/* * Copyright (c) 2010, 2011 Nicira Networks. * Distributed under the terms of the GNU GPL version 2. * * Significant portions of this file may be copied from parts of the Linux * kernel, by Linus Torvalds and others. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) #include #endif #include #include #include "actions.h" #include "checksum.h" #include "datapath.h" #include "table.h" #include "tunnel.h" #include "vlan.h" #include "vport.h" #include "vport-generic.h" #include "vport-internal_dev.h" #ifdef NEED_CACHE_TIMEOUT /* * On kernels where we can't quickly detect changes in the rest of the system * we use an expiration time to invalidate the cache. A shorter expiration * reduces the length of time that we may potentially blackhole packets while * a longer time increases performance by reducing the frequency that the * cache needs to be rebuilt. A variety of factors may cause the cache to be * invalidated before the expiration time but this is the maximum. The time * is expressed in jiffies. */ #define MAX_CACHE_EXP HZ #endif /* * Interval to check for and remove caches that are no longer valid. Caches * are checked for validity before they are used for packet encapsulation and * old caches are removed at that time. However, if no packets are sent through * the tunnel then the cache will never be destroyed. Since it holds * references to a number of system objects, the cache will continue to use * system resources by not allowing those objects to be destroyed. The cache * cleaner is periodically run to free invalid caches. It does not * significantly affect system performance. A lower interval will release * resources faster but will itself consume resources by requiring more frequent * checks. A longer interval may result in messages being printed to the kernel * message buffer about unreleased resources. The interval is expressed in * jiffies. */ #define CACHE_CLEANER_INTERVAL (5 * HZ) #define CACHE_DATA_ALIGN 16 static struct tbl __rcu *port_table __read_mostly; static void cache_cleaner(struct work_struct *work); static DECLARE_DELAYED_WORK(cache_cleaner_wq, cache_cleaner); /* * These are just used as an optimization: they don't require any kind of * synchronization because we could have just as easily read the value before * the port change happened. */ static unsigned int key_local_remote_ports __read_mostly; static unsigned int key_remote_ports __read_mostly; static unsigned int local_remote_ports __read_mostly; static unsigned int remote_ports __read_mostly; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,36) #define rt_dst(rt) (rt->dst) #else #define rt_dst(rt) (rt->u.dst) #endif static inline struct vport *tnl_vport_to_vport(const struct tnl_vport *tnl_vport) { return vport_from_priv(tnl_vport); } static inline struct tnl_vport *tnl_vport_table_cast(const struct tbl_node *node) { return container_of(node, struct tnl_vport, tbl_node); } /* This is analogous to rtnl_dereference for the tunnel cache. It checks that * cache_lock is held, so it is only for update side code. */ static inline struct tnl_cache *cache_dereference(struct tnl_vport *tnl_vport) { return rcu_dereference_protected(tnl_vport->cache, lockdep_is_held(&tnl_vport->cache_lock)); } static inline void schedule_cache_cleaner(void) { schedule_delayed_work(&cache_cleaner_wq, CACHE_CLEANER_INTERVAL); } static void free_cache(struct tnl_cache *cache) { if (!cache) return; flow_put(cache->flow); ip_rt_put(cache->rt); kfree(cache); } static void free_config_rcu(struct rcu_head *rcu) { struct tnl_mutable_config *c = container_of(rcu, struct tnl_mutable_config, rcu); kfree(c); } static void free_cache_rcu(struct rcu_head *rcu) { struct tnl_cache *c = container_of(rcu, struct tnl_cache, rcu); free_cache(c); } static void assign_config_rcu(struct vport *vport, struct tnl_mutable_config *new_config) { struct tnl_vport *tnl_vport = tnl_vport_priv(vport); struct tnl_mutable_config *old_config; old_config = rtnl_dereference(tnl_vport->mutable); rcu_assign_pointer(tnl_vport->mutable, new_config); call_rcu(&old_config->rcu, free_config_rcu); } static void assign_cache_rcu(struct vport *vport, struct tnl_cache *new_cache) { struct tnl_vport *tnl_vport = tnl_vport_priv(vport); struct tnl_cache *old_cache; old_cache = cache_dereference(tnl_vport); rcu_assign_pointer(tnl_vport->cache, new_cache); if (old_cache) call_rcu(&old_cache->rcu, free_cache_rcu); } static unsigned int *find_port_pool(const struct tnl_mutable_config *mutable) { if (mutable->flags & TNL_F_IN_KEY_MATCH) { if (mutable->saddr) return &local_remote_ports; else return &remote_ports; } else { if (mutable->saddr) return &key_local_remote_ports; else return &key_remote_ports; } } struct port_lookup_key { const struct tnl_mutable_config *mutable; __be64 key; u32 tunnel_type; __be32 saddr; __be32 daddr; }; /* * Modifies 'target' to store the rcu_dereferenced pointer that was used to do * the comparision. */ static int port_cmp(const struct tbl_node *node, void *target) { const struct tnl_vport *tnl_vport = tnl_vport_table_cast(node); struct port_lookup_key *lookup = target; lookup->mutable = rcu_dereference_rtnl(tnl_vport->mutable); return (lookup->mutable->tunnel_type == lookup->tunnel_type && lookup->mutable->daddr == lookup->daddr && lookup->mutable->in_key == lookup->key && lookup->mutable->saddr == lookup->saddr); } static u32 port_hash(struct port_lookup_key *k) { u32 x = jhash_3words((__force u32)k->saddr, (__force u32)k->daddr, k->tunnel_type, 0); return jhash_2words((__force u64)k->key >> 32, (__force u32)k->key, x); } static u32 mutable_hash(const struct tnl_mutable_config *mutable) { struct port_lookup_key lookup; lookup.saddr = mutable->saddr; lookup.daddr = mutable->daddr; lookup.key = mutable->in_key; lookup.tunnel_type = mutable->tunnel_type; return port_hash(&lookup); } static void check_table_empty(void) { struct tbl *old_table = rtnl_dereference(port_table); if (tbl_count(old_table) == 0) { cancel_delayed_work_sync(&cache_cleaner_wq); rcu_assign_pointer(port_table, NULL); tbl_deferred_destroy(old_table, NULL); } } static int add_port(struct vport *vport) { struct tbl *cur_table = rtnl_dereference(port_table); struct tnl_vport *tnl_vport = tnl_vport_priv(vport); int err; if (!port_table) { struct tbl *new_table; new_table = tbl_create(TBL_MIN_BUCKETS); if (!new_table) return -ENOMEM; rcu_assign_pointer(port_table, new_table); schedule_cache_cleaner(); } else if (tbl_count(cur_table) > tbl_n_buckets(cur_table)) { struct tbl *new_table; new_table = tbl_expand(cur_table); if (IS_ERR(new_table)) return PTR_ERR(new_table); rcu_assign_pointer(port_table, new_table); tbl_deferred_destroy(cur_table, NULL); } err = tbl_insert(rtnl_dereference(port_table), &tnl_vport->tbl_node, mutable_hash(rtnl_dereference(tnl_vport->mutable))); if (err) { check_table_empty(); return err; } (*find_port_pool(rtnl_dereference(tnl_vport->mutable)))++; return 0; } static int move_port(struct vport *vport, struct tnl_mutable_config *new_mutable) { int err; struct tbl *cur_table = rtnl_dereference(port_table); struct tnl_vport *tnl_vport = tnl_vport_priv(vport); u32 hash; hash = mutable_hash(new_mutable); if (hash == tnl_vport->tbl_node.hash) goto table_updated; /* * Ideally we should make this move atomic to avoid having gaps in * finding tunnels or the possibility of failure. However, if we do * find a tunnel it will always be consistent. */ err = tbl_remove(cur_table, &tnl_vport->tbl_node); if (err) return err; err = tbl_insert(cur_table, &tnl_vport->tbl_node, hash); if (err) { (*find_port_pool(rtnl_dereference(tnl_vport->mutable)))--; check_table_empty(); return err; } table_updated: (*find_port_pool(rtnl_dereference(tnl_vport->mutable)))--; assign_config_rcu(vport, new_mutable); (*find_port_pool(rtnl_dereference(tnl_vport->mutable)))++; return 0; } static int del_port(struct vport *vport) { struct tnl_vport *tnl_vport = tnl_vport_priv(vport); int err; err = tbl_remove(rtnl_dereference(port_table), &tnl_vport->tbl_node); if (err) return err; check_table_empty(); (*find_port_pool(rtnl_dereference(tnl_vport->mutable)))--; return 0; } struct vport *tnl_find_port(__be32 saddr, __be32 daddr, __be64 key, int tunnel_type, const struct tnl_mutable_config **mutable) { struct port_lookup_key lookup; struct tbl *table = rcu_dereference_rtnl(port_table); struct tbl_node *tbl_node; if (unlikely(!table)) return NULL; lookup.saddr = saddr; lookup.daddr = daddr; if (tunnel_type & TNL_T_KEY_EXACT) { lookup.key = key; lookup.tunnel_type = tunnel_type & ~TNL_T_KEY_MATCH; if (key_local_remote_ports) { tbl_node = tbl_lookup(table, &lookup, port_hash(&lookup), port_cmp); if (tbl_node) goto found; } if (key_remote_ports) { lookup.saddr = 0; tbl_node = tbl_lookup(table, &lookup, port_hash(&lookup), port_cmp); if (tbl_node) goto found; lookup.saddr = saddr; } } if (tunnel_type & TNL_T_KEY_MATCH) { lookup.key = 0; lookup.tunnel_type = tunnel_type & ~TNL_T_KEY_EXACT; if (local_remote_ports) { tbl_node = tbl_lookup(table, &lookup, port_hash(&lookup), port_cmp); if (tbl_node) goto found; } if (remote_ports) { lookup.saddr = 0; tbl_node = tbl_lookup(table, &lookup, port_hash(&lookup), port_cmp); if (tbl_node) goto found; } } return NULL; found: *mutable = lookup.mutable; return tnl_vport_to_vport(tnl_vport_table_cast(tbl_node)); } static void ecn_decapsulate(struct sk_buff *skb, u8 tos) { if (unlikely(INET_ECN_is_ce(tos))) { __be16 protocol = skb->protocol; skb_set_network_header(skb, ETH_HLEN); if (protocol == htons(ETH_P_8021Q)) { if (unlikely(!pskb_may_pull(skb, VLAN_ETH_HLEN))) return; protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto; skb_set_network_header(skb, VLAN_ETH_HLEN); } if (protocol == htons(ETH_P_IP)) { if (unlikely(!pskb_may_pull(skb, skb_network_offset(skb) + sizeof(struct iphdr)))) return; IP_ECN_set_ce(ip_hdr(skb)); } #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) else if (protocol == htons(ETH_P_IPV6)) { if (unlikely(!pskb_may_pull(skb, skb_network_offset(skb) + sizeof(struct ipv6hdr)))) return; IP6_ECN_set_ce(ipv6_hdr(skb)); } #endif } } /** * tnl_rcv - ingress point for generic tunnel code * * @vport: port this packet was received on * @skb: received packet * @tos: ToS from encapsulating IP packet, used to copy ECN bits * * Must be called with rcu_read_lock. * * Packets received by this function are in the following state: * - skb->data points to the inner Ethernet header. * - The inner Ethernet header is in the linear data area. * - skb->csum does not include the inner Ethernet header. * - The layer pointers are undefined. */ void tnl_rcv(struct vport *vport, struct sk_buff *skb, u8 tos) { struct ethhdr *eh; skb_reset_mac_header(skb); eh = eth_hdr(skb); if (likely(ntohs(eh->h_proto) >= 1536)) skb->protocol = eh->h_proto; else skb->protocol = htons(ETH_P_802_2); skb_dst_drop(skb); nf_reset(skb); skb_clear_rxhash(skb); secpath_reset(skb); ecn_decapsulate(skb, tos); compute_ip_summed(skb, false); vlan_set_tci(skb, 0); vport_receive(vport, skb); } static bool check_ipv4_address(__be32 addr) { if (ipv4_is_multicast(addr) || ipv4_is_lbcast(addr) || ipv4_is_loopback(addr) || ipv4_is_zeronet(addr)) return false; return true; } static bool ipv4_should_icmp(struct sk_buff *skb) { struct iphdr *old_iph = ip_hdr(skb); /* Don't respond to L2 broadcast. */ if (is_multicast_ether_addr(eth_hdr(skb)->h_dest)) return false; /* Don't respond to L3 broadcast or invalid addresses. */ if (!check_ipv4_address(old_iph->daddr) || !check_ipv4_address(old_iph->saddr)) return false; /* Only respond to the first fragment. */ if (old_iph->frag_off & htons(IP_OFFSET)) return false; /* Don't respond to ICMP error messages. */ if (old_iph->protocol == IPPROTO_ICMP) { u8 icmp_type, *icmp_typep; icmp_typep = skb_header_pointer(skb, (u8 *)old_iph + (old_iph->ihl << 2) + offsetof(struct icmphdr, type) - skb->data, sizeof(icmp_type), &icmp_type); if (!icmp_typep) return false; if (*icmp_typep > NR_ICMP_TYPES || (*icmp_typep <= ICMP_PARAMETERPROB && *icmp_typep != ICMP_ECHOREPLY && *icmp_typep != ICMP_ECHO)) return false; } return true; } static void ipv4_build_icmp(struct sk_buff *skb, struct sk_buff *nskb, unsigned int mtu, unsigned int payload_length) { struct iphdr *iph, *old_iph = ip_hdr(skb); struct icmphdr *icmph; u8 *payload; iph = (struct iphdr *)skb_put(nskb, sizeof(struct iphdr)); icmph = (struct icmphdr *)skb_put(nskb, sizeof(struct icmphdr)); payload = skb_put(nskb, payload_length); /* IP */ iph->version = 4; iph->ihl = sizeof(struct iphdr) >> 2; iph->tos = (old_iph->tos & IPTOS_TOS_MASK) | IPTOS_PREC_INTERNETCONTROL; iph->tot_len = htons(sizeof(struct iphdr) + sizeof(struct icmphdr) + payload_length); get_random_bytes(&iph->id, sizeof(iph->id)); iph->frag_off = 0; iph->ttl = IPDEFTTL; iph->protocol = IPPROTO_ICMP; iph->daddr = old_iph->saddr; iph->saddr = old_iph->daddr; ip_send_check(iph); /* ICMP */ icmph->type = ICMP_DEST_UNREACH; icmph->code = ICMP_FRAG_NEEDED; icmph->un.gateway = htonl(mtu); icmph->checksum = 0; nskb->csum = csum_partial((u8 *)icmph, sizeof(struct icmphdr), 0); nskb->csum = skb_copy_and_csum_bits(skb, (u8 *)old_iph - skb->data, payload, payload_length, nskb->csum); icmph->checksum = csum_fold(nskb->csum); } #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) static bool ipv6_should_icmp(struct sk_buff *skb) { struct ipv6hdr *old_ipv6h = ipv6_hdr(skb); int addr_type; int payload_off = (u8 *)(old_ipv6h + 1) - skb->data; u8 nexthdr = ipv6_hdr(skb)->nexthdr; /* Check source address is valid. */ addr_type = ipv6_addr_type(&old_ipv6h->saddr); if (addr_type & IPV6_ADDR_MULTICAST || addr_type == IPV6_ADDR_ANY) return false; /* Don't reply to unspecified addresses. */ if (ipv6_addr_type(&old_ipv6h->daddr) == IPV6_ADDR_ANY) return false; /* Don't respond to ICMP error messages. */ payload_off = ipv6_skip_exthdr(skb, payload_off, &nexthdr); if (payload_off < 0) return false; if (nexthdr == NEXTHDR_ICMP) { u8 icmp_type, *icmp_typep; icmp_typep = skb_header_pointer(skb, payload_off + offsetof(struct icmp6hdr, icmp6_type), sizeof(icmp_type), &icmp_type); if (!icmp_typep || !(*icmp_typep & ICMPV6_INFOMSG_MASK)) return false; } return true; } static void ipv6_build_icmp(struct sk_buff *skb, struct sk_buff *nskb, unsigned int mtu, unsigned int payload_length) { struct ipv6hdr *ipv6h, *old_ipv6h = ipv6_hdr(skb); struct icmp6hdr *icmp6h; u8 *payload; ipv6h = (struct ipv6hdr *)skb_put(nskb, sizeof(struct ipv6hdr)); icmp6h = (struct icmp6hdr *)skb_put(nskb, sizeof(struct icmp6hdr)); payload = skb_put(nskb, payload_length); /* IPv6 */ ipv6h->version = 6; ipv6h->priority = 0; memset(&ipv6h->flow_lbl, 0, sizeof(ipv6h->flow_lbl)); ipv6h->payload_len = htons(sizeof(struct icmp6hdr) + payload_length); ipv6h->nexthdr = NEXTHDR_ICMP; ipv6h->hop_limit = IPV6_DEFAULT_HOPLIMIT; ipv6_addr_copy(&ipv6h->daddr, &old_ipv6h->saddr); ipv6_addr_copy(&ipv6h->saddr, &old_ipv6h->daddr); /* ICMPv6 */ icmp6h->icmp6_type = ICMPV6_PKT_TOOBIG; icmp6h->icmp6_code = 0; icmp6h->icmp6_cksum = 0; icmp6h->icmp6_mtu = htonl(mtu); nskb->csum = csum_partial((u8 *)icmp6h, sizeof(struct icmp6hdr), 0); nskb->csum = skb_copy_and_csum_bits(skb, (u8 *)old_ipv6h - skb->data, payload, payload_length, nskb->csum); icmp6h->icmp6_cksum = csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr, sizeof(struct icmp6hdr) + payload_length, ipv6h->nexthdr, nskb->csum); } #endif /* IPv6 */ bool tnl_frag_needed(struct vport *vport, const struct tnl_mutable_config *mutable, struct sk_buff *skb, unsigned int mtu, __be64 flow_key) { unsigned int eth_hdr_len = ETH_HLEN; unsigned int total_length = 0, header_length = 0, payload_length; struct ethhdr *eh, *old_eh = eth_hdr(skb); struct sk_buff *nskb; /* Sanity check */ if (skb->protocol == htons(ETH_P_IP)) { if (mtu < IP_MIN_MTU) return false; if (!ipv4_should_icmp(skb)) return true; } #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) else if (skb->protocol == htons(ETH_P_IPV6)) { if (mtu < IPV6_MIN_MTU) return false; /* * In theory we should do PMTUD on IPv6 multicast messages but * we don't have an address to send from so just fragment. */ if (ipv6_addr_type(&ipv6_hdr(skb)->daddr) & IPV6_ADDR_MULTICAST) return false; if (!ipv6_should_icmp(skb)) return true; } #endif else return false; /* Allocate */ if (old_eh->h_proto == htons(ETH_P_8021Q)) eth_hdr_len = VLAN_ETH_HLEN; payload_length = skb->len - eth_hdr_len; if (skb->protocol == htons(ETH_P_IP)) { header_length = sizeof(struct iphdr) + sizeof(struct icmphdr); total_length = min_t(unsigned int, header_length + payload_length, 576); } #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) else { header_length = sizeof(struct ipv6hdr) + sizeof(struct icmp6hdr); total_length = min_t(unsigned int, header_length + payload_length, IPV6_MIN_MTU); } #endif payload_length = total_length - header_length; nskb = dev_alloc_skb(NET_IP_ALIGN + eth_hdr_len + header_length + payload_length); if (!nskb) return false; skb_reserve(nskb, NET_IP_ALIGN); /* Ethernet / VLAN */ eh = (struct ethhdr *)skb_put(nskb, eth_hdr_len); memcpy(eh->h_dest, old_eh->h_source, ETH_ALEN); memcpy(eh->h_source, mutable->eth_addr, ETH_ALEN); nskb->protocol = eh->h_proto = old_eh->h_proto; if (old_eh->h_proto == htons(ETH_P_8021Q)) { struct vlan_ethhdr *vh = (struct vlan_ethhdr *)eh; vh->h_vlan_TCI = vlan_eth_hdr(skb)->h_vlan_TCI; vh->h_vlan_encapsulated_proto = skb->protocol; } else vlan_set_tci(nskb, vlan_get_tci(skb)); skb_reset_mac_header(nskb); /* Protocol */ if (skb->protocol == htons(ETH_P_IP)) ipv4_build_icmp(skb, nskb, mtu, payload_length); #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) else ipv6_build_icmp(skb, nskb, mtu, payload_length); #endif /* * Assume that flow based keys are symmetric with respect to input * and output and use the key that we were going to put on the * outgoing packet for the fake received packet. If the keys are * not symmetric then PMTUD needs to be disabled since we won't have * any way of synthesizing packets. */ if ((mutable->flags & (TNL_F_IN_KEY_MATCH | TNL_F_OUT_KEY_ACTION)) == (TNL_F_IN_KEY_MATCH | TNL_F_OUT_KEY_ACTION)) OVS_CB(nskb)->tun_id = flow_key; compute_ip_summed(nskb, false); vport_receive(vport, nskb); return true; } static bool check_mtu(struct sk_buff *skb, struct vport *vport, const struct tnl_mutable_config *mutable, const struct rtable *rt, __be16 *frag_offp) { bool pmtud = mutable->flags & TNL_F_PMTUD; __be16 frag_off = 0; int mtu = 0; unsigned int packet_length = skb->len - ETH_HLEN; /* Allow for one level of tagging in the packet length. */ if (!vlan_tx_tag_present(skb) && eth_hdr(skb)->h_proto == htons(ETH_P_8021Q)) packet_length -= VLAN_HLEN; if (pmtud) { int vlan_header = 0; frag_off = htons(IP_DF); /* The tag needs to go in packet regardless of where it * currently is, so subtract it from the MTU. */ if (vlan_tx_tag_present(skb) || eth_hdr(skb)->h_proto == htons(ETH_P_8021Q)) vlan_header = VLAN_HLEN; mtu = dst_mtu(&rt_dst(rt)) - ETH_HLEN - mutable->tunnel_hlen - vlan_header; } if (skb->protocol == htons(ETH_P_IP)) { struct iphdr *iph = ip_hdr(skb); frag_off |= iph->frag_off & htons(IP_DF); if (pmtud && iph->frag_off & htons(IP_DF)) { mtu = max(mtu, IP_MIN_MTU); if (packet_length > mtu && tnl_frag_needed(vport, mutable, skb, mtu, OVS_CB(skb)->tun_id)) return false; } } #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) else if (skb->protocol == htons(ETH_P_IPV6)) { /* IPv6 requires PMTUD if the packet is above the minimum MTU. */ if (packet_length > IPV6_MIN_MTU) frag_off = htons(IP_DF); if (pmtud) { mtu = max(mtu, IPV6_MIN_MTU); if (packet_length > mtu && tnl_frag_needed(vport, mutable, skb, mtu, OVS_CB(skb)->tun_id)) return false; } } #endif *frag_offp = frag_off; return true; } static void create_tunnel_header(const struct vport *vport, const struct tnl_mutable_config *mutable, const struct rtable *rt, void *header) { struct tnl_vport *tnl_vport = tnl_vport_priv(vport); struct iphdr *iph = header; iph->version = 4; iph->ihl = sizeof(struct iphdr) >> 2; iph->frag_off = htons(IP_DF); iph->protocol = tnl_vport->tnl_ops->ipproto; iph->tos = mutable->tos; iph->daddr = rt->rt_dst; iph->saddr = rt->rt_src; iph->ttl = mutable->ttl; if (!iph->ttl) iph->ttl = ip4_dst_hoplimit(&rt_dst(rt)); tnl_vport->tnl_ops->build_header(vport, mutable, iph + 1); } static inline void *get_cached_header(const struct tnl_cache *cache) { return (void *)cache + ALIGN(sizeof(struct tnl_cache), CACHE_DATA_ALIGN); } static inline bool check_cache_valid(const struct tnl_cache *cache, const struct tnl_mutable_config *mutable) { return cache && #ifdef NEED_CACHE_TIMEOUT time_before(jiffies, cache->expiration) && #endif #ifdef HAVE_RT_GENID atomic_read(&init_net.ipv4.rt_genid) == cache->rt->rt_genid && #endif #ifdef HAVE_HH_SEQ rt_dst(cache->rt).hh->hh_lock.sequence == cache->hh_seq && #endif mutable->seq == cache->mutable_seq && (!is_internal_dev(rt_dst(cache->rt).dev) || (cache->flow && !cache->flow->dead)); } static int cache_cleaner_cb(struct tbl_node *tbl_node, void *aux) { struct tnl_vport *tnl_vport = tnl_vport_table_cast(tbl_node); const struct tnl_mutable_config *mutable = rcu_dereference(tnl_vport->mutable); const struct tnl_cache *cache = rcu_dereference(tnl_vport->cache); if (cache && !check_cache_valid(cache, mutable) && spin_trylock_bh(&tnl_vport->cache_lock)) { assign_cache_rcu(tnl_vport_to_vport(tnl_vport), NULL); spin_unlock_bh(&tnl_vport->cache_lock); } return 0; } static void cache_cleaner(struct work_struct *work) { schedule_cache_cleaner(); rcu_read_lock(); tbl_foreach(rcu_dereference(port_table), cache_cleaner_cb, NULL); rcu_read_unlock(); } static inline void create_eth_hdr(struct tnl_cache *cache, const struct rtable *rt) { void *cache_data = get_cached_header(cache); int hh_len = rt_dst(rt).hh->hh_len; int hh_off = HH_DATA_ALIGN(rt_dst(rt).hh->hh_len) - hh_len; #ifdef HAVE_HH_SEQ unsigned hh_seq; do { hh_seq = read_seqbegin(&rt_dst(rt).hh->hh_lock); memcpy(cache_data, (void *)rt_dst(rt).hh->hh_data + hh_off, hh_len); } while (read_seqretry(&rt_dst(rt).hh->hh_lock, hh_seq)); cache->hh_seq = hh_seq; #else read_lock_bh(&rt_dst(rt).hh->hh_lock); memcpy(cache_data, (void *)rt_dst(rt).hh->hh_data + hh_off, hh_len); read_unlock_bh(&rt_dst(rt).hh->hh_lock); #endif } static struct tnl_cache *build_cache(struct vport *vport, const struct tnl_mutable_config *mutable, struct rtable *rt) { struct tnl_vport *tnl_vport = tnl_vport_priv(vport); struct tnl_cache *cache; void *cache_data; int cache_len; if (!(mutable->flags & TNL_F_HDR_CACHE)) return NULL; /* * If there is no entry in the ARP cache or if this device does not * support hard header caching just fall back to the IP stack. */ if (!rt_dst(rt).hh) return NULL; /* * If lock is contended fall back to directly building the header. * We're not going to help performance by sitting here spinning. */ if (!spin_trylock_bh(&tnl_vport->cache_lock)) return NULL; cache = cache_dereference(tnl_vport); if (check_cache_valid(cache, mutable)) goto unlock; else cache = NULL; cache_len = rt_dst(rt).hh->hh_len + mutable->tunnel_hlen; cache = kzalloc(ALIGN(sizeof(struct tnl_cache), CACHE_DATA_ALIGN) + cache_len, GFP_ATOMIC); if (!cache) goto unlock; cache->len = cache_len; create_eth_hdr(cache, rt); cache_data = get_cached_header(cache) + rt_dst(rt).hh->hh_len; create_tunnel_header(vport, mutable, rt, cache_data); cache->mutable_seq = mutable->seq; cache->rt = rt; #ifdef NEED_CACHE_TIMEOUT cache->expiration = jiffies + tnl_vport->cache_exp_interval; #endif if (is_internal_dev(rt_dst(rt).dev)) { struct sw_flow_key flow_key; struct tbl_node *flow_node; struct vport *dst_vport; struct sk_buff *skb; bool is_frag; int err; dst_vport = internal_dev_get_vport(rt_dst(rt).dev); if (!dst_vport) goto done; skb = alloc_skb(cache->len, GFP_ATOMIC); if (!skb) goto done; __skb_put(skb, cache->len); memcpy(skb->data, get_cached_header(cache), cache->len); err = flow_extract(skb, dst_vport->port_no, &flow_key, &is_frag); kfree_skb(skb); if (err || is_frag) goto done; flow_node = tbl_lookup(rcu_dereference(dst_vport->dp->table), &flow_key, flow_hash(&flow_key), flow_cmp); if (flow_node) { struct sw_flow *flow = flow_cast(flow_node); cache->flow = flow; flow_hold(flow); } } done: assign_cache_rcu(vport, cache); unlock: spin_unlock_bh(&tnl_vport->cache_lock); return cache; } static struct rtable *find_route(struct vport *vport, const struct tnl_mutable_config *mutable, u8 tos, struct tnl_cache **cache) { struct tnl_vport *tnl_vport = tnl_vport_priv(vport); struct tnl_cache *cur_cache = rcu_dereference(tnl_vport->cache); *cache = NULL; tos = RT_TOS(tos); if (likely(tos == mutable->tos && check_cache_valid(cur_cache, mutable))) { *cache = cur_cache; return cur_cache->rt; } else { struct rtable *rt; #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,39) struct flowi fl = { .nl_u = { .ip4_u = { .daddr = mutable->daddr, .saddr = mutable->saddr, .tos = tos } }, .proto = tnl_vport->tnl_ops->ipproto }; if (unlikely(ip_route_output_key(&init_net, &rt, &fl))) return NULL; #else struct flowi4 fl = { .daddr = mutable->daddr, .saddr = mutable->saddr, .flowi4_tos = tos, .flowi4_proto = tnl_vport->tnl_ops->ipproto }; rt = ip_route_output_key(&init_net, &fl); if (IS_ERR(rt)) return NULL; #endif if (likely(tos == mutable->tos)) *cache = build_cache(vport, mutable, rt); return rt; } } static struct sk_buff *check_headroom(struct sk_buff *skb, int headroom) { if (skb_headroom(skb) < headroom || skb_header_cloned(skb)) { struct sk_buff *nskb = skb_realloc_headroom(skb, headroom + 16); if (unlikely(!nskb)) { kfree_skb(skb); return ERR_PTR(-ENOMEM); } set_skb_csum_bits(skb, nskb); if (skb->sk) skb_set_owner_w(nskb, skb->sk); kfree_skb(skb); return nskb; } return skb; } static inline bool need_linearize(const struct sk_buff *skb) { int i; if (unlikely(skb_shinfo(skb)->frag_list)) return true; /* * Generally speaking we should linearize if there are paged frags. * However, if all of the refcounts are 1 we know nobody else can * change them from underneath us and we can skip the linearization. */ for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) if (unlikely(page_count(skb_shinfo(skb)->frags[i].page) > 1)) return true; return false; } static struct sk_buff *handle_offloads(struct sk_buff *skb, const struct tnl_mutable_config *mutable, const struct rtable *rt) { int min_headroom; int err; forward_ip_summed(skb); err = vswitch_skb_checksum_setup(skb); if (unlikely(err)) goto error_free; min_headroom = LL_RESERVED_SPACE(rt_dst(rt).dev) + rt_dst(rt).header_len + mutable->tunnel_hlen + (vlan_tx_tag_present(skb) ? VLAN_HLEN : 0); skb = check_headroom(skb, min_headroom); if (IS_ERR(skb)) { err = PTR_ERR(skb); goto error; } if (skb_is_gso(skb)) { struct sk_buff *nskb; nskb = skb_gso_segment(skb, 0); kfree_skb(skb); if (IS_ERR(nskb)) { err = PTR_ERR(nskb); goto error; } skb = nskb; } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* Pages aren't locked and could change at any time. * If this happens after we compute the checksum, the * checksum will be wrong. We linearize now to avoid * this problem. */ if (unlikely(need_linearize(skb))) { err = __skb_linearize(skb); if (unlikely(err)) goto error_free; } err = skb_checksum_help(skb); if (unlikely(err)) goto error_free; } else if (skb->ip_summed == CHECKSUM_COMPLETE) skb->ip_summed = CHECKSUM_NONE; return skb; error_free: kfree_skb(skb); error: return ERR_PTR(err); } static int send_frags(struct sk_buff *skb, const struct tnl_mutable_config *mutable) { int sent_len; sent_len = 0; while (skb) { struct sk_buff *next = skb->next; int frag_len = skb->len - mutable->tunnel_hlen; int err; skb->next = NULL; memset(IPCB(skb), 0, sizeof(*IPCB(skb))); err = ip_local_out(skb); skb = next; if (unlikely(net_xmit_eval(err))) goto free_frags; sent_len += frag_len; } return sent_len; free_frags: /* * There's no point in continuing to send fragments once one has been * dropped so just free the rest. This may help improve the congestion * that caused the first packet to be dropped. */ tnl_free_linked_skbs(skb); return sent_len; } int tnl_send(struct vport *vport, struct sk_buff *skb) { struct tnl_vport *tnl_vport = tnl_vport_priv(vport); const struct tnl_mutable_config *mutable = rcu_dereference(tnl_vport->mutable); enum vport_err_type err = VPORT_E_TX_ERROR; struct rtable *rt; struct dst_entry *unattached_dst = NULL; struct tnl_cache *cache; int sent_len = 0; __be16 frag_off = 0; u8 ttl; u8 inner_tos; u8 tos; /* Validate the protocol headers before we try to use them. */ if (skb->protocol == htons(ETH_P_8021Q) && !vlan_tx_tag_present(skb)) { if (unlikely(!pskb_may_pull(skb, VLAN_ETH_HLEN))) goto error_free; skb->protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto; skb_set_network_header(skb, VLAN_ETH_HLEN); } if (skb->protocol == htons(ETH_P_IP)) { if (unlikely(!pskb_may_pull(skb, skb_network_offset(skb) + sizeof(struct iphdr)))) skb->protocol = 0; } #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) else if (skb->protocol == htons(ETH_P_IPV6)) { if (unlikely(!pskb_may_pull(skb, skb_network_offset(skb) + sizeof(struct ipv6hdr)))) skb->protocol = 0; } #endif /* ToS */ if (skb->protocol == htons(ETH_P_IP)) inner_tos = ip_hdr(skb)->tos; #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) else if (skb->protocol == htons(ETH_P_IPV6)) inner_tos = ipv6_get_dsfield(ipv6_hdr(skb)); #endif else inner_tos = 0; if (mutable->flags & TNL_F_TOS_INHERIT) tos = inner_tos; else tos = mutable->tos; tos = INET_ECN_encapsulate(tos, inner_tos); /* Route lookup */ rt = find_route(vport, mutable, tos, &cache); if (unlikely(!rt)) goto error_free; if (unlikely(!cache)) unattached_dst = &rt_dst(rt); /* Reset SKB */ nf_reset(skb); secpath_reset(skb); skb_dst_drop(skb); skb_clear_rxhash(skb); /* Offloading */ skb = handle_offloads(skb, mutable, rt); if (IS_ERR(skb)) goto error; /* MTU */ if (unlikely(!check_mtu(skb, vport, mutable, rt, &frag_off))) { err = VPORT_E_TX_DROPPED; goto error_free; } /* * If we are over the MTU, allow the IP stack to handle fragmentation. * Fragmentation is a slow path anyways. */ if (unlikely(skb->len + mutable->tunnel_hlen > dst_mtu(&rt_dst(rt)) && cache)) { unattached_dst = &rt_dst(rt); dst_hold(unattached_dst); cache = NULL; } /* TTL */ ttl = mutable->ttl; if (!ttl) ttl = ip4_dst_hoplimit(&rt_dst(rt)); if (mutable->flags & TNL_F_TTL_INHERIT) { if (skb->protocol == htons(ETH_P_IP)) ttl = ip_hdr(skb)->ttl; #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) else if (skb->protocol == htons(ETH_P_IPV6)) ttl = ipv6_hdr(skb)->hop_limit; #endif } while (skb) { struct iphdr *iph; struct sk_buff *next_skb = skb->next; skb->next = NULL; if (unlikely(vlan_deaccel_tag(skb))) goto next; if (likely(cache)) { skb_push(skb, cache->len); memcpy(skb->data, get_cached_header(cache), cache->len); skb_reset_mac_header(skb); skb_set_network_header(skb, rt_dst(rt).hh->hh_len); } else { skb_push(skb, mutable->tunnel_hlen); create_tunnel_header(vport, mutable, rt, skb->data); skb_reset_network_header(skb); if (next_skb) skb_dst_set(skb, dst_clone(unattached_dst)); else { skb_dst_set(skb, unattached_dst); unattached_dst = NULL; } } skb_set_transport_header(skb, skb_network_offset(skb) + sizeof(struct iphdr)); iph = ip_hdr(skb); iph->tos = tos; iph->ttl = ttl; iph->frag_off = frag_off; ip_select_ident(iph, &rt_dst(rt), NULL); skb = tnl_vport->tnl_ops->update_header(vport, mutable, &rt_dst(rt), skb); if (unlikely(!skb)) goto next; if (likely(cache)) { int orig_len = skb->len - cache->len; struct vport *cache_vport = internal_dev_get_vport(rt_dst(rt).dev); skb->protocol = htons(ETH_P_IP); iph = ip_hdr(skb); iph->tot_len = htons(skb->len - skb_network_offset(skb)); ip_send_check(iph); if (cache_vport) { OVS_CB(skb)->flow = cache->flow; compute_ip_summed(skb, true); vport_receive(cache_vport, skb); sent_len += orig_len; } else { int xmit_err; skb->dev = rt_dst(rt).dev; xmit_err = dev_queue_xmit(skb); if (likely(net_xmit_eval(xmit_err) == 0)) sent_len += orig_len; } } else sent_len += send_frags(skb, mutable); next: skb = next_skb; } if (unlikely(sent_len == 0)) vport_record_error(vport, VPORT_E_TX_DROPPED); goto out; error_free: tnl_free_linked_skbs(skb); error: vport_record_error(vport, err); out: dst_release(unattached_dst); return sent_len; } static const struct nla_policy tnl_policy[ODP_TUNNEL_ATTR_MAX + 1] = { [ODP_TUNNEL_ATTR_FLAGS] = { .type = NLA_U32 }, [ODP_TUNNEL_ATTR_DST_IPV4] = { .type = NLA_U32 }, [ODP_TUNNEL_ATTR_SRC_IPV4] = { .type = NLA_U32 }, [ODP_TUNNEL_ATTR_OUT_KEY] = { .type = NLA_U64 }, [ODP_TUNNEL_ATTR_IN_KEY] = { .type = NLA_U64 }, [ODP_TUNNEL_ATTR_TOS] = { .type = NLA_U8 }, [ODP_TUNNEL_ATTR_TTL] = { .type = NLA_U8 }, }; /* Sets ODP_TUNNEL_ATTR_* fields in 'mutable', which must initially be zeroed. */ static int tnl_set_config(struct nlattr *options, const struct tnl_ops *tnl_ops, const struct vport *cur_vport, struct tnl_mutable_config *mutable) { const struct vport *old_vport; const struct tnl_mutable_config *old_mutable; struct nlattr *a[ODP_TUNNEL_ATTR_MAX + 1]; int err; if (!options) return -EINVAL; err = nla_parse_nested(a, ODP_TUNNEL_ATTR_MAX, options, tnl_policy); if (err) return err; if (!a[ODP_TUNNEL_ATTR_FLAGS] || !a[ODP_TUNNEL_ATTR_DST_IPV4]) return -EINVAL; mutable->flags = nla_get_u32(a[ODP_TUNNEL_ATTR_FLAGS]) & TNL_F_PUBLIC; if (a[ODP_TUNNEL_ATTR_SRC_IPV4]) mutable->saddr = nla_get_be32(a[ODP_TUNNEL_ATTR_SRC_IPV4]); mutable->daddr = nla_get_be32(a[ODP_TUNNEL_ATTR_DST_IPV4]); if (a[ODP_TUNNEL_ATTR_TOS]) { mutable->tos = nla_get_u8(a[ODP_TUNNEL_ATTR_TOS]); if (mutable->tos != RT_TOS(mutable->tos)) return -EINVAL; } if (a[ODP_TUNNEL_ATTR_TTL]) mutable->ttl = nla_get_u8(a[ODP_TUNNEL_ATTR_TTL]); mutable->tunnel_type = tnl_ops->tunnel_type; if (!a[ODP_TUNNEL_ATTR_IN_KEY]) { mutable->tunnel_type |= TNL_T_KEY_MATCH; mutable->flags |= TNL_F_IN_KEY_MATCH; } else { mutable->tunnel_type |= TNL_T_KEY_EXACT; mutable->in_key = nla_get_be64(a[ODP_TUNNEL_ATTR_IN_KEY]); } if (!a[ODP_TUNNEL_ATTR_OUT_KEY]) mutable->flags |= TNL_F_OUT_KEY_ACTION; else mutable->out_key = nla_get_be64(a[ODP_TUNNEL_ATTR_OUT_KEY]); mutable->tunnel_hlen = tnl_ops->hdr_len(mutable); if (mutable->tunnel_hlen < 0) return mutable->tunnel_hlen; mutable->tunnel_hlen += sizeof(struct iphdr); old_vport = tnl_find_port(mutable->saddr, mutable->daddr, mutable->in_key, mutable->tunnel_type, &old_mutable); if (old_vport && old_vport != cur_vport) return -EEXIST; return 0; } struct vport *tnl_create(const struct vport_parms *parms, const struct vport_ops *vport_ops, const struct tnl_ops *tnl_ops) { struct vport *vport; struct tnl_vport *tnl_vport; struct tnl_mutable_config *mutable; int initial_frag_id; int err; vport = vport_alloc(sizeof(struct tnl_vport), vport_ops, parms); if (IS_ERR(vport)) { err = PTR_ERR(vport); goto error; } tnl_vport = tnl_vport_priv(vport); strcpy(tnl_vport->name, parms->name); tnl_vport->tnl_ops = tnl_ops; mutable = kzalloc(sizeof(struct tnl_mutable_config), GFP_KERNEL); if (!mutable) { err = -ENOMEM; goto error_free_vport; } vport_gen_rand_ether_addr(mutable->eth_addr); get_random_bytes(&initial_frag_id, sizeof(int)); atomic_set(&tnl_vport->frag_id, initial_frag_id); err = tnl_set_config(parms->options, tnl_ops, NULL, mutable); if (err) goto error_free_mutable; spin_lock_init(&tnl_vport->cache_lock); #ifdef NEED_CACHE_TIMEOUT tnl_vport->cache_exp_interval = MAX_CACHE_EXP - (net_random() % (MAX_CACHE_EXP / 2)); #endif rcu_assign_pointer(tnl_vport->mutable, mutable); err = add_port(vport); if (err) goto error_free_mutable; return vport; error_free_mutable: kfree(mutable); error_free_vport: vport_free(vport); error: return ERR_PTR(err); } int tnl_set_options(struct vport *vport, struct nlattr *options) { struct tnl_vport *tnl_vport = tnl_vport_priv(vport); const struct tnl_mutable_config *old_mutable; struct tnl_mutable_config *mutable; int err; mutable = kzalloc(sizeof(struct tnl_mutable_config), GFP_KERNEL); if (!mutable) { err = -ENOMEM; goto error; } /* Copy fields whose values should be retained. */ old_mutable = rtnl_dereference(tnl_vport->mutable); mutable->seq = old_mutable->seq + 1; memcpy(mutable->eth_addr, old_mutable->eth_addr, ETH_ALEN); /* Parse the others configured by userspace. */ err = tnl_set_config(options, tnl_vport->tnl_ops, vport, mutable); if (err) goto error_free; err = move_port(vport, mutable); if (err) goto error_free; return 0; error_free: kfree(mutable); error: return err; } int tnl_get_options(const struct vport *vport, struct sk_buff *skb) { const struct tnl_vport *tnl_vport = tnl_vport_priv(vport); const struct tnl_mutable_config *mutable = rcu_dereference_rtnl(tnl_vport->mutable); NLA_PUT_U32(skb, ODP_TUNNEL_ATTR_FLAGS, mutable->flags & TNL_F_PUBLIC); NLA_PUT_BE32(skb, ODP_TUNNEL_ATTR_DST_IPV4, mutable->daddr); if (!(mutable->flags & TNL_F_IN_KEY_MATCH)) NLA_PUT_BE64(skb, ODP_TUNNEL_ATTR_IN_KEY, mutable->in_key); if (!(mutable->flags & TNL_F_OUT_KEY_ACTION)) NLA_PUT_BE64(skb, ODP_TUNNEL_ATTR_OUT_KEY, mutable->out_key); if (mutable->saddr) NLA_PUT_BE32(skb, ODP_TUNNEL_ATTR_SRC_IPV4, mutable->saddr); if (mutable->tos) NLA_PUT_U8(skb, ODP_TUNNEL_ATTR_TOS, mutable->tos); if (mutable->ttl) NLA_PUT_U8(skb, ODP_TUNNEL_ATTR_TTL, mutable->ttl); return 0; nla_put_failure: return -EMSGSIZE; } static void free_port_rcu(struct rcu_head *rcu) { struct tnl_vport *tnl_vport = container_of(rcu, struct tnl_vport, rcu); free_cache((struct tnl_cache __force *)tnl_vport->cache); kfree((struct tnl_mutable __force *)tnl_vport->mutable); vport_free(tnl_vport_to_vport(tnl_vport)); } int tnl_destroy(struct vport *vport) { struct tnl_vport *tnl_vport = tnl_vport_priv(vport); const struct tnl_mutable_config *mutable, *old_mutable; mutable = rtnl_dereference(tnl_vport->mutable); if (vport == tnl_find_port(mutable->saddr, mutable->daddr, mutable->in_key, mutable->tunnel_type, &old_mutable)) del_port(vport); call_rcu(&tnl_vport->rcu, free_port_rcu); return 0; } int tnl_set_addr(struct vport *vport, const unsigned char *addr) { struct tnl_vport *tnl_vport = tnl_vport_priv(vport); struct tnl_mutable_config *mutable; mutable = kmemdup(rtnl_dereference(tnl_vport->mutable), sizeof(struct tnl_mutable_config), GFP_KERNEL); if (!mutable) return -ENOMEM; memcpy(mutable->eth_addr, addr, ETH_ALEN); assign_config_rcu(vport, mutable); return 0; } const char *tnl_get_name(const struct vport *vport) { const struct tnl_vport *tnl_vport = tnl_vport_priv(vport); return tnl_vport->name; } const unsigned char *tnl_get_addr(const struct vport *vport) { const struct tnl_vport *tnl_vport = tnl_vport_priv(vport); return rcu_dereference_rtnl(tnl_vport->mutable)->eth_addr; } void tnl_free_linked_skbs(struct sk_buff *skb) { while (skb) { struct sk_buff *next = skb->next; kfree_skb(skb); skb = next; } }