
 1

Slice-Based Federation
Architecture

Edited by

Larry Peterson, Princeton

Robert Ricci, Utah

Aaron Falk, BB&N

Jeff Chase, Duke

Version 2.0
July 2010

This work is supported in part by NSF grants CNS-0540815, CNS-0631422, and CNS-0520053

Slice-Based Federation Architecture July 2010

 2

Table of Contents

1	
 Introduction .. 3	

2	
 Principals... 3	

3	
 Abstractions .. 4	

3.1 Components and Aggregates ... 4	

3.2 Slices ... 5	

4	
 Names & Identifiers... 5	

5	
 Data Types .. 6	

5.1 RSpec .. 6	

5.2 Ticket .. 7	

5.3 Credentials... 7	

6	
 Interfaces ... 7	

6.1 Slice Interface .. 8	

6.1.1 Instantiating a Slice.. 8	

6.1.2 Additional Operations for Provisioning a Slice .. 9	

6.1.3 Controlling a Slice.. 9	

6.1.4 Slice Information.. 10	

6.2 Component Management Interface ... 10	

7	
 Authorization and Access Control .. 11	

8	
 SFA Authorization Using Registered Capabilities ... 12	

8.1 Registries.. 13	

8.2 Credentials... 14	

8.3 Registry Record... 15	

8.4 Registry Interface.. 16	

8.5 Registry Privileges.. 17	

9	
 Contributors.. 18	

Slice-Based Federation Architecture July 2010

 3

1 Introduction
This document defines the minimal set of interfaces and data types that permit a federation of
slice-based network substrates to interoperate. This document also defines a control
framework architecture, which we refer to as the Slice-based Federation Architecture (SFA).

An earlier version of this document grew out of the GENI Initiative, informed by experience
with Emulab, PlanetLab and VINI. This version attempts to unify several independent
implementations that were loosely based on that earlier draft. Many people have contributed to
this document over the years. Some of them are identified at the end of this report.

2 Principals
The SFA recognizes four key types of entities operating through the control framework:

• Owners of parts of the network substrate, who are therefore responsible for the externally
visible behavior of their equipment, and who establish the high-level policies for how their
portion of the substrate is utilized.

• Operators of parts of the network substrate, often working for owners, whose job it is to
keep the platform running, provide a service to researchers, and prevent malicious or
otherwise damaging activity exploiting the platform.

• Researchers (and developers) employing the network substrate, for running experiments,
deploying experimental services, measuring aspects of the platform, and so on.

• Identity anchors drive authorization by asserting attributes (or roles) of other entities. These
anchors are sometimes called Identity Providers or IdPs. For example, an IdP might assert
that a given user is a Principal Investigator (PI) representing a research organization that can
authorize individual researchers to access the facility.

The SFA must mediate the following activities:

• Allow owners to declare resource allocation and usage policies for substrate facilities
under their control, and to provide mechanisms for enforcing those policies. The
assumption is that there will be multiple owners and it will be a federation of these facilities
that will form the entirety of the network.

• Allow operators to manage the network substrate, which includes installing new physical
plant and retiring old or faulty plant, installing and updating system software, and
monitoring the network for performance, functionality, and security. Management is likely
to be decentralized: there will be more than one organization administering disjoint
collections of sites.

• Allow researchers to create and populate slices, allocate resources to them, and run
experiment-specific software in them. Some of this functionality, such as convenient
installation of software, including libraries or language runtimes, may be provided by
higher-level services; the SFA aims to support the deployment and configuration of such
services.

• Allow owners and researchers to specify authorization rules and policies that govern
access to resources and control over slices. Authorization rules define requirements for the
requester’s attributes. For example, authorization rules may permit designated PIs to
identify the set of researchers at their organization that are permitted to utilize the facility.

To this end, the SFA defines three principals:
Larry Peterson� 4/27/10 6:48 PM
Comment: This goes beyond what was
originally intended. More discussion required.

Slice-Based Federation Architecture July 2010

 4

• A management authority (MA) is responsible for some subset of substrate components:
providing operational stability for those components, ensuring the components behave
according to acceptable use policies, and executing the resource allocation wishes of the
component owner.

• A slice authority (SA) is responsible for one or more slices. It names and registers the slices
and enables users to access and control their slices. The SA must provide a contact
interface to obtain information about the slice or to respond to any perceived misbehavior
by the slice. MAs have the right to select which SAs are empowered to create slices on
their resources.

• A user is a person playing one or more roles in a facility—a researcher that wishes to run
an experiment or service in a slice, an operator that manages some part of the substrate, a
PI at an institution that conducts research on the facility, or an owner that contributes
resources to a facility.

Note that we expect there to be end-users (or clients) of the services deployed in slices, but this
report offers no guidance on how these individuals interact with the system, as this is a slice-
specific concern.

3 Abstractions
The SFA defines two key abstractions: components and slices.

3.1 Components and Aggregates
Components are the primary building block of the architecture. For example, a component might
correspond to an edge computer, a customizable router, or a programmable access point.

A component encapsulates a collection of resources, including physical resources (e.g., CPU,
memory, disk, bandwidth) logical resources (e.g., file descriptors, port numbers), and synthetic
resources (e.g., packet forwarding fast paths). These resources can be contained in a single
physical device or distributed across a set of devices, depending on the nature of the
component. A given resource can belong to at most one component.

Components are grouped into aggregates. All of the components of an aggregate are under the
authority of the same MA, which also governs the aggregate.

Each aggregate is controlled via an aggregate manager (AM), which exports a well-defined,
remotely accessible interface. If an aggregate contains only a single component, then the AM
may be called a component manager (CM). The AM/CM defines the operations available to user-
level services to manage the allocation of component resources to different users and their
experiments.

A management authority (representing the wishes of the owner) establishes policies about how
the aggregate's resources are assigned to users.

It may be possible to multiplex (slice) component resources among multiple users. This can be
done by a combination of virtualizing the component (where each user acquires a virtual copy
of the component's resources), or by partitioning the component into distinct resource sets
(where each user acquires a physical partition of the component's resources). In both cases, we
say the user is granted a sliver of the component. Each component must include hardware or
software mechanisms that isolate slivers from each other, making it appropriate to view a sliver
as a “resource container.”

Slice-Based Federation Architecture July 2010

 5

A sliver that includes resources capable of loading and executing user-provided programs can
also be viewed as supporting an execution environment. Slivers that support such execution
environments are said to be active slivers. Other (non-active) slivers might correspond to
communication resources; e.g., a tunnel, VLAN, circuit, or light-path.

3.2 Slices
From a researcher's perspective, a slice is a substrate-wide network of computing and
communication resources capable of running an experiment or a wide-area network service.
From an operator's perspective, slices are the primary abstraction for accounting and
accountability—resources are acquired and consumed by slices, and external program behavior
is traceable to a slice, respectively.

A slice is defined by a set of slivers spanning a set of network components, plus an associated
set of users that are allowed to access those slivers for the purpose of running an experiment on
the substrate. That is, a slice has a name, which is bound to a set of users associated with the
slice and a (possibly empty) set of slivers.

There are three unique stages in the lifetime of a slice, each corresponding to an action
(operation) that can be performed on a slice:

• Register: the slice exists in name only and is bound to a set of users;

• Instantiate: the slice is instantiated on a set of components and resources assigned to it;

• Activate: the slice is activated (booted), at which point it runs code on behalf of a user.

A slice has to be registered and bound to at least one user before it can be instantiated, and it
must be instantiated before it can run code or be accessed by a user.

Slices are registered in the context of a slice authority—a principal that takes responsibility for
the behavior of the slice. A slice is registered only once, but the set of users bound to it can
change over time. A slice registration has a finite lifetime; the responsible slice authority must
refresh this registration periodically.

Instantiating a slice effectively configures the slice on a set of components; this step can be
repeated multiple times. In fact, instantiating often involves two sub-steps: a slice is first
instantiated on a set of components with only best-effort resources assigned to it, and later
provisioned with additional (perhaps guaranteed) resources, for example, for the duration of a
single experiment.

An experiment or service then ``runs in’’ a slice. Multiple experiments can be run in a single
slice. For each run, the experiment may change parameters but leave the slice configuration
(instantiation) unchanged, or it may change either the set of components or the resources
assigned on those components, or both. How rapidly a slice can be reconfigured to support a
new experiment depends on the implementation of the instantiation and provisioning
operations.

4 Names & Identifiers
The SFA defines global identifiers (GID) for the set of objects that make up the federated system,
which include components, slices, services, and the various principals described in Section 2. In
short, every entity in the system that wishes to communicate has a GID.

GIDs form the basis for a correct and secure system, such that an entity that possesses a GID is
able to confirm that the GID was issued in accordance with the SFA and has not been forged,

Slice-Based Federation Architecture July 2010

 6

and to authenticate that the object claiming to correspond to the GID is the one to which the
GID was actually issued.

Specifically, a GID is a certificate that binds together at least three pieces of information:

GID = (PublicKey UUID, Lifetime)

The object identified by the GID holds the private key corresponding to the PublicKey in the
GID, thereby forming the basis for authentication. The UUID is a Universally Unique Identifier
[X667 or RFC 4122] (also called a Globally Unique Identifier or GUID) for the object. An object’s
UUID is immutable (it stays the same if the PublicKey changes) and absolute (it identifies the
same object throughout the entire system). The Lifetime says how long the GID is valid; GIDs
need to be “refreshed” periodically.

When necessary for clarity, we distinguish between the plain GID denoting an object (the 3-
tuple given above), the signed GID (the above 3-tuple plus a signature generated by a
responsible endorsing authority), and the bundled GID (the set of signed GIDs, sufficient to
verify the GID back to a trusted root authority). Note that the signed GID is, in fact, a certificate.
An endorsing authority is identified by its own GID, hence, any entity may verify a GID via
cryptographic keys that lead back, possibly in a chain of endorsed GIDs, to a well-known root
or roots.

A GID signed with its own private key is called a self-certifying ID or SCID. Although a SCID
does not offer an endorsement, a SCID establishes the issuing entity’s authority over specific
names in a flat UUID name space, and in particular the entity’s right to assert attributes or
authorization rules for the objects it names.

This design reflects three engineering decisions. First, one could use the PublicKey rather than
the UUID to uniquely identify each object, but this would imply that the unique key for each
object change whenever the key changes (e.g., if the corresponding private key is ever
compromised). The expectation is that the UUID is an immutable object identifier. Second, using
a concatenation of the key hash and UUID as the object name prevents an entity from issuing a
name that is already in use, e.g., to “hijack” authority over an existing object with that name.
Third, multiple authorities can endorse the same GID.

5 Data Types
The SFA defines four key data types in addition to GIDs. This section defines these data types at
an abstract level. A candidate set of concrete representations is defined elsewhere. This section
also identifies potentially useful library routines that can be used to manipulate these data
types, but these routines are also defined elsewhere.

5.1 RSpec
A resource specification (RSpec) describes a component in terms of the resources it possesses and
constraints and dependencies on the allocation of those resources. The exact form of an RSpec is
still being defined elsewhere, but in addition to information about component resources, each
RSpec includes the following two fields:

(StartTime, Duration)

indicating the period of time for which the requested resources are desired (or granted
resources are available). By default, StartTime=Now and Duration=Indefinite.

Larry Peterson� 4/27/10 6:53 PM
Comment: Both ProtoGENI and PlanetLab
have pretty much abandoned the UUID. We
need to clean this up… with the help of the
GPO guys re-engineering it.

Slice-Based Federation Architecture July 2010

 7

Note: An RSpec might also include a “feedback URI” that the component uses
to notify the slice when an allocation is about to change underneath it.

5.2 Ticket
An AM signs an RSpec to produce a ticket, indicating a promise to bind resources to the ticket-
holder at some point in time. Such tickets are “issued” by an aggregate, and later “redeemed” to
acquire resources. Tickets may also be “split,” effectively passing resources from one principal
to another.

The SFA defines the tickets to includes the following information:

Ticket = (RSpec, GID, SeqNum)

where RSpec describes the resources for which rights are being granted by the component; GID
identifies the entity to which rights to allocate the resources are being granted; and the SeqNum
ensures that the ticket is unique. This information is signed by the issuer.

5.3 Credentials
A credential carries the rights and privileges associated with a particular principal. For
example, a user might be granted credentials that allow it to instantiate a slice in a set of willing
components for the period of time during which the slice is said to be live. An authorization
framework defines the rules for the format and flow of credentials. Authorization framework
and policy is discussed further at the end of this document.

Each privilege implies the right to invoke a certain set of operations on one or more of the SFA
interfaces. Privileges for slices include:

Privilege Interface Operations

instantiate Slice GetTicket, CreateSlice, DeleteSlice,
UpdateSlice

bind Slice GetTicket, LoanResources

control Slice UpdateSlice, StopSlice, StartSlice,
DeleteSlice

info Slice ListSlices, ListComponents,
GetSliceResources, GetSliceBySignature

operator Management all

6 Interfaces
The following describes, in high-level terms, the interfaces provided by the core set of SFA
objects. A candidate set of concrete interfaces is defined elsewhere.

Not included in the following description is a definition of the secure remote invocation
mechanism that allows the caller to invoke one of the operations defined below on a specified

Larry Peterson� 4/27/10 6:54 PM
Comment: Obviously there’s much to resolve
about rspecs. I propose we keep a section in this
document that’s little more than a reference to
elsewhere.

Slice-Based Federation Architecture July 2010

 8

object manager. Such a mechanism allows the caller to identify the callee with a URI, and then
facilitates both sides using their respective GIDs to authenticate the other. We expect the
architecture to accommodate multiple such invocation mechanisms.

6.1 Slice Interface
Once a slice has been registered with a slice authority, any user bound to the slice can obtain a
credential giving it the right to invoke the following operations on a component to instantiate
and provision the slice. Note that a single component is able to create only local slivers,
meaning that the following operations must be invoked on each component that the slice is
expected to span, perhaps indirectly through a proxy or aggregate acting on behalf of a set of
components. Thus, individual components, aggregates representing sets of components,
aggregates of aggregates, and proxies for components all support the slice interface.

It is important to keep in mind that the slice interface is used to create and control slices; it
defines a “control plane” for slices. The consequence of invoking these operations is an
instantiated slice—or more specifically, a collection of slivers distributed across the components
of the network substrate—but this is where the control plane’s reach ends. The behavior of
those individual slivers—that is, how they are accessed, programmed, and used—is
component-specific. For example, the SFA does not define an API for “logging into” a sliver,
and it is an implementation detail as to how the keys used to access a sliver are actually
distributed to the component hosting the sliver.

6.1.1 Instantiating a Slice
A combination of four operations are used to instantiate (embed) a slice:

Ticket = GetTicket(Credential, RSpec)
RedeemTicket(Ticket)
ReleaseTicket(Ticket)
CreateSlice(Credential, RSpec)

A user invokes the first operation to acquire rights to component resources. The returned ticket
effectively binds the slice to the right to allocate the requested resources. Whether or not the call
succeeds depends on the local resources available, and the resource allocation policy
implemented on behalf of the resource owner. The Credential parameter contains attributes of
the entity requesting the resources, and indicates the period of time for which the slice’s
registration is valid; the manager likely limits the returned ticket’s duration accordingly. The
Credential must include the instantiate or bind privilege.

Once a principal possesses a ticket, it can create slivers and bind new resources to existing
slivers by invoking the RedeemTicket operation. Creating a new sliver requires the instantiate
privilege and augmenting an existing sliver with additional resources requires the bind
privilege. The ReleaseTicket call undoes a ticket allocation.

Alternatively, a caller can embed a slice with a single CreateSlice call. This call is essentially
equivalent to back-to-back GetTicket/RedeemTicket calls.

Note that RedeemTicket and SplitTicket (next section) are the only operations that do not take a
Credential as an argument. Instead, both take a Ticket, which effectively plays the role of a
credential in the sense that it says what set of resources the corresponding principal has the
right to allocate or bind. A principal must have the instantiate or bind privilege to call GetTicket,
but once a ticket exists, the principal to whom the resources are bound may call SplitTicket.

Slice-Based Federation Architecture July 2010

 9

The GetSliceResources call (defined below) can be used to learn the specific resources were
actually assigned to the slice.

6.1.2 Additional Operations for Provisioning a Slice
Three operations are used to manipulate the resources bound to a slice:

NewTicket = SplitTicket(Ticket, GID, RSpec)
LoanResources(Credential, GID, RSpec)
UpdateSlice(Credential, RSpec)

An entity that holds a ticket uses the first operation to split off a portion of the corresponding
resources, effectively creating a new ticket. The GID parameter specifies the entity to which the
ticket’s resources are to be bound. Note that a ticket may be marked as “undelegated”, in which
case splitting a ticket requires calling the entity that originally issued the ticket, independent of
how many times the ticket has previously been split. (A suitably marked ticket can be delegated
locally, without contacting the issuer.) This new ticket can be redeemed using the
RedeemTicket operation (described above), resulting in either a new slice being instantiated on
the component or additional resources being bound to an existing slice.

A ticket holder uses the second operation to loan some of its current resources to the specified
slice. A slice can learn its allocation on the component using the GetSliceResources operation
(described below). Loaned resources are transferred from one slice to another without being
encapsulated in a ticket.

A user invokes the third operation to request that additional resources—as specified in the
RSpec—be allocated to the slice. Note that UpdateSlice and CreateSlice can be viewed as
alternative name for the same operation: the former creates the slice if it does not already exist,
while the latter updates the slice if it already exists.

6.1.3 Controlling a Slice
Component managers and aggregate managers support four control operations:

StopSlice(Credential)
StartSlice(Credential)
ResetSlice(Credential)
DeleteSlice(Credential)

where the Credential parameter passed to all four operations identifies the slice being
controlled. The first two operations stop and start the execution of any active slivers within an
existing slice. The slice retains any resources it holds, although a component that uses work-
conserving schedulers is free to utilize those resources for the duration of the suspension. The
slice should not expect threads running in the slice to resume at the point the slice was
suspended, as the implementation of StopSlice is free to kill all running threads, in which case,
StartSlice effectively reboots the slice. However, the slice’s on-disk state should remain
unaffected by the operations. The third operation resets a slice to its initial state. This includes
clearing any on-disk state associated with the slice. Thus, ResetSlice is effectively equivalent to
deleting and re-creating the slice, but without freeing the slice’s resources. The fourth operation
removes the slice from the aggregate and releases all of its resources.

Larry Peterson� 4/27/10 6:57 PM

Jeff Chase � 4/20/10 11:02 AM

Jeff Chase � 4/20/10 11:02 AM

Comment: These calls are an artifact of
PlanetLab, which gives “broker services”
running in a slice the ability to reassign
resources. This is an example of how a
component (CM) operates independent of an
aggregate (AM). To discuss.

Comment: This call in particular is
problematic because (as originally worded) it
explicitly depends on the notion of a slice as an
active entity, which is hinted at but implicit
elsewhere in the document. Where do slices
get their privileges from? Who does a slice
speak for? What privileges must the caller have
on the target slice?

Comment: None of these three calls is
required. Why not leave them out of this
“minimal” document and keep it simple?

Slice-Based Federation Architecture July 2010

 10

Note: Does a freshly instantiated slice/sliver start in the suspended state (and
hence, one must invoke the StartSlice operation to “boot” it), or is each active
sliver in a slice automatically booted when it is instantiated?

Note that these operations might be invoked by a user responsible for the slice (e.g., a
researcher associated with the slice with the slice or a suitably authorized administrative entity
responding to unexpected behavior in the slice), or by a user responsible for the component or
aggregate (e.g., an operator affiliated with the MA). In the latter case, the operator might not
know that the slice exists on the component, but is terminating or suspending the slice on all
components it manages. This permits an operator to control a slice on all of the components it
manages without the cooperation of a slice manager that knows all the components on which
the slice has been embedded. These four control operations affect the slice state on a particular
aggregate, but not on other aggregates where the slice may also have a presence.

6.1.4 Slice Information
Aggregate managers support two informational operations:

SlicesNames[] = ListSlices(Credential)
RSpec = GetResources(Credential, GID)

The first is used to learn the names (GIDs and optional additional symbolic names or HRNs) for
the set of slices instantiated on that component or aggregate; a credential that contains any valid
GID is sufficient to make this call. The second is used to either get the resources available on the
component or aggregate, or, if a GID naming a specific slice is given, get the set of resources
bound to that slice.

In practice, a user could call GetResources with his or her user credential to learn what
resources are available, next call CreateSlice with a slice credential to ask that resources be
allocated to the slice, and finally call GetResources again (this time with a slice credential) to
learn precisely what resources the component or aggregate assigned to the slice. This sequence
can be repeated to incrementally acquire the desired resources.

Note that when GetResources is invoked on an aggregate, the caller is able to learn the set of
components available within that aggregate. This information is likely to be both more detailed
and more dynamic than the component information available in a registry.

A third operation

SliceName = GetSliceBySignature(Credential, Signature)

where

Signature = (StartTime, EndTime, Protocol, SrcPort, SrcIP, DstPort, DstIP)

is used to learn the name (GID and optional additional symbolic name or HRN) for the slice that
sent a particular packet onto the Internet. It is meaningful only on a component that is able to
forward packets to/from the legacy Internet.

6.2 Component Management Interface
A component management interface (or simply, “management” interface) is used to boot and
configure components, bringing them into a state that they can support the slice interface. The
interface is also used to bring the component into a safe state should the component be
compromised. Both individual components and aggregates representing a set of components
can be expected to support the management interface. The details of the component

Jeff Chase � 4/20/10 11:02 AM

Larry Peterson� 4/27/10 6:59 PM

Larry Peterson� 4/27/10 7:00 PM

Jeff Chase � 4/20/10 11:02 AM

Comment: Boot it to the initial known state,
the state that ResetSlice will reset to.

Comment: This seems cyclic. The question is
whether or not the first thread is started.

Comment: We need to re-sync with the reality
of the implementation. These operations are at
the heart of how PlanetLab (at least) is used.

Comment: I changed this interface because it is
not clear what it means for a credential to
“correspond to a slice”. If the call is to operate
on a slice, it is best to name the slice explicitly.

Slice-Based Federation Architecture July 2010

 11

management interface are internal to an aggregate, but might resemble the following illustrative
outline.

The management interface includes three operations:

SetBootState(Credential, State)
State = GetBootState(Credential)
Reboot(Credential)

The first operation is used to set the boot state of a component to one of the following four
values: debug (component fails to boot, but should keep trying), failure (component is
experiencing hardware failure, and so is taken offline until a human intervenes), safe
(component available only for operator diagnostics), or production (component available for
hosting slices). The second operation is used to learn a component’s boot state and the third
operation forces the component to reboot into the current boot state.

Note that we expect a given component (or aggregate) to support a much richer set of
management-related (O&M) operations, effectively extending the required operations listed
here. The management interface defines only the minimal set of operations all components
(including aggregates and proxies) must support in some form.

7 Authorization and Access Control
This section outlines the origins and flow of trust throughout an SFA-based system.

All rights regarding slices originate with slice authorities. SAs approve of (take responsibility
for) slices and specify the users associated with them.

All rights regarding component resources originate with management authorities. MAs define
the resource allocation policies for the components they manage and approve of all users that
operate those components.

Users associated with a slice (i.e., researchers) are granted the instantiate, bind, and control
privileges for that slice. We call these out as three separate privileges so that users can delegate
useful subsets of the operations defined by the slice interface to third party services (e.g., the
right to control an existing slice). All users (researchers) are granted the info privilege relative to
all slices, and all components hosting slices.

Users associated with an MA (i.e., operators) are granted the operator privilege for all
components managed by that MA, but not for components managed by sub-authorities rooted
at that MA. (Such rights must be explicitly delegated.) They are also granted the control
privilege on all components they manage, across all slices hosted on those components. This
latter right allows an operator to shut down or suspend any misbehaving slice that its
components host.

Each aggregate specifies a resource allocation policy that determines how many resources, if
any, to grant each slice. A user that is granted the instantiate or bind privileges for a given slice
is viewed as having the right to ask for resources from the aggregate—the credential essentially
confirms that some slice authority vouches for the slice—but it is up to the component to decide
if it is willing to host the slice, and if so, how many resources to grant it.

The set of users possessing a given privilege may be specified indirectly via identity attributes,
such as group membership or roles. For example, it may be stated that a particular group is

Jeff Chase � 4/22/10 11:46 AM

Larry Peterson� 4/27/10 7:05 PM

Deleted: Each MA implicitly has the authority
privilege for the registry records corresponding
to the set of users and components for which it
is responsible. MAs typically grant the authority
privilege to the owners and operators
associated with the authority.
Users, components, and authorities are granted
the refresh privilege for the registry record that
contains information about them; users also
have this privilege for the slices they are
affiliated with. All users and authorities are
granted the resolve privilege for all records in
the registry. All users and authorities are
granted the info privilege for all slices in the
system.
Users associated with an SA (i.e., PIs) are
granted the pi privilege for all slices registered
with that SA, as well as for all slices registered
by any sub-authority rooted at that authority.
This privilege cannot be delegated.

Comment: I’m worried this is inconsistent
with a fairly strong rule we try to enforce in
PlanetLab, which is that actions are directly
attributable to individuals.

Slice-Based Federation Architecture July 2010

 12

associated with a slice, and that various users are members of the group. Attributes are asserted
via credentials.

Attribute-Based Access Control (ABAC) is a well-developed framework for expressing and
reasoning about authorization policies and attributes represented as credentials.
Implementations of SFA may use a general ABAC framework or a specialized subset adapted to
their needs (see below for an example).

In ABAC, every entity defines and controls a localized namespace for attributes, and has
authority over those attributes. This authority may be protected by qualifying the attribute
name with an authority identifier, such as a GID or public key hash. Any entity with authority
over an attribute is empowered to issue a credential asserting that any other entity possesses
that attribute. These credentials may name the credentialed entity directly, or indirectly as a
boolean expression over other attributes that the credentialed entity must possess. For SFA,
MAs and SAs may define attributes corresponding to the SFA-defined privileges over their
objects. They may use the ABAC logic to specify in a flexible way who possesses those
attributes, or to delegate authority over those attributes to some other entity (e.g., a user
associated with a specific slice). These rules may consider user attributes asserted by identity
anchors (IdPs).

8 SFA Authorization Using Registered Capabilities
Canonical SFA implementations use a structured instance of this general authorization
framework, combining a capability mechanism with a hierarchical naming registry.

A capability system is a special case of an ABAC framework in which all attributes directly
represent specific privileges for specific objects. This restriction offers a significant
simplification: since a credential represents directly the privileges that it enables, any entity may
determine those privileges by inspecting that credential alone: no inference procedure is
required. It is only necessary to determine that the credential is valid, i.e., that the issuer was
authorized to issue the credential, and that the credential is well-formed and has not expired.

Canonical SFA implementations link the capability approach to a zoned symbolic name space
similar to DNSSEC or Chubby, called human-readable names or HRNs. HRNs are organized in
a hierarchy corresponding to an endorsement hierarchy for the MA and SA trust anchors,
grounded in one or more well-known trusted roots that represent a “facility” or “federation”.

The HRN hierarchy offers two important advantages common to other hierarchical PKI
systems. First, the hierarchy provides a simple set of trust paths to validate GIDs and their
public keys from a shared set of well-known roots. If a private key is lost or compromised, the
symbolic names encode the chain of entities needed to revoke and or regenerate the GIDs.
Second, any entity can store and retrieve GIDs and credentials easily by querying the registry
hierarchy by symbolic name.

The canonical SFA registry also acts as a repository for various properties of users and slices.
Examples include AuthTokens, InitScripts, managers, notification URIs, invocation bindings for
the various named services, etc., as described below. Some of these properties encode common
trust relationships expected within an SFA system. Examples include lists of users associated
with a slice, and lists of PIs associated with an SA. The structure of the registry suggests a
policy for generating credentials, given this information contained in the registry records.

Larry Peterson� 4/27/10 7:04 PM
Comment: I’m not comfortable with the
implications. It clearly offers an additional
degree of freedom, but I need a better sense of
how it is likely to be used.

Slice-Based Federation Architecture July 2010

 13

What follows is the canonical SFA description of these mechanisms based on the V 1.04 draft.
The description has been regrouped here in this optional section, but has not been edited or
modified in any substantive way.

8.1 Registries
A registry maps human-readable names (HRN) to GIDs, as well as records others domain-specific
information about the corresponding object, such as the URI at which the object’s manager can
be reached, an IP or hardware address for the machine on which the object is implemented, the
name and postal address of the organization that hosts the object, and so on.

An HRN for an object identifies the sequence of authorities that are responsible for (have
vouched for) the object. While the SFA allows for an arbitrary organization of registries, for
simplicity of exposition, this document focuses on a hierarchical name space corresponding to a
hierarchy of authorities that have delegated the right to create and name component and slice
objects. This hierarchy assumes a top-level naming authority trusted by all entities, resulting in
names of the form:

top-level_authority.sub_authority.sub_authority.name

For example, “geni” and “planetlab” might be top-level authorities;1 it is possible that other
similar authorities might federate in accordance with the SFA. This is not to imply that all
federation is strictly among top-level authorities, since even in the context of a single top-level
authority, we allow for multiple autonomous MAs that agree to federate their resources.

The registry maintains information about a hierarchy of management authorities, along with the
set of components for which the MAs are responsible. It binds a human-readable name for
components and MAs to a GID, along with a record of information that includes the URI at
which the component’s manager can be accessed, other attributes that might commonly be
associated with a component (e.g., hardware addresses, IP addresses, DNS names), and contact
information for the users (owners and operators) responsible for those components. For
example,

geni.us.backbone.nyc

might name a component at the NYC PoP of GENI’s US backbone. In this case, the
geni.us.backbone management authority is responsible for the operational stability of the set of
components in the backbone network.

The registry also maintains information about a hierarchy of slice authorities, along with the set
of slices for which the SAs have taken responsibility. It binds a human-readable name for slices
and SAs to a GID, along with a record of information that includes contact information for the
set of users (PIs and researchers) responsible for those slices. For example,

planetlab.eu.inria.dali

might name a slice created by the PlanetLab slice authority, which has delegated to the EU, and
then to INRIA, the right to approve slices for individual projects (experiments), such as Dali.

1 The GENI literature refers to a Clearinghouse, which can be viewed as “trust anchor.” A top-
level authority (e.g., PlanetLab) is an example of such a trust anchor.

Slice-Based Federation Architecture July 2010

 14

PlanetLab defines a set of expectations for all slices it approves, and directly or indirectly vets
the users assigned to those slices.

Note that both the GENI and PlanetLab management authorities are expected to maintain an
operational set of components capable of hosting experiments, and their respective slice
authorities are expected to approve slice creation on behalf of network and distributed systems
researchers. Because it is possible that other related facilities will federate with GENI and
PlanetLab, and there will be other uses of the greater federated system, we allow for the
possibility that other top-level slice authorities may support other policies and purposes. For
example, there could exist a top-level slice authority that permits slices running for-profit
services.

More generally, this document’s focus on a global hierarchy should not be taken to imply that
all authorities are known to a handful of globally trusted roots. For example, a consortium of
organizations might agree to create (and subsequently trust) a collection of sub-authorities,
slices, and users without being known globally; e.g.,

our_private_consortium.my_organization.some_slice

There could even be stand-alone authorities that, if someone was willing to trust them, could
participate in an SFA-based facility.

Note that human-readable names are useful because they are easy for humans to remember and
state, which makes them particularly important in crafting policy statements. For example, an
owner might specify a policy that says a component is willing to allocate up to X% of its
capacity to slices belonging to the planetlab.eu.inria authority, but no more than Y% of its
capacity to the specific slice geni.bbn.p2p.

Finally, note that a registry may be distributed, where a server that implements one portion of a
hierarchy includes a pointer (URI) to a server that implements a sub-tree of the hierarchy. When
necessary for clarity, we distinguish between the global registry (the entire collection of registry
information), an authority registry (one level of the global registry corresponding to the
information maintained by a single slice or management authority), and a registry server (a
network-accessible server process that implements some sub-tree of the global registry,
including one or more authority registries).

8.2 Credentials
A credential is given by the 6-tuple:

Credential = (CallerGID, ObjectGID, ObjectHRN, Expires, Privileges, Delegate)

where CallerGID identifies the principal to which the credential has been issued; ObjectGID and
ObjectHRN identify the object for which the credential applies; Expires says how long the
credential is valid; Privileges identifies the class of operations the holder is allowed to invoke;
and Delegate indicates whether the holder is permitted to delegate the credential to another
principal.

A credential is signed by the responsible authority, and similarly re-signed when delegated.
Although not defined in this document, we assume there exists a library routine that a user calls
to delegate a credential to another principal. This routine must allow the holder of a credential
to delegate a subset of the privileges it holds, as well as clear the Delegate field so that the
credential cannot be re-delegated.

Slice-Based Federation Architecture July 2010

 15

This credential mechanism enables users to delegate specific privileges over their slices to third
party services. These users will likely disable delegation before passing the privilege to such a
third party service.

8.3 Registry Record
A registry records facts about the objects in the system (e.g., components and slices), and the
principals (e.g., users, MAs and SAs) that use and authorize them. Registry records are defined
to be of the following form:

Record = (HRN, GID, Type, Info)

Where HRN and GID are as defined in Section 4,

Type = SA | MA | Component | Slice | User

and

Info = (PI[], Organization), if Type = SA
Info = (Owner[], Operator[], Organization), if Type = MA
Info = (URI, LatLong, IP, DNS), if Type = Component
Info = (URI, Researcher[], InitScript), if Type = Slice
Info = (PostalAddr, Phone, Email, AuthTokens[]), if Type = User

When present, the URI field references an object manager that exports one or more of the
standard SFA interfaces. For example, a component record might point to a Component
Manager that implements the Slice and Management interfaces defined in 6.2 and 6.3,
respectively, while a slice record might point to an agent that assists users in creating and
controlling their slices, although users are allowed to implement this functionality without the
assistance of some external agent. We sometimes call such an agent a slice manager.

The SA, MA, and Slice record types include references to (GIDs for) one or more User records.
They are denoted PI, Owner, Operator, and Researcher, respectively. These labels signify the
role the user(s) affiliated with that entity plays, but these labels are descriptive only. What really
matters is the set of rights encoded in the credentials granted to various users.

Users associated with an SA (i.e., PIs) are granted the pi privilege (which incorporates all slice
control privileges) for all slices registered with that SA, as well as for all slices registered by any
sub-authority rooted at that authority. This privilege cannot be delegated.

The InitScript field in a Slice record stores a minimal initialization script that executes when a
sliver is instantiated on a component. For example, it might fetch and execute a larger boot
program from some URI. As another example, it might install a public key that can
subsequently be used by a remote agent (e.g., slice manager) to securely access and initialize the
sliver. Note that this implies all active components be able to interpret a common, but minimal,
scripting language.

The AuthTokens field in a User record stores the authentication tokens needed to access slivers
created on behalf of the corresponding user. We expect different types of components will
support different access methods (e.g., ssh) for slivers they host, with the related tokens
recorded here. We leave the issue of how AuthTokens are distributed to components that host a
given slice (and subsequently updated when news users are bound to the slice) as an
implementation issue. These tokens are stored in the registry, but responsibility for

Slice-Based Federation Architecture July 2010

 16

distributing/updating these tokens falls to either the slice manager that created the slice or the
component that hosts the slice. It is not the responsibility of the registry.

Note that we expect the information available in a registry to be relatively static. To learn more
detailed and dynamic information about a component, for example, one needs to call the
component directly using the URI for the Component Manager identified by the registry. The
interface exported by a CM includes operations for leaning the resources available on that
component.

Also note that a registry may contain multiple records with the same HRN, each of a different
type. For example, planetlab.princeton might name a slice authority (have an SA record), a
management authority (have an MA record), and a component aggregate (have a Component
record). Each of these different cases would correspond to a distinct object, and hence, have a
unique GID. (In practice, however, each such GID could share the same public key.)

Finally, we expect additional record types will be added to the registry over time. For example,
the registry might record information about various user-level services, some of which may run
in a slice (e.g., a software distribution service itself runs in a slice of the network substrate) and
some of which run on a service outside the substrate (e.g., a slice manager that exports a GUI for
specifying and instantiating slices.) Such services will then be treated as first-class objects in
system, complete with their own GID.

8.4 Registry Interface
The registry interface supports the following six operations:

Register(Credential, Record)
Remove(Credential, Record)
Update(Credential, Record)
Record = Resolve(Credential, HRN, Type)
Record[] = List(Credential, HRN, Type)
Credential = GetCredential(Credential, HRN, Type)

The first two operations are used to register and un-register objects and principals, while the
third operation is used to update information about an entry. Each record includes live-ness
information (the Lifetime field contained in the GID), which must be periodically refreshed
(using Update) or the record is automatically removed. The fourth operation is used to learn the
information bound to a given HRN and the fifth operation is used to retrieve information about
the set of objects managed by the named authority.

All operations are interpreted relative to a Credential that specifies the context (authority) in
which the operation is applied. For example, invoking Register with a Credential that specifies
planetlab.princeton and Type=Slice registers new slice with the Princeton slice authority.

The final operation allows a principal to retrieve credentials corresponding to the named object.
For example, a user might invoke GetCredential, giving his or her user credentials as the first
argument, to retrieve the credentials associated with the named slice. The Type argument is
used to differentiate among multiple records with the same name, so for Type=Slice, the return
value is a “slice credential” that can subsequently be passed to the operations defined in the
next section. Similarly, a call to GetCredential with Type=SA returns a “registry credential” that
can subsequently be used to operate on records belonging to the named authority.

Slice-Based Federation Architecture July 2010

 17

Since registries return credentials, and all rights encoded in those credentials flow from a chain
of authorities, one might view a registry as an agent of an authority, but this isn’t necessarily the
case. A registry simply stores information about objects, including credentials that can
subsequently be retrieved with the GetCredential call. One implementation strategy is to
conflate the authority and the registry, that is, to embed an authority’s policy for deciding what
rights to include in a credential in a registry. This simplifies the implementation, but has the
disadvantage of expanding the trusted code base (TCB) to include the registry, when in fact, it is
only the function that creates and signs the credential that must be trusted. An alternative
implementation strategy is for each authority to isolate its credential creation function (and
associated policy) in a minimal TCB, with the authority simply storing credentials in the
registry where users are allowed to retrieve them.

Users typically bootstrap their “registry credentials” through an out-of-band process. For
example, a researcher and a PI might jointly construct a new GID for the researcher (typically
the researcher provides the public key and the PI provides the UUID and sets the lifetime for
the GID), the researcher passes the contact information needed to complete the registry record
to the PI, and the PI registers the newly constructed record (including the new user’s GID) in
the authority registry for which it has the necessary “registry credentials.” We assume the
researcher then constructs a “bootstrap credential” (using its new GID as both the CallerGID
and ObjectGID) and calls GetCredential to retrieve the “registry credential,” which it then uses
for subsequent registry calls. Alternatively, a user that already has a GID, perhaps issued by
some other authority, may pass this signed GID to the PI out-of-band, and the PI is free to
continue the registration process using this GID if it trusts the original signing authority.

Most of the SFA calls take a credential as an argument. This credential, coupled with the
exchange of GIDs assumed by the underlying invocation mechanism, is sufficient for the callee
to determine if the caller is allowed to invoke the specified operation. Notice, however, that the
validity of the credential is subject to the accuracy of the GID’s Lifetime field; that is, an
authority can explicitly delete a GID (and associated registry record) after issuing the credential,
but before its lifetime expires. A conservative callee is free to call the registry and confirm that
the GID is still valid (has not been deleted). This check is functionally equivalent to checking a
revocation list. The SFA does not define a distribution mechanism for such revocations, but a
third party service could poll registries for records that have been explicitly deleted before the
GID’s Lifetime has expired, implementing such a distributed revocation list.

8.5 Registry Privileges

Privilege Interface Operations

Authority Registry all

Refresh Registry Remove, Update

Resolve Registry Resolve, List, GetCredential

Slice-Based Federation Architecture July 2010

 18

Each SA implicitly has the authority privilege for the registry records corresponding to the set of
users and slices for which it is responsible. SAs typically grant the authority privilege to the PI
associated with the authority.

Each MA implicitly has the authority privilege for the registry records corresponding to the set
of users and components for which it is responsible. MAs typically grant the authority privilege
to the owners and operators associated with the authority.

Users, components, and authorities are granted the refresh privilege for the registry record that
contains information about them; users also have this privilege for the slices they are affiliated
with. All users and authorities are granted the resolve privilege for all records in the registry.
All users and authorities are granted the info privilege for all slices in the system.

9 Contributors
Many people have contributed to the SFA over the years. They include: Scott Baker (Arizona),
Ted Faber (UCS/ISI), Jay Lepreau (Utha), Stephen Schwab (Sparta), Soner Sevinc (Princeton),
and John Wroclawski (USC/ISI).

