
 1

PlanetLab Implementation of the
Slice-Based Facility Architecture

Larry Peterson, Princeton

Soner Sevinc, Princeton

Scott Baker, Arizona

Tony Mack, Princeton

Reid Moran, Princeton

Faiyaz Ahmed, Princeton

Draft Version 0.07

September 8, 2009

This work is supported in part by NSF grants CNS-0540815 and CNS-0631422.

PlanetLab Implementation of the SFA September 8, 2009

 2

Table of Contents

1  Introduction...3 

2  Engineering Decisions ...3 

3  Usage Scenarios ..4 

3.1 Single PlanetLab..5 
3.2 Multiple Aggregates ...6 
3.3 Full Federation...7 
3.4 Other Possibilities ...8 

4  Implementation ..8 

4.1 Certificates, Credentials, and GIDs ..8 
4.2 RSpec...9 
4.3 Tickets ...9 
4.4 XML-RPC ...9 
4.5 SFA Interfaces ..10 

4.5.1 Registry ..11 
4.5.2 Aggregate Manager..11 
4.5.3 Slice Manager ..11 
4.5.4 Component Manager ...11 

4.6 Command-Line Interface ...12 

Appendix: User Tools ..13 

PlanetLab Implementation of the SFA September 8, 2009

 3

1 Introduction
PlanetLab supports a prototype implementation of the abstractions and interfaces defined in the
Slice-based Facility Architecture (SFA) document. This paper outlines a PlanetLab-centric
“projection” of the SFA, and provides details about the implementation.

PlanetLab Central (PLC) bundles together an aggregate manager, a slice manager, and a
registry server. Individual PlanetLab nodes correspond to components and run a component
manger. The PLC aggregate, the PLC slice manager, and the component manager running on
each node export the slice interface.1 The PLC registry server exports the registry interface.

The PlanetLab Consortium serves as a top-level slice and management authority. Sub-
authorities correspond to member institutions, as well as federated partners. For example,
plc.princeton.codeen is the human-readable name for the CoDeeN slice from Princeton,
plc.vini.internet2.nyc.node1 is the HRN for a component in the VINI backbone, and plc.eu.inria
is the HRN of a slice authority within the PlanetLab Europe sub-authority.

Throughout this document it is important to keep in mind the distinction between the “public”
PlanetLab, which is administered by Princeton and runs an instance of PLC at
http://www.planet-lab.org, and other “private” instantiations of PlanetLab that take
advantage of the MyPLC software distribution. These other instantiations are able to set up
their own aggregates and registries, and federate them with the public PlanetLab. The goal is
for this federation of aggregates to share a common name space and interfaces—e.g.,
plc.princeton.codeen is a universally recognized slice name and all aggregates support a
CreateSlice operation—where each member aggregate establishes an allocation policy for its
own resources.

2 Engineering Decisions
As a working system, PlanetLab has made certain engineering decisions. This section outlines
these decisions and their implications on the SFA.

• PlanetLab maintains all authoritative state at PLC. Individual nodes maintain only cached
state that must be updated should the node fail and subsequently reboot. This means, for
example, that any RedeemTicket or LoanResources operations invoked on a node must be
re-invoked whenever the node reboots. Note that each node does have persistent storage
that records certain information for the slices it hosts (e.g., the fact that the slice exists and
is mapped to a particular virtual machine), but this state may become out-of-date during
the time a node is down. Also, the node may be reinstalled, which clears all local state.

• Nodes implicitly delegate control over their resources to PLC (the aggregate), which is
responsible for implementing PlanetLab’s resource allocation policy. As a consequence, the
GetTicket, CreateSlice, and UpdateSlice operations succeed on PLC, but fail when

1 The GENI literature refers to a Clearinghouse, which can be viewed as a bundle of related
software packages—e.g., an aggregate manager and registry server—and a “trust anchor.” PLC
can be viewed as an example GENI Clearinghouse on both counts.

PlanetLab Implementation of the SFA September 8, 2009

 4

invoked on individual nodes. Technically, these per-node invocations are return a “no
available resources” message in response to requests to allocate resources since they have
relinquished the right to allocate their resources to PLC. Individual nodes do, however,
support the RedeemTicket and LoanResources operations, so it is possible to get a ticket
from PLC and then redeem it on individual nodes. Both PLC and individual nodes
support all other operations defined by the slice interface.

• The slice manager running at PLC is configured to know about one or more aggregates. By
default, it knows about the local PLC aggregate, but through peering arrangements with
other management authorities, it can be configured to provide users with an interface to
multiple aggregates. Like an aggregate, the slice manager exports the slice interface, the
only difference is that the slice manager does not support the GetTicket operation; slices
can be created only using CreateSlice. Users that want to retrieve and redeem tickets must
contact individual aggregate managers and their components. A set of helper functions,
which runs on the user’s machine and not at PLC, augments the slice interface to provide
researchers with a richer interface for manipulating slices.

• Tickets are idempotent. This means no matter how many times one redeems a ticket
granting a slice 1Mbps of link bandwidth, for example, the slice is granted only 1Mbps of
link bandwidth. In other words, tickets specify absolute resource capacity, rather than
relative or incremental capacity. On the other hand, the LoanResources operation does
increment a slice’s resource allocation by the amount given in the RSpec.

PlanetLab’s current resource allocation policy is fairly simple. Slices are granted “best effort”
resources by default. The policy recognizes only select slices as qualifying for guaranteed
resources. One of these corresponds to the Sirius Reservation Service, which subsequently uses
the LoanResources operation to grant other slices link and CPU guarantees for one-hour time
slots. Note that each aggregate is free to define its own resource allocation policy, that is, what
slices it is willing to host and how many resources to grant each of those slices.

PlanetLab supports an extensive O&M interface that goes well beyond anything defined by the
SFA. This is a private interface known only to PlanetLab operators. One can view the SFA
management interface as a small subset of this PlanetLab-specific O&M interface that is
common to all components participating in a federated slice-based facility.

3 Usage Scenarios
This section walks through a sequence of usage scenarios showing how we expect PlanetLab to
evolve to take advantage of the SFA to support both federation and third-party user services.
Throughout this section, we use the notation outlined in Figure 3.1.

PlanetLab Implementation of the SFA September 8, 2009

 5

Figure 3.1: Notation used throughout this section, including both interfaces and managers.

For the purpose of this discussion, we introduce an uber researcher interface, which provides a
high-level interface (possibly GUI-based) that researchers interact with to set up, control, and
tear down their slices. This interface is not one of the standard SFA-defined interfaces, although
it likely extends the slice interface. For example, it might allow users to manipulate graphical
representations of their slices, it might iteratively discover and acquire resources, and it might
help users steer the experiments running in those slices. In the current implementation, the
researcher interface corresponds to a combination of the slice interface exported by the slice
manager and the set of helper functions running on the researcher’s desktop.

3.1 Single PlanetLab
The first scenario, depicted in Figure 3.2, corresponds to a simple deployment of PlanetLab, in
which a trivial slice manager (SM), a single aggregate manager (AM), and a registry (R) are all
bundled in PLC, with each node running a component manager (CM).

Figure 3.2: Single PlanetLab, with bundled slice manager, registry, and aggregate manager.

PlanetLab Implementation of the SFA September 8, 2009

 6

In this example, users interact with the slice manager (using either a GUI or a programmatic
interface) to create and control their slices. The slice manager contacts the registry to retrieve the
necessary credentials, and then invokes the slice interface on the aggregate to create and control
the slice. As is the common case in PlanetLab, the aggregate (rather than end users) interacts
with the individual nodes. Note that the current implementation of PLC uses a private interface
to interact with the individual components (although the components also export the slice
interface to other clients).

In all the examples presented throughout this section, we focus on the slice-related records in
the registry. Component-related records are also recorded in the registry, but we do not
illustrate how these records are used in the following discussion. Currently, PLC manipulates
these records on behalf the constituent components, with PLC and the components
communicating using a private interface.

3.2 Multiple Aggregates
The scenario depicted in Figure 3.3 spans two aggregates—PlanetLab and VINI—each
responsible for its own set of components. That is, VINI and PlanetLab are distinct management
authorities, each defining its own policies for what slices they are willing to host and how many
resources to grant each slice. In this case, VINI does not operate its own registry or slice
manager, and PlanetLab’s slice manger presents users with a unified view of all the components
available on both systems, hiding the fact that its global view spans multiple aggregates and
giving users what effectively amounts to “single sign-on”.

Figure 3.3: VINI and PlanetLab represent independent aggregates (and corresponding
management authorities), unified by a single slice manager.

To create a slice, the PlanetLab SM would need to contact both available aggregate managers to
learn about the available components. It would then present these components to the user in an
SM-specific way. Once the user selects the set of components to be included in his or her slice,
the SM would call the Registry to retrieve the necessary credentials, and then invoke the
CreateSlice operation on the respective aggregates to create the cross-aggregate slice.

PlanetLab Implementation of the SFA September 8, 2009

 7

In this scenario, the SM plays the role of an aggregate of aggregates. When viewed from this
perspective, it makes sense that the SM exports the slice interface, just like any other aggregate
(i.e., the uber researcher interface is a superset of the slice interface). Note that there are several
candidate aggregates that we plan to include in an early demonstration of this capability—
VINI, Measurement Lab (M-Lab), Enterprise-GENI, the Mid-Atlantic eXchange (MAX), GpENI,
and a Supercharged PlanteLab Platform (SPP) network embedded in Internet2.

3.3 Full Federation
Our final scenario, shown in Figure 3.4, involves symmetric federation between two
autonomous aggregates (or sets of aggregates), one representing PlanetLab Europe (PLE) and
the other representing the rest of PlanetLab (PLC). Both systems support their own slice
manager, registry servers, aggregate manager, and set of components. As in the previous
scenario, users interact with their “local” SM, which creates and manages slices spanning both
aggregates.

Although not explicitly depicted in the figure, the PLC registry points to the PLE registry. That
is, registry records for the top-level PlanetLab authority, including the record for the EU sub-
authority, are maintained in the PLC registry, while records associated with the EU sub-
authority are maintained in the PLE registry server.

Figure 3.4: Peer testbeds (PLC and PLE) federate their aggregates.

Note that while Figure 3.4 depicts each SM as directly accessing the single AM available in the
peer, in general, each peer SM might know about a set of local aggregates, where each SM
accesses the peer aggregates indirectly through the peer’s SM (which is acting as an aggregate
of aggregates). When viewed in this way, the SMs are analogous to tier-1 ISPs in today’s
Internet—where each SM knows about all other SMs—with the analogous tier-2 and 3 AMs
accessed indirectly through their tier-1 SM.

PlanetLab Implementation of the SFA September 8, 2009

 8

There are four candidate peers that we plan to include in an early demonstration of this
capability—PlanetLab Europe (PLE), PlanetLab Japan (PLJ), PlanetLab Korea (PLK), and
PlanetLab Brazil (PLB).

3.4 Other Possibilities
Many other configurations are possible. For example, there may exist slice managers that are
not bundled with an aggregate or set of components. Such a slice manager would provide an
interface to one or more existing aggregates, or other slice managers aggregating a set of
aggregates. In the limit, individual users can interact directly with one or more aggregates to
acquire resources (instantiate their slices) without involving a slice manager. Or said another
way, each user could run his or her own slice manager functionality. As another example, other
independent aggregates might choose to trust users registered with PlanetLab—retrieving their
credentials from the PLC-rooted registry—but otherwise instantiate their slices purely within
their own aggregate.

4 Implementation
We have implemented a module, called sfa, that exports the set of interfaces defined by the
Slice Facility Architecture. The sfa module is distributed as part of the MyPLC software
package, and is independently available at http://svn.planet-lab.org. The module
code is organized as follows:

sfa/client: User-level programs and tools used by researchers and authorities to access a
federation of sliced-based testbeds. Primary among these is sfi.py (slice facility
interface), which is described in more detail in the appendix.

sfa/server: First-class objects involved on the server side, corresponding to the three main
classes that implement the Aggregate Manager (AM), Slice Manager (SM), and Registry
(R).

sfa/plc: PLC-specific code underlying the server-side software. Of particular note, sfa-
import-plc.py imports a PLC database and produces an SFA database.

sfa/trust: Classes defining the basic identification and authentication objects, including
credentials.

sfa/methods: Classes defining the individual methods that make up the Registry and Slice
interfaces.

sfa/util: Assorted utility programs.

4.1 Certificates, Credentials, and GIDs
A Certificate class extends pyOpenSSL's native X.509 certificate class by adding a parent
field, thereby supporting certificate chains. When loaded from a file or a string, a sequence of
certificates is interpreted as a parent chain. When saved to a file or string, the caller can choose
whether or not to save the chain of parent certificates.

The sfa module also defines GID and Credential classes that extend this Certificate
class. They add support for GID-specific and credential-specific tuples, respectively. The GID

PlanetLab Implementation of the SFA September 8, 2009

 9

class sets the subject-public-key field of the certificate to the PublicKey in the GID, and the
subject-alt-name field of the certificate to the UUID and HRN in the GID. UUIDs are
generated according to RFC4122 (version 4). The authority that is responsible for the object
denoted by the GID signs the certificate. Similarly, the Credential class stores the entire
(GIDCaller, GIDObject, LifeTime, Privileges, Delegate) 5-tuple in the subject-alt-name
field. Both GIDs and credentials currently use 1024-bit RSA as their public key algorithm and
SHA1 as their signature algorithm.

4.2 RSpec
The definition of the RSpec class is rapidly evolving. More information will be posted soon.

4.3 Tickets
Similar to GIDs and credentials, a Ticket class extends the Certificate class. The
implementation deviates somewhat from the definition given in the SFA document. A ticket is
defined by the 5-tuple (GIDCaller, GIDObject, Attributes, RSpec, Delegate), where GIDCaller is
the GID of the principal performing the operation; GIDObject is the GID of the slice to which
the ticket is bound; Attributes is the set of PlanetLab attributes (tag/value pairs) that do not
correspond to resources (e.g., keys contains the SSH keys for the users affiliated with the slice,
vsys specifies privileged operation the slice may invoke, and initscript defines the script that
runs when the slice boots); and RSpec specifies the set of resources bound to the slice.

As described in the Section 2, PlanetLab allows callers to get tickets from the Aggregate
Manager running at PLC, and redeem tickets at the Component Manager running on each node.
Individual nodes do not respond to local calls to GetTicket.

4.4 XML-RPC
Secure remote invocation is based on XML-RPC running on top of HTTPS, where the
underlying SSL layer is implemented using pyOpenSSL. Both the client and server specify their
private and public keys when opening an SSL socket, and upon successful connection
establishment, each knows the other's public key (by convention, this key is stored in an X.509
certificate). The GeniClient and GeniServer classes implement the underlying client and
server, respectively (both are in the /sfa/util directory).

The next step of XML-RPC is to dispatch the incoming call to the specified operation, where the
first argument to each operation is a credential. The Auth class (in trust/auth.py) provides a
check method to verify that this credential gives the caller the right to invoke the
corresponding operation. For example, the following code snippet is used by all SFA methods:

 def sfa_method(self, cred_str, ...other arguments...):
 self.api.auth.check(cred_str, "sfa_method")
 ...

The check routine is defined as follows:

 ##
 # Check the credential against the peer cert (callerGID included
 # in the credential matches the caller that is connected to the

PlanetLab Implementation of the SFA September 8, 2009

 10

 # HTTPS connection, check if the credential was signed by a
 # trusted cert and check if the credential is allowed to perform
 # the specified operation.

 def check(self, cred_string, operation):
 # extract relevant fields from the credential
 self.client_cred = Credential(string = cred_string)
 self.client_gid = self.client_cred.get_gid_caller()
 self.object_gid = self.client_cred.get_gid_object()

 # make sure client_gid is not blank
 if not self.client_gid:
 raise MissingCallerGID(self.client_cred.get_subject())

 # make sure pubkey of peer matches pubkey in client_gid
 peer_cert = self.server.peer_cert
 if not peer_cert.is_pubkey(self.client_gid.get_pubkey()):
 raise ConnectionKeyGIDMismatch(
 self.client_gid.get_subject())

 # make sure client is allowed to perform the operation
 if not self.client_cred.can_perform(operation):
 raise InsufficientRights(operation)

 # make sure credential is signed (recursively) by parents
 if self.trusted_cert_list:
 self.client_cred.verify_chain(self.trusted_cert_list)
 if self.client_gid:
 self.client_gid.verify_chain(self.trusted_cert_list)
 if self.object_gid:
 self.object_gid.verify_chain(self.trusted_cert_list)

where verify_chain recursively walks through the chain of certificates, making sure that
each parent signed the certificate of each child. At each level of recursion, verify_chain
makes sure that the parent's HRN is a prefix of the child's HRN. The calls to verify_chain at
the end of decode_authentication conservatively verify the credential, the client's GID,
and the object's GID.

4.5 SFA Interfaces
The sfa module implements classes for each of the major objects described in the SFA: Registry
(co-located with PLC), Aggregate Manager (co-located with PLC), Slice Manager (co-located
with PLC), and Component Manager (co-located with each node). This section briefly describes
the implementation of each.

Note that all managers (servers) need not to be activated on all instantiations. For example, the
standard PLC instantiation includes a Registry (for all authorities, slices, users and components
managed by this PLC), an AM (for the aggregate of nodes managed by this PLC), and an SM
(which provides users with an interface to the set of aggregates that peer with this PLC). On the
other hand, a VINI or M-Lab instantiation runs only an AM. The sfa-server.py command is
executed to start up the desired set of servers, and depending on the command-line arguments,

PlanetLab Implementation of the SFA September 8, 2009

 11

instantiates the requested combination of a Registry object, an Aggregate object, and a
SliceMgr object.

Also note that while the sfa module is usually bundled with the MyPLC distribution, it can be
accessed in isolation, for example, to provide a starting point for building a stand-alone AM or
CM. When used in this way, the PlanetLab-specific code would be replaced with software that
knows how to control the devices and networks of interest. That is, the developer would be
using only the secure remote invocation machinery implemented by sfa.

4.5.1 Registry

The Registry class exports exactly the registry interface defined by the SFA, where the
Record class defines a registry record; it includes the 4-tuple (Name, GID, Type, Info). The
class is implemented on top of the PlanetLab database, where the Info field contains the
following three sub-fields: pointer, pl_info, and geni_info. The first sub-field is a pointer into the
PlanetLab database, its exact representation depending on the record Type (e.g., if Type==user,
then the pointer is a person_id that indexes PlanetLab's persons table). The pl_info and
geni_info sub-fields represent two different views of the information maintained by the registry
for the named object. The pl_info sub-field is a cache of information read from the PlanetLab
database about the named object, and the geni_info sub-field a mapping of that information into
“SFA canonical form.” Today that mapping is implemented by the identity function. In the near
term, we plan to generate code to parse and verify registry records from an EMF-based schema,
just we do today for RSpecs.

4.5.2 Aggregate Manager

The Aggregate class exports exactly the slice interface defined by the SFA. It is implemented
on top of PlanetLab’s PLCAPI, and as such, is used to create, terminate, and control slices on a
PlanetLab-wide basis. It can also be used to retrieve a ticket that is subsequently passed to the
CM running on any PlanetLab node managed by this instance of PLC. Note that there is a
different Aggregate class for each supported aggregate. For example, the VINI-specific
aggregate understands how to act on the topology-related information in an RSpec.

4.5.3 Slice Manager

The SliceMgr class exports the slice interface, and in turn, calls the slice interface on the set of
aggregates with which this instance of PLC peers. The SM calls each peer AM to learn the set of
available components (and subsequently displays the union of these lists to users), and later
calls the appropriate AMs to instantiate a slice on the components managed by that AM. The
SM maintains a database of all slices created by behalf of users, including a record of where
those slices have been instantiated to it can “pass through” slice control operations. The SM
does not support the ticket-related calls; clients that want to retrieve a ticket must directly
contact an AM.

4.5.4 Component Manager

The Component class exports exactly the slice interface defined by the SFA. It is implemented
on top of PlanetLab’s Node Manager (NM) interface available on each node. Currently, slice
control operations invoked on a CM are successful only if the slice was created using a ticket.

PlanetLab Implementation of the SFA September 8, 2009

 12

Control of slices instantiated by invoking CreateSlice on the PLC aggregate must go through
the PLC aggregate.

4.6 Command-Line Interface
Users invoke the sfi command to manage their slices. sfi is configured to interact with a
“home” registry and slice manager to implement those commands. sfi does not directly
interact with any aggregates.

sfi manages a set of credentials on behalf of the user, and uses them when invoking various
slice or registry operations. The set of credentials include a “user” credential (used to view
information in the registry), a “slice” credential for each slice that the user belongs to (used to
create, control, and terminate the slice), and if the user also serves as PI for a research
organization, an “authority” credential (used to register nodes, slices, and users in the registry).

In addition to sfi, we are developing a set of tools that make it easy for users to manipulate
RSpecs and registry records, the two key file formats employed by sfi. (sfi uses a working
directory, ~/.sfi by convention, in which it stores credentials, RSpecs, and registry records.)
These tools are still under development, but /client/editRecord.py is an example of a
simple tool that can be used to edit a file that stores a registry record.

PlanetLab Implementation of the SFA September 8, 2009

 13

Appendix: User Tools
This appendix describes the available user-level tools and commands using a Unix manual-like
template.

NAME

sfi – Slice Facility Interface

SYNOPSIS

 sfi [options] command [command-options] [command-args]

DESCRIPTION

Provides a Unix command-line interface to a federation of PlanetLab-based networks that
export the programmatic interfaces of the Slice Facility Architecture (SFA). sfi is
configured to invoke operations on a “home” registry and slice manager. It manages a set of
credentials on behalf of the user, and uses them when invoking various slice or registry
operations. The set of include a “user” credential (used to view information in the registry),
a “slice” credential for each slice that the user belongs to (used to create, control, and
terminate the slice), and if the user also serves as PI for a research organization, an
“authority” credential (used to register nodes, slices, and users in the registry).

A typical mode of operation is to retrieve a registry record (it can be saved as an XML file),
edit the record file locally, and then use this modified record file to update the registry.
Similarly, a user can retrieve a default rspec from the slice manager (it can be saved as an
XML file), edit the rspec file locally, and then use this modified rspec file to create or update
a slice.

COMMANDS

list – list registry records belonging to a named authority. If the –t option is present, limit
the output to the selected record type.

sfi list [command-options] name

-h, --help show help message
-t TYPE, --type=TYPE (user|slice|ma|sa|node|aggregate)
-o FILE, --file=FILE output XML to file rather than standard output

show – output named registry record(s). If the –t option is present, limit the output to the
selected record type.

sfi show [command-options] name

-h, --help show help message
-t TYPE, --type=TYPE (user|slice|ma|sa|node|aggregate)
-o FILE, --file=FILE output XML to file rather than standard output

PlanetLab Implementation of the SFA September 8, 2009

 14

remove – remove named record(s) from registry. If the –t option is present, remove only
the record of the selected type

sfi remove [command-options] name

-h, --help show help message
-t TYPE, --type=TYPE (user|slice|ma|sa|node|aggregate)

add – add record in named file to registry.

sfi add [command-options] record
-h, --help show help message

update – update registry with record in named file.

sfi update [command-options] record
-h, --help show help message

slices – list all slices available via slice manager.

sfi slices [command-options]
-h, --help show help message

resources – output rspec for resources associated with the named slice. If the slice has
been instantiated, the resulting rspec corresponds to the resources currently allocated to
the slice. If the slice has not yet been instantiated, the resulting rspec corresponds to the
default rspec accepted by the slice manager for that slice. If the –f option is present,
print only DNS names or IP addresses for nodes identified in the rspec.

sfi resources [command-options] name

-f FORMAT, --format=FORMAT (dns|ip)
-o FILE, --file=FILE output XML to file rather than standard output
-h, --help show help message

create – create named slice according to the rspec in given file. If the slice already exists,
update the slice according to the rspec. A PI must have already created a registry record
for the slice before a user is allowed to invoke create on that slice.

sfi create [command-options] name rspec

-h, --help show help message

delete – delete named slice.

sfi delete [command-options] name
-h, --help show help message

reset – reset named slice.

sfi reset [command-options] name
-h, --help show help message

PlanetLab Implementation of the SFA September 8, 2009

 15

start – start named slice.

sfi start [command-options] name
-h, --help show help message

stop – stop named slice.

sfi stop [command-options] name
-h, --help show help message

OPTIONS

-h, --help show help message

-r URL, --registry=URL root registry server

-s URL, --slicemgr=URL slice manager

-d PATH, --dir=PATH working directory (~/.sfi by default)

-u HRN, --user=HRN user name

-a HRN, --auth=HRN authority name

-v, --verbose verbose mode

FILES

~/.sfi – default working directory where credentials are collected

Registry records (argument record in the above synopsis) and resource specifications
(argument rspec in the above synopsis) are saved to and read from XML files.

ENVIRONMENT VARIABLES

SFI_USER=HRN user name

SFI_AUTH=HRN authority name

SFI_SM=URL slice manager

SFI_REGISTRY=URL root registry server

For example
SFI_USER=plc.princeton.llp

SFI_AUTH=plc.princeton

SFI_SM=http://128.112.139.90:12347/

SFI_REGISTRY=http://128.112.139.90:12345/

PlanetLab Implementation of the SFA September 8, 2009

 16

NAME

getRecord, setRecord – get and set fields in registry record

SYNOPSIS

 getRecord [name]

setRecord [command-args]

DESCRIPTION

With no arguments, getRecord reads a registry record (an XML file) from standard input,
and pretty prints the record to standard output, one field (name/value pair) per line. With
an argument, getRecord outputs only the named field.

setRecord reads a registry record (an XML file) from standard input and writes a registry
record (an XML file) to standard output. The command takes a set of command line
arguments, each of the form name=value, where name identifies a field in the record and
value corresponds to the value of that field. For each such argument, setRecord modifies
the input record by setting the named field to the corresponding value. Note that the value
may be given by a comma-separated list of values; e.g., name=value1,value2,value3.
Also, since the value already present in the inputted record may be a set/list, the syntax
name+=value and name-=value is used to append to and remove from that set (rather
than replace the set with the given value). Finally, setRecord always outputs a valid
registry record, even if the inputted record is empty. Thus, giving setRecord an empty file
via standard input is a way to generate a default registry record suitable for further
modification, although any unset values will be empty.

OPTIONS

-k, --keys display ssh keys (not shown by default)

PlanetLab Implementation of the SFA September 8, 2009

 17

NAME

getNodes, setNodes – get and set node fields in resource specification (rspec)

SYNOPSIS

 getNodes [option]

setNodes [option] FILE

DESCRIPTION

getNodes reads an rspec (an XML file) from standard input, and writes the list of nodes
contained in the rspec to standard output.

setNodes reads an rspec (an XML file) from standard input, modifies the list of nodes
embedded in the rspec to correspond to those read from argument FILE, and writes the
modified rspec (an XML file) to standard output. Argument FILE contains a list of nodes,
one per line.

OPTIONS

-f ip, --format=ip use IP addresses to identify nodes;

 by default, DNS names are used

-a NAME, --aggregate=NAME perform get/set relative to named aggregate

For example
setNodes –a plc.eu ./nodelist < oldrspec.xml > newrspec.xml

adds the list of nodes contained in file ./nodelist to the PlanetLab Europe aggregate in the
inputted rspec, leaving the nodes specified for any other aggregates embedded in the rspec
unchanged.

