/* * Copyright (c) 2009, 2010, 2011 Nicira Networks. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "classifier.h" #include #include #include #include "byte-order.h" #include "dynamic-string.h" #include "flow.h" #include "hash.h" #include "odp-util.h" #include "ofp-util.h" #include "packets.h" static struct cls_table *find_table(const struct classifier *, const struct flow_wildcards *); static struct cls_table *insert_table(struct classifier *, const struct flow_wildcards *); static struct cls_table *classifier_first_table(const struct classifier *); static struct cls_table *classifier_next_table(const struct classifier *, const struct cls_table *); static void destroy_table(struct classifier *, struct cls_table *); static struct cls_rule *find_match(const struct cls_table *, const struct flow *); static struct cls_rule *find_equal(struct cls_table *, const struct flow *, uint32_t hash); static struct cls_rule *insert_rule(struct cls_table *, struct cls_rule *); static bool flow_equal_except(const struct flow *, const struct flow *, const struct flow_wildcards *); static void zero_wildcards(struct flow *, const struct flow_wildcards *); /* Iterates RULE over HEAD and all of the cls_rules on HEAD->list. */ #define FOR_EACH_RULE_IN_LIST(RULE, HEAD) \ for ((RULE) = (HEAD); (RULE) != NULL; (RULE) = next_rule_in_list(RULE)) #define FOR_EACH_RULE_IN_LIST_SAFE(RULE, NEXT, HEAD) \ for ((RULE) = (HEAD); \ (RULE) != NULL && ((NEXT) = next_rule_in_list(RULE), true); \ (RULE) = (NEXT)) static struct cls_rule *next_rule_in_list__(struct cls_rule *); static struct cls_rule *next_rule_in_list(struct cls_rule *); static struct cls_table * cls_table_from_hmap_node(const struct hmap_node *node) { return node ? CONTAINER_OF(node, struct cls_table, hmap_node) : NULL; } /* Converts the flow in 'flow' into a cls_rule in 'rule', with the given * 'wildcards' and 'priority'. */ void cls_rule_init(const struct flow *flow, const struct flow_wildcards *wildcards, unsigned int priority, struct cls_rule *rule) { rule->flow = *flow; rule->wc = *wildcards; rule->priority = priority; cls_rule_zero_wildcarded_fields(rule); } /* Converts the flow in 'flow' into an exact-match cls_rule in 'rule', with the * given 'priority'. (For OpenFlow 1.0, exact-match rule are always highest * priority, so 'priority' should be at least 65535.) */ void cls_rule_init_exact(const struct flow *flow, unsigned int priority, struct cls_rule *rule) { rule->flow = *flow; flow_wildcards_init_exact(&rule->wc); rule->priority = priority; } /* Initializes 'rule' as a "catch-all" rule that matches every packet, with * priority 'priority'. */ void cls_rule_init_catchall(struct cls_rule *rule, unsigned int priority) { memset(&rule->flow, 0, sizeof rule->flow); flow_wildcards_init_catchall(&rule->wc); rule->priority = priority; } /* For each bit or field wildcarded in 'rule', sets the corresponding bit or * field in 'flow' to all-0-bits. It is important to maintain this invariant * in a clr_rule that might be inserted into a classifier. * * It is never necessary to call this function directly for a cls_rule that is * initialized or modified only by cls_rule_*() functions. It is useful to * restore the invariant in a cls_rule whose 'wc' member is modified by hand. */ void cls_rule_zero_wildcarded_fields(struct cls_rule *rule) { zero_wildcards(&rule->flow, &rule->wc); } void cls_rule_set_reg(struct cls_rule *rule, unsigned int reg_idx, uint32_t value) { cls_rule_set_reg_masked(rule, reg_idx, value, UINT32_MAX); } void cls_rule_set_reg_masked(struct cls_rule *rule, unsigned int reg_idx, uint32_t value, uint32_t mask) { assert(reg_idx < FLOW_N_REGS); flow_wildcards_set_reg_mask(&rule->wc, reg_idx, mask); rule->flow.regs[reg_idx] = value & mask; } void cls_rule_set_tun_id(struct cls_rule *rule, ovs_be64 tun_id) { cls_rule_set_tun_id_masked(rule, tun_id, htonll(UINT64_MAX)); } void cls_rule_set_tun_id_masked(struct cls_rule *rule, ovs_be64 tun_id, ovs_be64 mask) { rule->wc.tun_id_mask = mask; rule->flow.tun_id = tun_id & mask; } void cls_rule_set_in_port(struct cls_rule *rule, uint16_t odp_port) { rule->wc.wildcards &= ~FWW_IN_PORT; rule->flow.in_port = odp_port; } void cls_rule_set_dl_type(struct cls_rule *rule, ovs_be16 dl_type) { rule->wc.wildcards &= ~FWW_DL_TYPE; rule->flow.dl_type = dl_type; } void cls_rule_set_dl_src(struct cls_rule *rule, const uint8_t dl_src[ETH_ADDR_LEN]) { rule->wc.wildcards &= ~FWW_DL_SRC; memcpy(rule->flow.dl_src, dl_src, ETH_ADDR_LEN); } void cls_rule_set_dl_dst(struct cls_rule *rule, const uint8_t dl_dst[ETH_ADDR_LEN]) { rule->wc.wildcards &= ~(FWW_DL_DST | FWW_ETH_MCAST); memcpy(rule->flow.dl_dst, dl_dst, ETH_ADDR_LEN); } void cls_rule_set_dl_tci(struct cls_rule *rule, ovs_be16 tci) { cls_rule_set_dl_tci_masked(rule, tci, htons(0xffff)); } void cls_rule_set_dl_tci_masked(struct cls_rule *rule, ovs_be16 tci, ovs_be16 mask) { rule->flow.vlan_tci = tci & mask; rule->wc.vlan_tci_mask = mask; } /* Modifies 'rule' so that the VLAN VID is wildcarded. If the PCP is already * wildcarded, then 'rule' will match a packet regardless of whether it has an * 802.1Q header or not. */ void cls_rule_set_any_vid(struct cls_rule *rule) { if (rule->wc.vlan_tci_mask & htons(VLAN_PCP_MASK)) { rule->wc.vlan_tci_mask &= ~htons(VLAN_VID_MASK); rule->flow.vlan_tci &= ~htons(VLAN_VID_MASK); } else { cls_rule_set_dl_tci_masked(rule, htons(0), htons(0)); } } /* Modifies 'rule' depending on 'dl_vlan': * * - If 'dl_vlan' is htons(OFP_VLAN_NONE), makes 'rule' match only packets * without an 802.1Q header. * * - Otherwise, makes 'rule' match only packets with an 802.1Q header whose * VID equals the low 12 bits of 'dl_vlan'. */ void cls_rule_set_dl_vlan(struct cls_rule *rule, ovs_be16 dl_vlan) { if (dl_vlan == htons(OFP_VLAN_NONE)) { cls_rule_set_dl_tci(rule, htons(0)); } else { dl_vlan &= htons(VLAN_VID_MASK); rule->flow.vlan_tci &= ~htons(VLAN_VID_MASK); rule->flow.vlan_tci |= htons(VLAN_CFI) | dl_vlan; rule->wc.vlan_tci_mask |= htons(VLAN_VID_MASK | VLAN_CFI); } } /* Modifies 'rule' so that the VLAN PCP is wildcarded. If the VID is already * wildcarded, then 'rule' will match a packet regardless of whether it has an * 802.1Q header or not. */ void cls_rule_set_any_pcp(struct cls_rule *rule) { if (rule->wc.vlan_tci_mask & htons(VLAN_VID_MASK)) { rule->wc.vlan_tci_mask &= ~htons(VLAN_PCP_MASK); rule->flow.vlan_tci &= ~htons(VLAN_PCP_MASK); } else { cls_rule_set_dl_tci_masked(rule, htons(0), htons(0)); } } /* Modifies 'rule' so that it matches only packets with an 802.1Q header whose * PCP equals the low 3 bits of 'dl_vlan_pcp'. */ void cls_rule_set_dl_vlan_pcp(struct cls_rule *rule, uint8_t dl_vlan_pcp) { dl_vlan_pcp &= 0x07; rule->flow.vlan_tci &= ~htons(VLAN_PCP_MASK); rule->flow.vlan_tci |= htons((dl_vlan_pcp << VLAN_PCP_SHIFT) | VLAN_CFI); rule->wc.vlan_tci_mask |= htons(VLAN_CFI | VLAN_PCP_MASK); } void cls_rule_set_tp_src(struct cls_rule *rule, ovs_be16 tp_src) { rule->wc.wildcards &= ~FWW_TP_SRC; rule->flow.tp_src = tp_src; } void cls_rule_set_tp_dst(struct cls_rule *rule, ovs_be16 tp_dst) { rule->wc.wildcards &= ~FWW_TP_DST; rule->flow.tp_dst = tp_dst; } void cls_rule_set_nw_proto(struct cls_rule *rule, uint8_t nw_proto) { rule->wc.wildcards &= ~FWW_NW_PROTO; rule->flow.nw_proto = nw_proto; } void cls_rule_set_nw_src(struct cls_rule *rule, ovs_be32 nw_src) { cls_rule_set_nw_src_masked(rule, nw_src, htonl(UINT32_MAX)); } bool cls_rule_set_nw_src_masked(struct cls_rule *rule, ovs_be32 ip, ovs_be32 mask) { if (flow_wildcards_set_nw_src_mask(&rule->wc, mask)) { rule->flow.nw_src = ip & mask; return true; } else { return false; } } void cls_rule_set_nw_dst(struct cls_rule *rule, ovs_be32 nw_dst) { cls_rule_set_nw_dst_masked(rule, nw_dst, htonl(UINT32_MAX)); } bool cls_rule_set_nw_dst_masked(struct cls_rule *rule, ovs_be32 ip, ovs_be32 mask) { if (flow_wildcards_set_nw_dst_mask(&rule->wc, mask)) { rule->flow.nw_dst = ip & mask; return true; } else { return false; } } void cls_rule_set_nw_tos(struct cls_rule *rule, uint8_t nw_tos) { rule->wc.wildcards &= ~FWW_NW_TOS; rule->flow.nw_tos = nw_tos & IP_DSCP_MASK; } void cls_rule_set_icmp_type(struct cls_rule *rule, uint8_t icmp_type) { rule->wc.wildcards &= ~FWW_TP_SRC; rule->flow.icmp_type = htons(icmp_type); } void cls_rule_set_icmp_code(struct cls_rule *rule, uint8_t icmp_code) { rule->wc.wildcards &= ~FWW_TP_DST; rule->flow.icmp_code = htons(icmp_code); } void cls_rule_set_arp_sha(struct cls_rule *rule, const uint8_t sha[ETH_ADDR_LEN]) { rule->wc.wildcards &= ~FWW_ARP_SHA; memcpy(rule->flow.arp_sha, sha, ETH_ADDR_LEN); } void cls_rule_set_arp_tha(struct cls_rule *rule, const uint8_t tha[ETH_ADDR_LEN]) { rule->wc.wildcards &= ~FWW_ARP_THA; memcpy(rule->flow.arp_tha, tha, ETH_ADDR_LEN); } void cls_rule_set_ipv6_src(struct cls_rule *rule, const struct in6_addr *src) { cls_rule_set_ipv6_src_masked(rule, src, &in6addr_exact); } bool cls_rule_set_ipv6_src_masked(struct cls_rule *rule, const struct in6_addr *src, const struct in6_addr *mask) { if (flow_wildcards_set_ipv6_src_mask(&rule->wc, mask)) { rule->flow.ipv6_src = ipv6_addr_bitand(src, mask); return true; } else { return false; } } void cls_rule_set_ipv6_dst(struct cls_rule *rule, const struct in6_addr *dst) { cls_rule_set_ipv6_dst_masked(rule, dst, &in6addr_exact); } bool cls_rule_set_ipv6_dst_masked(struct cls_rule *rule, const struct in6_addr *dst, const struct in6_addr *mask) { if (flow_wildcards_set_ipv6_dst_mask(&rule->wc, mask)) { rule->flow.ipv6_dst = ipv6_addr_bitand(dst, mask); return true; } else { return false; } } void cls_rule_set_nd_target(struct cls_rule *rule, const struct in6_addr target) { rule->wc.wildcards &= ~FWW_ND_TARGET; rule->flow.nd_target = target; } /* Returns true if 'a' and 'b' have the same priority, wildcard the same * fields, and have the same values for fixed fields, otherwise false. */ bool cls_rule_equal(const struct cls_rule *a, const struct cls_rule *b) { return (a->priority == b->priority && flow_wildcards_equal(&a->wc, &b->wc) && flow_equal(&a->flow, &b->flow)); } static void format_ip_netmask(struct ds *s, const char *name, ovs_be32 ip, ovs_be32 netmask) { if (netmask) { ds_put_format(s, "%s="IP_FMT, name, IP_ARGS(&ip)); if (netmask != htonl(UINT32_MAX)) { if (ip_is_cidr(netmask)) { int wcbits = ofputil_netmask_to_wcbits(netmask); ds_put_format(s, "/%d", 32 - wcbits); } else { ds_put_format(s, "/"IP_FMT, IP_ARGS(&netmask)); } } ds_put_char(s, ','); } } static void format_ipv6_netmask(struct ds *s, const char *name, const struct in6_addr *addr, const struct in6_addr *netmask) { if (!ipv6_mask_is_any(netmask)) { ds_put_format(s, "%s=", name); print_ipv6_addr(s, addr); if (!ipv6_mask_is_exact(netmask)) { if (ipv6_is_cidr(netmask)) { int cidr_bits = ipv6_count_cidr_bits(netmask); ds_put_format(s, "/%d", cidr_bits); } else { ds_put_char(s, '/'); print_ipv6_addr(s, netmask); } } ds_put_char(s, ','); } } void cls_rule_format(const struct cls_rule *rule, struct ds *s) { const struct flow_wildcards *wc = &rule->wc; size_t start_len = s->length; flow_wildcards_t w = wc->wildcards; const struct flow *f = &rule->flow; bool skip_type = false; bool skip_proto = false; int i; if (rule->priority != OFP_DEFAULT_PRIORITY) { ds_put_format(s, "priority=%d,", rule->priority); } if (!(w & FWW_DL_TYPE)) { skip_type = true; if (f->dl_type == htons(ETH_TYPE_IP)) { if (!(w & FWW_NW_PROTO)) { skip_proto = true; if (f->nw_proto == IPPROTO_ICMP) { ds_put_cstr(s, "icmp,"); } else if (f->nw_proto == IPPROTO_TCP) { ds_put_cstr(s, "tcp,"); } else if (f->nw_proto == IPPROTO_UDP) { ds_put_cstr(s, "udp,"); } else { ds_put_cstr(s, "ip,"); skip_proto = false; } } else { ds_put_cstr(s, "ip,"); } } else if (f->dl_type == htons(ETH_TYPE_IPV6)) { if (!(w & FWW_NW_PROTO)) { skip_proto = true; if (f->nw_proto == IPPROTO_ICMPV6) { ds_put_cstr(s, "icmp6,"); } else if (f->nw_proto == IPPROTO_TCP) { ds_put_cstr(s, "tcp6,"); } else if (f->nw_proto == IPPROTO_UDP) { ds_put_cstr(s, "udp6,"); } else { ds_put_cstr(s, "ipv6,"); skip_proto = false; } } else { ds_put_cstr(s, "ipv6,"); } } else if (f->dl_type == htons(ETH_TYPE_ARP)) { ds_put_cstr(s, "arp,"); } else { skip_type = false; } } for (i = 0; i < FLOW_N_REGS; i++) { switch (wc->reg_masks[i]) { case 0: break; case UINT32_MAX: ds_put_format(s, "reg%d=0x%"PRIx32",", i, f->regs[i]); break; default: ds_put_format(s, "reg%d=0x%"PRIx32"/0x%"PRIx32",", i, f->regs[i], wc->reg_masks[i]); break; } } switch (wc->tun_id_mask) { case 0: break; case CONSTANT_HTONLL(UINT64_MAX): ds_put_format(s, "tun_id=%#"PRIx64",", ntohll(f->tun_id)); break; default: ds_put_format(s, "tun_id=%#"PRIx64"/%#"PRIx64",", ntohll(f->tun_id), ntohll(wc->tun_id_mask)); break; } if (!(w & FWW_IN_PORT)) { ds_put_format(s, "in_port=%"PRIu16",", odp_port_to_ofp_port(f->in_port)); } if (wc->vlan_tci_mask) { ovs_be16 vid_mask = wc->vlan_tci_mask & htons(VLAN_VID_MASK); ovs_be16 pcp_mask = wc->vlan_tci_mask & htons(VLAN_PCP_MASK); ovs_be16 cfi = wc->vlan_tci_mask & htons(VLAN_CFI); if (cfi && f->vlan_tci & htons(VLAN_CFI) && (!vid_mask || vid_mask == htons(VLAN_VID_MASK)) && (!pcp_mask || pcp_mask == htons(VLAN_PCP_MASK)) && (vid_mask || pcp_mask)) { if (vid_mask) { ds_put_format(s, "dl_vlan=%"PRIu16",", vlan_tci_to_vid(f->vlan_tci)); } if (pcp_mask) { ds_put_format(s, "dl_vlan_pcp=%d,", vlan_tci_to_pcp(f->vlan_tci)); } } else if (wc->vlan_tci_mask == htons(0xffff)) { ds_put_format(s, "vlan_tci=0x%04"PRIx16",", ntohs(f->vlan_tci)); } else { ds_put_format(s, "vlan_tci=0x%04"PRIx16"/0x%04"PRIx16",", ntohs(f->vlan_tci), ntohs(wc->vlan_tci_mask)); } } if (!(w & FWW_DL_SRC)) { ds_put_format(s, "dl_src="ETH_ADDR_FMT",", ETH_ADDR_ARGS(f->dl_src)); } switch (w & (FWW_DL_DST | FWW_ETH_MCAST)) { case 0: ds_put_format(s, "dl_dst="ETH_ADDR_FMT",", ETH_ADDR_ARGS(f->dl_dst)); break; case FWW_DL_DST: ds_put_format(s, "dl_dst="ETH_ADDR_FMT"/01:00:00:00:00:00,", ETH_ADDR_ARGS(f->dl_dst)); break; case FWW_ETH_MCAST: ds_put_format(s, "dl_dst="ETH_ADDR_FMT"/fe:ff:ff:ff:ff:ff,", ETH_ADDR_ARGS(f->dl_dst)); break; case FWW_DL_DST | FWW_ETH_MCAST: break; } if (!skip_type && !(w & FWW_DL_TYPE)) { ds_put_format(s, "dl_type=0x%04"PRIx16",", ntohs(f->dl_type)); } if (f->dl_type == htons(ETH_TYPE_IPV6)) { format_ipv6_netmask(s, "ipv6_src", &f->ipv6_src, &wc->ipv6_src_mask); format_ipv6_netmask(s, "ipv6_dst", &f->ipv6_dst, &wc->ipv6_dst_mask); } else { format_ip_netmask(s, "nw_src", f->nw_src, wc->nw_src_mask); format_ip_netmask(s, "nw_dst", f->nw_dst, wc->nw_dst_mask); } if (!skip_proto && !(w & FWW_NW_PROTO)) { if (f->dl_type == htons(ETH_TYPE_ARP)) { ds_put_format(s, "opcode=%"PRIu8",", f->nw_proto); } else { ds_put_format(s, "nw_proto=%"PRIu8",", f->nw_proto); } } if (f->dl_type == htons(ETH_TYPE_ARP)) { if (!(w & FWW_ARP_SHA)) { ds_put_format(s, "arp_sha="ETH_ADDR_FMT",", ETH_ADDR_ARGS(f->arp_sha)); } if (!(w & FWW_ARP_THA)) { ds_put_format(s, "arp_tha="ETH_ADDR_FMT",", ETH_ADDR_ARGS(f->arp_tha)); } } if (!(w & FWW_NW_TOS)) { ds_put_format(s, "nw_tos=%"PRIu8",", f->nw_tos); } if (f->nw_proto == IPPROTO_ICMP) { if (!(w & FWW_TP_SRC)) { ds_put_format(s, "icmp_type=%"PRIu16",", ntohs(f->tp_src)); } if (!(w & FWW_TP_DST)) { ds_put_format(s, "icmp_code=%"PRIu16",", ntohs(f->tp_dst)); } } else if (f->nw_proto == IPPROTO_ICMPV6) { if (!(w & FWW_TP_SRC)) { ds_put_format(s, "icmp_type=%"PRIu16",", ntohs(f->tp_src)); } if (!(w & FWW_TP_DST)) { ds_put_format(s, "icmp_code=%"PRIu16",", ntohs(f->tp_dst)); } if (!(w & FWW_ND_TARGET)) { ds_put_cstr(s, "nd_target="); print_ipv6_addr(s, &f->nd_target); ds_put_char(s, ','); } if (!(w & FWW_ARP_SHA)) { ds_put_format(s, "nd_sll="ETH_ADDR_FMT",", ETH_ADDR_ARGS(f->arp_sha)); } if (!(w & FWW_ARP_THA)) { ds_put_format(s, "nd_tll="ETH_ADDR_FMT",", ETH_ADDR_ARGS(f->arp_tha)); } } else { if (!(w & FWW_TP_SRC)) { ds_put_format(s, "tp_src=%"PRIu16",", ntohs(f->tp_src)); } if (!(w & FWW_TP_DST)) { ds_put_format(s, "tp_dst=%"PRIu16",", ntohs(f->tp_dst)); } } if (s->length > start_len && ds_last(s) == ',') { s->length--; } } /* Converts 'rule' to a string and returns the string. The caller must free * the string (with free()). */ char * cls_rule_to_string(const struct cls_rule *rule) { struct ds s = DS_EMPTY_INITIALIZER; cls_rule_format(rule, &s); return ds_steal_cstr(&s); } void cls_rule_print(const struct cls_rule *rule) { char *s = cls_rule_to_string(rule); puts(s); free(s); } /* Initializes 'cls' as a classifier that initially contains no classification * rules. */ void classifier_init(struct classifier *cls) { cls->n_rules = 0; hmap_init(&cls->tables); } /* Destroys 'cls'. Rules within 'cls', if any, are not freed; this is the * caller's responsibility. */ void classifier_destroy(struct classifier *cls) { if (cls) { struct cls_table *table, *next_table; HMAP_FOR_EACH_SAFE (table, next_table, hmap_node, &cls->tables) { hmap_destroy(&table->rules); hmap_remove(&cls->tables, &table->hmap_node); free(table); } hmap_destroy(&cls->tables); } } /* Returns true if 'cls' contains no classification rules, false otherwise. */ bool classifier_is_empty(const struct classifier *cls) { return cls->n_rules == 0; } /* Returns the number of rules in 'classifier'. */ int classifier_count(const struct classifier *cls) { return cls->n_rules; } /* Inserts 'rule' into 'cls'. Until 'rule' is removed from 'cls', the caller * must not modify or free it. * * If 'cls' already contains an identical rule (including wildcards, values of * fixed fields, and priority), replaces the old rule by 'rule' and returns the * rule that was replaced. The caller takes ownership of the returned rule and * is thus responsible for freeing it, etc., as necessary. * * Returns NULL if 'cls' does not contain a rule with an identical key, after * inserting the new rule. In this case, no rules are displaced by the new * rule, even rules that cannot have any effect because the new rule matches a * superset of their flows and has higher priority. */ struct cls_rule * classifier_insert(struct classifier *cls, struct cls_rule *rule) { struct cls_rule *old_rule; struct cls_table *table; table = find_table(cls, &rule->wc); if (!table) { table = insert_table(cls, &rule->wc); } old_rule = insert_rule(table, rule); if (!old_rule) { table->n_table_rules++; cls->n_rules++; } return old_rule; } /* Removes 'rule' from 'cls'. It is the caller's responsibility to free * 'rule', if this is desirable. */ void classifier_remove(struct classifier *cls, struct cls_rule *rule) { struct cls_rule *head; struct cls_table *table; table = find_table(cls, &rule->wc); head = find_equal(table, &rule->flow, rule->hmap_node.hash); if (head != rule) { list_remove(&rule->list); } else if (list_is_empty(&rule->list)) { hmap_remove(&table->rules, &rule->hmap_node); } else { struct cls_rule *next = CONTAINER_OF(rule->list.next, struct cls_rule, list); list_remove(&rule->list); hmap_replace(&table->rules, &rule->hmap_node, &next->hmap_node); } if (--table->n_table_rules == 0) { destroy_table(cls, table); } cls->n_rules--; } /* Finds and returns the highest-priority rule in 'cls' that matches 'flow'. * Returns a null pointer if no rules in 'cls' match 'flow'. If multiple rules * of equal priority match 'flow', returns one arbitrarily. */ struct cls_rule * classifier_lookup(const struct classifier *cls, const struct flow *flow) { struct cls_table *table; struct cls_rule *best; best = NULL; HMAP_FOR_EACH (table, hmap_node, &cls->tables) { struct cls_rule *rule = find_match(table, flow); if (rule && (!best || rule->priority > best->priority)) { best = rule; } } return best; } /* Finds and returns a rule in 'cls' with exactly the same priority and * matching criteria as 'target'. Returns a null pointer if 'cls' doesn't * contain an exact match. * * Priority is ignored for exact-match rules (because OpenFlow 1.0 always * treats exact-match rules as highest priority). */ struct cls_rule * classifier_find_rule_exactly(const struct classifier *cls, const struct cls_rule *target) { struct cls_rule *head, *rule; struct cls_table *table; table = find_table(cls, &target->wc); if (!table) { return NULL; } head = find_equal(table, &target->flow, flow_hash(&target->flow, 0)); if (flow_wildcards_is_exact(&target->wc)) { return head; } FOR_EACH_RULE_IN_LIST (rule, head) { if (target->priority >= rule->priority) { return target->priority == rule->priority ? rule : NULL; } } return NULL; } /* Checks if 'target' would overlap any other rule in 'cls'. Two rules are * considered to overlap if both rules have the same priority and a packet * could match both. */ bool classifier_rule_overlaps(const struct classifier *cls, const struct cls_rule *target) { struct cls_table *table; HMAP_FOR_EACH (table, hmap_node, &cls->tables) { struct flow_wildcards wc; struct cls_rule *head; flow_wildcards_combine(&wc, &target->wc, &table->wc); HMAP_FOR_EACH (head, hmap_node, &table->rules) { struct cls_rule *rule; FOR_EACH_RULE_IN_LIST (rule, head) { if (rule->priority == target->priority && flow_equal_except(&target->flow, &rule->flow, &wc)) { return true; } } } } return false; } /* Iteration. */ static bool rule_matches(const struct cls_rule *rule, const struct cls_rule *target) { return (!target || flow_equal_except(&rule->flow, &target->flow, &target->wc)); } static struct cls_rule * search_table(const struct cls_table *table, const struct cls_rule *target) { if (!target || !flow_wildcards_has_extra(&table->wc, &target->wc)) { struct cls_rule *rule; HMAP_FOR_EACH (rule, hmap_node, &table->rules) { if (rule_matches(rule, target)) { return rule; } } } return NULL; } /* Initializes 'cursor' for iterating through 'cls' rules that exactly match * 'target' or are more specific than 'target'. That is, a given 'rule' * matches 'target' if, for every field: * * - 'target' and 'rule' specify the same (non-wildcarded) value for the * field, or * * - 'target' wildcards the field, * * but not if: * * - 'target' and 'rule' specify different values for the field, or * * - 'target' specifies a value for the field but 'rule' wildcards it. * * Equivalently, the truth table for whether a field matches is: * * rule * * wildcard exact * +---------+---------+ * t wild | yes | yes | * a card | | | * r +---------+---------+ * g exact | no |if values| * e | |are equal| * t +---------+---------+ * * This is the matching rule used by OpenFlow 1.0 non-strict OFPT_FLOW_MOD * commands and by OpenFlow 1.0 aggregate and flow stats. * * Ignores target->priority. * * 'target' may be NULL to iterate over every rule in 'cls'. */ void cls_cursor_init(struct cls_cursor *cursor, const struct classifier *cls, const struct cls_rule *target) { cursor->cls = cls; cursor->target = target; } /* Returns the first matching cls_rule in 'cursor''s iteration, or a null * pointer if there are no matches. */ struct cls_rule * cls_cursor_first(struct cls_cursor *cursor) { struct cls_table *table; for (table = classifier_first_table(cursor->cls); table; table = classifier_next_table(cursor->cls, table)) { struct cls_rule *rule = search_table(table, cursor->target); if (rule) { cursor->table = table; return rule; } } return NULL; } /* Returns the next matching cls_rule in 'cursor''s iteration, or a null * pointer if there are no more matches. */ struct cls_rule * cls_cursor_next(struct cls_cursor *cursor, struct cls_rule *rule) { const struct cls_table *table; struct cls_rule *next; next = next_rule_in_list__(rule); if (next->priority < rule->priority) { return next; } /* 'next' is the head of the list, that is, the rule that is included in * the table's hmap. (This is important when the classifier contains rules * that differ only in priority.) */ rule = next; HMAP_FOR_EACH_CONTINUE (rule, hmap_node, &cursor->table->rules) { if (rule_matches(rule, cursor->target)) { return rule; } } for (table = classifier_next_table(cursor->cls, cursor->table); table; table = classifier_next_table(cursor->cls, table)) { rule = search_table(table, cursor->target); if (rule) { cursor->table = table; return rule; } } return NULL; } static struct cls_table * find_table(const struct classifier *cls, const struct flow_wildcards *wc) { struct cls_table *table; HMAP_FOR_EACH_IN_BUCKET (table, hmap_node, flow_wildcards_hash(wc), &cls->tables) { if (flow_wildcards_equal(wc, &table->wc)) { return table; } } return NULL; } static struct cls_table * insert_table(struct classifier *cls, const struct flow_wildcards *wc) { struct cls_table *table; table = xzalloc(sizeof *table); hmap_init(&table->rules); table->wc = *wc; hmap_insert(&cls->tables, &table->hmap_node, flow_wildcards_hash(wc)); return table; } static struct cls_table * classifier_first_table(const struct classifier *cls) { return cls_table_from_hmap_node(hmap_first(&cls->tables)); } static struct cls_table * classifier_next_table(const struct classifier *cls, const struct cls_table *table) { return cls_table_from_hmap_node(hmap_next(&cls->tables, &table->hmap_node)); } static void destroy_table(struct classifier *cls, struct cls_table *table) { hmap_remove(&cls->tables, &table->hmap_node); hmap_destroy(&table->rules); free(table); } static struct cls_rule * find_match(const struct cls_table *table, const struct flow *flow) { struct cls_rule *rule; struct flow f; f = *flow; zero_wildcards(&f, &table->wc); HMAP_FOR_EACH_WITH_HASH (rule, hmap_node, flow_hash(&f, 0), &table->rules) { if (flow_equal(&f, &rule->flow)) { return rule; } } return NULL; } static struct cls_rule * find_equal(struct cls_table *table, const struct flow *flow, uint32_t hash) { struct cls_rule *head; HMAP_FOR_EACH_WITH_HASH (head, hmap_node, hash, &table->rules) { if (flow_equal(&head->flow, flow)) { return head; } } return NULL; } static struct cls_rule * insert_rule(struct cls_table *table, struct cls_rule *new) { struct cls_rule *head; new->hmap_node.hash = flow_hash(&new->flow, 0); head = find_equal(table, &new->flow, new->hmap_node.hash); if (!head) { hmap_insert(&table->rules, &new->hmap_node, new->hmap_node.hash); list_init(&new->list); return NULL; } else { /* Scan the list for the insertion point that will keep the list in * order of decreasing priority. */ struct cls_rule *rule; FOR_EACH_RULE_IN_LIST (rule, head) { if (new->priority >= rule->priority) { if (rule == head) { /* 'new' is the new highest-priority flow in the list. */ hmap_replace(&table->rules, &rule->hmap_node, &new->hmap_node); } if (new->priority == rule->priority) { list_replace(&new->list, &rule->list); return rule; } else { list_insert(&rule->list, &new->list); return NULL; } } } /* Insert 'new' at the end of the list. */ list_push_back(&head->list, &new->list); return NULL; } } static struct cls_rule * next_rule_in_list__(struct cls_rule *rule) { struct cls_rule *next = OBJECT_CONTAINING(rule->list.next, next, list); return next; } static struct cls_rule * next_rule_in_list(struct cls_rule *rule) { struct cls_rule *next = next_rule_in_list__(rule); return next->priority < rule->priority ? next : NULL; } static bool ipv6_equal_except(const struct in6_addr *a, const struct in6_addr *b, const struct in6_addr *mask) { int i; #ifdef s6_addr32 for (i=0; i<4; i++) { if ((a->s6_addr32[i] ^ b->s6_addr32[i]) & mask->s6_addr32[i]) { return false; } } #else for (i=0; i<16; i++) { if ((a->s6_addr[i] ^ b->s6_addr[i]) & mask->s6_addr[i]) { return false; } } #endif return true; } static bool flow_equal_except(const struct flow *a, const struct flow *b, const struct flow_wildcards *wildcards) { const flow_wildcards_t wc = wildcards->wildcards; int i; BUILD_ASSERT_DECL(FLOW_SIG_SIZE == 100 + FLOW_N_REGS * 4); for (i = 0; i < FLOW_N_REGS; i++) { if ((a->regs[i] ^ b->regs[i]) & wildcards->reg_masks[i]) { return false; } } return (!((a->tun_id ^ b->tun_id) & wildcards->tun_id_mask) && !((a->nw_src ^ b->nw_src) & wildcards->nw_src_mask) && !((a->nw_dst ^ b->nw_dst) & wildcards->nw_dst_mask) && (wc & FWW_IN_PORT || a->in_port == b->in_port) && !((a->vlan_tci ^ b->vlan_tci) & wildcards->vlan_tci_mask) && (wc & FWW_DL_TYPE || a->dl_type == b->dl_type) && (wc & FWW_TP_SRC || a->tp_src == b->tp_src) && (wc & FWW_TP_DST || a->tp_dst == b->tp_dst) && (wc & FWW_DL_SRC || eth_addr_equals(a->dl_src, b->dl_src)) && (wc & FWW_DL_DST || (!((a->dl_dst[0] ^ b->dl_dst[0]) & 0xfe) && a->dl_dst[1] == b->dl_dst[1] && a->dl_dst[2] == b->dl_dst[2] && a->dl_dst[3] == b->dl_dst[3] && a->dl_dst[4] == b->dl_dst[4] && a->dl_dst[5] == b->dl_dst[5])) && (wc & FWW_ETH_MCAST || !((a->dl_dst[0] ^ b->dl_dst[0]) & 0x01)) && (wc & FWW_NW_PROTO || a->nw_proto == b->nw_proto) && (wc & FWW_NW_TOS || a->nw_tos == b->nw_tos) && (wc & FWW_ARP_SHA || eth_addr_equals(a->arp_sha, b->arp_sha)) && (wc & FWW_ARP_THA || eth_addr_equals(a->arp_tha, b->arp_tha)) && ipv6_equal_except(&a->ipv6_src, &b->ipv6_src, &wildcards->ipv6_src_mask) && ipv6_equal_except(&a->ipv6_dst, &b->ipv6_dst, &wildcards->ipv6_dst_mask) && (wc & FWW_ND_TARGET || ipv6_addr_equals(&a->nd_target, &b->nd_target))); } static void zero_wildcards(struct flow *flow, const struct flow_wildcards *wildcards) { const flow_wildcards_t wc = wildcards->wildcards; int i; BUILD_ASSERT_DECL(FLOW_SIG_SIZE == 100 + 4 * FLOW_N_REGS); for (i = 0; i < FLOW_N_REGS; i++) { flow->regs[i] &= wildcards->reg_masks[i]; } flow->tun_id &= wildcards->tun_id_mask; flow->nw_src &= wildcards->nw_src_mask; flow->nw_dst &= wildcards->nw_dst_mask; if (wc & FWW_IN_PORT) { flow->in_port = 0; } flow->vlan_tci &= wildcards->vlan_tci_mask; if (wc & FWW_DL_TYPE) { flow->dl_type = 0; } if (wc & FWW_TP_SRC) { flow->tp_src = 0; } if (wc & FWW_TP_DST) { flow->tp_dst = 0; } if (wc & FWW_DL_SRC) { memset(flow->dl_src, 0, sizeof flow->dl_src); } if (wc & FWW_DL_DST) { flow->dl_dst[0] &= 0x01; memset(&flow->dl_dst[1], 0, 5); } if (wc & FWW_ETH_MCAST) { flow->dl_dst[0] &= 0xfe; } if (wc & FWW_NW_PROTO) { flow->nw_proto = 0; } if (wc & FWW_NW_TOS) { flow->nw_tos = 0; } if (wc & FWW_ARP_SHA) { memset(flow->arp_sha, 0, sizeof flow->arp_sha); } if (wc & FWW_ARP_THA) { memset(flow->arp_tha, 0, sizeof flow->arp_tha); } flow->ipv6_src = ipv6_addr_bitand(&flow->ipv6_src, &wildcards->ipv6_src_mask); flow->ipv6_dst = ipv6_addr_bitand(&flow->ipv6_dst, &wildcards->ipv6_dst_mask); if (wc & FWW_ND_TARGET) { memset(&flow->nd_target, 0, sizeof flow->nd_target); } }