassword.

5.2. PLANETLAB RESOURCES 33

NEPI allows the user to �lter among the Planetlab nodes according to di�erent
criterias, aiming to select a speci�c set of nodes for the experiment. For example, one
experiment could only require nodes with OS Fedora 14, so the user should use the OS
�lter available for the Planetlab node resource when describing the node.

Current list of �lters available :

• city

• country

• region

• architecture

• operating_system

• min_reliability

• max_reliability

• min_bandwidth

• max_bandwidth

• min_load

• max_load

• min_cpu

• max_cpu

We have already mentionned that, in order to use MyPLC service, it is necessary
to set the attributes pluser and plpassword. Filters are also represented by attributes
and can be set by the user. Di�erent type of �lter exist, each one corresponding to
a speci�c kind of value (String, Enumerate, ...). For each attribute, more information
can be found in the help associated to this attribute as well as in its de�nition.

For example, for the attribute operating system, one can �nd the help, type, values
allowed, etc. in its de�nition (src/nepi/resources/planetlab/node.py):

operating_system = Attribute("operatingSystem",

"Constraint operating system during resource discovery.",

type = Types.Enumerate ,

allowed = ["f8",

"f12",

"f14",

"centos",

34 CHAPTER 5. SUPPORTED RESOURCES

"other"],

flags = Flags.Filter)

Now we know how to add a �lter to the node description:

node = ec.register_resource("PlanetlabNode ??")

ec.set(node , "username", "institute_project")

ec.set(node , "pluser", "â��â��jhon.doe@institute.edu")

ec.set(node , "plpassword", "guessit")

ec.set(node , "operatingSystem", "f14")

In case of more �lters, an AND between the �lters will be applied:

node = ec.register_resource("PlanetlabNode ??")

ec.set(node , "username", "institute_project")

ec.set(node , "pluser", "â��â��jhon.doe@institute.edu")

ec.set(node , "plpassword", "guessit")

ec.set(node , "operatingSystem", "f14")

ec.set(node , "minCpu", 50)

Note that minCpu = 50 means that at least 50% of the CPU has to be free in the
node, to make the node suitable for the experiment.

The hostname attribute

Another attribute that the user can de�ne for the node is the hostname. This attribute
has priority over the others �lters. When the experiment needs more than one node,
it is necessary to register conditions in order to ensure that the nodes identi�ed by its
hostname are selected before the others nodes (the ones identi�ed by �lters or just not
identi�ed at all).

For example, imagine we need two nodes for our experiment : Current list of �lters
available :

• For one of them, we are completly sure that we want to use a speci�c one, so we
identify it by its hostname

• For the other one, we just want to ful�ll the restriction of OS fedora 8 and country
France.

In this case, our experiment description will look like this:

node1 = ec.register_resource("PlanetlabNode")

ec.set(node1 , "username", "institute_project")

ec.set(node1 , "pluser", "â��â��john.doe@institute.edu")

ec.set(node1 , "plpassword", "guessit")

ec.set(node1 , "hostname", "planetlab2.utt.fr")

planetlab2.utt.fr is the specific node we want to use

5.2. PLANETLAB RESOURCES 35

node2 = ec.register_resource("PlanetlabNode")

ec.set(node2 , "username", "institute_project")

ec.set(node2 , "pluser", "â��â��john.doe@institute.edu")

ec.set(node2 , "plpassword", "guessit")

ec.set(node2 , "operatingSystem", "f8")

ec.set(node2 , "country", "France")

The nodes that are identi�ed by their hostnames have to be provisioned before the rest
of the nodes. This assures that no other resource will use the identi�ed node even if
the constraints matchs. Meaning that, even if the host "planetlab2.utt.fr" ful�lls the
conditions OS fedora 8 and country France, the node2 resource should not select from
the planetlab testbed "planetlab2.utt.fr", the node1 must select it. We can enforce this
to happen using the register_condition method of the ec. Therefore, after registering
the node and setting its attributes, we need to add this line:

ec.register_condition(node2 ,ResourceAction.DEPLOY , node1 ,

ResourceState.PROVISIONED)

For a better example on how to use �lters and register conditions, there is the ping
experiment example (examples/planetlab/ping_experiment.py). In this example we
de�ne 5 nodes, and 4 ping applications running in 4 of the nodes, with the 5th one as
destination. Then we collect the traces in our local machine.

Persist blacklisted nodes

PlanetLab nodes may fail for di�erent reasons, ssh authentication failure, �le system
corrupted, nodes unreachable, between others. Moreover, the mal functioning nodes
can vary from one experiment run to the next one. In NEPI there is the ability to
register these mal functioning nodes in order run the experiment in a more e�cient
way. Also, this information can be use to evaluate the performance of the experiment
and the nodes themselves.

The PlanetlabNode resource, is instantiated for each Planetlab node de�ned in the
experiment. The node discovery and provisioning occurs in parallel for every node
de�ned, so a list of the nodes failures is needed while deploying, in order to avoid to
repeat the provision of mal functioning nodes. This list of blacklisted nodes during the
experiment, can be saved and maintain for following run of the same experiment or
others experiments. This list it is called blacklist. Moreover, the nodes in the blacklist
in the moment the experiment is started, can be use to directly discard from the node
discover and provision the unwanted nodes.

There is an attribute available for this matter, is called 'persist_blacklist' and is a
global attribute, meaning that if set, is set for every resource of type PlanetlabNode.
The blacklist �le is stored in /.nepi/plblacklist.txt.

Example on how to use the attribute:

36 CHAPTER 5. SUPPORTED RESOURCES

Two Planetlab nodes that read from the blacklist at the beginning of the experiment,
and write new blacklisted nodes (if any) at the end.

node1 = ec.register_resource("PlanetlabNode")

ec.set(node1 , "username", username)

ec.set(node1 , "pluser", pl_user)

ec.set(node1 , "plpassword", pl_password)

ec.set(node1 , "cleanHome", True)

ec.set(node1 , "cleanProcesses", True)

node2 = ec.register_resource("PlanetlabNode")

ec.set(node2 , "username", username)

ec.set(node2 , "pluser", pl_user)

ec.set(node2 , "plpassword", pl_password)

ec.set(node2 , "cleanHome", True)

ec.set(node2 , "cleanProcesses", True)

ec.set_global('PlanetlabNode ', 'persist_blacklist ', True)

The attribute can be retrieved with the method get_global :

ec.get_global('PlanetlabNode ', 'persist_blacklist ').

SFA Support

Why using SFA for discovery and provision of resources in NEPI?

In order to be able to reserve resources for cross testbed experiments without having to
deal with di�erent types of credentials, is important that testbed adopt the SFA inter-
face and the users have at least one set of credentials in one testbed. With the SFA user
credential, slice credential and authority credential, the user can list resources, allocate
them, provision them, delete them from his slice, plus, add or remove slices when is
allowed, in any SFA compliant testbed that trust each others registry. The last assures
an uniform control plane operation layer (discovery, reservation, and provisioning) for
every type of resource in any SFA compliant testbed.

NEPI developed the appropriate framework to be able to solve control plane opera-
tions through SFA. Based on the s� client, NEPI developed an API that implement for
the user, the corresponding SFA AM calls to handle the �rst steps of the experiment
lifecycle. This is transparent for the user, who doesn't need to deal with SFA calls
speci�cs, or understanding RSpecs (Resource speci�cation). Moreover, NEPI imple-
mented functions to assist in the selection of a set of reservable resources.

The use of SFA then, requires that the user installs the s� client (version_tag="3.1-
4"), you can check http://svn.planet-lab.org/wiki/SFATutorial#SFATutorial for more
information.

5.2. PLANETLAB RESOURCES 37

SFA in PlanetLab

This should not add complexity for the user, for example, for the Planetlab node, the
experiment description is very similar:

from nepi.execution.ec import ExperimentController

import os

Create the EC

exp_id = "sfa_test"

ec = ExperimentController(exp_id)

username = os.environ.get('SFA_SLICE ') --- for example '

inria_lguevgeo '

sfauser = os.environ.get('SFA_USER ') --- for example 'ple.inria.

lucia_guevgeozian_odizzio '

sfaPrivateKey = os.environ.get('SFA_PK ') --- for example '/home/.sfi/

lucia_guevgeozian_odizzio.pkey'

node1 = ec.register_resource("PlanetlabSfaNode")

ec.set(node1 , "hostname", 'planetlab1.cs.vu.nl')

ec.set(node1 , "username", username)

ec.set(node1 , "sfauser", sfauser)

ec.set(node1 , "sfaPrivateKey", sfaPrivateKey)

ec.set(node1 , "cleanHome", True)

ec.set(node1 , "cleanProcesses", True)

SFA with iMinds Testbed (w-iLab.t)

The control and management software running in w-iLab.t is OMF 6, but its resources
can be discover and provisioned using SFA, the experiment description for the Wil-
abtSfaNode in NEPI is similar to the one in PlanetlabNode. Below is an example
:

from nepi.execution.ec import ExperimentController

import os

Create the EC

exp_id = "sfa_test"

ec = ExperimentController(exp_id)

slicename = 'ple.inria.lguevgeo '

sfauser = os.environ.get('SFA_USER ')

sfaPrivateKey = os.environ.get('SFA_PK ')

nodes

node1 = ec.register_resource("WilabtSfaNode")

38 CHAPTER 5. SUPPORTED RESOURCES

ec.set(node1 , "hostname", 'zotacM20 ')

ec.set(node1 , "slicename", slicename)

ec.set(node1 , "sfauser", sfauser)

ec.set(node1 , "sfaPrivateKey", sfaPrivateKey)

ec.set(node1 , "gatewayUser", "nepi")

ec.set(node1 , "gateway", "bastion.test.iminds.be")

ec.set(node1 , "cleanHome", True)

ec.set(node1 , "cleanProcesses", True)

Note that the w-iLab.t testbed is a private testbed, and resources can be accessed
only through a gateway. The node description must have two attributes de�ned as
gatewayUser and gateway. The appropriate ssh key settings in the gateway must be
pre-arranged with the testbed administrators, in order to enable the ssh access.

The gateway feature is not only possible for the w-iLab.t testbed, but for any
testbed that allow ssh key authentication. The ability to store the blacklisted nodes is
also possible for the w-iLab.t testbed.

The vsys system

TO DO

Python Vsys

TO DO

TAP/TUN/TUNNEL

TO DO

5.3 OMF resources

This section aims at providing some information about OMF and its implementation in
NEPI. Regarding to OMF itself, this user manual is not the o�cial OMF Documenation
and must be considered only as a complement to the o�cial one (https://mytestbed.net/),
gathering information collected during few years working with OMF.

OMF 5.4 vs OMF 6

Two versions really di�erent of OMF exists and are already deployed in di�erent testbed.
OMF 5.4.x is the oldest one and is not anymore under development. Many testbed
use this version in their testbed and start step by step to migrate towards OMF 6.

5.3. OMF RESOURCES 39

This latter is still under development. Some projects, as Fed4Fire, want to use this
technology and put many e�orts to deploy this new version.

Among the main di�erences between these two versions, we can noticed :

• OMF 5.4 use a Resource Controller (RC) that handles messages received throught
XMPP. OMF 6 use a Resource Proxy (RP) that allow the posibility to create a
Resource Controller to control an entity. So There is only one RP but one RC
for each entity involved in the experiment.

• The message protocol in OMF 5.4 use some speci�c keywords to create action,
or con�gure data. It is not really �exible and was not prepared for extension. In
OMF6, the protocol is well-de�ned and highly thought to be extensible as mush
as possible. It is base on 5 routines that allow any action. This protocol is called
FRCP.

• Both of them use OEDL as description language.

Available OMF Testbed

This subsection gather some information about well-known OMF Testbed. This list is
not exhaustive and many others OMF-testbeds are under deployment.

Nicta Testbed : Norbit

Nicta is the main developers institute of OMF. It has also its own testbed, called
Norbit, containing around 40 nodes deployed on a building. These nodes are usually
ALIX nodes, with small power consumption and CPU performance. More details can
be found on their website : http://mytestbed.net/projects/1/wiki/OMFatNICTA

Nitos Testbed : NitLab

Nitos is deployed in Greece on a 4th, 5th and 6th �oor of a building in the city. Di�erent
nodes are deployed as commell or diskless node, but some new powerful nodes will be
deployed soon, called Icarus Node, with high CPU performance. The total number of
nodes deployed on this testbed is around 50.

More details can be found on their website : http://nitlab.inf.uth.gr/NITlab/

iMinds Testbed : W-ilab.t

iMinds is deployed in Belgium. The W-ilab.t testbed gather more that one testbed.
Among them, there is one in Zwijnaarde that use OMF. Around 60 nodes are deployed
on the ceil of their building and one room is reserved for mobile nodes (using Roomba
). Around 10 mobile nodes will be deployed and operationnal in 2014.

40 CHAPTER 5. SUPPORTED RESOURCES

More details can be found on their website : http://www.crew-project.eu/portal/wilab/basic-
tutorial-your-�rst-experiment-w-ilabt

How to get an Account

Usually, the creation of the account need to be asked by email. Speci�c instructions
are provided below about how to request an account :

• Nicta : Ask thierry.rakotoarivelo@nicta.com.au

• Nitos : Use your onelab account (if you already have one) or create a new account
directly on their website (http://nitlab.inf.uth.gr/NITlab/index.php/testbed)

• iMinds : You need a VPN access and a Testbed Account. For the VPN Account,
ask stefan.bouckaert@iminds.be and check the tips below to install OpenVPN. For
the Testbed Account, ask pieter.becue@intec.ugent.be or directly on the w-iLabt.t
web interface (It will required the VPN Access)

Tips about OpenVPN

To install OpenVPN from the sources, be sure that lib-lzo and lib-ssl are installed. If
not, ./con�gure will allow to disable it by doing �disable-lzo or �disable-crypto. You
should NOT do it unless you know what you are doing. To install the components,
follow these commands :

• For Lzo :

� sudo apt-get install liblzo2-2 liblzo2-dev

� OR from the â��source (http://www.oberhumer.com/opensource/lzo/#download)
following these instructions (http://www.linuxfromscratch.org/blfs/view/6.3/general/LZO.html)

• For Openssl : sudo apt-get install libssl-dev

Finally, You will have to launch OpenVPN using the credentials you received from the
testbed owner. The command will be something like : sudo openvpn �le.ovpn

How to reserve some nodes

After creating your account, you need to reserve some nodes to deploy your experiment
on them. Di�erent policies are used until now but it will move toward a common policy
called Broker.

This is the list of the current reservation method :

5.3. OMF RESOURCES 41

• Nicta : Use google calendar for a gentleman's agreement. Add your reservations
directly in the google calendar. This functionality is enable only after asking the
Nicta team to add your Gmail address.

• Nitos : While logged into the website, you can use the Nitos â��Scheduler to
reserve some nodes and some channels for a maximum period of 4hours

• iMinds : Reserve your experiment on their website http://boss.wilab2.ilabt.iminds.be/reservation/.
Your experiment should be swapped in automatically. If it is not the case, turn
on your experiment on their website (https://www.wilab2.ilabt.iminds.be/) and
the provisionning will be done by their tools. The number of nodes you required
through the interfaces will be allocated for you with the image you declare (default
image is Ubuntu 12.04 if nothing has been speci�ed)

XMPP

The default communication layer used in OMF is XMPP. Xmpp is a PubSub communi-
cation system based on group. A group respresent a set of resource that can subscribe
to this group. Each resource can then publish to this group and consequently send
some messages to each resource that also subscribed. Even if AMQP is supported by
OMF, NEPI support only XMPP as it is mainly deployed on all the testbed.

The implementation of the XMPP client is based on the library SleekXmpp. Each
method has been overwritten to �t the requirement we need to OMF.

Finally, There is an OMF XMPP Factory that allow for each OMF Resource Man-
ager to share the same Xmpp Client. Based on some credentials as the user or the
password, the OMF XMPP factory store the di�erent XMPP Client. When an OMF
RM wants to communicate, it ask the Factory to retrieve one XMPP Client using the
credentials it has or to create one if it doesn't exists. The factory store the number of
RM that use each XMPP Client and delete it when no RM use it.

6

Debbuging

TODO

42

7

Release Cycle

Releases in NEPI do not occur in strictly regular periods. Usually a new release will
be done every 4 or 5 months.

7.1 The development branch

The main development branch for NEPI 3 is nepi-3-dev. There might be other branches
to develop new features, but they will eventually end up being merged into the nepi-3-
dev branch.

7.2 Versioning

Releases are named following the major.minor.revision convention. The major number
re�ects a major change in functionality or architecture. It is to be expected that this
number will remind in 3 for a long period.

The minor number re�ects the incorporation of new features into NEPI. This num-
ber is expected to be increased on each release.

The revision number is incremented when a considerable number of bugs have been
�xed. No release will be done when only the revision number is incremented.

7.3 The release process

The creation of a new NEPI release will always follow the same sequence of steps.

1. A new nepi-3.<minor>-pre-release branch will be created from the nepi-3-dev

branch

2. During two to three weeks intensive work on testing will be carried out on the
new branch. No new functionality will be added on this branch and only changes
that �x bugs will be accepted.

43

44 CHAPTER 7. RELEASE CYCLE

3. At the end of this period, the pre-release branch will be branched again into the
release branch, named nepi-3.<minor>-release

4. A tag will be added to this new branch including the revision number (i.e. release-
3.<minor>.<revision>)

5. Finally, the pre-release branch will be merged into the development branch, nepi-
3-dev, to incorporate to it all the bug �xes.

	Contents
	FAQ
	What is NEPI?
	What does a NEPI script look like ?
	What does NEPI stands for?
	Who developed NEPI?
	Is it free?
	How can I contribute?
	How can I report a bug ?
	Where can I get more information ?

	Getting started
	Dependencies
	The source code
	Install NEPI in your system
	Run experiments

	Introduction to NEPI
	Experiment Description
	Experiment Life Cycle
	Resource Management: The EC & The RMs

	The ExperimentController API
	The experiment script
	The design API
	The execution API

	Supported resources
	Linux resources
	Planetlab resources
	OMF resources

	Debbuging
	Release Cycle
	The development branch
	Versioning
	The release process

