/* * Copyright (c) 2007, 2008, 2009, 2010 Nicira Networks. * Distributed under the terms of the GNU GPL version 2. * * Significant portions of this file may be copied from parts of the Linux * kernel, by Linus Torvalds and others. */ /* Functions for managing the dp interface/device. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "openvswitch/datapath-protocol.h" #include "datapath.h" #include "actions.h" #include "flow.h" #include "odp-compat.h" #include "table.h" #include "vport-internal_dev.h" #include "compat.h" int (*dp_ioctl_hook)(struct net_device *dev, struct ifreq *rq, int cmd); EXPORT_SYMBOL(dp_ioctl_hook); /* Datapaths. Protected on the read side by rcu_read_lock, on the write side * by dp_mutex. * * dp_mutex nests inside the RTNL lock: if you need both you must take the RTNL * lock first. * * It is safe to access the datapath and dp_port structures with just * dp_mutex. */ static struct datapath *dps[ODP_MAX]; static DEFINE_MUTEX(dp_mutex); /* We limit the number of times that we pass into dp_process_received_packet() * to avoid blowing out the stack in the event that we have a loop. */ struct loop_counter { int count; /* Count. */ bool looping; /* Loop detected? */ }; #define DP_MAX_LOOPS 5 /* We use a separate counter for each CPU for both interrupt and non-interrupt * context in order to keep the limit deterministic for a given packet. */ struct percpu_loop_counters { struct loop_counter counters[2]; }; static DEFINE_PER_CPU(struct percpu_loop_counters, dp_loop_counters); static int new_dp_port(struct datapath *, struct odp_port *, int port_no); /* Must be called with rcu_read_lock or dp_mutex. */ struct datapath *get_dp(int dp_idx) { if (dp_idx < 0 || dp_idx >= ODP_MAX) return NULL; return rcu_dereference(dps[dp_idx]); } EXPORT_SYMBOL_GPL(get_dp); static struct datapath *get_dp_locked(int dp_idx) { struct datapath *dp; mutex_lock(&dp_mutex); dp = get_dp(dp_idx); if (dp) mutex_lock(&dp->mutex); mutex_unlock(&dp_mutex); return dp; } /* Must be called with rcu_read_lock or RTNL lock. */ const char *dp_name(const struct datapath *dp) { return vport_get_name(dp->ports[ODPP_LOCAL]->vport); } static inline size_t br_nlmsg_size(void) { return NLMSG_ALIGN(sizeof(struct ifinfomsg)) + nla_total_size(IFNAMSIZ) /* IFLA_IFNAME */ + nla_total_size(MAX_ADDR_LEN) /* IFLA_ADDRESS */ + nla_total_size(4) /* IFLA_MASTER */ + nla_total_size(4) /* IFLA_MTU */ + nla_total_size(4) /* IFLA_LINK */ + nla_total_size(1); /* IFLA_OPERSTATE */ } static int dp_fill_ifinfo(struct sk_buff *skb, const struct dp_port *port, int event, unsigned int flags) { const struct datapath *dp = port->dp; int ifindex = vport_get_ifindex(port->vport); int iflink = vport_get_iflink(port->vport); struct ifinfomsg *hdr; struct nlmsghdr *nlh; if (ifindex < 0) return ifindex; if (iflink < 0) return iflink; nlh = nlmsg_put(skb, 0, 0, event, sizeof(*hdr), flags); if (nlh == NULL) return -EMSGSIZE; hdr = nlmsg_data(nlh); hdr->ifi_family = AF_BRIDGE; hdr->__ifi_pad = 0; hdr->ifi_type = ARPHRD_ETHER; hdr->ifi_index = ifindex; hdr->ifi_flags = vport_get_flags(port->vport); hdr->ifi_change = 0; NLA_PUT_STRING(skb, IFLA_IFNAME, vport_get_name(port->vport)); NLA_PUT_U32(skb, IFLA_MASTER, vport_get_ifindex(dp->ports[ODPP_LOCAL]->vport)); NLA_PUT_U32(skb, IFLA_MTU, vport_get_mtu(port->vport)); #ifdef IFLA_OPERSTATE NLA_PUT_U8(skb, IFLA_OPERSTATE, vport_is_running(port->vport) ? vport_get_operstate(port->vport) : IF_OPER_DOWN); #endif NLA_PUT(skb, IFLA_ADDRESS, ETH_ALEN, vport_get_addr(port->vport)); if (ifindex != iflink) NLA_PUT_U32(skb, IFLA_LINK,iflink); return nlmsg_end(skb, nlh); nla_put_failure: nlmsg_cancel(skb, nlh); return -EMSGSIZE; } static void dp_ifinfo_notify(int event, struct dp_port *port) { struct sk_buff *skb; int err = -ENOBUFS; skb = nlmsg_new(br_nlmsg_size(), GFP_KERNEL); if (skb == NULL) goto errout; err = dp_fill_ifinfo(skb, port, event, 0); if (err < 0) { /* -EMSGSIZE implies BUG in br_nlmsg_size() */ WARN_ON(err == -EMSGSIZE); kfree_skb(skb); goto errout; } rtnl_notify(skb, &init_net, 0, RTNLGRP_LINK, NULL, GFP_KERNEL); return; errout: if (err < 0) rtnl_set_sk_err(&init_net, RTNLGRP_LINK, err); } static void release_dp(struct kobject *kobj) { struct datapath *dp = container_of(kobj, struct datapath, ifobj); kfree(dp); } static struct kobj_type dp_ktype = { .release = release_dp }; static int create_dp(int dp_idx, const char __user *devnamep) { struct odp_port internal_dev_port; char devname[IFNAMSIZ]; struct datapath *dp; int err; int i; if (devnamep) { int retval = strncpy_from_user(devname, devnamep, IFNAMSIZ); if (retval < 0) { err = -EFAULT; goto err; } else if (retval >= IFNAMSIZ) { err = -ENAMETOOLONG; goto err; } } else { snprintf(devname, sizeof devname, "of%d", dp_idx); } rtnl_lock(); mutex_lock(&dp_mutex); err = -ENODEV; if (!try_module_get(THIS_MODULE)) goto err_unlock; /* Exit early if a datapath with that number already exists. * (We don't use -EEXIST because that's ambiguous with 'devname' * conflicting with an existing network device name.) */ err = -EBUSY; if (get_dp(dp_idx)) goto err_put_module; err = -ENOMEM; dp = kzalloc(sizeof *dp, GFP_KERNEL); if (dp == NULL) goto err_put_module; INIT_LIST_HEAD(&dp->port_list); mutex_init(&dp->mutex); dp->dp_idx = dp_idx; for (i = 0; i < DP_N_QUEUES; i++) skb_queue_head_init(&dp->queues[i]); init_waitqueue_head(&dp->waitqueue); /* Initialize kobject for bridge. This will be added as * /sys/class/net//brif later, if sysfs is enabled. */ dp->ifobj.kset = NULL; kobject_init(&dp->ifobj, &dp_ktype); /* Allocate table. */ err = -ENOMEM; rcu_assign_pointer(dp->table, tbl_create(0)); if (!dp->table) goto err_free_dp; /* Set up our datapath device. */ BUILD_BUG_ON(sizeof(internal_dev_port.devname) != sizeof(devname)); strcpy(internal_dev_port.devname, devname); internal_dev_port.flags = ODP_PORT_INTERNAL; err = new_dp_port(dp, &internal_dev_port, ODPP_LOCAL); if (err) { if (err == -EBUSY) err = -EEXIST; goto err_destroy_table; } dp->drop_frags = 0; dp->stats_percpu = alloc_percpu(struct dp_stats_percpu); if (!dp->stats_percpu) goto err_destroy_local_port; rcu_assign_pointer(dps[dp_idx], dp); mutex_unlock(&dp_mutex); rtnl_unlock(); dp_sysfs_add_dp(dp); return 0; err_destroy_local_port: dp_detach_port(dp->ports[ODPP_LOCAL], 1); err_destroy_table: tbl_destroy(dp->table, NULL); err_free_dp: kfree(dp); err_put_module: module_put(THIS_MODULE); err_unlock: mutex_unlock(&dp_mutex); rtnl_unlock(); err: return err; } static void do_destroy_dp(struct datapath *dp) { struct dp_port *p, *n; int i; list_for_each_entry_safe (p, n, &dp->port_list, node) if (p->port_no != ODPP_LOCAL) dp_detach_port(p, 1); dp_sysfs_del_dp(dp); rcu_assign_pointer(dps[dp->dp_idx], NULL); dp_detach_port(dp->ports[ODPP_LOCAL], 1); tbl_destroy(dp->table, flow_free_tbl); for (i = 0; i < DP_N_QUEUES; i++) skb_queue_purge(&dp->queues[i]); for (i = 0; i < DP_MAX_GROUPS; i++) kfree(dp->groups[i]); free_percpu(dp->stats_percpu); kobject_put(&dp->ifobj); module_put(THIS_MODULE); } static int destroy_dp(int dp_idx) { struct datapath *dp; int err; rtnl_lock(); mutex_lock(&dp_mutex); dp = get_dp(dp_idx); err = -ENODEV; if (!dp) goto err_unlock; do_destroy_dp(dp); err = 0; err_unlock: mutex_unlock(&dp_mutex); rtnl_unlock(); return err; } static void release_dp_port(struct kobject *kobj) { struct dp_port *p = container_of(kobj, struct dp_port, kobj); kfree(p); } static struct kobj_type brport_ktype = { #ifdef CONFIG_SYSFS .sysfs_ops = &brport_sysfs_ops, #endif .release = release_dp_port }; /* Called with RTNL lock and dp_mutex. */ static int new_dp_port(struct datapath *dp, struct odp_port *odp_port, int port_no) { struct vport *vport; struct dp_port *p; int err; vport = vport_locate(odp_port->devname); if (!vport) { vport_lock(); if (odp_port->flags & ODP_PORT_INTERNAL) vport = vport_add(odp_port->devname, "internal", NULL); else vport = vport_add(odp_port->devname, "netdev", NULL); vport_unlock(); if (IS_ERR(vport)) return PTR_ERR(vport); } p = kzalloc(sizeof(*p), GFP_KERNEL); if (!p) return -ENOMEM; p->port_no = port_no; p->dp = dp; p->vport = vport; atomic_set(&p->sflow_pool, 0); err = vport_attach(vport, p); if (err) { kfree(p); return err; } rcu_assign_pointer(dp->ports[port_no], p); list_add_rcu(&p->node, &dp->port_list); dp->n_ports++; /* Initialize kobject for bridge. This will be added as * /sys/class/net//brport later, if sysfs is enabled. */ p->kobj.kset = NULL; kobject_init(&p->kobj, &brport_ktype); dp_ifinfo_notify(RTM_NEWLINK, p); return 0; } static int attach_port(int dp_idx, struct odp_port __user *portp) { struct datapath *dp; struct odp_port port; int port_no; int err; err = -EFAULT; if (copy_from_user(&port, portp, sizeof port)) goto out; port.devname[IFNAMSIZ - 1] = '\0'; rtnl_lock(); dp = get_dp_locked(dp_idx); err = -ENODEV; if (!dp) goto out_unlock_rtnl; for (port_no = 1; port_no < DP_MAX_PORTS; port_no++) if (!dp->ports[port_no]) goto got_port_no; err = -EFBIG; goto out_unlock_dp; got_port_no: err = new_dp_port(dp, &port, port_no); if (err) goto out_unlock_dp; set_internal_devs_mtu(dp); dp_sysfs_add_if(dp->ports[port_no]); err = put_user(port_no, &portp->port); out_unlock_dp: mutex_unlock(&dp->mutex); out_unlock_rtnl: rtnl_unlock(); out: return err; } int dp_detach_port(struct dp_port *p, int may_delete) { struct vport *vport = p->vport; int err; ASSERT_RTNL(); if (p->port_no != ODPP_LOCAL) dp_sysfs_del_if(p); dp_ifinfo_notify(RTM_DELLINK, p); /* First drop references to device. */ p->dp->n_ports--; list_del_rcu(&p->node); rcu_assign_pointer(p->dp->ports[p->port_no], NULL); err = vport_detach(vport); if (err) return err; /* Then wait until no one is still using it, and destroy it. */ synchronize_rcu(); if (may_delete) { const char *port_type = vport_get_type(vport); if (!strcmp(port_type, "netdev") || !strcmp(port_type, "internal")) { vport_lock(); vport_del(vport); vport_unlock(); } } kobject_put(&p->kobj); return 0; } static int detach_port(int dp_idx, int port_no) { struct dp_port *p; struct datapath *dp; int err; err = -EINVAL; if (port_no < 0 || port_no >= DP_MAX_PORTS || port_no == ODPP_LOCAL) goto out; rtnl_lock(); dp = get_dp_locked(dp_idx); err = -ENODEV; if (!dp) goto out_unlock_rtnl; p = dp->ports[port_no]; err = -ENOENT; if (!p) goto out_unlock_dp; err = dp_detach_port(p, 1); out_unlock_dp: mutex_unlock(&dp->mutex); out_unlock_rtnl: rtnl_unlock(); out: return err; } static void suppress_loop(struct datapath *dp, struct sw_flow_actions *actions) { if (net_ratelimit()) pr_warn("%s: flow looped %d times, dropping\n", dp_name(dp), DP_MAX_LOOPS); actions->n_actions = 0; } /* Must be called with rcu_read_lock. */ void dp_process_received_packet(struct dp_port *p, struct sk_buff *skb) { struct datapath *dp = p->dp; struct dp_stats_percpu *stats; int stats_counter_off; struct odp_flow_key key; struct tbl_node *flow_node; struct sw_flow *flow; struct sw_flow_actions *acts; struct loop_counter *loop; int error; OVS_CB(skb)->dp_port = p; /* Extract flow from 'skb' into 'key'. */ error = flow_extract(skb, p ? p->port_no : ODPP_NONE, &key); if (unlikely(error)) { kfree_skb(skb); return; } if (OVS_CB(skb)->is_frag && dp->drop_frags) { kfree_skb(skb); stats_counter_off = offsetof(struct dp_stats_percpu, n_frags); goto out; } /* Look up flow. */ flow_node = tbl_lookup(rcu_dereference(dp->table), &key, flow_hash(&key), flow_cmp); if (unlikely(!flow_node)) { dp_output_control(dp, skb, _ODPL_MISS_NR, OVS_CB(skb)->tun_id); stats_counter_off = offsetof(struct dp_stats_percpu, n_missed); goto out; } flow = flow_cast(flow_node); flow_used(flow, skb); acts = rcu_dereference(flow->sf_acts); /* Check whether we've looped too much. */ loop = &get_cpu_var(dp_loop_counters).counters[!!in_interrupt()]; if (unlikely(++loop->count > DP_MAX_LOOPS)) loop->looping = true; if (unlikely(loop->looping)) { suppress_loop(dp, acts); goto out_loop; } /* Execute actions. */ execute_actions(dp, skb, &key, acts->actions, acts->n_actions, GFP_ATOMIC); stats_counter_off = offsetof(struct dp_stats_percpu, n_hit); /* Check whether sub-actions looped too much. */ if (unlikely(loop->looping)) suppress_loop(dp, acts); out_loop: /* Decrement loop counter. */ if (!--loop->count) loop->looping = false; put_cpu_var(dp_loop_counters); out: /* Update datapath statistics. */ local_bh_disable(); stats = per_cpu_ptr(dp->stats_percpu, smp_processor_id()); write_seqcount_begin(&stats->seqlock); (*(u64 *)((u8 *)stats + stats_counter_off))++; write_seqcount_end(&stats->seqlock); local_bh_enable(); } #if defined(CONFIG_XEN) && defined(HAVE_PROTO_DATA_VALID) /* This code is based on skb_checksum_setup() from Xen's net/dev/core.c. We * can't call this function directly because it isn't exported in all * versions. */ int vswitch_skb_checksum_setup(struct sk_buff *skb) { struct iphdr *iph; unsigned char *th; int err = -EPROTO; __u16 csum_start, csum_offset; if (!skb->proto_csum_blank) return 0; if (skb->protocol != htons(ETH_P_IP)) goto out; if (!pskb_may_pull(skb, skb_network_header(skb) + sizeof(struct iphdr) - skb->data)) goto out; iph = ip_hdr(skb); th = skb_network_header(skb) + 4 * iph->ihl; csum_start = th - skb->head; switch (iph->protocol) { case IPPROTO_TCP: csum_offset = offsetof(struct tcphdr, check); break; case IPPROTO_UDP: csum_offset = offsetof(struct udphdr, check); break; default: if (net_ratelimit()) pr_err("Attempting to checksum a non-TCP/UDP packet, " "dropping a protocol %d packet", iph->protocol); goto out; } if (!pskb_may_pull(skb, th + csum_offset + 2 - skb->data)) goto out; skb->ip_summed = CHECKSUM_PARTIAL; skb->proto_csum_blank = 0; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,22) skb->csum_start = csum_start; skb->csum_offset = csum_offset; #else skb_set_transport_header(skb, csum_start - skb_headroom(skb)); skb->csum = csum_offset; #endif err = 0; out: return err; } #endif /* CONFIG_XEN && HAVE_PROTO_DATA_VALID */ /* Types of checksums that we can receive (these all refer to L4 checksums): * 1. CHECKSUM_NONE: Device that did not compute checksum, contains full * (though not verified) checksum in packet but not in skb->csum. Packets * from the bridge local port will also have this type. * 2. CHECKSUM_COMPLETE (CHECKSUM_HW): Good device that computes checksums, * also the GRE module. This is the same as CHECKSUM_NONE, except it has * a valid skb->csum. Importantly, both contain a full checksum (not * verified) in the packet itself. The only difference is that if the * packet gets to L4 processing on this machine (not in DomU) we won't * have to recompute the checksum to verify. Most hardware devices do not * produce packets with this type, even if they support receive checksum * offloading (they produce type #5). * 3. CHECKSUM_PARTIAL (CHECKSUM_HW): Packet without full checksum and needs to * be computed if it is sent off box. Unfortunately on earlier kernels, * this case is impossible to distinguish from #2, despite having opposite * meanings. Xen adds an extra field on earlier kernels (see #4) in order * to distinguish the different states. * 4. CHECKSUM_UNNECESSARY (with proto_csum_blank true): This packet was * generated locally by a Xen DomU and has a partial checksum. If it is * handled on this machine (Dom0 or DomU), then the checksum will not be * computed. If it goes off box, the checksum in the packet needs to be * completed. Calling skb_checksum_setup converts this to CHECKSUM_HW * (CHECKSUM_PARTIAL) so that the checksum can be completed. In later * kernels, this combination is replaced with CHECKSUM_PARTIAL. * 5. CHECKSUM_UNNECESSARY (with proto_csum_blank false): Packet with a correct * full checksum or using a protocol without a checksum. skb->csum is * undefined. This is common from devices with receive checksum * offloading. This is somewhat similar to CHECKSUM_NONE, except that * nobody will try to verify the checksum with CHECKSUM_UNNECESSARY. * * Note that on earlier kernels, CHECKSUM_COMPLETE and CHECKSUM_PARTIAL are * both defined as CHECKSUM_HW. Normally the meaning of CHECKSUM_HW is clear * based on whether it is on the transmit or receive path. After the datapath * it will be intepreted as CHECKSUM_PARTIAL. If the packet already has a * checksum, we will panic. Since we can receive packets with checksums, we * assume that all CHECKSUM_HW packets have checksums and map them to * CHECKSUM_NONE, which has a similar meaning (the it is only different if the * packet is processed by the local IP stack, in which case it will need to * be reverified). If we receive a packet with CHECKSUM_HW that really means * CHECKSUM_PARTIAL, it will be sent with the wrong checksum. However, there * shouldn't be any devices that do this with bridging. */ void compute_ip_summed(struct sk_buff *skb, bool xmit) { /* For our convenience these defines change repeatedly between kernel * versions, so we can't just copy them over... */ switch (skb->ip_summed) { case CHECKSUM_NONE: OVS_CB(skb)->ip_summed = OVS_CSUM_NONE; break; case CHECKSUM_UNNECESSARY: OVS_CB(skb)->ip_summed = OVS_CSUM_UNNECESSARY; break; #ifdef CHECKSUM_HW /* In theory this could be either CHECKSUM_PARTIAL or CHECKSUM_COMPLETE. * However, on the receive side we should only get CHECKSUM_PARTIAL * packets from Xen, which uses some special fields to represent this * (see below). Since we can only make one type work, pick the one * that actually happens in practice. * * On the transmit side (basically after skb_checksum_setup() * has been run or on internal dev transmit), packets with * CHECKSUM_COMPLETE aren't generated, so assume CHECKSUM_PARTIAL. */ case CHECKSUM_HW: if (!xmit) OVS_CB(skb)->ip_summed = OVS_CSUM_COMPLETE; else OVS_CB(skb)->ip_summed = OVS_CSUM_PARTIAL; break; #else case CHECKSUM_COMPLETE: OVS_CB(skb)->ip_summed = OVS_CSUM_COMPLETE; break; case CHECKSUM_PARTIAL: OVS_CB(skb)->ip_summed = OVS_CSUM_PARTIAL; break; #endif default: pr_err("unknown checksum type %d\n", skb->ip_summed); /* None seems the safest... */ OVS_CB(skb)->ip_summed = OVS_CSUM_NONE; } #if defined(CONFIG_XEN) && defined(HAVE_PROTO_DATA_VALID) /* Xen has a special way of representing CHECKSUM_PARTIAL on older * kernels. It should not be set on the transmit path though. */ if (skb->proto_csum_blank) OVS_CB(skb)->ip_summed = OVS_CSUM_PARTIAL; WARN_ON_ONCE(skb->proto_csum_blank && xmit); #endif } /* This function closely resembles skb_forward_csum() used by the bridge. It * is slightly different because we are only concerned with bridging and not * other types of forwarding and can get away with slightly more optimal * behavior.*/ void forward_ip_summed(struct sk_buff *skb) { #ifdef CHECKSUM_HW if (OVS_CB(skb)->ip_summed == OVS_CSUM_COMPLETE) skb->ip_summed = CHECKSUM_NONE; #endif } /* Append each packet in 'skb' list to 'queue'. There will be only one packet * unless we broke up a GSO packet. */ static int queue_control_packets(struct sk_buff *skb, struct sk_buff_head *queue, int queue_no, u32 arg) { struct sk_buff *nskb; int port_no; int err; if (OVS_CB(skb)->dp_port) port_no = OVS_CB(skb)->dp_port->port_no; else port_no = ODPP_LOCAL; do { struct odp_msg *header; nskb = skb->next; skb->next = NULL; err = skb_cow(skb, sizeof *header); if (err) goto err_kfree_skbs; header = (struct odp_msg*)__skb_push(skb, sizeof *header); header->type = queue_no; header->length = skb->len; header->port = port_no; header->reserved = 0; header->arg = arg; skb_queue_tail(queue, skb); skb = nskb; } while (skb); return 0; err_kfree_skbs: kfree_skb(skb); while ((skb = nskb) != NULL) { nskb = skb->next; kfree_skb(skb); } return err; } int dp_output_control(struct datapath *dp, struct sk_buff *skb, int queue_no, u32 arg) { struct dp_stats_percpu *stats; struct sk_buff_head *queue; int err; WARN_ON_ONCE(skb_shared(skb)); BUG_ON(queue_no != _ODPL_MISS_NR && queue_no != _ODPL_ACTION_NR && queue_no != _ODPL_SFLOW_NR); queue = &dp->queues[queue_no]; err = -ENOBUFS; if (skb_queue_len(queue) >= DP_MAX_QUEUE_LEN) goto err_kfree_skb; forward_ip_summed(skb); err = vswitch_skb_checksum_setup(skb); if (err) goto err_kfree_skb; /* Break apart GSO packets into their component pieces. Otherwise * userspace may try to stuff a 64kB packet into a 1500-byte MTU. */ if (skb_is_gso(skb)) { struct sk_buff *nskb = skb_gso_segment(skb, NETIF_F_SG | NETIF_F_HW_CSUM); if (nskb) { kfree_skb(skb); skb = nskb; if (unlikely(IS_ERR(skb))) { err = PTR_ERR(skb); goto err; } } else { /* XXX This case might not be possible. It's hard to * tell from the skb_gso_segment() code and comment. */ } } err = queue_control_packets(skb, queue, queue_no, arg); wake_up_interruptible(&dp->waitqueue); return err; err_kfree_skb: kfree_skb(skb); err: local_bh_disable(); stats = per_cpu_ptr(dp->stats_percpu, smp_processor_id()); write_seqcount_begin(&stats->seqlock); stats->n_lost++; write_seqcount_end(&stats->seqlock); local_bh_enable(); return err; } static int flush_flows(struct datapath *dp) { struct tbl *old_table = rcu_dereference(dp->table); struct tbl *new_table; new_table = tbl_create(0); if (!new_table) return -ENOMEM; rcu_assign_pointer(dp->table, new_table); tbl_deferred_destroy(old_table, flow_free_tbl); return 0; } static int validate_actions(const struct sw_flow_actions *actions) { unsigned int i; for (i = 0; i < actions->n_actions; i++) { const union odp_action *a = &actions->actions[i]; switch (a->type) { case ODPAT_OUTPUT: if (a->output.port >= DP_MAX_PORTS) return -EINVAL; break; case ODPAT_OUTPUT_GROUP: if (a->output_group.group >= DP_MAX_GROUPS) return -EINVAL; break; case ODPAT_SET_VLAN_VID: if (a->vlan_vid.vlan_vid & htons(~VLAN_VID_MASK)) return -EINVAL; break; case ODPAT_SET_VLAN_PCP: if (a->vlan_pcp.vlan_pcp & ~(VLAN_PCP_MASK >> VLAN_PCP_SHIFT)) return -EINVAL; break; case ODPAT_SET_NW_TOS: if (a->nw_tos.nw_tos & INET_ECN_MASK) return -EINVAL; break; default: if (a->type >= ODPAT_N_ACTIONS) return -EOPNOTSUPP; break; } } return 0; } static struct sw_flow_actions *get_actions(const struct odp_flow *flow) { struct sw_flow_actions *actions; int error; actions = flow_actions_alloc(flow->n_actions); error = PTR_ERR(actions); if (IS_ERR(actions)) goto error; error = -EFAULT; if (copy_from_user(actions->actions, flow->actions, flow->n_actions * sizeof(union odp_action))) goto error_free_actions; error = validate_actions(actions); if (error) goto error_free_actions; return actions; error_free_actions: kfree(actions); error: return ERR_PTR(error); } static struct timespec get_time_offset(void) { struct timespec now_mono, now_jiffies; ktime_get_ts(&now_mono); jiffies_to_timespec(jiffies, &now_jiffies); return timespec_sub(now_mono, now_jiffies); } static void get_stats(struct sw_flow *flow, struct odp_flow_stats *stats, struct timespec time_offset) { if (flow->used) { struct timespec flow_ts, used; jiffies_to_timespec(flow->used, &flow_ts); set_normalized_timespec(&used, flow_ts.tv_sec + time_offset.tv_sec, flow_ts.tv_nsec + time_offset.tv_nsec); stats->used_sec = used.tv_sec; stats->used_nsec = used.tv_nsec; } else { stats->used_sec = 0; stats->used_nsec = 0; } stats->n_packets = flow->packet_count; stats->n_bytes = flow->byte_count; stats->reserved = 0; stats->tcp_flags = flow->tcp_flags; stats->error = 0; } static void clear_stats(struct sw_flow *flow) { flow->used = 0; flow->tcp_flags = 0; flow->packet_count = 0; flow->byte_count = 0; } static int expand_table(struct datapath *dp) { struct tbl *old_table = rcu_dereference(dp->table); struct tbl *new_table; new_table = tbl_expand(old_table); if (IS_ERR(new_table)) return PTR_ERR(new_table); rcu_assign_pointer(dp->table, new_table); tbl_deferred_destroy(old_table, NULL); return 0; } static int do_put_flow(struct datapath *dp, struct odp_flow_put *uf, struct odp_flow_stats *stats) { struct tbl_node *flow_node; struct sw_flow *flow; struct tbl *table; int error; memset(uf->flow.key.reserved, 0, sizeof uf->flow.key.reserved); table = rcu_dereference(dp->table); flow_node = tbl_lookup(table, &uf->flow.key, flow_hash(&uf->flow.key), flow_cmp); if (!flow_node) { /* No such flow. */ struct sw_flow_actions *acts; error = -ENOENT; if (!(uf->flags & ODPPF_CREATE)) goto error; /* Expand table, if necessary, to make room. */ if (tbl_count(table) >= tbl_n_buckets(table)) { error = expand_table(dp); if (error) goto error; table = rcu_dereference(dp->table); } /* Allocate flow. */ error = -ENOMEM; flow = kmem_cache_alloc(flow_cache, GFP_KERNEL); if (flow == NULL) goto error; flow->key = uf->flow.key; spin_lock_init(&flow->lock); clear_stats(flow); /* Obtain actions. */ acts = get_actions(&uf->flow); error = PTR_ERR(acts); if (IS_ERR(acts)) goto error_free_flow; rcu_assign_pointer(flow->sf_acts, acts); /* Put flow in bucket. */ error = tbl_insert(table, &flow->tbl_node, flow_hash(&flow->key)); if (error) goto error_free_flow_acts; memset(stats, 0, sizeof(struct odp_flow_stats)); } else { /* We found a matching flow. */ struct sw_flow_actions *old_acts, *new_acts; flow = flow_cast(flow_node); /* Bail out if we're not allowed to modify an existing flow. */ error = -EEXIST; if (!(uf->flags & ODPPF_MODIFY)) goto error; /* Swap actions. */ new_acts = get_actions(&uf->flow); error = PTR_ERR(new_acts); if (IS_ERR(new_acts)) goto error; old_acts = rcu_dereference(flow->sf_acts); if (old_acts->n_actions != new_acts->n_actions || memcmp(old_acts->actions, new_acts->actions, sizeof(union odp_action) * old_acts->n_actions)) { rcu_assign_pointer(flow->sf_acts, new_acts); flow_deferred_free_acts(old_acts); } else { kfree(new_acts); } /* Fetch stats, then clear them if necessary. */ spin_lock_bh(&flow->lock); get_stats(flow, stats, get_time_offset()); if (uf->flags & ODPPF_ZERO_STATS) clear_stats(flow); spin_unlock_bh(&flow->lock); } return 0; error_free_flow_acts: kfree(flow->sf_acts); error_free_flow: kmem_cache_free(flow_cache, flow); error: return error; } static int put_flow(struct datapath *dp, struct odp_flow_put __user *ufp) { struct odp_flow_stats stats; struct odp_flow_put uf; int error; if (copy_from_user(&uf, ufp, sizeof(struct odp_flow_put))) return -EFAULT; error = do_put_flow(dp, &uf, &stats); if (error) return error; if (copy_to_user(&ufp->flow.stats, &stats, sizeof(struct odp_flow_stats))) return -EFAULT; return 0; } static int do_answer_query(struct sw_flow *flow, u32 query_flags, struct timespec time_offset, struct odp_flow_stats __user *ustats, union odp_action __user *actions, u32 __user *n_actionsp) { struct sw_flow_actions *sf_acts; struct odp_flow_stats stats; u32 n_actions; spin_lock_bh(&flow->lock); get_stats(flow, &stats, time_offset); if (query_flags & ODPFF_ZERO_TCP_FLAGS) flow->tcp_flags = 0; spin_unlock_bh(&flow->lock); if (copy_to_user(ustats, &stats, sizeof(struct odp_flow_stats)) || get_user(n_actions, n_actionsp)) return -EFAULT; if (!n_actions) return 0; sf_acts = rcu_dereference(flow->sf_acts); if (put_user(sf_acts->n_actions, n_actionsp) || (actions && copy_to_user(actions, sf_acts->actions, sizeof(union odp_action) * min(sf_acts->n_actions, n_actions)))) return -EFAULT; return 0; } static int answer_query(struct sw_flow *flow, u32 query_flags, struct timespec time_offset, struct odp_flow __user *ufp) { union odp_action *actions; if (get_user(actions, &ufp->actions)) return -EFAULT; return do_answer_query(flow, query_flags, time_offset, &ufp->stats, actions, &ufp->n_actions); } static struct sw_flow *do_del_flow(struct datapath *dp, struct odp_flow_key *key) { struct tbl *table = rcu_dereference(dp->table); struct tbl_node *flow_node; int error; memset(key->reserved, 0, sizeof key->reserved); flow_node = tbl_lookup(table, key, flow_hash(key), flow_cmp); if (!flow_node) return ERR_PTR(-ENOENT); error = tbl_remove(table, flow_node); if (error) return ERR_PTR(error); /* XXX Returned flow_node's statistics might lose a few packets, since * other CPUs can be using this flow. We used to synchronize_rcu() to * make sure that we get completely accurate stats, but that blows our * performance, badly. */ return flow_cast(flow_node); } static int del_flow(struct datapath *dp, struct odp_flow __user *ufp) { struct sw_flow *flow; struct odp_flow uf; int error; if (copy_from_user(&uf, ufp, sizeof uf)) return -EFAULT; flow = do_del_flow(dp, &uf.key); if (IS_ERR(flow)) return PTR_ERR(flow); error = answer_query(flow, 0, get_time_offset(), ufp); flow_deferred_free(flow); return error; } static int do_query_flows(struct datapath *dp, const struct odp_flowvec *flowvec) { struct tbl *table = rcu_dereference(dp->table); struct timespec time_offset; u32 i; time_offset = get_time_offset(); for (i = 0; i < flowvec->n_flows; i++) { struct odp_flow __user *ufp = &flowvec->flows[i]; struct odp_flow uf; struct tbl_node *flow_node; int error; if (copy_from_user(&uf, ufp, sizeof uf)) return -EFAULT; memset(uf.key.reserved, 0, sizeof uf.key.reserved); flow_node = tbl_lookup(table, &uf.key, flow_hash(&uf.key), flow_cmp); if (!flow_node) error = put_user(ENOENT, &ufp->stats.error); else error = answer_query(flow_cast(flow_node), uf.flags, time_offset, ufp); if (error) return -EFAULT; } return flowvec->n_flows; } struct list_flows_cbdata { struct odp_flow __user *uflows; u32 n_flows; u32 listed_flows; struct timespec time_offset; }; static int list_flow(struct tbl_node *node, void *cbdata_) { struct sw_flow *flow = flow_cast(node); struct list_flows_cbdata *cbdata = cbdata_; struct odp_flow __user *ufp = &cbdata->uflows[cbdata->listed_flows++]; int error; if (copy_to_user(&ufp->key, &flow->key, sizeof flow->key)) return -EFAULT; error = answer_query(flow, 0, cbdata->time_offset, ufp); if (error) return error; if (cbdata->listed_flows >= cbdata->n_flows) return cbdata->listed_flows; return 0; } static int do_list_flows(struct datapath *dp, const struct odp_flowvec *flowvec) { struct list_flows_cbdata cbdata; int error; if (!flowvec->n_flows) return 0; cbdata.uflows = flowvec->flows; cbdata.n_flows = flowvec->n_flows; cbdata.listed_flows = 0; cbdata.time_offset = get_time_offset(); error = tbl_foreach(rcu_dereference(dp->table), list_flow, &cbdata); return error ? error : cbdata.listed_flows; } static int do_flowvec_ioctl(struct datapath *dp, unsigned long argp, int (*function)(struct datapath *, const struct odp_flowvec *)) { struct odp_flowvec __user *uflowvec; struct odp_flowvec flowvec; int retval; uflowvec = (struct odp_flowvec __user *)argp; if (copy_from_user(&flowvec, uflowvec, sizeof flowvec)) return -EFAULT; if (flowvec.n_flows > INT_MAX / sizeof(struct odp_flow)) return -EINVAL; retval = function(dp, &flowvec); return (retval < 0 ? retval : retval == flowvec.n_flows ? 0 : put_user(retval, &uflowvec->n_flows)); } static int do_execute(struct datapath *dp, const struct odp_execute *execute) { struct odp_flow_key key; struct sk_buff *skb; struct sw_flow_actions *actions; struct ethhdr *eth; int err; err = -EINVAL; if (execute->length < ETH_HLEN || execute->length > 65535) goto error; err = -ENOMEM; actions = flow_actions_alloc(execute->n_actions); if (!actions) goto error; err = -EFAULT; if (copy_from_user(actions->actions, execute->actions, execute->n_actions * sizeof *execute->actions)) goto error_free_actions; err = validate_actions(actions); if (err) goto error_free_actions; err = -ENOMEM; skb = alloc_skb(execute->length, GFP_KERNEL); if (!skb) goto error_free_actions; if (execute->in_port < DP_MAX_PORTS) OVS_CB(skb)->dp_port = dp->ports[execute->in_port]; else OVS_CB(skb)->dp_port = NULL; err = -EFAULT; if (copy_from_user(skb_put(skb, execute->length), execute->data, execute->length)) goto error_free_skb; skb_reset_mac_header(skb); eth = eth_hdr(skb); /* Normally, setting the skb 'protocol' field would be handled by a * call to eth_type_trans(), but it assumes there's a sending * device, which we may not have. */ if (ntohs(eth->h_proto) >= 1536) skb->protocol = eth->h_proto; else skb->protocol = htons(ETH_P_802_2); err = flow_extract(skb, execute->in_port, &key); if (err) goto error_free_skb; rcu_read_lock(); err = execute_actions(dp, skb, &key, actions->actions, actions->n_actions, GFP_KERNEL); rcu_read_unlock(); kfree(actions); return err; error_free_skb: kfree_skb(skb); error_free_actions: kfree(actions); error: return err; } static int execute_packet(struct datapath *dp, const struct odp_execute __user *executep) { struct odp_execute execute; if (copy_from_user(&execute, executep, sizeof execute)) return -EFAULT; return do_execute(dp, &execute); } static int get_dp_stats(struct datapath *dp, struct odp_stats __user *statsp) { struct tbl *table = rcu_dereference(dp->table); struct odp_stats stats; int i; stats.n_flows = tbl_count(table); stats.cur_capacity = tbl_n_buckets(table); stats.max_capacity = TBL_MAX_BUCKETS; stats.n_ports = dp->n_ports; stats.max_ports = DP_MAX_PORTS; stats.max_groups = DP_MAX_GROUPS; stats.n_frags = stats.n_hit = stats.n_missed = stats.n_lost = 0; for_each_possible_cpu(i) { const struct dp_stats_percpu *percpu_stats; struct dp_stats_percpu local_stats; unsigned seqcount; percpu_stats = per_cpu_ptr(dp->stats_percpu, i); do { seqcount = read_seqcount_begin(&percpu_stats->seqlock); local_stats = *percpu_stats; } while (read_seqcount_retry(&percpu_stats->seqlock, seqcount)); stats.n_frags += local_stats.n_frags; stats.n_hit += local_stats.n_hit; stats.n_missed += local_stats.n_missed; stats.n_lost += local_stats.n_lost; } stats.max_miss_queue = DP_MAX_QUEUE_LEN; stats.max_action_queue = DP_MAX_QUEUE_LEN; return copy_to_user(statsp, &stats, sizeof stats) ? -EFAULT : 0; } /* MTU of the dp pseudo-device: ETH_DATA_LEN or the minimum of the ports */ int dp_min_mtu(const struct datapath *dp) { struct dp_port *p; int mtu = 0; ASSERT_RTNL(); list_for_each_entry_rcu (p, &dp->port_list, node) { int dev_mtu; /* Skip any internal ports, since that's what we're trying to * set. */ if (is_internal_vport(p->vport)) continue; dev_mtu = vport_get_mtu(p->vport); if (!mtu || dev_mtu < mtu) mtu = dev_mtu; } return mtu ? mtu : ETH_DATA_LEN; } /* Sets the MTU of all datapath devices to the minimum of the ports. Must * be called with RTNL lock. */ void set_internal_devs_mtu(const struct datapath *dp) { struct dp_port *p; int mtu; ASSERT_RTNL(); mtu = dp_min_mtu(dp); list_for_each_entry_rcu (p, &dp->port_list, node) { if (is_internal_vport(p->vport)) vport_set_mtu(p->vport, mtu); } } static int put_port(const struct dp_port *p, struct odp_port __user *uop) { struct odp_port op; memset(&op, 0, sizeof op); rcu_read_lock(); strncpy(op.devname, vport_get_name(p->vport), sizeof op.devname); rcu_read_unlock(); op.port = p->port_no; op.flags = is_internal_vport(p->vport) ? ODP_PORT_INTERNAL : 0; return copy_to_user(uop, &op, sizeof op) ? -EFAULT : 0; } static int query_port(struct datapath *dp, struct odp_port __user *uport) { struct odp_port port; if (copy_from_user(&port, uport, sizeof port)) return -EFAULT; if (port.devname[0]) { struct vport *vport; struct dp_port *dp_port; int err = 0; port.devname[IFNAMSIZ - 1] = '\0'; vport_lock(); rcu_read_lock(); vport = vport_locate(port.devname); if (!vport) { err = -ENODEV; goto error_unlock; } dp_port = vport_get_dp_port(vport); if (!dp_port || dp_port->dp != dp) { err = -ENOENT; goto error_unlock; } port.port = dp_port->port_no; error_unlock: rcu_read_unlock(); vport_unlock(); if (err) return err; } else { if (port.port >= DP_MAX_PORTS) return -EINVAL; if (!dp->ports[port.port]) return -ENOENT; } return put_port(dp->ports[port.port], uport); } static int do_list_ports(struct datapath *dp, struct odp_port __user *uports, int n_ports) { int idx = 0; if (n_ports) { struct dp_port *p; list_for_each_entry_rcu (p, &dp->port_list, node) { if (put_port(p, &uports[idx])) return -EFAULT; if (idx++ >= n_ports) break; } } return idx; } static int list_ports(struct datapath *dp, struct odp_portvec __user *upv) { struct odp_portvec pv; int retval; if (copy_from_user(&pv, upv, sizeof pv)) return -EFAULT; retval = do_list_ports(dp, pv.ports, pv.n_ports); if (retval < 0) return retval; return put_user(retval, &upv->n_ports); } /* RCU callback for freeing a dp_port_group */ static void free_port_group(struct rcu_head *rcu) { struct dp_port_group *g = container_of(rcu, struct dp_port_group, rcu); kfree(g); } static int do_set_port_group(struct datapath *dp, u16 __user *ports, int n_ports, int group) { struct dp_port_group *new_group, *old_group; int error; error = -EINVAL; if (n_ports > DP_MAX_PORTS || group >= DP_MAX_GROUPS) goto error; error = -ENOMEM; new_group = kmalloc(sizeof *new_group + sizeof(u16) * n_ports, GFP_KERNEL); if (!new_group) goto error; new_group->n_ports = n_ports; error = -EFAULT; if (copy_from_user(new_group->ports, ports, sizeof(u16) * n_ports)) goto error_free; old_group = rcu_dereference(dp->groups[group]); rcu_assign_pointer(dp->groups[group], new_group); if (old_group) call_rcu(&old_group->rcu, free_port_group); return 0; error_free: kfree(new_group); error: return error; } static int set_port_group(struct datapath *dp, const struct odp_port_group __user *upg) { struct odp_port_group pg; if (copy_from_user(&pg, upg, sizeof pg)) return -EFAULT; return do_set_port_group(dp, pg.ports, pg.n_ports, pg.group); } static int do_get_port_group(struct datapath *dp, u16 __user *ports, int n_ports, int group, u16 __user *n_portsp) { struct dp_port_group *g; u16 n_copy; if (group >= DP_MAX_GROUPS) return -EINVAL; g = dp->groups[group]; n_copy = g ? min_t(int, g->n_ports, n_ports) : 0; if (n_copy && copy_to_user(ports, g->ports, n_copy * sizeof(u16))) return -EFAULT; if (put_user(g ? g->n_ports : 0, n_portsp)) return -EFAULT; return 0; } static int get_port_group(struct datapath *dp, struct odp_port_group __user *upg) { struct odp_port_group pg; if (copy_from_user(&pg, upg, sizeof pg)) return -EFAULT; return do_get_port_group(dp, pg.ports, pg.n_ports, pg.group, &upg->n_ports); } static int get_listen_mask(const struct file *f) { return (long)f->private_data; } static void set_listen_mask(struct file *f, int listen_mask) { f->private_data = (void*)(long)listen_mask; } static long openvswitch_ioctl(struct file *f, unsigned int cmd, unsigned long argp) { int dp_idx = iminor(f->f_dentry->d_inode); struct datapath *dp; int drop_frags, listeners, port_no; unsigned int sflow_probability; int err; /* Handle commands with special locking requirements up front. */ switch (cmd) { case ODP_DP_CREATE: err = create_dp(dp_idx, (char __user *)argp); goto exit; case ODP_DP_DESTROY: err = destroy_dp(dp_idx); goto exit; case ODP_PORT_ATTACH: err = attach_port(dp_idx, (struct odp_port __user *)argp); goto exit; case ODP_PORT_DETACH: err = get_user(port_no, (int __user *)argp); if (!err) err = detach_port(dp_idx, port_no); goto exit; case ODP_VPORT_ADD: err = vport_user_add((struct odp_vport_add __user *)argp); goto exit; case ODP_VPORT_MOD: err = vport_user_mod((struct odp_vport_mod __user *)argp); goto exit; case ODP_VPORT_DEL: err = vport_user_del((char __user *)argp); goto exit; case ODP_VPORT_STATS_GET: err = vport_user_stats_get((struct odp_vport_stats_req __user *)argp); goto exit; case ODP_VPORT_STATS_SET: err = vport_user_stats_set((struct odp_vport_stats_req __user *)argp); goto exit; case ODP_VPORT_ETHER_GET: err = vport_user_ether_get((struct odp_vport_ether __user *)argp); goto exit; case ODP_VPORT_ETHER_SET: err = vport_user_ether_set((struct odp_vport_ether __user *)argp); goto exit; case ODP_VPORT_MTU_GET: err = vport_user_mtu_get((struct odp_vport_mtu __user *)argp); goto exit; case ODP_VPORT_MTU_SET: err = vport_user_mtu_set((struct odp_vport_mtu __user *)argp); goto exit; } dp = get_dp_locked(dp_idx); err = -ENODEV; if (!dp) goto exit; switch (cmd) { case ODP_DP_STATS: err = get_dp_stats(dp, (struct odp_stats __user *)argp); break; case ODP_GET_DROP_FRAGS: err = put_user(dp->drop_frags, (int __user *)argp); break; case ODP_SET_DROP_FRAGS: err = get_user(drop_frags, (int __user *)argp); if (err) break; err = -EINVAL; if (drop_frags != 0 && drop_frags != 1) break; dp->drop_frags = drop_frags; err = 0; break; case ODP_GET_LISTEN_MASK: err = put_user(get_listen_mask(f), (int __user *)argp); break; case ODP_SET_LISTEN_MASK: err = get_user(listeners, (int __user *)argp); if (err) break; err = -EINVAL; if (listeners & ~ODPL_ALL) break; err = 0; set_listen_mask(f, listeners); break; case ODP_GET_SFLOW_PROBABILITY: err = put_user(dp->sflow_probability, (unsigned int __user *)argp); break; case ODP_SET_SFLOW_PROBABILITY: err = get_user(sflow_probability, (unsigned int __user *)argp); if (!err) dp->sflow_probability = sflow_probability; break; case ODP_PORT_QUERY: err = query_port(dp, (struct odp_port __user *)argp); break; case ODP_PORT_LIST: err = list_ports(dp, (struct odp_portvec __user *)argp); break; case ODP_PORT_GROUP_SET: err = set_port_group(dp, (struct odp_port_group __user *)argp); break; case ODP_PORT_GROUP_GET: err = get_port_group(dp, (struct odp_port_group __user *)argp); break; case ODP_FLOW_FLUSH: err = flush_flows(dp); break; case ODP_FLOW_PUT: err = put_flow(dp, (struct odp_flow_put __user *)argp); break; case ODP_FLOW_DEL: err = del_flow(dp, (struct odp_flow __user *)argp); break; case ODP_FLOW_GET: err = do_flowvec_ioctl(dp, argp, do_query_flows); break; case ODP_FLOW_LIST: err = do_flowvec_ioctl(dp, argp, do_list_flows); break; case ODP_EXECUTE: err = execute_packet(dp, (struct odp_execute __user *)argp); break; default: err = -ENOIOCTLCMD; break; } mutex_unlock(&dp->mutex); exit: return err; } static int dp_has_packet_of_interest(struct datapath *dp, int listeners) { int i; for (i = 0; i < DP_N_QUEUES; i++) { if (listeners & (1 << i) && !skb_queue_empty(&dp->queues[i])) return 1; } return 0; } #ifdef CONFIG_COMPAT static int compat_list_ports(struct datapath *dp, struct compat_odp_portvec __user *upv) { struct compat_odp_portvec pv; int retval; if (copy_from_user(&pv, upv, sizeof pv)) return -EFAULT; retval = do_list_ports(dp, compat_ptr(pv.ports), pv.n_ports); if (retval < 0) return retval; return put_user(retval, &upv->n_ports); } static int compat_set_port_group(struct datapath *dp, const struct compat_odp_port_group __user *upg) { struct compat_odp_port_group pg; if (copy_from_user(&pg, upg, sizeof pg)) return -EFAULT; return do_set_port_group(dp, compat_ptr(pg.ports), pg.n_ports, pg.group); } static int compat_get_port_group(struct datapath *dp, struct compat_odp_port_group __user *upg) { struct compat_odp_port_group pg; if (copy_from_user(&pg, upg, sizeof pg)) return -EFAULT; return do_get_port_group(dp, compat_ptr(pg.ports), pg.n_ports, pg.group, &upg->n_ports); } static int compat_get_flow(struct odp_flow *flow, const struct compat_odp_flow __user *compat) { compat_uptr_t actions; if (!access_ok(VERIFY_READ, compat, sizeof(struct compat_odp_flow)) || __copy_from_user(&flow->stats, &compat->stats, sizeof(struct odp_flow_stats)) || __copy_from_user(&flow->key, &compat->key, sizeof(struct odp_flow_key)) || __get_user(actions, &compat->actions) || __get_user(flow->n_actions, &compat->n_actions) || __get_user(flow->flags, &compat->flags)) return -EFAULT; flow->actions = compat_ptr(actions); return 0; } static int compat_put_flow(struct datapath *dp, struct compat_odp_flow_put __user *ufp) { struct odp_flow_stats stats; struct odp_flow_put fp; int error; if (compat_get_flow(&fp.flow, &ufp->flow) || get_user(fp.flags, &ufp->flags)) return -EFAULT; error = do_put_flow(dp, &fp, &stats); if (error) return error; if (copy_to_user(&ufp->flow.stats, &stats, sizeof(struct odp_flow_stats))) return -EFAULT; return 0; } static int compat_answer_query(struct sw_flow *flow, u32 query_flags, struct timespec time_offset, struct compat_odp_flow __user *ufp) { compat_uptr_t actions; if (get_user(actions, &ufp->actions)) return -EFAULT; return do_answer_query(flow, query_flags, time_offset, &ufp->stats, compat_ptr(actions), &ufp->n_actions); } static int compat_del_flow(struct datapath *dp, struct compat_odp_flow __user *ufp) { struct sw_flow *flow; struct odp_flow uf; int error; if (compat_get_flow(&uf, ufp)) return -EFAULT; flow = do_del_flow(dp, &uf.key); if (IS_ERR(flow)) return PTR_ERR(flow); error = compat_answer_query(flow, 0, get_time_offset(), ufp); flow_deferred_free(flow); return error; } static int compat_query_flows(struct datapath *dp, struct compat_odp_flow *flows, u32 n_flows) { struct tbl *table = rcu_dereference(dp->table); struct timespec time_offset; u32 i; time_offset = get_time_offset(); for (i = 0; i < n_flows; i++) { struct compat_odp_flow __user *ufp = &flows[i]; struct odp_flow uf; struct tbl_node *flow_node; int error; if (compat_get_flow(&uf, ufp)) return -EFAULT; memset(uf.key.reserved, 0, sizeof uf.key.reserved); flow_node = tbl_lookup(table, &uf.key, flow_hash(&uf.key), flow_cmp); if (!flow_node) error = put_user(ENOENT, &ufp->stats.error); else error = compat_answer_query(flow_cast(flow_node), uf.flags, time_offset, ufp); if (error) return -EFAULT; } return n_flows; } struct compat_list_flows_cbdata { struct compat_odp_flow __user *uflows; u32 n_flows; u32 listed_flows; struct timespec time_offset; }; static int compat_list_flow(struct tbl_node *node, void *cbdata_) { struct sw_flow *flow = flow_cast(node); struct compat_list_flows_cbdata *cbdata = cbdata_; struct compat_odp_flow __user *ufp = &cbdata->uflows[cbdata->listed_flows++]; int error; if (copy_to_user(&ufp->key, &flow->key, sizeof flow->key)) return -EFAULT; error = compat_answer_query(flow, 0, cbdata->time_offset, ufp); if (error) return error; if (cbdata->listed_flows >= cbdata->n_flows) return cbdata->listed_flows; return 0; } static int compat_list_flows(struct datapath *dp, struct compat_odp_flow *flows, u32 n_flows) { struct compat_list_flows_cbdata cbdata; int error; if (!n_flows) return 0; cbdata.uflows = flows; cbdata.n_flows = n_flows; cbdata.listed_flows = 0; cbdata.time_offset = get_time_offset(); error = tbl_foreach(rcu_dereference(dp->table), compat_list_flow, &cbdata); return error ? error : cbdata.listed_flows; } static int compat_flowvec_ioctl(struct datapath *dp, unsigned long argp, int (*function)(struct datapath *, struct compat_odp_flow *, u32 n_flows)) { struct compat_odp_flowvec __user *uflowvec; struct compat_odp_flow __user *flows; struct compat_odp_flowvec flowvec; int retval; uflowvec = compat_ptr(argp); if (!access_ok(VERIFY_WRITE, uflowvec, sizeof *uflowvec) || copy_from_user(&flowvec, uflowvec, sizeof flowvec)) return -EFAULT; if (flowvec.n_flows > INT_MAX / sizeof(struct compat_odp_flow)) return -EINVAL; flows = compat_ptr(flowvec.flows); if (!access_ok(VERIFY_WRITE, flows, flowvec.n_flows * sizeof(struct compat_odp_flow))) return -EFAULT; retval = function(dp, flows, flowvec.n_flows); return (retval < 0 ? retval : retval == flowvec.n_flows ? 0 : put_user(retval, &uflowvec->n_flows)); } static int compat_execute(struct datapath *dp, const struct compat_odp_execute __user *uexecute) { struct odp_execute execute; compat_uptr_t actions; compat_uptr_t data; if (!access_ok(VERIFY_READ, uexecute, sizeof(struct compat_odp_execute)) || __get_user(execute.in_port, &uexecute->in_port) || __get_user(actions, &uexecute->actions) || __get_user(execute.n_actions, &uexecute->n_actions) || __get_user(data, &uexecute->data) || __get_user(execute.length, &uexecute->length)) return -EFAULT; execute.actions = compat_ptr(actions); execute.data = compat_ptr(data); return do_execute(dp, &execute); } static long openvswitch_compat_ioctl(struct file *f, unsigned int cmd, unsigned long argp) { int dp_idx = iminor(f->f_dentry->d_inode); struct datapath *dp; int err; switch (cmd) { case ODP_DP_DESTROY: case ODP_FLOW_FLUSH: /* Ioctls that don't need any translation at all. */ return openvswitch_ioctl(f, cmd, argp); case ODP_DP_CREATE: case ODP_PORT_ATTACH: case ODP_PORT_DETACH: case ODP_VPORT_DEL: case ODP_VPORT_MTU_SET: case ODP_VPORT_MTU_GET: case ODP_VPORT_ETHER_SET: case ODP_VPORT_ETHER_GET: case ODP_VPORT_STATS_SET: case ODP_VPORT_STATS_GET: case ODP_DP_STATS: case ODP_GET_DROP_FRAGS: case ODP_SET_DROP_FRAGS: case ODP_SET_LISTEN_MASK: case ODP_GET_LISTEN_MASK: case ODP_SET_SFLOW_PROBABILITY: case ODP_GET_SFLOW_PROBABILITY: case ODP_PORT_QUERY: /* Ioctls that just need their pointer argument extended. */ return openvswitch_ioctl(f, cmd, (unsigned long)compat_ptr(argp)); case ODP_VPORT_ADD32: return compat_vport_user_add(compat_ptr(argp)); case ODP_VPORT_MOD32: return compat_vport_user_mod(compat_ptr(argp)); } dp = get_dp_locked(dp_idx); err = -ENODEV; if (!dp) goto exit; switch (cmd) { case ODP_PORT_LIST32: err = compat_list_ports(dp, compat_ptr(argp)); break; case ODP_PORT_GROUP_SET32: err = compat_set_port_group(dp, compat_ptr(argp)); break; case ODP_PORT_GROUP_GET32: err = compat_get_port_group(dp, compat_ptr(argp)); break; case ODP_FLOW_PUT32: err = compat_put_flow(dp, compat_ptr(argp)); break; case ODP_FLOW_DEL32: err = compat_del_flow(dp, compat_ptr(argp)); break; case ODP_FLOW_GET32: err = compat_flowvec_ioctl(dp, argp, compat_query_flows); break; case ODP_FLOW_LIST32: err = compat_flowvec_ioctl(dp, argp, compat_list_flows); break; case ODP_EXECUTE32: err = compat_execute(dp, compat_ptr(argp)); break; default: err = -ENOIOCTLCMD; break; } mutex_unlock(&dp->mutex); exit: return err; } #endif /* Unfortunately this function is not exported so this is a verbatim copy * from net/core/datagram.c in 2.6.30. */ static int skb_copy_and_csum_datagram(const struct sk_buff *skb, int offset, u8 __user *to, int len, __wsum *csump) { int start = skb_headlen(skb); int pos = 0; int i, copy = start - offset; /* Copy header. */ if (copy > 0) { int err = 0; if (copy > len) copy = len; *csump = csum_and_copy_to_user(skb->data + offset, to, copy, *csump, &err); if (err) goto fault; if ((len -= copy) == 0) return 0; offset += copy; to += copy; pos = copy; } for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { int end; WARN_ON(start > offset + len); end = start + skb_shinfo(skb)->frags[i].size; if ((copy = end - offset) > 0) { __wsum csum2; int err = 0; u8 *vaddr; skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; struct page *page = frag->page; if (copy > len) copy = len; vaddr = kmap(page); csum2 = csum_and_copy_to_user(vaddr + frag->page_offset + offset - start, to, copy, 0, &err); kunmap(page); if (err) goto fault; *csump = csum_block_add(*csump, csum2, pos); if (!(len -= copy)) return 0; offset += copy; to += copy; pos += copy; } start = end; } if (skb_shinfo(skb)->frag_list) { struct sk_buff *list = skb_shinfo(skb)->frag_list; for (; list; list=list->next) { int end; WARN_ON(start > offset + len); end = start + list->len; if ((copy = end - offset) > 0) { __wsum csum2 = 0; if (copy > len) copy = len; if (skb_copy_and_csum_datagram(list, offset - start, to, copy, &csum2)) goto fault; *csump = csum_block_add(*csump, csum2, pos); if ((len -= copy) == 0) return 0; offset += copy; to += copy; pos += copy; } start = end; } } if (!len) return 0; fault: return -EFAULT; } ssize_t openvswitch_read(struct file *f, char __user *buf, size_t nbytes, loff_t *ppos) { /* XXX is there sufficient synchronization here? */ int listeners = get_listen_mask(f); int dp_idx = iminor(f->f_dentry->d_inode); struct datapath *dp = get_dp(dp_idx); struct sk_buff *skb; size_t copy_bytes, tot_copy_bytes; int retval; if (!dp) return -ENODEV; if (nbytes == 0 || !listeners) return 0; for (;;) { int i; for (i = 0; i < DP_N_QUEUES; i++) { if (listeners & (1 << i)) { skb = skb_dequeue(&dp->queues[i]); if (skb) goto success; } } if (f->f_flags & O_NONBLOCK) { retval = -EAGAIN; goto error; } wait_event_interruptible(dp->waitqueue, dp_has_packet_of_interest(dp, listeners)); if (signal_pending(current)) { retval = -ERESTARTSYS; goto error; } } success: copy_bytes = tot_copy_bytes = min_t(size_t, skb->len, nbytes); retval = 0; if (skb->ip_summed == CHECKSUM_PARTIAL) { if (copy_bytes == skb->len) { __wsum csum = 0; unsigned int csum_start, csum_offset; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,22) csum_start = skb->csum_start - skb_headroom(skb); csum_offset = skb->csum_offset; #else csum_start = skb_transport_header(skb) - skb->data; csum_offset = skb->csum; #endif BUG_ON(csum_start >= skb_headlen(skb)); retval = skb_copy_and_csum_datagram(skb, csum_start, buf + csum_start, copy_bytes - csum_start, &csum); if (!retval) { __sum16 __user *csump; copy_bytes = csum_start; csump = (__sum16 __user *)(buf + csum_start + csum_offset); BUG_ON((char *)csump + sizeof(__sum16) > buf + nbytes); put_user(csum_fold(csum), csump); } } else retval = skb_checksum_help(skb); } if (!retval) { struct iovec __user iov; iov.iov_base = buf; iov.iov_len = copy_bytes; retval = skb_copy_datagram_iovec(skb, 0, &iov, iov.iov_len); } if (!retval) retval = tot_copy_bytes; kfree_skb(skb); error: return retval; } static unsigned int openvswitch_poll(struct file *file, poll_table *wait) { /* XXX is there sufficient synchronization here? */ int dp_idx = iminor(file->f_dentry->d_inode); struct datapath *dp = get_dp(dp_idx); unsigned int mask; if (dp) { mask = 0; poll_wait(file, &dp->waitqueue, wait); if (dp_has_packet_of_interest(dp, get_listen_mask(file))) mask |= POLLIN | POLLRDNORM; } else { mask = POLLIN | POLLRDNORM | POLLHUP; } return mask; } struct file_operations openvswitch_fops = { /* XXX .aio_read = openvswitch_aio_read, */ .read = openvswitch_read, .poll = openvswitch_poll, .unlocked_ioctl = openvswitch_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = openvswitch_compat_ioctl, #endif /* XXX .fasync = openvswitch_fasync, */ }; static int major; static int __init dp_init(void) { struct sk_buff *dummy_skb; int err; BUILD_BUG_ON(sizeof(struct ovs_skb_cb) > sizeof(dummy_skb->cb)); printk("Open vSwitch %s, built "__DATE__" "__TIME__"\n", VERSION BUILDNR); err = flow_init(); if (err) goto error; err = vport_init(); if (err) goto error_flow_exit; err = register_netdevice_notifier(&dp_device_notifier); if (err) goto error_vport_exit; major = register_chrdev(0, "openvswitch", &openvswitch_fops); if (err < 0) goto error_unreg_notifier; return 0; error_unreg_notifier: unregister_netdevice_notifier(&dp_device_notifier); error_vport_exit: vport_exit(); error_flow_exit: flow_exit(); error: return err; } static void dp_cleanup(void) { rcu_barrier(); unregister_chrdev(major, "openvswitch"); unregister_netdevice_notifier(&dp_device_notifier); vport_exit(); flow_exit(); } module_init(dp_init); module_exit(dp_cleanup); MODULE_DESCRIPTION("Open vSwitch switching datapath"); MODULE_LICENSE("GPL");