
 1

Slice-Based Facility Architecture

Larry Peterson, Princeton

Soner Sevinc, Princeton

Jay Lepreau, Utah

Robert Ricci, Utah

John Wroclawski, USC/ISI

Ted Faber, USC/ISI

Stephen Schwab, Sparta

Scott Baker, Arizona

Draft Version 1.02

November 3, 2008

This work is supported in part by NSF grants CNS-0540815 and CNS-0631422.

Slice-Based Facility Architecture November 3, 2008

 2

Table of Contents

1 Introduction ... 2

2 Principals.. 3

3 Abstractions ... 4

3.1 Components .. 4
3.2 Slices ... 5

4 Names & Identifiers.. 5

4.1 Registries .. 6

5 Data Types ... 8

5.1 RSpec .. 8
5.2 Registry Record... 8
5.3 Ticket .. 10
5.4 Credentials... 10

6 Interfaces .. 11

6.1 Registry Interface .. 11
6.2 Slice Interface... 12

6.2.1 Instantiating a Slice .. 12
6.2.2 Provisioning a Slice.. 13
6.2.3 Controlling a Slice .. 14
6.2.4 Slice Information .. 14

6.3 Component Management Interface ... 15

7 Authorization and Access Control ... 16

1 Introduction
This document defines the minimal set of interfaces and data types that permit a federation of
slice-based network substrates to interoperate. The specification is designed to support
federation among facilities like PlanetLab, Emulab, VINI, and GENI—and assumes the reader is
familiar with those systems—but is intended to support a much broader range of designs than
those systems embody.

Although this effort grew out the GENI Initiative, it does not currently have any official
standing with GENI. Lacking any such sponsorship—and hoping to foster much broader
acceptance—we refer to the architecture defined in this document as the Slice-based Facility
Architecture (SFA).

Slice-Based Facility Architecture November 3, 2008

 3

2 Principals
The SFA recognizes four key actors:

• Owners of parts of the network substrate, who are therefore responsible for the externally
visible behavior of their equipment, and who establish the high-level policies for how their
portion of the substrate is utilized.

• Operators of parts of the network substrate, often working for owners, whose job it is to
keep the platform running, provide a service to researchers, and prevent malicious or
otherwise damaging activity exploiting the platform.

• Researchers (and developers) employing the network substrate, for running experiments,
deploying experimental services, measuring aspects of the platform, and so on.

• Principle Investigators (PI) representing research organizations that take responsibility for
individual researchers at their site.

The SFA must mediate the following activities:

• Allow owners to declare resource allocation and usage policies for substrate facilities
under their control, and to provide mechanisms for enforcing those policies. The
assumption is that there will be multiple owners and it will be a federation of these facilities
that will form the entirety of the network.

• Allow operators to manage the network substrate, which includes installing new physical
plant and retiring old or faulty plant, installing and updating system software, and
monitoring the network for performance, functionality, and security. Management is likely
to be decentralized: there will be more than one organization administering disjoint
collections of sites.

• Allow researchers to create and populate slices, allocate resources to them, and run
experiment-specific software in them. Some of this functionality, such as convenient
installation of software, including libraries or language runtimes, may be provided by
higher-level services; the SFA aims to support the deployment and configuration of such
services.

• Allow PIs to identify the set of researchers at their organization that be permitted to utilize
the facility.

To this end, the SFA defines three principals:

• A management authority (MA) is responsible for some subset of substrate components:
providing operational stability for those components, ensuring the components behave
according to acceptable use policies, and executing the resource allocation wishes of the
component owner.

• A slice authority (SA) is responsible for the behavior of a set of slices, vouching for the
researchers running experiments in each slice and taking appropriate action should the
slice misbehave.

• A user is a person playing one or more roles in a facility—a researcher that wishes to run
an experiment or service in a slice, an operator that manages some part of the substrate, a

Slice-Based Facility Architecture November 3, 2008

 4

PI at an institution that conducts research on the facility, or an owner that contributes
resources to a facility.

Note that we expect there to be end-users (or clients) of the services deployed in slices, but this
report offers no guidance on how these individuals interact with the system, as this is a slice-
specific concern.

3 Abstractions
The SFA defines two key abstractions: components and slices.

3.1 Components
Components are the primary building block of the architecture. For example, a component might
correspond to an edge computer, a customizable router, or a programmable access point.

A component encapsulates a collection of resources, including physical resources (e.g., CPU,
memory, disk, bandwidth) logical resources (e.g., file descriptors, port numbers), and synthetic
resources (e.g., packet forwarding fast paths). These resources can be contained in a single
physical device or distributed across a set of devices, depending on the nature of the
component. A given resource can belong to at most one component.

Each component is controlled via a component manager (CM), which exports a well-defined,
remotely accessible interface. The component manager defines the operations available to user-
level services to manage the allocation of component resources to different users and their
experiments. Typically, a component’s CM runs on the component itself, although components
that are unable to host a CM can be controlled by a remote proxy CM.

A management authority (representing the wishes of the owner) establishes policies about how
the component's resources are assigned to users.

It must be possible to multiplex (slice) component resources among multiple users. This can be
done by a combination of virtualizing the component (where each user acquires a virtual copy
of the component's resources), or by partitioning the component into distinct resource sets
(where each user acquires a physical partition of the component's resources). In both cases, we
say the user is granted a sliver of the component. Each component must include hardware or
software mechanisms that isolate slivers from each other, making it appropriate to view a sliver
as a “resource container.”

A sliver that includes resources capable of loading and executing user-provided programs can
also be viewed as supporting an execution environment. Slivers that support such execution
environments are said to be active slivers. Other (non-active) slivers might correspond to
communication resources; e.g., a tunnel, VLAN, circuit, or light-path.

Sometimes it is convenient to represent a collection of components as a single aggregate. For
example, one might treat all the nodes and links in backbone network as an aggregate. Such an
aggregate can be accessed via an aggregate manager (AM), which exports the same interface as an
individual component.

Slice-Based Facility Architecture November 3, 2008

 5

3.2 Slices
From a researcher's perspective, a slice is a substrate-wide network of computing and
communication resources capable of running an experiment or a wide-area network service.
From an operator's perspective, slices are the primary abstraction for accounting and
accountability—resources are acquired and consumed by slices, and external program behavior
is traceable to a slice, respectively.

A slice is defined by a set of slivers spanning a set of network components, plus an associated
set of users that are allowed to access those slivers for the purpose of running an experiment on
the substrate. That is, a slice has a name, which is bound to a set of users associated with the
slice and a (possibly empty) set of slivers.

There are three unique stages in the lifetime of a slice, each corresponding to an action
(operation) that can be performed on a slice:

• Register: the slice exists in name only and is bound to a set of users;

• Instantiate: the slice is instantiated on a set of components and resources assigned to it;

• Boot: the slice is activated (booted), at which point it runs code on behalf of a user.

A slice has to be registered and bound to a set of users before it can be instantiated, and it must
be instantiated before being it can run code or be accessed by a user.

Slices are registered in the context of a slice authority—a principal that takes responsibility for
the behavior of the slice. A slice is registered only once, but the set of users bound to it can
change over time. A slice registration has a finite lifetime; the responsible slice authority must
refresh this registration periodically.

Instantiating a slice effectively configures the slice on a set of components; this step can be
repeated multiple times. In fact, instantiating often involves two sub-steps: a slice is first
instantiated on a set of components with only best-effort resources assigned to it, and later
provisioned with additional (perhaps guaranteed) resources, for example, for the duration of a
single experiment.

An experiment or service then ``runs in’’ a slice. Multiple experiments can be run in a single
slice. For each run, the experiment may change parameters but leave the slice configuration
(instantiation) unchanged, or it may change either the set of components or the resources
assigned on those components, or both. How rapidly a slice can be reconfigured to support a
new experiment depends on the implementation of the instantiation and provisioning
operations.

4 Names & Identifiers
The SFA defines global identifiers (GID) for the set of objects that make up the federated system.
GIDs form the basis for a correct and secure system, such that an entity that possesses a GID is
able to confirm that the GID was issued in accordance with the SFA and has not been forged,
and to authenticate that the object claiming to correspond to the GID is the one to which the
GID was actually issued.

Slice-Based Facility Architecture November 3, 2008

 6

Specifically, a GID is a certificate that binds together three pieces of information:

GID = (PublicKey UUID, Lifetime)

The object identified by the GID holds the private key corresponding to the PublicKey in the
GID, thereby forming the basis for authentication. The UUID is a Universally Unique Identifier
[X667] for the object. An object’s UUID is immutable (it stays the same if the PublicKey changes)
and absolute (it identifies the same object throughout the entire system). The Lifetime says how
long the GID is valid; GIDs need to be “refreshed” periodically. An authority is identified by its
own GID, hence, any entity may verify a GID via cryptographic keys that lead back, possibly in
a chain, to a well-known root or roots.

When necessary for clarity, we distinguish between the plain GID denoting an object (the 3-
tuple given above), the signed GID (the above 3-tuple plus a signature generated by a
responsible authority), and the bundled GID (the set of signed GIDs, sufficient to verify the GID
back to a trusted root authority). Note that the signed GID is, in fact, a certificate.

This design reflects three engineering decisions. First, one could use the PublicKey rather than
the UUID to uniquely identify each object, but this would imply that the unique key for each
object change whenever the key changes (e.g., if the corresponding private key is ever
compromised). The expectation is that the UUID is an immutable object identifier. Second, it is
possible for an authority to forge the UUID it assigns to an object. The UUID can include one or
more sub-strings (i.e., prefixes) that uniquely identify the authorities that signed the
certificate—making it possible to verify that the UUID has not been forged—but ultimately one
has to recognize when a given authority cannot be trusted to produce valid UUIDs. Third,
multiple authorities can sign (accept responsibility for) the same GID, in which case the GID
would be bound to more than one name (as described next).

4.1 Registries
A registry maps human-readable names (HRN) to GIDs, as well as to other domain-specific
information about the corresponding object, such as the URI at which the object’s manager can
be reached, an IP or hardware address for the machine on which the object is implemented, the
name and postal address of the organization that hosts the object, and so on.

An HRN for an object identifies the sequence of authorities that are responsible for (have
vouched for) the object. While the SFA allows for an arbitrary organization of registries, for
simplicity of exposition, this document focuses on a hierarchical name space corresponding to a
hierarchy of authorities that have delegated the right to create and name component and slice
objects. This hierarchy assumes a top-level naming authority trusted by all entities, resulting in
names of the form:

top-level_authority.sub_authority.sub_authority.name

For example, “geni” and “planetlab” might be top-level authorities;1 it is possible that other
similar authorities might federate in accordance with the SFA. This is not to imply that all

1 The GENI literature refers to a Clearinghouse, which can be viewed as “trust anchor.” A top-
level authority (e.g., PlanetLab) is an example of such a trust anchor.

Slice-Based Facility Architecture November 3, 2008

 7

federation is strictly among top-level authorities, since even in the context of a single top-level
authority, we allow for multiple autonomous MAs that agree to federate their resources.

The registry maintains information about a hierarchy of management authorities, along with the
set of components for which the MAs are responsible. It binds a human-readable name for
components and MAs to a GID, along with a record of information that includes the URI at
which the component’s manager can be accessed, other attributes that might commonly be
associated with a component (e.g., hardware addresses, IP addresses, DNS names), and contact
information for the users (owners and operators) responsible for those components. For
example,

geni.us.backbone.nyc

might name a component at the NYC PoP of GENI’s US backbone. In this case, the
geni.us.backbone management authority is responsible for the operational stability of the set of
components in the backbone network.

The registry also maintains information about a hierarchy of slice authorities, along with the set
of slices for which the SAs have taken responsibility. It binds a human-readable name for slices
and SAs to a GID, along with a record of information that includes contact information for the
set of users (PIs and researchers) responsible for those slices. For example,

planetlab.eu.inria.dali

might name a slice created by the PlanetLab slice authority, which has delegated to the EU, and
then to INRIA, the right to approve slices for individual projects (experiments), such as Dali.
PlanetLab defines a set of expectations for all slices it approves, and directly or indirectly vets
the users assigned to those slices.

Note that both the GENI and PlanetLab management authorities are expected to maintain an
operational set of components capable of hosting experiments, and their respective slice
authorities are expected to approve slice creation on behalf of network and distributed systems
researchers. Because it is possible that other related facilities will federate with GENI and
PlanetLab, and there will be other uses of the greater federated system, we allow for the
possibility that other top-level slice authorities may support other policies and purposes. For
example, there could exist a top-level slice authority that permits slices running for-profit
services.

More generally, this document’s focus on a global hierarchy should not be taken to imply that
all authorities are known to a handful of globally trusted roots. For example, a consortium of
organizations might agree to create (and subsequently trust) a collection of sub-authorities,
slices, and users without being known globally; e.g.,

our_private_consortium.my_organization.some_slice

There could even be stand-alone authorities that, if someone was willing to trust them, could
participate in an SFA-based facility.

Note that human-readable names are useful because they are easy for humans to remember and
state, which makes them particularly important in crafting policy statements. For example, an
owner might specify a policy that says a component is willing to allocate up to X% of its

Slice-Based Facility Architecture November 3, 2008

 8

capacity to slices belonging to the planetlab.eu.inria authority, but no more than Y% of its
capacity to the specific slice geni.bbn.p2p.

Finally, note that a registry may be distributed, where a server that implements one portion of
the hierarchy includes a pointer (URI) to a server that implements a sub-tree of the hierarchy.
When necessary for clarity, we distinguish between the global registry (the entire collection of
registry information), an authority registry (one level of the global registry corresponding to the
information maintained by a single slice or management authority), and a registry server (a
remotely accessible server process that implements some sub-tree of the global registry,
including one or more authority registries).

5 Data Types
The SFA defines four key data types in addition to GIDs. This section defines these data types at
an abstract level. A candidate set of concrete representations is defined elsewhere. This section
also identifies potentially useful library routines that can be used to manipulate these data
types, but these routines are also defined elsewhere.

5.1 RSpec
A resource specification (RSpec) describes a component in terms of the resources it possesses and
constraints and dependencies on the allocation of those resources. The exact form of an RSpec is
still being defined elsewhere, but in addition to information about component resources, each
RSpec includes the following two fields:

(StartTime, Duration)

indicating the period of time for which the requested resources are desired (or granted
resources are available). By default, StartTime=Now and Duration=Indefinite.

Note: An RSpec might also include a “feedback URI” that the component uses
to notify the slice when an allocation is about to change underneath it.

5.2 Registry Record
A registry records facts about the objects in the system (e.g., components and slices), and the
principals (e.g., users, MAs and SAs) that use and authorize them. Registry records are defined
to be of the following form:

Record = (HRN, GID, Type, Info)

Where HRN and GID are as defined in Section 4,

Type = SA | MA | Component | Slice | User

and

Info = (PI[], Organization), if Type = SA

Info = (Owner[], Operator[], Organization), if Type = MA

Info = (URI, LatLong, IP, DNS), if Type = Component

Slice-Based Facility Architecture November 3, 2008

 9

Info = (URI, Researcher[]), if Type = Slice

Info = (PostalAddr, Phone, Email, SliverKeys[]), if Type = User

When present, the URI field references an object manager that exports one or more of the
standard SFA interfaces. For example, a component record might point to a Component
Manager that implements the Slice and Management interfaces defined in 6.2 and 6.3,
respectively, while a slice record might point to an agent that assists users in creating and
controlling their slices, although users are allowed to implement this functionality without the
assistance of some external agent. We sometimes call such an agent a slice manger.

The SA, MA, and Slice record types include references to (GID for) one or more User records.
These are denoted PI, Owner, Operator, and Researcher, respectively. In effect, these labels
signify the role the user(s) affiliated with that entity plays. The role a user plays directly
influences the credentials they are granted, as described later in this document.

The SliverKey field in a User record stores the keys (and other authentication tokens) needed to
access slivers created on behalf of the corresponding user. Different types of components will
support different access methods for slivers they host (e.g., ssh), with the related keys recorded
here. Users upload their public keys into their record, and components access these records to
learn the public key to associate with each user that needs to access the slices it hosts.

Note: There is an open question about how SliverKeys are distributed to
components that host a given slice, and how SliverKeys for new users bound
to a slice after it has been created are then distributed to components. There is
general agreement that these keys be stored in the registry (as opposed to a
slice manger), which means the component needs to periodically call the
registry to retrieve keys for any newly added users.

Note that we expect the information available in a registry to be relatively static. To learn more
detailed and dynamic information about a component, for example, one needs to call the
component directly using the URI for the Component Manager identified by the registry. The
interface exported by a CM includes operations for leaning the resources available on that
component.

Also note that a registry may contain multiple records with the same HRN, each of a different
type. For example, planetlab.princeton might name a slice authority (have an SA record), a
management authority (have an MA record), and a component aggregate (have a Component
record). Each of these different cases would correspond to a distinct object, and hence, have a
unique GID. (In practice, however, each such GID could share the same public key.)

Finally, we expect additional record types will be added to the registry over time. For example,
the registry might record information about various user-level services, some of which may run
in a slice (e.g., a software distribution service itself runs in a slice of the network substrate) and
some of which run on a service outside the substrate (e.g., a slice manager that exports a GUI for
specifying and instantiating slices.) Such services will then be treated as first-class objects in
system, complete with their own GID.

Slice-Based Facility Architecture November 3, 2008

 10

5.3 Ticket
A component signs an RSpec to produce a ticket, indicating a promise by the component to bind
resources to the ticket-holder at some point in time. Such tickets are “issued” by a component,
and later “redeemed” to acquire resources on the component. Tickets may also be “split,”
effectively passing resources from one principal to another.

The SFA defines the tickets to includes the following information:

Ticket = (RSpec, GID, SeqNum)

where RSpec describes the resources for which rights are being granted by the component; GID
identifies the slice or slice authority to which rights to allocate the resources are being granted;
and the SeqNum ensures that the ticket is unique. This information is signed by the component
that issues the ticket.

5.4 Credentials
A credential carries the rights issued to a particular principal. For example, a user might be
granted credentials that allow it to instantiate a slice in a set of willing components for the
period of time during which the slice is said to be live. A credential is given by the 6-tuple:

Credential = (CallerGID, ObjectGID, ObjectHRN, Expires, Privileges, Delegate)

where CallerGID identifies the principal to which the credential has been issued; ObjectGID and
ObjectHRN identify the object for which the credential applies; Expires says how long the
credential is valid; Privileges identifies the class of operations the holder is allowed to invoke;
and Delegate indicates whether the holder is permitted to delegate the credential to another
principal.

A credential is signed by the responsible authority, and similarly re-signed when delegated.
Although not defined in this document, we assume there exists a library routine that a user calls
to delegate a credential to another principal. This routine must allow the holder of a credential
to delegate a subset of the privileges it holds, as well as clear the Delegate field so that the
credential cannot be re-delegated.

Each privilege implies the right to invoke a certain set of operations on one or more of the SFA
interfaces. Privileges include:

Privilege Interface Operations

authority Registry all

refresh Registry Remove, Update

resolve Registry Resolve, List, GetCredential

pi Slice all

Slice-Based Facility Architecture November 3, 2008

 11

instantiate Slice GetTicket, InstantiateSlice, DeleteSlice,
UpdateSlice

bind Slice GetTicket, LoanResources

control Slice UpdateSlice, StopSlice, StartSlice,
DeleteSlice

info Slice ListSlices, ListComponentResources,
GetSliceResources, GetSliceBySignature

operator Management all

Section 7 defines the policy for generating credentials, given the information contained in the
relative registry record.

6 Interfaces
The following describes, in high-level terms, the interfaces provided by the core set of SFA
objects. A candidate set of concrete interfaces is defined elsewhere.

Not included in the following description is a definition of the secure remote invocation
mechanism that allows the caller to invoke one of the operations defined below on a specified
object manager. Such a mechanism allows the caller to identify the callee with a URI, and then
facilitates both sides using their respective GIDs to authenticate the other. We expect the
architecture to accommodate multiple such invocation mechanisms.

6.1 Registry Interface
The registry interface supports the following five operations:

Register(Credential, Record)

Remove(Credential, Record)

Update(Credential, Record)

Record = Resolve(Credential, HRN, Type)

Record[] = List(Credential, Type)

Credential = GetCredential(Credential, HRN, Type)

The first two operations are used to register and un-register objects and principals, while the
third operation is used to update information about an entry. Each record includes live-ness
information (the Lifetime field contained in the GID), which must be periodically refreshed
(using Update) or the record is automatically removed. The fourth operation is used to learn the
information bound to a given HRN and the fifth operation is used to retrieve information about
the set of objects managed by a given authority.

Slice-Based Facility Architecture November 3, 2008

 12

All operations are interpreted relative to a Credential that specifies the context (authority) in
which the operation is applied. For example, invoking List with a Credential that specifies
planetlab.princeton and Type=Slice returns all slices registered by the Princeton slice authority.

The final operation allows a principal to retrieve credentials corresponding to the named object.
For example, a user might invoke GetCredential, giving his or her user credentials as the first
argument, to retrieve the credentials associated with the named slice. The Type argument is
used to differentiate among multiple records with the same name, so for Type=Slice, the return
value is a “slice credential” that can subsequently be passed to the operations defined in the
next section. Similarly, a call to GetCredential with Type=SA returns a “registry credential” that
can subsequently be used to operate on records belonging to the named authority.

Users typically bootstrap their “registry credentials” through an out-of-band process. For
example, a researcher and a PI might jointly construct a new GID for the researcher (typically
the researcher provides the public key and the PI provides the UUID and sets the lifetime for
the GID), the researcher passes the contact information needed to complete the registry record
to the PI, and the PI registers the newly constructed record (including the new user’s GID) in
the authority registry for which it has the necessary “registry credentials.” We assume the
researcher then constructs a “bootstrap credential” (using its new GID as both the CallerGID
and ObjectGID) and calls GetCredential to retrieve the “registry credential,” which it then uses
for subsequent registry calls. Alternatively, a user that already has a GID, perhaps issued by
some other authority, may pass this signed GID to the PI out-of-band, and the PI is free to
continue the registration process using this GID if it trusts the original signing authority.

Most of the calls defined in the next two sections take a credential as an argument. This
credential, coupled with the exchange of GIDs assumed by the underlying invocation
mechanism, is sufficient for the callee to determine if the caller is allowed to invoke the
specified operation. Notice, however, that the validity of the credential is subject to the accuracy
of the GID’s Lifetime field; that is, an authority can explicitly delete a GID (and associated
registry record) after issuing the credential, but before its lifetime expires. A conservative callee
is free to call the registry and confirm that the GID is still valid (has not been deleted). This
check is functionally equivalent to checking a revocation list. The SFA does not define a
distribution mechanism for such revocations, but a third party service could poll registries for
records that have been explicitly deleted before the GID’s Lifetime has expired, implementing
such a distributed revocation list.

6.2 Slice Interface
Once a slice has been registered with a trusted slice authority, any user bound to the slice can
retrieve a credential giving it the right to invoke the following operations on a component to
instantiate and provision the slice. Note that a single component is able to create only local
slivers, meaning that the following operations must be invoked on each component that the
slice is expected to span, perhaps indirectly through a proxy or aggregate acting on behalf of a
set of components. Thus, individual components, aggregates representing sets of components,
aggregates of aggregates, and proxies for components all support the slice interface.

6.2.1 Instantiating a Slice

A combination of four operations are used to instantiate (embed) a slice:

Slice-Based Facility Architecture November 3, 2008

 13

Ticket = GetTicket(Credential, RSpec)

RedeemTicket(Ticket)

ReleaseTicket(Ticket)

InstantiateSlice(Credential, RSpec)

A user invokes the first operation on a component to acquire rights to component resources.
The returned ticket effectively binds the slice to the right to allocate on that component the
requested resources. Whether or not the call succeeds depends on the local resources available
on the component, and the resource allocation policy implemented by the component (on behalf
of the component owner). The Credential parameter identifies the slice or slice authority
requesting the resources, and indicates the period of time for which the slice’s registration is
valid; the component likely limits the returned ticket’s duration accordingly. The Credential
must include the instantiate or bind privilege.

Once a principal possesses a ticket, it can create a sliver on the component and bind new
resources to an existing sliver by invoking the RedeemTicket operation. Creating a new sliver
requires the instantiate privilege and augmenting an existing sliver with additional resources
requires the bind privilege. The ReleaseTicket call undoes a ticket allocation.

Alternatively, a caller can embed a slice with a single InstantiateSlice call. This call is essentially
equivalent to back-to-back GetTicket/RedeemTicket calls.

Note that RedeemTicket and SplitTicket (next section) are the only operations that do not take a
Credential as an argument. Instead, both take a Ticket, which effectively plays the role of a
credential in the sense that it says what set of resources the corresponding principal has the
right to allocate or bind. A principal must have the instantiate or bind privilege to call GetTicket,
but once a ticket exists, the principal to whom the resources are bound may call SplitTicket.

6.2.2 Provisioning a Slice

Three operations are used to manipulate the resources bound to a slice:

NewTicket = SplitTicket(Ticket, GID, RSpec)

LoanResources(Credential, GID, RSpec)

UpdateSlice(Credential, RSpec)

An entity that holds a ticket uses the first operation to split off a portion of the corresponding
resources, effectively creating a new ticket. The GID parameter specifies the slice to which the
ticket’s resources are to be bound. Note that splitting a ticket requires calling the entity that
originally issued the ticket, independent of how many times the ticket has previously been split.
(In contrast, a credential can be delegated locally, without contacting the issuer of the
credential.) This new ticket can be redeemed using the RedeemTicket operation (described
above); resulting in either a new slice being instantiated on the component or additional
resources being bound to an existing slice.

A slice uses the second operation to loan some of its current resources to the specified slice. A
slice can learn its allocation on the component using the GetSliceResources operation

Slice-Based Facility Architecture November 3, 2008

 14

(described below). Loaned resources are transferred from one slice to another without being
encapsulated in a ticket.

A user invokes the third operation to request that additional resources—as specified in the
RSpec—be allocated to the slice. Note that UpdateSlice and InstantiateSlice can be viewed as
alternative name for the same operation: the former creates the slice if it does not already exist,
while the latter updates the slice if it already exists.

6.2.3 Controlling a Slice

Component managers support four control operations:

StopSlice(Credential)

StartSlice(Credential)

ResetSlice(Credential)

DeleteSlice(Credential)

where the Credential parameter passed to all four operations identifies the slice being
controlled. The first two operations stop and start the execution of an existing slice. The slice
retains any acquired resources on the component, although a component that uses work-
conserving schedulers is free to utilize those resources for the duration of the suspension. The
slice should not expect the threads running in the slice to resume at the point the slice was
suspended, as the implementation of StopSlice is free to kill all running threads, in which case,
StartSlice effectively reboots the slice. However, the slice’s on-disk state should remain
unaffected by the operations. The third operation resets a slice to its initial state. This includes
clearing any on-disk state associated with the slice. Thus, ResetSlice is effectively equivalent to
deleting and re-creating the slice on the component, but without freeing the slice’s resources.
The fourth operation removes the slice from the component and releases all of its resources.

Note: Does a freshly instantiated slice/sliver start in the suspended state (and
hence, one must invoke the StartSlice operation to “boot” it), or is each active
sliver in a slice automatically booted when it is instantiated?

Note that these operations might be invoked by a user responsible for the slice (e.g., a
researcher associated with the slice with the slice or the PI that vouched for the slice), or by a
user responsible for the component (e.g., an operator affiliated with the MA). In the latter case,
the operator might not know that the slice exists on the component, but is terminating or
suspending the slice on all components it manages. This permits an operator to control a slice
on all of the components it manages without the cooperation of a slice manager that knows all
the components on which the slice has been embedded.

6.2.4 Slice Information

Components support three informational operations:

SlicesNames[] = ListSlices(Credential)

RSpec = ListComponents(Credential)

RSpec = GetSliceResources(Credential)

Slice-Based Facility Architecture November 3, 2008

 15

They are used to learn the HRNs for the set of slices instantiated on that component, the
resources available on the component (or aggregate), and the set of resources bound to a
particular slice, respectively. All three calls require a Credential, but for ListSlices and
ListComponents, it is reasonable for components to return the requested information to any
caller with a legitimate GID.

In practice, the ListComponents and GetSliceResources operations, in conjunction with
GetTicket, can be used by a slice (or a slice manager running on its behalf) to (a) learn what
resources are available on a given component or aggregate, (b) request a collection of resources
be allocated to the slice on that component or aggregate, and (c) determine precisely what
resources the component(s) assigned to the slice. This sequence can be repeated to incremental
acquire the desired resources.

Note that when ListComponents is invoked on an aggregate, the caller is able to learn the set of
components available within that aggregate. This information is likely to be both more detailed
and more dynamic than the component information available in a registry.

A fourth operation

SliceName = GetSliceBySignature(Credential, Signature)

where

Signature = (StartTime, EndTime, Protocol, SrcPort, SrcIP, DstPort, DstIP)

is used to learn the HRN for the slice that sent a particular packet onto the Internet. It is
meaningful only on a component that is able to forward packets to/from the legacy Internet.

6.3 Component Management Interface
A component management interface (or simply, “management” interface) is used to boot and
configure components, bringing them into a state that they can support the slice interface. The
interface is also used to bring the component into a safe state should the component be
compromised. Both individual components and aggregates representing a set of components
can be expected to support the management interface.

The management interface includes three operations:

SetBootState(Credential, State)

State = GetBootState(Credential)

Reboot(Credential)

The first operation is used to set the boot state of a component to one of the following four
values: debug (component fails to boot, but should keep trying), failure (component is
experiencing hardware failure, and so is taken offline until a human intervenes), safe
(component available only for operator diagnostics), or production (component available for
hosting slices). The second operation is used to learn a component’s boot state and the third
operation forces the component to reboot into the current boot state.

Slice-Based Facility Architecture November 3, 2008

 16

Note that we expect a given component (or aggregate) to support a much richer set of
management-related (O&M) operations, effectively extending the required operations listed
here. The management interface defines only the minimal set of operations all components
(including aggregates and proxies) must support.

7 Authorization and Access Control
This section outlines the origins and flow of trust throughout an SFA-based system. This
includes the expected policies for granting the privileges defined in Section 5.4. In other words,
we expect the GetCredential operation to return credentials that adhere to this policy.

All rights regarding slices originate with slice authorities. SAs approve of (take responsibility
for) slices and the users associated with them. Each SA implicitly has the authority privilege for
the registry records corresponding to the set of users and slices for which it is responsible. SAs
typically grant the authority privilege to the PI associated with the authority.

All rights regarding component resources originate with management authorities. MAs define
the resource allocation policies for the components they manage and approve of all users that
operate those components. Each MA implicitly has the authority privilege for the registry
records corresponding to the set of users and components for which it is responsible. MAs
typically grant the authority privilege to the owners and operators associated with the authority.

Users, components, and authorities are granted the refresh privilege for the registry record that
contains information about them; users also have this privilege for the slices they are affiliated
with. All users and authorities are granted the resolve privilege for all records in the registry.
All users and authorities are granted the info privilege for all slices in the system.

Users associated with an SA (i.e., PIs) are granted the pi privilege for all slices registered with
that SA, as well as for all slices registered by any sub-authority rooted at that authority. This
privilege cannot be delegated.

Users associated with a slice (i.e., researchers) are granted the instantiate, bind, and control
privileges for that slice. We call these out as three separate privileges so that users can delegate
useful subsets of the operations defined by the slice interface to third party services (e.g., the
right to control an existing slice). These users will likely disable delegation before passing the
credential to such a third party service. All users (researchers) are granted the info privilege
relative to all slices, and all components hosting slices.

Users associated with an MA (i.e., operators) are granted the operator privilege for all
components managed by that MA, but not for components managed by sub-authorities rooted
at that MA. (Such rights must be explicitly delegated.) They are also granted the pi privilege on
all components they manage, across all slices hosted on those components. This latter right
allows an operator to shut down or suspend any misbehaving slice that its components host.

Each component implements a resource allocation policy that determines how many resources,
if any, to grant each slice. A user that is granted the instantiate or bind privileges for a given
slice is viewed as having the right to ask for resources from the component—the credential
essentially confirms that some slice authority vouches for the slice—but it is up to the
component to decide if it is willing to host the slice, and if so, how many resources to grant it.

Slice-Based Facility Architecture November 3, 2008

 17

