/* * Distributed under the terms of the GNU GPL version 2. * Copyright (c) 2007, 2008, 2009, 2010, 2011 Nicira Networks. * * Significant portions of this file may be copied from parts of the Linux * kernel, by Linus Torvalds and others. */ #include "flow.h" #include "datapath.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "vlan.h" static struct kmem_cache *flow_cache; static unsigned int hash_seed __read_mostly; static inline bool arphdr_ok(struct sk_buff *skb) { return skb->len >= skb_network_offset(skb) + sizeof(struct arp_eth_header); } static inline int check_iphdr(struct sk_buff *skb) { unsigned int nh_ofs = skb_network_offset(skb); unsigned int ip_len; if (skb->len < nh_ofs + sizeof(struct iphdr)) return -EINVAL; ip_len = ip_hdrlen(skb); if (ip_len < sizeof(struct iphdr) || skb->len < nh_ofs + ip_len) return -EINVAL; /* * Pull enough header bytes to account for the IP header plus the * longest transport header that we parse, currently 20 bytes for TCP. */ if (!pskb_may_pull(skb, min(nh_ofs + ip_len + 20, skb->len))) return -ENOMEM; skb_set_transport_header(skb, nh_ofs + ip_len); return 0; } static inline bool tcphdr_ok(struct sk_buff *skb) { int th_ofs = skb_transport_offset(skb); if (skb->len >= th_ofs + sizeof(struct tcphdr)) { int tcp_len = tcp_hdrlen(skb); return (tcp_len >= sizeof(struct tcphdr) && skb->len >= th_ofs + tcp_len); } return false; } static inline bool udphdr_ok(struct sk_buff *skb) { return skb->len >= skb_transport_offset(skb) + sizeof(struct udphdr); } static inline bool icmphdr_ok(struct sk_buff *skb) { return skb->len >= skb_transport_offset(skb) + sizeof(struct icmphdr); } u64 flow_used_time(unsigned long flow_jiffies) { struct timespec cur_ts; u64 cur_ms, idle_ms; ktime_get_ts(&cur_ts); idle_ms = jiffies_to_msecs(jiffies - flow_jiffies); cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC + cur_ts.tv_nsec / NSEC_PER_MSEC; return cur_ms - idle_ms; } static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key) { unsigned int nh_ofs = skb_network_offset(skb); unsigned int nh_len; int payload_ofs; struct ipv6hdr *nh; uint8_t nexthdr; if (unlikely(skb->len < nh_ofs + sizeof(*nh))) return -EINVAL; nh = ipv6_hdr(skb); nexthdr = nh->nexthdr; payload_ofs = (u8 *)(nh + 1) - skb->data; ipv6_addr_copy(&key->ipv6_src, &nh->saddr); ipv6_addr_copy(&key->ipv6_dst, &nh->daddr); key->nw_tos = ipv6_get_dsfield(nh) & ~INET_ECN_MASK; key->nw_proto = NEXTHDR_NONE; payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr); if (unlikely(payload_ofs < 0)) return -EINVAL; nh_len = payload_ofs - nh_ofs; /* Pull enough header bytes to account for the IP header plus the * longest transport header that we parse, currently 20 bytes for TCP. * To dig deeper than the transport header, transport parsers may need * to pull more header bytes. */ if (unlikely(!pskb_may_pull(skb, min(nh_ofs + nh_len + 20, skb->len)))) return -ENOMEM; skb_set_transport_header(skb, nh_ofs + nh_len); key->nw_proto = nexthdr; return nh_len; } static bool icmp6hdr_ok(struct sk_buff *skb) { return skb->len >= skb_transport_offset(skb) + sizeof(struct icmp6hdr); } #define TCP_FLAGS_OFFSET 13 #define TCP_FLAG_MASK 0x3f void flow_used(struct sw_flow *flow, struct sk_buff *skb) { u8 tcp_flags = 0; if (flow->key.dl_type == htons(ETH_P_IP) && flow->key.nw_proto == IPPROTO_TCP) { u8 *tcp = (u8 *)tcp_hdr(skb); tcp_flags = *(tcp + TCP_FLAGS_OFFSET) & TCP_FLAG_MASK; } spin_lock_bh(&flow->lock); flow->used = jiffies; flow->packet_count++; flow->byte_count += skb->len; flow->tcp_flags |= tcp_flags; spin_unlock_bh(&flow->lock); } struct sw_flow_actions *flow_actions_alloc(const struct nlattr *actions) { int actions_len = nla_len(actions); struct sw_flow_actions *sfa; /* At least DP_MAX_PORTS actions are required to be able to flood a * packet to every port. Factor of 2 allows for setting VLAN tags, * etc. */ if (actions_len > 2 * DP_MAX_PORTS * nla_total_size(4)) return ERR_PTR(-EINVAL); sfa = kmalloc(sizeof(*sfa) + actions_len, GFP_KERNEL); if (!sfa) return ERR_PTR(-ENOMEM); sfa->actions_len = actions_len; memcpy(sfa->actions, nla_data(actions), actions_len); return sfa; } struct sw_flow *flow_alloc(void) { struct sw_flow *flow; flow = kmem_cache_alloc(flow_cache, GFP_KERNEL); if (!flow) return ERR_PTR(-ENOMEM); spin_lock_init(&flow->lock); atomic_set(&flow->refcnt, 1); flow->sf_acts = NULL; flow->dead = false; return flow; } void flow_free_tbl(struct tbl_node *node) { struct sw_flow *flow = flow_cast(node); flow->dead = true; flow_put(flow); } /* RCU callback used by flow_deferred_free. */ static void rcu_free_flow_callback(struct rcu_head *rcu) { struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu); flow->dead = true; flow_put(flow); } /* Schedules 'flow' to be freed after the next RCU grace period. * The caller must hold rcu_read_lock for this to be sensible. */ void flow_deferred_free(struct sw_flow *flow) { call_rcu(&flow->rcu, rcu_free_flow_callback); } void flow_hold(struct sw_flow *flow) { atomic_inc(&flow->refcnt); } void flow_put(struct sw_flow *flow) { if (unlikely(!flow)) return; if (atomic_dec_and_test(&flow->refcnt)) { kfree((struct sf_flow_acts __force *)flow->sf_acts); kmem_cache_free(flow_cache, flow); } } /* RCU callback used by flow_deferred_free_acts. */ static void rcu_free_acts_callback(struct rcu_head *rcu) { struct sw_flow_actions *sf_acts = container_of(rcu, struct sw_flow_actions, rcu); kfree(sf_acts); } /* Schedules 'sf_acts' to be freed after the next RCU grace period. * The caller must hold rcu_read_lock for this to be sensible. */ void flow_deferred_free_acts(struct sw_flow_actions *sf_acts) { call_rcu(&sf_acts->rcu, rcu_free_acts_callback); } static void parse_vlan(struct sk_buff *skb, struct sw_flow_key *key) { struct qtag_prefix { __be16 eth_type; /* ETH_P_8021Q */ __be16 tci; }; struct qtag_prefix *qp; if (skb->len < sizeof(struct qtag_prefix) + sizeof(__be16)) return; qp = (struct qtag_prefix *) skb->data; key->dl_tci = qp->tci | htons(VLAN_TAG_PRESENT); __skb_pull(skb, sizeof(struct qtag_prefix)); } static __be16 parse_ethertype(struct sk_buff *skb) { struct llc_snap_hdr { u8 dsap; /* Always 0xAA */ u8 ssap; /* Always 0xAA */ u8 ctrl; u8 oui[3]; __be16 ethertype; }; struct llc_snap_hdr *llc; __be16 proto; proto = *(__be16 *) skb->data; __skb_pull(skb, sizeof(__be16)); if (ntohs(proto) >= 1536) return proto; if (unlikely(skb->len < sizeof(struct llc_snap_hdr))) return htons(ETH_P_802_2); llc = (struct llc_snap_hdr *) skb->data; if (llc->dsap != LLC_SAP_SNAP || llc->ssap != LLC_SAP_SNAP || (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0) return htons(ETH_P_802_2); __skb_pull(skb, sizeof(struct llc_snap_hdr)); return llc->ethertype; } static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key, int nh_len) { struct icmp6hdr *icmp = icmp6_hdr(skb); /* The ICMPv6 type and code fields use the 16-bit transport port * fields, so we need to store them in 16-bit network byte order. */ key->tp_src = htons(icmp->icmp6_type); key->tp_dst = htons(icmp->icmp6_code); if (icmp->icmp6_code == 0 && (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION || icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) { int icmp_len = skb->len - skb_transport_offset(skb); struct nd_msg *nd; int offset; /* In order to process neighbor discovery options, we need the * entire packet. */ if (unlikely(icmp_len < sizeof(*nd))) return 0; if (unlikely(skb_linearize(skb))) return -ENOMEM; nd = (struct nd_msg *)skb_transport_header(skb); ipv6_addr_copy(&key->nd_target, &nd->target); icmp_len -= sizeof(*nd); offset = 0; while (icmp_len >= 8) { struct nd_opt_hdr *nd_opt = (struct nd_opt_hdr *)(nd->opt + offset); int opt_len = nd_opt->nd_opt_len * 8; if (unlikely(!opt_len || opt_len > icmp_len)) goto invalid; /* Store the link layer address if the appropriate * option is provided. It is considered an error if * the same link layer option is specified twice. */ if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR && opt_len == 8) { if (unlikely(!is_zero_ether_addr(key->arp_sha))) goto invalid; memcpy(key->arp_sha, &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN); } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR && opt_len == 8) { if (unlikely(!is_zero_ether_addr(key->arp_tha))) goto invalid; memcpy(key->arp_tha, &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN); } icmp_len -= opt_len; offset += opt_len; } } return 0; invalid: memset(&key->nd_target, 0, sizeof(key->nd_target)); memset(key->arp_sha, 0, sizeof(key->arp_sha)); memset(key->arp_tha, 0, sizeof(key->arp_tha)); return 0; } /** * flow_extract - extracts a flow key from an Ethernet frame. * @skb: sk_buff that contains the frame, with skb->data pointing to the * Ethernet header * @in_port: port number on which @skb was received. * @key: output flow key * @is_frag: set to 1 if @skb contains an IPv4 fragment, or to 0 if @skb does * not contain an IPv4 packet or if it is not a fragment. * * The caller must ensure that skb->len >= ETH_HLEN. * * Returns 0 if successful, otherwise a negative errno value. * * Initializes @skb header pointers as follows: * * - skb->mac_header: the Ethernet header. * * - skb->network_header: just past the Ethernet header, or just past the * VLAN header, to the first byte of the Ethernet payload. * * - skb->transport_header: If key->dl_type is ETH_P_IP or ETH_P_IPV6 * on output, then just past the IP header, if one is present and * of a correct length, otherwise the same as skb->network_header. * For other key->dl_type values it is left untouched. */ int flow_extract(struct sk_buff *skb, u16 in_port, struct sw_flow_key *key, bool *is_frag) { struct ethhdr *eth; memset(key, 0, sizeof(*key)); key->tun_id = OVS_CB(skb)->tun_id; key->in_port = in_port; *is_frag = false; /* * We would really like to pull as many bytes as we could possibly * want to parse into the linear data area. Currently, for IPv4, * that is: * * 14 Ethernet header * 4 VLAN header * 60 max IP header with options * 20 max TCP/UDP/ICMP header (don't care about options) * -- * 98 * * But Xen only allocates 64 or 72 bytes for the linear data area in * netback, which means that we would reallocate and copy the skb's * linear data on every packet if we did that. So instead just pull 64 * bytes, which is always sufficient without IP options, and then check * whether we need to pull more later when we look at the IP header. */ if (!pskb_may_pull(skb, min(skb->len, 64u))) return -ENOMEM; skb_reset_mac_header(skb); /* Link layer. */ eth = eth_hdr(skb); memcpy(key->dl_src, eth->h_source, ETH_ALEN); memcpy(key->dl_dst, eth->h_dest, ETH_ALEN); /* dl_type, dl_vlan, dl_vlan_pcp. */ __skb_pull(skb, 2 * ETH_ALEN); if (vlan_tx_tag_present(skb)) key->dl_tci = htons(vlan_get_tci(skb)); else if (eth->h_proto == htons(ETH_P_8021Q)) parse_vlan(skb, key); key->dl_type = parse_ethertype(skb); skb_reset_network_header(skb); __skb_push(skb, skb->data - (unsigned char *)eth); /* Network layer. */ if (key->dl_type == htons(ETH_P_IP)) { struct iphdr *nh; int error; error = check_iphdr(skb); if (unlikely(error)) { if (error == -EINVAL) { skb->transport_header = skb->network_header; return 0; } return error; } nh = ip_hdr(skb); key->ipv4_src = nh->saddr; key->ipv4_dst = nh->daddr; key->nw_tos = nh->tos & ~INET_ECN_MASK; key->nw_proto = nh->protocol; /* Transport layer. */ if (!(nh->frag_off & htons(IP_MF | IP_OFFSET)) && !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP)) { if (key->nw_proto == IPPROTO_TCP) { if (tcphdr_ok(skb)) { struct tcphdr *tcp = tcp_hdr(skb); key->tp_src = tcp->source; key->tp_dst = tcp->dest; } } else if (key->nw_proto == IPPROTO_UDP) { if (udphdr_ok(skb)) { struct udphdr *udp = udp_hdr(skb); key->tp_src = udp->source; key->tp_dst = udp->dest; } } else if (key->nw_proto == IPPROTO_ICMP) { if (icmphdr_ok(skb)) { struct icmphdr *icmp = icmp_hdr(skb); /* The ICMP type and code fields use the 16-bit * transport port fields, so we need to store them * in 16-bit network byte order. */ key->tp_src = htons(icmp->type); key->tp_dst = htons(icmp->code); } } } else *is_frag = true; } else if (key->dl_type == htons(ETH_P_ARP) && arphdr_ok(skb)) { struct arp_eth_header *arp; arp = (struct arp_eth_header *)skb_network_header(skb); if (arp->ar_hrd == htons(ARPHRD_ETHER) && arp->ar_pro == htons(ETH_P_IP) && arp->ar_hln == ETH_ALEN && arp->ar_pln == 4) { /* We only match on the lower 8 bits of the opcode. */ if (ntohs(arp->ar_op) <= 0xff) key->nw_proto = ntohs(arp->ar_op); if (key->nw_proto == ARPOP_REQUEST || key->nw_proto == ARPOP_REPLY) { memcpy(&key->ipv4_src, arp->ar_sip, sizeof(key->ipv4_src)); memcpy(&key->ipv4_dst, arp->ar_tip, sizeof(key->ipv4_dst)); memcpy(key->arp_sha, arp->ar_sha, ETH_ALEN); memcpy(key->arp_tha, arp->ar_tha, ETH_ALEN); } } } else if (key->dl_type == htons(ETH_P_IPV6)) { int nh_len; /* IPv6 Header + Extensions */ nh_len = parse_ipv6hdr(skb, key); if (unlikely(nh_len < 0)) { if (nh_len == -EINVAL) { skb->transport_header = skb->network_header; return 0; } return nh_len; } /* Transport layer. */ if (key->nw_proto == NEXTHDR_TCP) { if (tcphdr_ok(skb)) { struct tcphdr *tcp = tcp_hdr(skb); key->tp_src = tcp->source; key->tp_dst = tcp->dest; } } else if (key->nw_proto == NEXTHDR_UDP) { if (udphdr_ok(skb)) { struct udphdr *udp = udp_hdr(skb); key->tp_src = udp->source; key->tp_dst = udp->dest; } } else if (key->nw_proto == NEXTHDR_ICMP) { if (icmp6hdr_ok(skb)) { int error = parse_icmpv6(skb, key, nh_len); if (error < 0) return error; } } } return 0; } u32 flow_hash(const struct sw_flow_key *key) { return jhash2((u32*)key, sizeof(*key) / sizeof(u32), hash_seed); } int flow_cmp(const struct tbl_node *node, void *key2_) { const struct sw_flow_key *key1 = &flow_cast(node)->key; const struct sw_flow_key *key2 = key2_; return !memcmp(key1, key2, sizeof(struct sw_flow_key)); } /** * flow_from_nlattrs - parses Netlink attributes into a flow key. * @swkey: receives the extracted flow key. * @key: Netlink attribute holding nested %ODP_KEY_ATTR_* Netlink attribute * sequence. * * This state machine accepts the following forms, with [] for optional * elements and | for alternatives: * * [tun_id] in_port ethernet [8021q] [ethertype \ * [IPv4 [TCP|UDP|ICMP] | IPv6 [TCP|UDP|ICMPv6 [ND]] | ARP]] */ int flow_from_nlattrs(struct sw_flow_key *swkey, const struct nlattr *attr) { const struct nlattr *nla; u16 prev_type; int rem; memset(swkey, 0, sizeof(*swkey)); swkey->dl_type = htons(ETH_P_802_2); prev_type = ODP_KEY_ATTR_UNSPEC; nla_for_each_nested(nla, attr, rem) { static const u32 key_lens[ODP_KEY_ATTR_MAX + 1] = { [ODP_KEY_ATTR_TUN_ID] = 8, [ODP_KEY_ATTR_IN_PORT] = 4, [ODP_KEY_ATTR_ETHERNET] = sizeof(struct odp_key_ethernet), [ODP_KEY_ATTR_8021Q] = sizeof(struct odp_key_8021q), [ODP_KEY_ATTR_ETHERTYPE] = 2, [ODP_KEY_ATTR_IPV4] = sizeof(struct odp_key_ipv4), [ODP_KEY_ATTR_IPV6] = sizeof(struct odp_key_ipv6), [ODP_KEY_ATTR_TCP] = sizeof(struct odp_key_tcp), [ODP_KEY_ATTR_UDP] = sizeof(struct odp_key_udp), [ODP_KEY_ATTR_ICMP] = sizeof(struct odp_key_icmp), [ODP_KEY_ATTR_ICMPV6] = sizeof(struct odp_key_icmpv6), [ODP_KEY_ATTR_ARP] = sizeof(struct odp_key_arp), [ODP_KEY_ATTR_ND] = sizeof(struct odp_key_nd), }; const struct odp_key_ethernet *eth_key; const struct odp_key_8021q *q_key; const struct odp_key_ipv4 *ipv4_key; const struct odp_key_ipv6 *ipv6_key; const struct odp_key_tcp *tcp_key; const struct odp_key_udp *udp_key; const struct odp_key_icmp *icmp_key; const struct odp_key_icmpv6 *icmpv6_key; const struct odp_key_arp *arp_key; const struct odp_key_nd *nd_key; int type = nla_type(nla); if (type > ODP_KEY_ATTR_MAX || nla_len(nla) != key_lens[type]) return -EINVAL; #define TRANSITION(PREV_TYPE, TYPE) (((PREV_TYPE) << 16) | (TYPE)) switch (TRANSITION(prev_type, type)) { case TRANSITION(ODP_KEY_ATTR_UNSPEC, ODP_KEY_ATTR_TUN_ID): swkey->tun_id = nla_get_be64(nla); break; case TRANSITION(ODP_KEY_ATTR_UNSPEC, ODP_KEY_ATTR_IN_PORT): case TRANSITION(ODP_KEY_ATTR_TUN_ID, ODP_KEY_ATTR_IN_PORT): if (nla_get_u32(nla) >= DP_MAX_PORTS) return -EINVAL; swkey->in_port = nla_get_u32(nla); break; case TRANSITION(ODP_KEY_ATTR_IN_PORT, ODP_KEY_ATTR_ETHERNET): eth_key = nla_data(nla); memcpy(swkey->dl_src, eth_key->eth_src, ETH_ALEN); memcpy(swkey->dl_dst, eth_key->eth_dst, ETH_ALEN); break; case TRANSITION(ODP_KEY_ATTR_ETHERNET, ODP_KEY_ATTR_8021Q): q_key = nla_data(nla); /* Only standard 0x8100 VLANs currently supported. */ if (q_key->q_tpid != htons(ETH_P_8021Q)) return -EINVAL; if (q_key->q_tci & htons(VLAN_TAG_PRESENT)) return -EINVAL; swkey->dl_tci = q_key->q_tci | htons(VLAN_TAG_PRESENT); break; case TRANSITION(ODP_KEY_ATTR_8021Q, ODP_KEY_ATTR_ETHERTYPE): case TRANSITION(ODP_KEY_ATTR_ETHERNET, ODP_KEY_ATTR_ETHERTYPE): swkey->dl_type = nla_get_be16(nla); if (ntohs(swkey->dl_type) < 1536) return -EINVAL; break; case TRANSITION(ODP_KEY_ATTR_ETHERTYPE, ODP_KEY_ATTR_IPV4): if (swkey->dl_type != htons(ETH_P_IP)) return -EINVAL; ipv4_key = nla_data(nla); swkey->ipv4_src = ipv4_key->ipv4_src; swkey->ipv4_dst = ipv4_key->ipv4_dst; swkey->nw_proto = ipv4_key->ipv4_proto; swkey->nw_tos = ipv4_key->ipv4_tos; if (swkey->nw_tos & INET_ECN_MASK) return -EINVAL; break; case TRANSITION(ODP_KEY_ATTR_ETHERTYPE, ODP_KEY_ATTR_IPV6): if (swkey->dl_type != htons(ETH_P_IPV6)) return -EINVAL; ipv6_key = nla_data(nla); memcpy(&swkey->ipv6_src, ipv6_key->ipv6_src, sizeof(swkey->ipv6_src)); memcpy(&swkey->ipv6_dst, ipv6_key->ipv6_dst, sizeof(swkey->ipv6_dst)); swkey->nw_proto = ipv6_key->ipv6_proto; swkey->nw_tos = ipv6_key->ipv6_tos; if (swkey->nw_tos & INET_ECN_MASK) return -EINVAL; break; case TRANSITION(ODP_KEY_ATTR_IPV4, ODP_KEY_ATTR_TCP): case TRANSITION(ODP_KEY_ATTR_IPV6, ODP_KEY_ATTR_TCP): if (swkey->nw_proto != IPPROTO_TCP) return -EINVAL; tcp_key = nla_data(nla); swkey->tp_src = tcp_key->tcp_src; swkey->tp_dst = tcp_key->tcp_dst; break; case TRANSITION(ODP_KEY_ATTR_IPV4, ODP_KEY_ATTR_UDP): case TRANSITION(ODP_KEY_ATTR_IPV6, ODP_KEY_ATTR_UDP): if (swkey->nw_proto != IPPROTO_UDP) return -EINVAL; udp_key = nla_data(nla); swkey->tp_src = udp_key->udp_src; swkey->tp_dst = udp_key->udp_dst; break; case TRANSITION(ODP_KEY_ATTR_IPV4, ODP_KEY_ATTR_ICMP): if (swkey->nw_proto != IPPROTO_ICMP) return -EINVAL; icmp_key = nla_data(nla); swkey->tp_src = htons(icmp_key->icmp_type); swkey->tp_dst = htons(icmp_key->icmp_code); break; case TRANSITION(ODP_KEY_ATTR_IPV6, ODP_KEY_ATTR_ICMPV6): if (swkey->nw_proto != IPPROTO_ICMPV6) return -EINVAL; icmpv6_key = nla_data(nla); swkey->tp_src = htons(icmpv6_key->icmpv6_type); swkey->tp_dst = htons(icmpv6_key->icmpv6_code); break; case TRANSITION(ODP_KEY_ATTR_ETHERTYPE, ODP_KEY_ATTR_ARP): if (swkey->dl_type != htons(ETH_P_ARP)) return -EINVAL; arp_key = nla_data(nla); swkey->ipv4_src = arp_key->arp_sip; swkey->ipv4_dst = arp_key->arp_tip; if (arp_key->arp_op & htons(0xff00)) return -EINVAL; swkey->nw_proto = ntohs(arp_key->arp_op); memcpy(swkey->arp_sha, arp_key->arp_sha, ETH_ALEN); memcpy(swkey->arp_tha, arp_key->arp_tha, ETH_ALEN); break; case TRANSITION(ODP_KEY_ATTR_ICMPV6, ODP_KEY_ATTR_ND): if (swkey->tp_src != htons(NDISC_NEIGHBOUR_SOLICITATION) && swkey->tp_src != htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) return -EINVAL; nd_key = nla_data(nla); memcpy(&swkey->nd_target, nd_key->nd_target, sizeof(swkey->nd_target)); memcpy(swkey->arp_sha, nd_key->nd_sll, ETH_ALEN); memcpy(swkey->arp_tha, nd_key->nd_tll, ETH_ALEN); break; default: return -EINVAL; } prev_type = type; } if (rem) return -EINVAL; switch (prev_type) { case ODP_KEY_ATTR_UNSPEC: return -EINVAL; case ODP_KEY_ATTR_TUN_ID: case ODP_KEY_ATTR_IN_PORT: return -EINVAL; case ODP_KEY_ATTR_ETHERNET: case ODP_KEY_ATTR_8021Q: return 0; case ODP_KEY_ATTR_ETHERTYPE: if (swkey->dl_type == htons(ETH_P_IP) || swkey->dl_type == htons(ETH_P_ARP)) return -EINVAL; return 0; case ODP_KEY_ATTR_IPV4: if (swkey->nw_proto == IPPROTO_TCP || swkey->nw_proto == IPPROTO_UDP || swkey->nw_proto == IPPROTO_ICMP) return -EINVAL; return 0; case ODP_KEY_ATTR_IPV6: if (swkey->nw_proto == IPPROTO_TCP || swkey->nw_proto == IPPROTO_UDP || swkey->nw_proto == IPPROTO_ICMPV6) return -EINVAL; return 0; case ODP_KEY_ATTR_ICMPV6: if (swkey->tp_src == htons(NDISC_NEIGHBOUR_SOLICITATION) || swkey->tp_src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) return -EINVAL; return 0; case ODP_KEY_ATTR_TCP: case ODP_KEY_ATTR_UDP: case ODP_KEY_ATTR_ICMP: case ODP_KEY_ATTR_ARP: case ODP_KEY_ATTR_ND: return 0; } WARN_ON_ONCE(1); return -EINVAL; } int flow_to_nlattrs(const struct sw_flow_key *swkey, struct sk_buff *skb) { struct odp_key_ethernet *eth_key; struct nlattr *nla; /* This is an imperfect sanity-check that FLOW_BUFSIZE doesn't need * to be updated, but will at least raise awareness when new ODP key * types are added. */ BUILD_BUG_ON(__ODP_KEY_ATTR_MAX != 14); if (swkey->tun_id != cpu_to_be64(0)) NLA_PUT_BE64(skb, ODP_KEY_ATTR_TUN_ID, swkey->tun_id); NLA_PUT_U32(skb, ODP_KEY_ATTR_IN_PORT, swkey->in_port); nla = nla_reserve(skb, ODP_KEY_ATTR_ETHERNET, sizeof(*eth_key)); if (!nla) goto nla_put_failure; eth_key = nla_data(nla); memcpy(eth_key->eth_src, swkey->dl_src, ETH_ALEN); memcpy(eth_key->eth_dst, swkey->dl_dst, ETH_ALEN); if (swkey->dl_tci != htons(0)) { struct odp_key_8021q q_key; q_key.q_tpid = htons(ETH_P_8021Q); q_key.q_tci = swkey->dl_tci & ~htons(VLAN_TAG_PRESENT); NLA_PUT(skb, ODP_KEY_ATTR_8021Q, sizeof(q_key), &q_key); } if (swkey->dl_type == htons(ETH_P_802_2)) return 0; NLA_PUT_BE16(skb, ODP_KEY_ATTR_ETHERTYPE, swkey->dl_type); if (swkey->dl_type == htons(ETH_P_IP)) { struct odp_key_ipv4 *ipv4_key; nla = nla_reserve(skb, ODP_KEY_ATTR_IPV4, sizeof(*ipv4_key)); if (!nla) goto nla_put_failure; ipv4_key = nla_data(nla); memset(ipv4_key, 0, sizeof(struct odp_key_ipv4)); ipv4_key->ipv4_src = swkey->ipv4_src; ipv4_key->ipv4_dst = swkey->ipv4_dst; ipv4_key->ipv4_proto = swkey->nw_proto; ipv4_key->ipv4_tos = swkey->nw_tos; } else if (swkey->dl_type == htons(ETH_P_IPV6)) { struct odp_key_ipv6 *ipv6_key; nla = nla_reserve(skb, ODP_KEY_ATTR_IPV6, sizeof(*ipv6_key)); if (!nla) goto nla_put_failure; ipv6_key = nla_data(nla); memset(ipv6_key, 0, sizeof(struct odp_key_ipv6)); memcpy(ipv6_key->ipv6_src, &swkey->ipv6_src, sizeof(ipv6_key->ipv6_src)); memcpy(ipv6_key->ipv6_dst, &swkey->ipv6_dst, sizeof(ipv6_key->ipv6_dst)); ipv6_key->ipv6_proto = swkey->nw_proto; ipv6_key->ipv6_tos = swkey->nw_tos; } else if (swkey->dl_type == htons(ETH_P_ARP)) { struct odp_key_arp *arp_key; nla = nla_reserve(skb, ODP_KEY_ATTR_ARP, sizeof(*arp_key)); if (!nla) goto nla_put_failure; arp_key = nla_data(nla); memset(arp_key, 0, sizeof(struct odp_key_arp)); arp_key->arp_sip = swkey->ipv4_src; arp_key->arp_tip = swkey->ipv4_dst; arp_key->arp_op = htons(swkey->nw_proto); memcpy(arp_key->arp_sha, swkey->arp_sha, ETH_ALEN); memcpy(arp_key->arp_tha, swkey->arp_tha, ETH_ALEN); } if (swkey->dl_type == htons(ETH_P_IP) || swkey->dl_type == htons(ETH_P_IPV6)) { if (swkey->nw_proto == IPPROTO_TCP) { struct odp_key_tcp *tcp_key; nla = nla_reserve(skb, ODP_KEY_ATTR_TCP, sizeof(*tcp_key)); if (!nla) goto nla_put_failure; tcp_key = nla_data(nla); tcp_key->tcp_src = swkey->tp_src; tcp_key->tcp_dst = swkey->tp_dst; } else if (swkey->nw_proto == IPPROTO_UDP) { struct odp_key_udp *udp_key; nla = nla_reserve(skb, ODP_KEY_ATTR_UDP, sizeof(*udp_key)); if (!nla) goto nla_put_failure; udp_key = nla_data(nla); udp_key->udp_src = swkey->tp_src; udp_key->udp_dst = swkey->tp_dst; } else if (swkey->dl_type == htons(ETH_P_IP) && swkey->nw_proto == IPPROTO_ICMP) { struct odp_key_icmp *icmp_key; nla = nla_reserve(skb, ODP_KEY_ATTR_ICMP, sizeof(*icmp_key)); if (!nla) goto nla_put_failure; icmp_key = nla_data(nla); icmp_key->icmp_type = ntohs(swkey->tp_src); icmp_key->icmp_code = ntohs(swkey->tp_dst); } else if (swkey->dl_type == htons(ETH_P_IPV6) && swkey->nw_proto == IPPROTO_ICMPV6) { struct odp_key_icmpv6 *icmpv6_key; nla = nla_reserve(skb, ODP_KEY_ATTR_ICMPV6, sizeof(*icmpv6_key)); if (!nla) goto nla_put_failure; icmpv6_key = nla_data(nla); icmpv6_key->icmpv6_type = ntohs(swkey->tp_src); icmpv6_key->icmpv6_code = ntohs(swkey->tp_dst); if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION || icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) { struct odp_key_nd *nd_key; nla = nla_reserve(skb, ODP_KEY_ATTR_ND, sizeof(*nd_key)); if (!nla) goto nla_put_failure; nd_key = nla_data(nla); memcpy(nd_key->nd_target, &swkey->nd_target, sizeof(nd_key->nd_target)); memcpy(nd_key->nd_sll, swkey->arp_sha, ETH_ALEN); memcpy(nd_key->nd_tll, swkey->arp_tha, ETH_ALEN); } } } return 0; nla_put_failure: return -EMSGSIZE; } /* Initializes the flow module. * Returns zero if successful or a negative error code. */ int flow_init(void) { flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow), 0, 0, NULL); if (flow_cache == NULL) return -ENOMEM; get_random_bytes(&hash_seed, sizeof(hash_seed)); return 0; } /* Uninitializes the flow module. */ void flow_exit(void) { kmem_cache_destroy(flow_cache); }