/* * Distributed under the terms of the GNU GPL version 2. * Copyright (c) 2007, 2008, 2009, 2010 Nicira Networks. * * Significant portions of this file may be copied from parts of the Linux * kernel, by Linus Torvalds and others. */ #include "flow.h" #include "datapath.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "compat.h" struct kmem_cache *flow_cache; static unsigned int hash_seed; static inline bool arphdr_ok(struct sk_buff *skb) { return skb->len >= skb_network_offset(skb) + sizeof(struct arp_eth_header); } static inline int check_iphdr(struct sk_buff *skb) { unsigned int nh_ofs = skb_network_offset(skb); unsigned int ip_len; if (skb->len < nh_ofs + sizeof(struct iphdr)) return -EINVAL; ip_len = ip_hdrlen(skb); if (ip_len < sizeof(struct iphdr) || skb->len < nh_ofs + ip_len) return -EINVAL; /* * Pull enough header bytes to account for the IP header plus the * longest transport header that we parse, currently 20 bytes for TCP. */ if (!pskb_may_pull(skb, min(nh_ofs + ip_len + 20, skb->len))) return -ENOMEM; skb_set_transport_header(skb, nh_ofs + ip_len); return 0; } static inline bool tcphdr_ok(struct sk_buff *skb) { int th_ofs = skb_transport_offset(skb); if (skb->len >= th_ofs + sizeof(struct tcphdr)) { int tcp_len = tcp_hdrlen(skb); return (tcp_len >= sizeof(struct tcphdr) && skb->len >= th_ofs + tcp_len); } return false; } static inline bool udphdr_ok(struct sk_buff *skb) { return skb->len >= skb_transport_offset(skb) + sizeof(struct udphdr); } static inline bool icmphdr_ok(struct sk_buff *skb) { return skb->len >= skb_transport_offset(skb) + sizeof(struct icmphdr); } #define TCP_FLAGS_OFFSET 13 #define TCP_FLAG_MASK 0x3f void flow_used(struct sw_flow *flow, struct sk_buff *skb) { u8 tcp_flags = 0; if (flow->key.dl_type == htons(ETH_P_IP) && flow->key.nw_proto == IPPROTO_TCP) { u8 *tcp = (u8 *)tcp_hdr(skb); tcp_flags = *(tcp + TCP_FLAGS_OFFSET) & TCP_FLAG_MASK; } spin_lock_bh(&flow->lock); flow->used = jiffies; flow->packet_count++; flow->byte_count += skb->len; flow->tcp_flags |= tcp_flags; spin_unlock_bh(&flow->lock); } struct sw_flow_actions *flow_actions_alloc(size_t n_actions) { struct sw_flow_actions *sfa; if (n_actions > (PAGE_SIZE - sizeof *sfa) / sizeof(union odp_action)) return ERR_PTR(-EINVAL); sfa = kmalloc(sizeof *sfa + n_actions * sizeof(union odp_action), GFP_KERNEL); if (!sfa) return ERR_PTR(-ENOMEM); sfa->n_actions = n_actions; return sfa; } /* Frees 'flow' immediately. */ static void flow_free(struct sw_flow *flow) { if (unlikely(!flow)) return; kfree(flow->sf_acts); kmem_cache_free(flow_cache, flow); } void flow_free_tbl(struct tbl_node *node) { struct sw_flow *flow = flow_cast(node); flow_free(flow); } /* RCU callback used by flow_deferred_free. */ static void rcu_free_flow_callback(struct rcu_head *rcu) { struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu); flow_free(flow); } /* Schedules 'flow' to be freed after the next RCU grace period. * The caller must hold rcu_read_lock for this to be sensible. */ void flow_deferred_free(struct sw_flow *flow) { call_rcu(&flow->rcu, rcu_free_flow_callback); } /* RCU callback used by flow_deferred_free_acts. */ static void rcu_free_acts_callback(struct rcu_head *rcu) { struct sw_flow_actions *sf_acts = container_of(rcu, struct sw_flow_actions, rcu); kfree(sf_acts); } /* Schedules 'sf_acts' to be freed after the next RCU grace period. * The caller must hold rcu_read_lock for this to be sensible. */ void flow_deferred_free_acts(struct sw_flow_actions *sf_acts) { call_rcu(&sf_acts->rcu, rcu_free_acts_callback); } static void parse_vlan(struct sk_buff *skb, struct odp_flow_key *key) { struct qtag_prefix { __be16 eth_type; /* ETH_P_8021Q */ __be16 tci; }; struct qtag_prefix *qp; if (skb->len < sizeof(struct qtag_prefix) + sizeof(__be16)) return; qp = (struct qtag_prefix *) skb->data; key->dl_vlan = qp->tci & htons(VLAN_VID_MASK); key->dl_vlan_pcp = (ntohs(qp->tci) & VLAN_PCP_MASK) >> VLAN_PCP_SHIFT; __skb_pull(skb, sizeof(struct qtag_prefix)); } static __be16 parse_ethertype(struct sk_buff *skb) { struct llc_snap_hdr { u8 dsap; /* Always 0xAA */ u8 ssap; /* Always 0xAA */ u8 ctrl; u8 oui[3]; u16 ethertype; }; struct llc_snap_hdr *llc; __be16 proto; proto = *(__be16 *) skb->data; __skb_pull(skb, sizeof(__be16)); if (ntohs(proto) >= ODP_DL_TYPE_ETH2_CUTOFF) return proto; if (unlikely(skb->len < sizeof(struct llc_snap_hdr))) return htons(ODP_DL_TYPE_NOT_ETH_TYPE); llc = (struct llc_snap_hdr *) skb->data; if (llc->dsap != LLC_SAP_SNAP || llc->ssap != LLC_SAP_SNAP || (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0) return htons(ODP_DL_TYPE_NOT_ETH_TYPE); __skb_pull(skb, sizeof(struct llc_snap_hdr)); return llc->ethertype; } /** * flow_extract - extracts a flow key from an Ethernet frame. * @skb: sk_buff that contains the frame, with skb->data pointing to the * Ethernet header * @in_port: port number on which @skb was received. * @key: output flow key * * The caller must ensure that skb->len >= ETH_HLEN. * * Returns 0 if successful, otherwise a negative errno value. * * Initializes @skb header pointers as follows: * * - skb->mac_header: the Ethernet header. * * - skb->network_header: just past the Ethernet header, or just past the * VLAN header, to the first byte of the Ethernet payload. * * - skb->transport_header: If key->dl_type is ETH_P_IP on output, then just * past the IPv4 header, if one is present and of a correct length, * otherwise the same as skb->network_header. For other key->dl_type * values it is left untouched. * * Sets OVS_CB(skb)->is_frag to %true if @skb is an IPv4 fragment, otherwise to * %false. */ int flow_extract(struct sk_buff *skb, u16 in_port, struct odp_flow_key *key) { struct ethhdr *eth; memset(key, 0, sizeof *key); key->tun_id = OVS_CB(skb)->tun_id; key->in_port = in_port; key->dl_vlan = htons(ODP_VLAN_NONE); OVS_CB(skb)->is_frag = false; /* * We would really like to pull as many bytes as we could possibly * want to parse into the linear data area. Currently that is: * * 14 Ethernet header * 4 VLAN header * 60 max IP header with options * 20 max TCP/UDP/ICMP header (don't care about options) * -- * 98 * * But Xen only allocates 64 or 72 bytes for the linear data area in * netback, which means that we would reallocate and copy the skb's * linear data on every packet if we did that. So instead just pull 64 * bytes, which is always sufficient without IP options, and then check * whether we need to pull more later when we look at the IP header. */ if (!pskb_may_pull(skb, min(skb->len, 64u))) return -ENOMEM; skb_reset_mac_header(skb); /* Link layer. */ eth = eth_hdr(skb); memcpy(key->dl_src, eth->h_source, ETH_ALEN); memcpy(key->dl_dst, eth->h_dest, ETH_ALEN); /* dl_type, dl_vlan, dl_vlan_pcp. */ __skb_pull(skb, 2 * ETH_ALEN); if (eth->h_proto == htons(ETH_P_8021Q)) parse_vlan(skb, key); key->dl_type = parse_ethertype(skb); skb_reset_network_header(skb); __skb_push(skb, skb->data - (unsigned char *)eth); /* Network layer. */ if (key->dl_type == htons(ETH_P_IP)) { struct iphdr *nh; int error; error = check_iphdr(skb); if (unlikely(error)) { if (error == -EINVAL) { skb->transport_header = skb->network_header; return 0; } return error; } nh = ip_hdr(skb); key->nw_src = nh->saddr; key->nw_dst = nh->daddr; key->nw_tos = nh->tos & ~INET_ECN_MASK; key->nw_proto = nh->protocol; /* Transport layer. */ if (!(nh->frag_off & htons(IP_MF | IP_OFFSET))) { if (key->nw_proto == IPPROTO_TCP) { if (tcphdr_ok(skb)) { struct tcphdr *tcp = tcp_hdr(skb); key->tp_src = tcp->source; key->tp_dst = tcp->dest; } } else if (key->nw_proto == IPPROTO_UDP) { if (udphdr_ok(skb)) { struct udphdr *udp = udp_hdr(skb); key->tp_src = udp->source; key->tp_dst = udp->dest; } } else if (key->nw_proto == IPPROTO_ICMP) { if (icmphdr_ok(skb)) { struct icmphdr *icmp = icmp_hdr(skb); /* The ICMP type and code fields use the 16-bit * transport port fields, so we need to store them * in 16-bit network byte order. */ key->tp_src = htons(icmp->type); key->tp_dst = htons(icmp->code); } } } else { OVS_CB(skb)->is_frag = true; } } else if (key->dl_type == htons(ETH_P_ARP) && arphdr_ok(skb)) { struct arp_eth_header *arp; arp = (struct arp_eth_header *)skb_network_header(skb); if (arp->ar_hrd == htons(ARPHRD_ETHER) && arp->ar_pro == htons(ETH_P_IP) && arp->ar_hln == ETH_ALEN && arp->ar_pln == 4) { /* We only match on the lower 8 bits of the opcode. */ if (ntohs(arp->ar_op) <= 0xff) { key->nw_proto = ntohs(arp->ar_op); } if (key->nw_proto == ARPOP_REQUEST || key->nw_proto == ARPOP_REPLY) { memcpy(&key->nw_src, arp->ar_sip, sizeof(key->nw_src)); memcpy(&key->nw_dst, arp->ar_tip, sizeof(key->nw_dst)); } } } return 0; } u32 flow_hash(const struct odp_flow_key *key) { return jhash2((u32*)key, sizeof *key / sizeof(u32), hash_seed); } int flow_cmp(const struct tbl_node *node, void *key2_) { const struct odp_flow_key *key1 = &flow_cast(node)->key; const struct odp_flow_key *key2 = key2_; return !memcmp(key1, key2, sizeof(struct odp_flow_key)); } /* Initializes the flow module. * Returns zero if successful or a negative error code. */ int flow_init(void) { flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow), 0, 0, NULL); if (flow_cache == NULL) return -ENOMEM; get_random_bytes(&hash_seed, sizeof hash_seed); return 0; } /* Uninitializes the flow module. */ void flow_exit(void) { kmem_cache_destroy(flow_cache); }