/* * Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014 Nicira, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "dpif.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include "classifier.h" #include "csum.h" #include "dpif.h" #include "dpif-provider.h" #include "dummy.h" #include "dynamic-string.h" #include "flow.h" #include "hmap.h" #include "latch.h" #include "list.h" #include "meta-flow.h" #include "netdev.h" #include "netdev-dpdk.h" #include "netdev-vport.h" #include "netlink.h" #include "odp-execute.h" #include "odp-util.h" #include "ofp-print.h" #include "ofpbuf.h" #include "ovs-rcu.h" #include "packets.h" #include "poll-loop.h" #include "random.h" #include "seq.h" #include "shash.h" #include "sset.h" #include "timeval.h" #include "unixctl.h" #include "util.h" #include "vlog.h" VLOG_DEFINE_THIS_MODULE(dpif_netdev); /* By default, choose a priority in the middle. */ #define NETDEV_RULE_PRIORITY 0x8000 #define NR_THREADS 1 /* Use per thread recirc_depth to prevent recirculation loop. */ #define MAX_RECIRC_DEPTH 5 DEFINE_STATIC_PER_THREAD_DATA(uint32_t, recirc_depth, 0) /* Configuration parameters. */ enum { MAX_FLOWS = 65536 }; /* Maximum number of flows in flow table. */ /* Queues. */ enum { MAX_QUEUE_LEN = 128 }; /* Maximum number of packets per queue. */ enum { QUEUE_MASK = MAX_QUEUE_LEN - 1 }; BUILD_ASSERT_DECL(IS_POW2(MAX_QUEUE_LEN)); /* Protects against changes to 'dp_netdevs'. */ static struct ovs_mutex dp_netdev_mutex = OVS_MUTEX_INITIALIZER; /* Contains all 'struct dp_netdev's. */ static struct shash dp_netdevs OVS_GUARDED_BY(dp_netdev_mutex) = SHASH_INITIALIZER(&dp_netdevs); struct dp_netdev_upcall { struct dpif_upcall upcall; /* Queued upcall information. */ struct ofpbuf buf; /* ofpbuf instance for upcall.packet. */ }; /* A queue passing packets from a struct dp_netdev to its clients (handlers). * * * Thread-safety * ============= * * Any access at all requires the owning 'dp_netdev''s queue_rwlock and * its own mutex. */ struct dp_netdev_queue { struct ovs_mutex mutex; struct seq *seq; /* Incremented whenever a packet is queued. */ struct dp_netdev_upcall upcalls[MAX_QUEUE_LEN] OVS_GUARDED; unsigned int head OVS_GUARDED; unsigned int tail OVS_GUARDED; }; /* Datapath based on the network device interface from netdev.h. * * * Thread-safety * ============= * * Some members, marked 'const', are immutable. Accessing other members * requires synchronization, as noted in more detail below. * * Acquisition order is, from outermost to innermost: * * dp_netdev_mutex (global) * port_rwlock * flow_mutex * cls.rwlock * queue_rwlock */ struct dp_netdev { const struct dpif_class *const class; const char *const name; struct ovs_refcount ref_cnt; atomic_flag destroyed; /* Flows. * * Readers of 'cls' and 'flow_table' must take a 'cls->rwlock' read lock. * * Writers of 'cls' and 'flow_table' must take the 'flow_mutex' and then * the 'cls->rwlock' write lock. (The outer 'flow_mutex' allows writers to * atomically perform multiple operations on 'cls' and 'flow_table'.) */ struct ovs_mutex flow_mutex; struct classifier cls; /* Classifier. Protected by cls.rwlock. */ struct hmap flow_table OVS_GUARDED; /* Flow table. */ /* Queues. * * 'queue_rwlock' protects the modification of 'handler_queues' and * 'n_handlers'. The queue elements are protected by its * 'handler_queues''s mutex. */ struct fat_rwlock queue_rwlock; struct dp_netdev_queue *handler_queues; uint32_t n_handlers; /* Statistics. * * ovsthread_stats is internally synchronized. */ struct ovsthread_stats stats; /* Contains 'struct dp_netdev_stats *'. */ /* Ports. * * Any lookup into 'ports' or any access to the dp_netdev_ports found * through 'ports' requires taking 'port_rwlock'. */ struct ovs_rwlock port_rwlock; struct hmap ports OVS_GUARDED; struct seq *port_seq; /* Incremented whenever a port changes. */ /* Forwarding threads. */ struct latch exit_latch; struct pmd_thread *pmd_threads; size_t n_pmd_threads; int pmd_count; }; static struct dp_netdev_port *dp_netdev_lookup_port(const struct dp_netdev *dp, odp_port_t) OVS_REQ_RDLOCK(dp->port_rwlock); enum dp_stat_type { DP_STAT_HIT, /* Packets that matched in the flow table. */ DP_STAT_MISS, /* Packets that did not match. */ DP_STAT_LOST, /* Packets not passed up to the client. */ DP_N_STATS }; /* Contained by struct dp_netdev's 'stats' member. */ struct dp_netdev_stats { struct ovs_mutex mutex; /* Protects 'n'. */ /* Indexed by DP_STAT_*, protected by 'mutex'. */ unsigned long long int n[DP_N_STATS] OVS_GUARDED; }; /* A port in a netdev-based datapath. */ struct dp_netdev_port { struct hmap_node node; /* Node in dp_netdev's 'ports'. */ odp_port_t port_no; struct netdev *netdev; struct netdev_saved_flags *sf; struct netdev_rxq **rxq; struct ovs_refcount ref_cnt; char *type; /* Port type as requested by user. */ }; /* A flow in dp_netdev's 'flow_table'. * * * Thread-safety * ============= * * Except near the beginning or ending of its lifespan, rule 'rule' belongs to * its dp_netdev's classifier. The text below calls this classifier 'cls'. * * Motivation * ---------- * * The thread safety rules described here for "struct dp_netdev_flow" are * motivated by two goals: * * - Prevent threads that read members of "struct dp_netdev_flow" from * reading bad data due to changes by some thread concurrently modifying * those members. * * - Prevent two threads making changes to members of a given "struct * dp_netdev_flow" from interfering with each other. * * * Rules * ----- * * A flow 'flow' may be accessed without a risk of being freed by code that * holds a read-lock or write-lock on 'cls->rwlock' or that owns a reference to * 'flow->ref_cnt' (or both). Code that needs to hold onto a flow for a while * should take 'cls->rwlock', find the flow it needs, increment 'flow->ref_cnt' * with dpif_netdev_flow_ref(), and drop 'cls->rwlock'. * * 'flow->ref_cnt' protects 'flow' from being freed. It doesn't protect the * flow from being deleted from 'cls' (that's 'cls->rwlock') and it doesn't * protect members of 'flow' from modification (that's 'flow->mutex'). * * 'flow->mutex' protects the members of 'flow' from modification. It doesn't * protect the flow from being deleted from 'cls' (that's 'cls->rwlock') and it * doesn't prevent the flow from being freed (that's 'flow->ref_cnt'). * * Some members, marked 'const', are immutable. Accessing other members * requires synchronization, as noted in more detail below. */ struct dp_netdev_flow { /* Packet classification. */ const struct cls_rule cr; /* In owning dp_netdev's 'cls'. */ /* Hash table index by unmasked flow. */ const struct hmap_node node; /* In owning dp_netdev's 'flow_table'. */ const struct flow flow; /* The flow that created this entry. */ /* Protects members marked OVS_GUARDED. * * Acquire after datapath's flow_mutex. */ struct ovs_mutex mutex OVS_ACQ_AFTER(dp_netdev_mutex); /* Statistics. * * Reading or writing these members requires 'mutex'. */ struct ovsthread_stats stats; /* Contains "struct dp_netdev_flow_stats". */ /* Actions. * * Reading 'actions' requires 'mutex'. * Writing 'actions' requires 'mutex' and (to allow for transactions) the * datapath's flow_mutex. */ OVSRCU_TYPE(struct dp_netdev_actions *) actions; }; static void dp_netdev_flow_free(struct dp_netdev_flow *); /* Contained by struct dp_netdev_flow's 'stats' member. */ struct dp_netdev_flow_stats { struct ovs_mutex mutex; /* Guards all the other members. */ long long int used OVS_GUARDED; /* Last used time, in monotonic msecs. */ long long int packet_count OVS_GUARDED; /* Number of packets matched. */ long long int byte_count OVS_GUARDED; /* Number of bytes matched. */ uint16_t tcp_flags OVS_GUARDED; /* Bitwise-OR of seen tcp_flags values. */ }; /* A set of datapath actions within a "struct dp_netdev_flow". * * * Thread-safety * ============= * * A struct dp_netdev_actions 'actions' may be accessed without a risk of being * freed by code that holds a read-lock or write-lock on 'flow->mutex' (where * 'flow' is the dp_netdev_flow for which 'flow->actions == actions') or that * owns a reference to 'actions->ref_cnt' (or both). */ struct dp_netdev_actions { /* These members are immutable: they do not change during the struct's * lifetime. */ struct nlattr *actions; /* Sequence of OVS_ACTION_ATTR_* attributes. */ unsigned int size; /* Size of 'actions', in bytes. */ }; struct dp_netdev_actions *dp_netdev_actions_create(const struct nlattr *, size_t); struct dp_netdev_actions *dp_netdev_flow_get_actions( const struct dp_netdev_flow *); static void dp_netdev_actions_free(struct dp_netdev_actions *); /* PMD: Poll modes drivers. PMD accesses devices via polling to eliminate * the performance overhead of interrupt processing. Therefore netdev can * not implement rx-wait for these devices. dpif-netdev needs to poll * these device to check for recv buffer. pmd-thread does polling for * devices assigned to itself thread. * * DPDK used PMD for accessing NIC. * * A thread that receives packets from PMD ports, looks them up in the flow * table, and executes the actions it finds. **/ struct pmd_thread { struct dp_netdev *dp; pthread_t thread; int id; atomic_uint change_seq; }; /* Interface to netdev-based datapath. */ struct dpif_netdev { struct dpif dpif; struct dp_netdev *dp; uint64_t last_port_seq; }; static int get_port_by_number(struct dp_netdev *dp, odp_port_t port_no, struct dp_netdev_port **portp) OVS_REQ_RDLOCK(dp->port_rwlock); static int get_port_by_name(struct dp_netdev *dp, const char *devname, struct dp_netdev_port **portp) OVS_REQ_RDLOCK(dp->port_rwlock); static void dp_netdev_free(struct dp_netdev *) OVS_REQUIRES(dp_netdev_mutex); static void dp_netdev_flow_flush(struct dp_netdev *); static int do_add_port(struct dp_netdev *dp, const char *devname, const char *type, odp_port_t port_no) OVS_REQ_WRLOCK(dp->port_rwlock); static int do_del_port(struct dp_netdev *dp, odp_port_t port_no) OVS_REQ_WRLOCK(dp->port_rwlock); static void dp_netdev_destroy_all_queues(struct dp_netdev *dp) OVS_REQ_WRLOCK(dp->queue_rwlock); static int dpif_netdev_open(const struct dpif_class *, const char *name, bool create, struct dpif **); static int dp_netdev_output_userspace(struct dp_netdev *dp, struct ofpbuf *, int queue_no, int type, const struct miniflow *, const struct nlattr *userdata); static void dp_netdev_execute_actions(struct dp_netdev *dp, const struct miniflow *, struct ofpbuf *, bool may_steal, struct pkt_metadata *, const struct nlattr *actions, size_t actions_len); static void dp_netdev_port_input(struct dp_netdev *dp, struct ofpbuf *packet, struct pkt_metadata *); static void dp_netdev_set_pmd_threads(struct dp_netdev *, int n); static struct dpif_netdev * dpif_netdev_cast(const struct dpif *dpif) { ovs_assert(dpif->dpif_class->open == dpif_netdev_open); return CONTAINER_OF(dpif, struct dpif_netdev, dpif); } static struct dp_netdev * get_dp_netdev(const struct dpif *dpif) { return dpif_netdev_cast(dpif)->dp; } static int dpif_netdev_enumerate(struct sset *all_dps) { struct shash_node *node; ovs_mutex_lock(&dp_netdev_mutex); SHASH_FOR_EACH(node, &dp_netdevs) { sset_add(all_dps, node->name); } ovs_mutex_unlock(&dp_netdev_mutex); return 0; } static bool dpif_netdev_class_is_dummy(const struct dpif_class *class) { return class != &dpif_netdev_class; } static bool dpif_netdev_class_is_planetlab(const struct dpif_class *class) { return class == &dpif_planetlab_class; } static const char * dpif_netdev_port_open_type(const struct dpif_class *class, const char *type) { return strcmp(type, "internal") ? type : dpif_netdev_class_is_planetlab(class) ? "pltap" : dpif_netdev_class_is_dummy(class) ? "dummy" : "tap"; } static struct dpif * create_dpif_netdev(struct dp_netdev *dp) { uint16_t netflow_id = hash_string(dp->name, 0); struct dpif_netdev *dpif; ovs_refcount_ref(&dp->ref_cnt); dpif = xmalloc(sizeof *dpif); dpif_init(&dpif->dpif, dp->class, dp->name, netflow_id >> 8, netflow_id); dpif->dp = dp; dpif->last_port_seq = seq_read(dp->port_seq); return &dpif->dpif; } /* Choose an unused, non-zero port number and return it on success. * Return ODPP_NONE on failure. */ static odp_port_t choose_port(struct dp_netdev *dp, const char *name) OVS_REQ_RDLOCK(dp->port_rwlock) { uint32_t port_no; if (dp->class != &dpif_netdev_class && dp->class != &dpif_planetlab_class) { const char *p; int start_no = 0; /* If the port name begins with "br", start the number search at * 100 to make writing tests easier. */ if (!strncmp(name, "br", 2)) { start_no = 100; } /* If the port name contains a number, try to assign that port number. * This can make writing unit tests easier because port numbers are * predictable. */ for (p = name; *p != '\0'; p++) { if (isdigit((unsigned char) *p)) { port_no = start_no + strtol(p, NULL, 10); if (port_no > 0 && port_no != odp_to_u32(ODPP_NONE) && !dp_netdev_lookup_port(dp, u32_to_odp(port_no))) { return u32_to_odp(port_no); } break; } } } for (port_no = 1; port_no <= UINT16_MAX; port_no++) { if (!dp_netdev_lookup_port(dp, u32_to_odp(port_no))) { return u32_to_odp(port_no); } } return ODPP_NONE; } static int create_dp_netdev(const char *name, const struct dpif_class *class, struct dp_netdev **dpp) OVS_REQUIRES(dp_netdev_mutex) { struct dp_netdev *dp; int error; dp = xzalloc(sizeof *dp); shash_add(&dp_netdevs, name, dp); *CONST_CAST(const struct dpif_class **, &dp->class) = class; *CONST_CAST(const char **, &dp->name) = xstrdup(name); ovs_refcount_init(&dp->ref_cnt); atomic_flag_clear(&dp->destroyed); ovs_mutex_init(&dp->flow_mutex); classifier_init(&dp->cls, NULL); hmap_init(&dp->flow_table); fat_rwlock_init(&dp->queue_rwlock); ovsthread_stats_init(&dp->stats); ovs_rwlock_init(&dp->port_rwlock); hmap_init(&dp->ports); dp->port_seq = seq_create(); latch_init(&dp->exit_latch); ovs_rwlock_wrlock(&dp->port_rwlock); error = do_add_port(dp, name, "internal", ODPP_LOCAL); ovs_rwlock_unlock(&dp->port_rwlock); if (error) { dp_netdev_free(dp); return error; } *dpp = dp; return 0; } static int dpif_netdev_open(const struct dpif_class *class, const char *name, bool create, struct dpif **dpifp) { struct dp_netdev *dp; int error; ovs_mutex_lock(&dp_netdev_mutex); dp = shash_find_data(&dp_netdevs, name); if (!dp) { error = create ? create_dp_netdev(name, class, &dp) : ENODEV; } else { error = (dp->class != class ? EINVAL : create ? EEXIST : 0); } if (!error) { *dpifp = create_dpif_netdev(dp); } ovs_mutex_unlock(&dp_netdev_mutex); return error; } static void dp_netdev_purge_queues(struct dp_netdev *dp) OVS_REQ_WRLOCK(dp->queue_rwlock) { int i; for (i = 0; i < dp->n_handlers; i++) { struct dp_netdev_queue *q = &dp->handler_queues[i]; ovs_mutex_lock(&q->mutex); while (q->tail != q->head) { struct dp_netdev_upcall *u = &q->upcalls[q->tail++ & QUEUE_MASK]; ofpbuf_uninit(&u->upcall.packet); ofpbuf_uninit(&u->buf); } ovs_mutex_unlock(&q->mutex); } } /* Requires dp_netdev_mutex so that we can't get a new reference to 'dp' * through the 'dp_netdevs' shash while freeing 'dp'. */ static void dp_netdev_free(struct dp_netdev *dp) OVS_REQUIRES(dp_netdev_mutex) { struct dp_netdev_port *port, *next; struct dp_netdev_stats *bucket; int i; shash_find_and_delete(&dp_netdevs, dp->name); dp_netdev_set_pmd_threads(dp, 0); free(dp->pmd_threads); dp_netdev_flow_flush(dp); ovs_rwlock_wrlock(&dp->port_rwlock); HMAP_FOR_EACH_SAFE (port, next, node, &dp->ports) { do_del_port(dp, port->port_no); } ovs_rwlock_unlock(&dp->port_rwlock); OVSTHREAD_STATS_FOR_EACH_BUCKET (bucket, i, &dp->stats) { ovs_mutex_destroy(&bucket->mutex); free_cacheline(bucket); } ovsthread_stats_destroy(&dp->stats); fat_rwlock_wrlock(&dp->queue_rwlock); dp_netdev_destroy_all_queues(dp); fat_rwlock_unlock(&dp->queue_rwlock); fat_rwlock_destroy(&dp->queue_rwlock); classifier_destroy(&dp->cls); hmap_destroy(&dp->flow_table); ovs_mutex_destroy(&dp->flow_mutex); seq_destroy(dp->port_seq); hmap_destroy(&dp->ports); latch_destroy(&dp->exit_latch); free(CONST_CAST(char *, dp->name)); free(dp); } static void dp_netdev_unref(struct dp_netdev *dp) { if (dp) { /* Take dp_netdev_mutex so that, if dp->ref_cnt falls to zero, we can't * get a new reference to 'dp' through the 'dp_netdevs' shash. */ ovs_mutex_lock(&dp_netdev_mutex); if (ovs_refcount_unref(&dp->ref_cnt) == 1) { dp_netdev_free(dp); } ovs_mutex_unlock(&dp_netdev_mutex); } } static void dpif_netdev_close(struct dpif *dpif) { struct dp_netdev *dp = get_dp_netdev(dpif); dp_netdev_unref(dp); free(dpif); } static int dpif_netdev_destroy(struct dpif *dpif) { struct dp_netdev *dp = get_dp_netdev(dpif); if (!atomic_flag_test_and_set(&dp->destroyed)) { if (ovs_refcount_unref(&dp->ref_cnt) == 1) { /* Can't happen: 'dpif' still owns a reference to 'dp'. */ OVS_NOT_REACHED(); } } return 0; } static int dpif_netdev_get_stats(const struct dpif *dpif, struct dpif_dp_stats *stats) { struct dp_netdev *dp = get_dp_netdev(dpif); struct dp_netdev_stats *bucket; size_t i; fat_rwlock_rdlock(&dp->cls.rwlock); stats->n_flows = hmap_count(&dp->flow_table); fat_rwlock_unlock(&dp->cls.rwlock); stats->n_hit = stats->n_missed = stats->n_lost = 0; OVSTHREAD_STATS_FOR_EACH_BUCKET (bucket, i, &dp->stats) { ovs_mutex_lock(&bucket->mutex); stats->n_hit += bucket->n[DP_STAT_HIT]; stats->n_missed += bucket->n[DP_STAT_MISS]; stats->n_lost += bucket->n[DP_STAT_LOST]; ovs_mutex_unlock(&bucket->mutex); } stats->n_masks = UINT32_MAX; stats->n_mask_hit = UINT64_MAX; return 0; } static void dp_netdev_reload_pmd_threads(struct dp_netdev *dp) { int i; for (i = 0; i < dp->n_pmd_threads; i++) { struct pmd_thread *f = &dp->pmd_threads[i]; int id; atomic_add(&f->change_seq, 1, &id); } } static int do_add_port(struct dp_netdev *dp, const char *devname, const char *type, odp_port_t port_no) OVS_REQ_WRLOCK(dp->port_rwlock) { struct netdev_saved_flags *sf; struct dp_netdev_port *port; struct netdev *netdev; enum netdev_flags flags; const char *open_type; int error; int i; /* XXX reject devices already in some dp_netdev. */ /* Open and validate network device. */ open_type = dpif_netdev_port_open_type(dp->class, type); error = netdev_open(devname, open_type, &netdev); if (error) { return error; } /* XXX reject non-Ethernet devices */ netdev_get_flags(netdev, &flags); if (flags & NETDEV_LOOPBACK) { VLOG_ERR("%s: cannot add a loopback device", devname); netdev_close(netdev); return EINVAL; } port = xzalloc(sizeof *port); port->port_no = port_no; port->netdev = netdev; port->rxq = xmalloc(sizeof *port->rxq * netdev_n_rxq(netdev)); port->type = xstrdup(type); for (i = 0; i < netdev_n_rxq(netdev); i++) { error = netdev_rxq_open(netdev, &port->rxq[i], i); if (error && !(error == EOPNOTSUPP && dpif_netdev_class_is_dummy(dp->class))) { VLOG_ERR("%s: cannot receive packets on this network device (%s)", devname, ovs_strerror(errno)); netdev_close(netdev); return error; } } error = netdev_turn_flags_on(netdev, NETDEV_PROMISC, &sf); if (error) { for (i = 0; i < netdev_n_rxq(netdev); i++) { netdev_rxq_close(port->rxq[i]); } netdev_close(netdev); free(port->rxq); free(port); return error; } port->sf = sf; if (netdev_is_pmd(netdev)) { dp->pmd_count++; dp_netdev_set_pmd_threads(dp, NR_THREADS); dp_netdev_reload_pmd_threads(dp); } ovs_refcount_init(&port->ref_cnt); hmap_insert(&dp->ports, &port->node, hash_int(odp_to_u32(port_no), 0)); seq_change(dp->port_seq); return 0; } static int dpif_netdev_port_add(struct dpif *dpif, struct netdev *netdev, odp_port_t *port_nop) { struct dp_netdev *dp = get_dp_netdev(dpif); char namebuf[NETDEV_VPORT_NAME_BUFSIZE]; const char *dpif_port; odp_port_t port_no; int error; ovs_rwlock_wrlock(&dp->port_rwlock); dpif_port = netdev_vport_get_dpif_port(netdev, namebuf, sizeof namebuf); if (*port_nop != ODPP_NONE) { port_no = *port_nop; error = dp_netdev_lookup_port(dp, *port_nop) ? EBUSY : 0; } else { port_no = choose_port(dp, dpif_port); error = port_no == ODPP_NONE ? EFBIG : 0; } if (!error) { *port_nop = port_no; error = do_add_port(dp, dpif_port, netdev_get_type(netdev), port_no); } ovs_rwlock_unlock(&dp->port_rwlock); return error; } static int dpif_netdev_port_del(struct dpif *dpif, odp_port_t port_no) { struct dp_netdev *dp = get_dp_netdev(dpif); int error; ovs_rwlock_wrlock(&dp->port_rwlock); error = port_no == ODPP_LOCAL ? EINVAL : do_del_port(dp, port_no); ovs_rwlock_unlock(&dp->port_rwlock); return error; } static bool is_valid_port_number(odp_port_t port_no) { return port_no != ODPP_NONE; } static struct dp_netdev_port * dp_netdev_lookup_port(const struct dp_netdev *dp, odp_port_t port_no) OVS_REQ_RDLOCK(dp->port_rwlock) { struct dp_netdev_port *port; HMAP_FOR_EACH_IN_BUCKET (port, node, hash_int(odp_to_u32(port_no), 0), &dp->ports) { if (port->port_no == port_no) { return port; } } return NULL; } static int get_port_by_number(struct dp_netdev *dp, odp_port_t port_no, struct dp_netdev_port **portp) OVS_REQ_RDLOCK(dp->port_rwlock) { if (!is_valid_port_number(port_no)) { *portp = NULL; return EINVAL; } else { *portp = dp_netdev_lookup_port(dp, port_no); return *portp ? 0 : ENOENT; } } static void port_ref(struct dp_netdev_port *port) { if (port) { ovs_refcount_ref(&port->ref_cnt); } } static void port_unref(struct dp_netdev_port *port) { if (port && ovs_refcount_unref(&port->ref_cnt) == 1) { int i; netdev_close(port->netdev); netdev_restore_flags(port->sf); for (i = 0; i < netdev_n_rxq(port->netdev); i++) { netdev_rxq_close(port->rxq[i]); } free(port->type); free(port); } } static int get_port_by_name(struct dp_netdev *dp, const char *devname, struct dp_netdev_port **portp) OVS_REQ_RDLOCK(dp->port_rwlock) { struct dp_netdev_port *port; HMAP_FOR_EACH (port, node, &dp->ports) { if (!strcmp(netdev_get_name(port->netdev), devname)) { *portp = port; return 0; } } return ENOENT; } static int do_del_port(struct dp_netdev *dp, odp_port_t port_no) OVS_REQ_WRLOCK(dp->port_rwlock) { struct dp_netdev_port *port; int error; error = get_port_by_number(dp, port_no, &port); if (error) { return error; } hmap_remove(&dp->ports, &port->node); seq_change(dp->port_seq); if (netdev_is_pmd(port->netdev)) { dp_netdev_reload_pmd_threads(dp); } port_unref(port); return 0; } static void answer_port_query(const struct dp_netdev_port *port, struct dpif_port *dpif_port) { dpif_port->name = xstrdup(netdev_get_name(port->netdev)); dpif_port->type = xstrdup(port->type); dpif_port->port_no = port->port_no; } static int dpif_netdev_port_query_by_number(const struct dpif *dpif, odp_port_t port_no, struct dpif_port *dpif_port) { struct dp_netdev *dp = get_dp_netdev(dpif); struct dp_netdev_port *port; int error; ovs_rwlock_rdlock(&dp->port_rwlock); error = get_port_by_number(dp, port_no, &port); if (!error && dpif_port) { answer_port_query(port, dpif_port); } ovs_rwlock_unlock(&dp->port_rwlock); return error; } static int dpif_netdev_port_query_by_name(const struct dpif *dpif, const char *devname, struct dpif_port *dpif_port) { struct dp_netdev *dp = get_dp_netdev(dpif); struct dp_netdev_port *port; int error; ovs_rwlock_rdlock(&dp->port_rwlock); error = get_port_by_name(dp, devname, &port); if (!error && dpif_port) { answer_port_query(port, dpif_port); } ovs_rwlock_unlock(&dp->port_rwlock); return error; } static void dp_netdev_flow_free(struct dp_netdev_flow *flow) { struct dp_netdev_flow_stats *bucket; size_t i; OVSTHREAD_STATS_FOR_EACH_BUCKET (bucket, i, &flow->stats) { ovs_mutex_destroy(&bucket->mutex); free_cacheline(bucket); } ovsthread_stats_destroy(&flow->stats); cls_rule_destroy(CONST_CAST(struct cls_rule *, &flow->cr)); dp_netdev_actions_free(dp_netdev_flow_get_actions(flow)); ovs_mutex_destroy(&flow->mutex); free(flow); } static void dp_netdev_remove_flow(struct dp_netdev *dp, struct dp_netdev_flow *flow) OVS_REQ_WRLOCK(dp->cls.rwlock) OVS_REQUIRES(dp->flow_mutex) { struct cls_rule *cr = CONST_CAST(struct cls_rule *, &flow->cr); struct hmap_node *node = CONST_CAST(struct hmap_node *, &flow->node); classifier_remove(&dp->cls, cr); hmap_remove(&dp->flow_table, node); ovsrcu_postpone(dp_netdev_flow_free, flow); } static void dp_netdev_flow_flush(struct dp_netdev *dp) { struct dp_netdev_flow *netdev_flow, *next; ovs_mutex_lock(&dp->flow_mutex); fat_rwlock_wrlock(&dp->cls.rwlock); HMAP_FOR_EACH_SAFE (netdev_flow, next, node, &dp->flow_table) { dp_netdev_remove_flow(dp, netdev_flow); } fat_rwlock_unlock(&dp->cls.rwlock); ovs_mutex_unlock(&dp->flow_mutex); } static int dpif_netdev_flow_flush(struct dpif *dpif) { struct dp_netdev *dp = get_dp_netdev(dpif); dp_netdev_flow_flush(dp); return 0; } struct dp_netdev_port_state { uint32_t bucket; uint32_t offset; char *name; }; static int dpif_netdev_port_dump_start(const struct dpif *dpif OVS_UNUSED, void **statep) { *statep = xzalloc(sizeof(struct dp_netdev_port_state)); return 0; } static int dpif_netdev_port_dump_next(const struct dpif *dpif, void *state_, struct dpif_port *dpif_port) { struct dp_netdev_port_state *state = state_; struct dp_netdev *dp = get_dp_netdev(dpif); struct hmap_node *node; int retval; ovs_rwlock_rdlock(&dp->port_rwlock); node = hmap_at_position(&dp->ports, &state->bucket, &state->offset); if (node) { struct dp_netdev_port *port; port = CONTAINER_OF(node, struct dp_netdev_port, node); free(state->name); state->name = xstrdup(netdev_get_name(port->netdev)); dpif_port->name = state->name; dpif_port->type = port->type; dpif_port->port_no = port->port_no; retval = 0; } else { retval = EOF; } ovs_rwlock_unlock(&dp->port_rwlock); return retval; } static int dpif_netdev_port_dump_done(const struct dpif *dpif OVS_UNUSED, void *state_) { struct dp_netdev_port_state *state = state_; free(state->name); free(state); return 0; } static int dpif_netdev_port_poll(const struct dpif *dpif_, char **devnamep OVS_UNUSED) { struct dpif_netdev *dpif = dpif_netdev_cast(dpif_); uint64_t new_port_seq; int error; new_port_seq = seq_read(dpif->dp->port_seq); if (dpif->last_port_seq != new_port_seq) { dpif->last_port_seq = new_port_seq; error = ENOBUFS; } else { error = EAGAIN; } return error; } static void dpif_netdev_port_poll_wait(const struct dpif *dpif_) { struct dpif_netdev *dpif = dpif_netdev_cast(dpif_); seq_wait(dpif->dp->port_seq, dpif->last_port_seq); } static struct dp_netdev_flow * dp_netdev_flow_cast(const struct cls_rule *cr) { return cr ? CONTAINER_OF(cr, struct dp_netdev_flow, cr) : NULL; } static struct dp_netdev_flow * dp_netdev_lookup_flow(const struct dp_netdev *dp, const struct miniflow *key) OVS_EXCLUDED(dp->cls.rwlock) { struct dp_netdev_flow *netdev_flow; struct cls_rule *rule; fat_rwlock_rdlock(&dp->cls.rwlock); rule = classifier_lookup_miniflow_first(&dp->cls, key); netdev_flow = dp_netdev_flow_cast(rule); fat_rwlock_unlock(&dp->cls.rwlock); return netdev_flow; } static struct dp_netdev_flow * dp_netdev_find_flow(const struct dp_netdev *dp, const struct flow *flow) OVS_REQ_RDLOCK(dp->cls.rwlock) { struct dp_netdev_flow *netdev_flow; HMAP_FOR_EACH_WITH_HASH (netdev_flow, node, flow_hash(flow, 0), &dp->flow_table) { if (flow_equal(&netdev_flow->flow, flow)) { return netdev_flow; } } return NULL; } static void get_dpif_flow_stats(struct dp_netdev_flow *netdev_flow, struct dpif_flow_stats *stats) { struct dp_netdev_flow_stats *bucket; size_t i; memset(stats, 0, sizeof *stats); OVSTHREAD_STATS_FOR_EACH_BUCKET (bucket, i, &netdev_flow->stats) { ovs_mutex_lock(&bucket->mutex); stats->n_packets += bucket->packet_count; stats->n_bytes += bucket->byte_count; stats->used = MAX(stats->used, bucket->used); stats->tcp_flags |= bucket->tcp_flags; ovs_mutex_unlock(&bucket->mutex); } } static int dpif_netdev_mask_from_nlattrs(const struct nlattr *key, uint32_t key_len, const struct nlattr *mask_key, uint32_t mask_key_len, const struct flow *flow, struct flow *mask) { if (mask_key_len) { enum odp_key_fitness fitness; fitness = odp_flow_key_to_mask(mask_key, mask_key_len, mask, flow); if (fitness) { /* This should not happen: it indicates that * odp_flow_key_from_mask() and odp_flow_key_to_mask() * disagree on the acceptable form of a mask. Log the problem * as an error, with enough details to enable debugging. */ static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); if (!VLOG_DROP_ERR(&rl)) { struct ds s; ds_init(&s); odp_flow_format(key, key_len, mask_key, mask_key_len, NULL, &s, true); VLOG_ERR("internal error parsing flow mask %s (%s)", ds_cstr(&s), odp_key_fitness_to_string(fitness)); ds_destroy(&s); } return EINVAL; } } else { enum mf_field_id id; /* No mask key, unwildcard everything except fields whose * prerequisities are not met. */ memset(mask, 0x0, sizeof *mask); for (id = 0; id < MFF_N_IDS; ++id) { /* Skip registers and metadata. */ if (!(id >= MFF_REG0 && id < MFF_REG0 + FLOW_N_REGS) && id != MFF_METADATA) { const struct mf_field *mf = mf_from_id(id); if (mf_are_prereqs_ok(mf, flow)) { mf_mask_field(mf, mask); } } } } /* Force unwildcard the in_port. * * We need to do this even in the case where we unwildcard "everything" * above because "everything" only includes the 16-bit OpenFlow port number * mask->in_port.ofp_port, which only covers half of the 32-bit datapath * port number mask->in_port.odp_port. */ mask->in_port.odp_port = u32_to_odp(UINT32_MAX); return 0; } static int dpif_netdev_flow_from_nlattrs(const struct nlattr *key, uint32_t key_len, struct flow *flow) { odp_port_t in_port; if (odp_flow_key_to_flow(key, key_len, flow)) { /* This should not happen: it indicates that odp_flow_key_from_flow() * and odp_flow_key_to_flow() disagree on the acceptable form of a * flow. Log the problem as an error, with enough details to enable * debugging. */ static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); if (!VLOG_DROP_ERR(&rl)) { struct ds s; ds_init(&s); odp_flow_format(key, key_len, NULL, 0, NULL, &s, true); VLOG_ERR("internal error parsing flow key %s", ds_cstr(&s)); ds_destroy(&s); } return EINVAL; } in_port = flow->in_port.odp_port; if (!is_valid_port_number(in_port) && in_port != ODPP_NONE) { return EINVAL; } return 0; } static int dpif_netdev_flow_get(const struct dpif *dpif, const struct nlattr *nl_key, size_t nl_key_len, struct ofpbuf **actionsp, struct dpif_flow_stats *stats) { struct dp_netdev *dp = get_dp_netdev(dpif); struct dp_netdev_flow *netdev_flow; struct flow key; int error; error = dpif_netdev_flow_from_nlattrs(nl_key, nl_key_len, &key); if (error) { return error; } fat_rwlock_rdlock(&dp->cls.rwlock); netdev_flow = dp_netdev_find_flow(dp, &key); fat_rwlock_unlock(&dp->cls.rwlock); if (netdev_flow) { if (stats) { get_dpif_flow_stats(netdev_flow, stats); } if (actionsp) { struct dp_netdev_actions *actions; actions = dp_netdev_flow_get_actions(netdev_flow); *actionsp = ofpbuf_clone_data(actions->actions, actions->size); } } else { error = ENOENT; } return error; } static int dp_netdev_flow_add(struct dp_netdev *dp, const struct flow *flow, const struct flow_wildcards *wc, const struct nlattr *actions, size_t actions_len) OVS_REQUIRES(dp->flow_mutex) { struct dp_netdev_flow *netdev_flow; struct match match; netdev_flow = xzalloc(sizeof *netdev_flow); *CONST_CAST(struct flow *, &netdev_flow->flow) = *flow; ovs_mutex_init(&netdev_flow->mutex); ovsthread_stats_init(&netdev_flow->stats); ovsrcu_set(&netdev_flow->actions, dp_netdev_actions_create(actions, actions_len)); match_init(&match, flow, wc); cls_rule_init(CONST_CAST(struct cls_rule *, &netdev_flow->cr), &match, NETDEV_RULE_PRIORITY); fat_rwlock_wrlock(&dp->cls.rwlock); classifier_insert(&dp->cls, CONST_CAST(struct cls_rule *, &netdev_flow->cr)); hmap_insert(&dp->flow_table, CONST_CAST(struct hmap_node *, &netdev_flow->node), flow_hash(flow, 0)); fat_rwlock_unlock(&dp->cls.rwlock); return 0; } static void clear_stats(struct dp_netdev_flow *netdev_flow) { struct dp_netdev_flow_stats *bucket; size_t i; OVSTHREAD_STATS_FOR_EACH_BUCKET (bucket, i, &netdev_flow->stats) { ovs_mutex_lock(&bucket->mutex); bucket->used = 0; bucket->packet_count = 0; bucket->byte_count = 0; bucket->tcp_flags = 0; ovs_mutex_unlock(&bucket->mutex); } } static int dpif_netdev_flow_put(struct dpif *dpif, const struct dpif_flow_put *put) { struct dp_netdev *dp = get_dp_netdev(dpif); struct dp_netdev_flow *netdev_flow; struct flow flow; struct miniflow miniflow; struct flow_wildcards wc; int error; error = dpif_netdev_flow_from_nlattrs(put->key, put->key_len, &flow); if (error) { return error; } error = dpif_netdev_mask_from_nlattrs(put->key, put->key_len, put->mask, put->mask_len, &flow, &wc.masks); if (error) { return error; } miniflow_init(&miniflow, &flow); ovs_mutex_lock(&dp->flow_mutex); netdev_flow = dp_netdev_lookup_flow(dp, &miniflow); if (!netdev_flow) { if (put->flags & DPIF_FP_CREATE) { if (hmap_count(&dp->flow_table) < MAX_FLOWS) { if (put->stats) { memset(put->stats, 0, sizeof *put->stats); } error = dp_netdev_flow_add(dp, &flow, &wc, put->actions, put->actions_len); } else { error = EFBIG; } } else { error = ENOENT; } } else { if (put->flags & DPIF_FP_MODIFY && flow_equal(&flow, &netdev_flow->flow)) { struct dp_netdev_actions *new_actions; struct dp_netdev_actions *old_actions; new_actions = dp_netdev_actions_create(put->actions, put->actions_len); old_actions = dp_netdev_flow_get_actions(netdev_flow); ovsrcu_set(&netdev_flow->actions, new_actions); if (put->stats) { get_dpif_flow_stats(netdev_flow, put->stats); } if (put->flags & DPIF_FP_ZERO_STATS) { clear_stats(netdev_flow); } ovsrcu_postpone(dp_netdev_actions_free, old_actions); } else if (put->flags & DPIF_FP_CREATE) { error = EEXIST; } else { /* Overlapping flow. */ error = EINVAL; } } ovs_mutex_unlock(&dp->flow_mutex); return error; } static int dpif_netdev_flow_del(struct dpif *dpif, const struct dpif_flow_del *del) { struct dp_netdev *dp = get_dp_netdev(dpif); struct dp_netdev_flow *netdev_flow; struct flow key; int error; error = dpif_netdev_flow_from_nlattrs(del->key, del->key_len, &key); if (error) { return error; } ovs_mutex_lock(&dp->flow_mutex); fat_rwlock_wrlock(&dp->cls.rwlock); netdev_flow = dp_netdev_find_flow(dp, &key); if (netdev_flow) { if (del->stats) { get_dpif_flow_stats(netdev_flow, del->stats); } dp_netdev_remove_flow(dp, netdev_flow); } else { error = ENOENT; } fat_rwlock_unlock(&dp->cls.rwlock); ovs_mutex_unlock(&dp->flow_mutex); return error; } struct dp_netdev_flow_state { struct dp_netdev_actions *actions; struct odputil_keybuf keybuf; struct odputil_keybuf maskbuf; struct dpif_flow_stats stats; }; struct dp_netdev_flow_iter { uint32_t bucket; uint32_t offset; int status; struct ovs_mutex mutex; }; static void dpif_netdev_flow_dump_state_init(void **statep) { struct dp_netdev_flow_state *state; *statep = state = xmalloc(sizeof *state); state->actions = NULL; } static void dpif_netdev_flow_dump_state_uninit(void *state_) { struct dp_netdev_flow_state *state = state_; free(state); } static int dpif_netdev_flow_dump_start(const struct dpif *dpif OVS_UNUSED, void **iterp) { struct dp_netdev_flow_iter *iter; *iterp = iter = xmalloc(sizeof *iter); iter->bucket = 0; iter->offset = 0; iter->status = 0; ovs_mutex_init(&iter->mutex); return 0; } /* XXX the caller must use 'actions' without quiescing */ static int dpif_netdev_flow_dump_next(const struct dpif *dpif, void *iter_, void *state_, const struct nlattr **key, size_t *key_len, const struct nlattr **mask, size_t *mask_len, const struct nlattr **actions, size_t *actions_len, const struct dpif_flow_stats **stats) { struct dp_netdev_flow_iter *iter = iter_; struct dp_netdev_flow_state *state = state_; struct dp_netdev *dp = get_dp_netdev(dpif); struct dp_netdev_flow *netdev_flow; struct flow_wildcards wc; int error; ovs_mutex_lock(&iter->mutex); error = iter->status; if (!error) { struct hmap_node *node; fat_rwlock_rdlock(&dp->cls.rwlock); node = hmap_at_position(&dp->flow_table, &iter->bucket, &iter->offset); if (node) { netdev_flow = CONTAINER_OF(node, struct dp_netdev_flow, node); } fat_rwlock_unlock(&dp->cls.rwlock); if (!node) { iter->status = error = EOF; } } ovs_mutex_unlock(&iter->mutex); if (error) { return error; } minimask_expand(&netdev_flow->cr.match.mask, &wc); if (key) { struct ofpbuf buf; ofpbuf_use_stack(&buf, &state->keybuf, sizeof state->keybuf); odp_flow_key_from_flow(&buf, &netdev_flow->flow, &wc.masks, netdev_flow->flow.in_port.odp_port); *key = ofpbuf_data(&buf); *key_len = ofpbuf_size(&buf); } if (key && mask) { struct ofpbuf buf; ofpbuf_use_stack(&buf, &state->maskbuf, sizeof state->maskbuf); odp_flow_key_from_mask(&buf, &wc.masks, &netdev_flow->flow, odp_to_u32(wc.masks.in_port.odp_port), SIZE_MAX); *mask = ofpbuf_data(&buf); *mask_len = ofpbuf_size(&buf); } if (actions || stats) { state->actions = NULL; if (actions) { state->actions = dp_netdev_flow_get_actions(netdev_flow); *actions = state->actions->actions; *actions_len = state->actions->size; } if (stats) { get_dpif_flow_stats(netdev_flow, &state->stats); *stats = &state->stats; } } return 0; } static int dpif_netdev_flow_dump_done(const struct dpif *dpif OVS_UNUSED, void *iter_) { struct dp_netdev_flow_iter *iter = iter_; ovs_mutex_destroy(&iter->mutex); free(iter); return 0; } static int dpif_netdev_execute(struct dpif *dpif, struct dpif_execute *execute) { struct dp_netdev *dp = get_dp_netdev(dpif); struct pkt_metadata *md = &execute->md; struct { struct miniflow flow; uint32_t buf[FLOW_U32S]; } key; if (ofpbuf_size(execute->packet) < ETH_HEADER_LEN || ofpbuf_size(execute->packet) > UINT16_MAX) { return EINVAL; } /* Extract flow key. */ miniflow_initialize(&key.flow, key.buf); miniflow_extract(execute->packet, md, &key.flow); ovs_rwlock_rdlock(&dp->port_rwlock); dp_netdev_execute_actions(dp, &key.flow, execute->packet, false, md, execute->actions, execute->actions_len); ovs_rwlock_unlock(&dp->port_rwlock); return 0; } static void dp_netdev_destroy_all_queues(struct dp_netdev *dp) OVS_REQ_WRLOCK(dp->queue_rwlock) { size_t i; dp_netdev_purge_queues(dp); for (i = 0; i < dp->n_handlers; i++) { struct dp_netdev_queue *q = &dp->handler_queues[i]; ovs_mutex_destroy(&q->mutex); seq_destroy(q->seq); } free(dp->handler_queues); dp->handler_queues = NULL; dp->n_handlers = 0; } static void dp_netdev_refresh_queues(struct dp_netdev *dp, uint32_t n_handlers) OVS_REQ_WRLOCK(dp->queue_rwlock) { if (dp->n_handlers != n_handlers) { size_t i; dp_netdev_destroy_all_queues(dp); dp->n_handlers = n_handlers; dp->handler_queues = xzalloc(n_handlers * sizeof *dp->handler_queues); for (i = 0; i < n_handlers; i++) { struct dp_netdev_queue *q = &dp->handler_queues[i]; ovs_mutex_init(&q->mutex); q->seq = seq_create(); } } } static int dpif_netdev_recv_set(struct dpif *dpif, bool enable) { struct dp_netdev *dp = get_dp_netdev(dpif); if ((dp->handler_queues != NULL) == enable) { return 0; } fat_rwlock_wrlock(&dp->queue_rwlock); if (!enable) { dp_netdev_destroy_all_queues(dp); } else { dp_netdev_refresh_queues(dp, 1); } fat_rwlock_unlock(&dp->queue_rwlock); return 0; } static int dpif_netdev_handlers_set(struct dpif *dpif, uint32_t n_handlers) { struct dp_netdev *dp = get_dp_netdev(dpif); fat_rwlock_wrlock(&dp->queue_rwlock); if (dp->handler_queues) { dp_netdev_refresh_queues(dp, n_handlers); } fat_rwlock_unlock(&dp->queue_rwlock); return 0; } static int dpif_netdev_queue_to_priority(const struct dpif *dpif OVS_UNUSED, uint32_t queue_id, uint32_t *priority) { *priority = queue_id; return 0; } static bool dp_netdev_recv_check(const struct dp_netdev *dp, const uint32_t handler_id) OVS_REQ_RDLOCK(dp->queue_rwlock) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); if (!dp->handler_queues) { VLOG_WARN_RL(&rl, "receiving upcall disabled"); return false; } if (handler_id >= dp->n_handlers) { VLOG_WARN_RL(&rl, "handler index out of bound"); return false; } return true; } static int dpif_netdev_recv(struct dpif *dpif, uint32_t handler_id, struct dpif_upcall *upcall, struct ofpbuf *buf) { struct dp_netdev *dp = get_dp_netdev(dpif); struct dp_netdev_queue *q; int error = 0; fat_rwlock_rdlock(&dp->queue_rwlock); if (!dp_netdev_recv_check(dp, handler_id)) { error = EAGAIN; goto out; } q = &dp->handler_queues[handler_id]; ovs_mutex_lock(&q->mutex); if (q->head != q->tail) { struct dp_netdev_upcall *u = &q->upcalls[q->tail++ & QUEUE_MASK]; *upcall = u->upcall; ofpbuf_uninit(buf); *buf = u->buf; } else { error = EAGAIN; } ovs_mutex_unlock(&q->mutex); out: fat_rwlock_unlock(&dp->queue_rwlock); return error; } static void dpif_netdev_recv_wait(struct dpif *dpif, uint32_t handler_id) { struct dp_netdev *dp = get_dp_netdev(dpif); struct dp_netdev_queue *q; uint64_t seq; fat_rwlock_rdlock(&dp->queue_rwlock); if (!dp_netdev_recv_check(dp, handler_id)) { goto out; } q = &dp->handler_queues[handler_id]; ovs_mutex_lock(&q->mutex); seq = seq_read(q->seq); if (q->head != q->tail) { poll_immediate_wake(); } else { seq_wait(q->seq, seq); } ovs_mutex_unlock(&q->mutex); out: fat_rwlock_unlock(&dp->queue_rwlock); } static void dpif_netdev_recv_purge(struct dpif *dpif) { struct dpif_netdev *dpif_netdev = dpif_netdev_cast(dpif); fat_rwlock_wrlock(&dpif_netdev->dp->queue_rwlock); dp_netdev_purge_queues(dpif_netdev->dp); fat_rwlock_unlock(&dpif_netdev->dp->queue_rwlock); } /* Creates and returns a new 'struct dp_netdev_actions', with a reference count * of 1, whose actions are a copy of from the 'ofpacts_len' bytes of * 'ofpacts'. */ struct dp_netdev_actions * dp_netdev_actions_create(const struct nlattr *actions, size_t size) { struct dp_netdev_actions *netdev_actions; netdev_actions = xmalloc(sizeof *netdev_actions); netdev_actions->actions = xmemdup(actions, size); netdev_actions->size = size; return netdev_actions; } struct dp_netdev_actions * dp_netdev_flow_get_actions(const struct dp_netdev_flow *flow) { return ovsrcu_get(struct dp_netdev_actions *, &flow->actions); } static void dp_netdev_actions_free(struct dp_netdev_actions *actions) { free(actions->actions); free(actions); } static void dp_netdev_process_rxq_port(struct dp_netdev *dp, struct dp_netdev_port *port, struct netdev_rxq *rxq) { struct ofpbuf *packet[NETDEV_MAX_RX_BATCH]; int error, c; error = netdev_rxq_recv(rxq, packet, &c); if (!error) { struct pkt_metadata md = PKT_METADATA_INITIALIZER(port->port_no); int i; for (i = 0; i < c; i++) { dp_netdev_port_input(dp, packet[i], &md); } } else if (error != EAGAIN && error != EOPNOTSUPP) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_ERR_RL(&rl, "error receiving data from %s: %s", netdev_get_name(port->netdev), ovs_strerror(error)); } } static void dpif_netdev_run(struct dpif *dpif) { struct dp_netdev_port *port; struct dp_netdev *dp = get_dp_netdev(dpif); ovs_rwlock_rdlock(&dp->port_rwlock); HMAP_FOR_EACH (port, node, &dp->ports) { if (!netdev_is_pmd(port->netdev)) { int i; for (i = 0; i < netdev_n_rxq(port->netdev); i++) { dp_netdev_process_rxq_port(dp, port, port->rxq[i]); } } } ovs_rwlock_unlock(&dp->port_rwlock); } static void dpif_netdev_wait(struct dpif *dpif) { struct dp_netdev_port *port; struct dp_netdev *dp = get_dp_netdev(dpif); ovs_rwlock_rdlock(&dp->port_rwlock); HMAP_FOR_EACH (port, node, &dp->ports) { if (!netdev_is_pmd(port->netdev)) { int i; for (i = 0; i < netdev_n_rxq(port->netdev); i++) { netdev_rxq_wait(port->rxq[i]); } } } ovs_rwlock_unlock(&dp->port_rwlock); } struct rxq_poll { struct dp_netdev_port *port; struct netdev_rxq *rx; }; static int pmd_load_queues(struct pmd_thread *f, struct rxq_poll **ppoll_list, int poll_cnt) { struct dp_netdev *dp = f->dp; struct rxq_poll *poll_list = *ppoll_list; struct dp_netdev_port *port; int id = f->id; int index; int i; /* Simple scheduler for netdev rx polling. */ ovs_rwlock_rdlock(&dp->port_rwlock); for (i = 0; i < poll_cnt; i++) { port_unref(poll_list[i].port); } poll_cnt = 0; index = 0; HMAP_FOR_EACH (port, node, &f->dp->ports) { if (netdev_is_pmd(port->netdev)) { int i; for (i = 0; i < netdev_n_rxq(port->netdev); i++) { if ((index % dp->n_pmd_threads) == id) { poll_list = xrealloc(poll_list, sizeof *poll_list * (poll_cnt + 1)); port_ref(port); poll_list[poll_cnt].port = port; poll_list[poll_cnt].rx = port->rxq[i]; poll_cnt++; } index++; } } } ovs_rwlock_unlock(&dp->port_rwlock); *ppoll_list = poll_list; return poll_cnt; } static void * pmd_thread_main(void *f_) { struct pmd_thread *f = f_; struct dp_netdev *dp = f->dp; unsigned int lc = 0; struct rxq_poll *poll_list; unsigned int port_seq; int poll_cnt; int i; poll_cnt = 0; poll_list = NULL; pmd_thread_setaffinity_cpu(f->id); reload: poll_cnt = pmd_load_queues(f, &poll_list, poll_cnt); atomic_read(&f->change_seq, &port_seq); for (;;) { unsigned int c_port_seq; int i; for (i = 0; i < poll_cnt; i++) { dp_netdev_process_rxq_port(dp, poll_list[i].port, poll_list[i].rx); } if (lc++ > 1024) { ovsrcu_quiesce(); /* TODO: need completely userspace based signaling method. * to keep this thread entirely in userspace. * For now using atomic counter. */ lc = 0; atomic_read_explicit(&f->change_seq, &c_port_seq, memory_order_consume); if (c_port_seq != port_seq) { break; } } } if (!latch_is_set(&f->dp->exit_latch)){ goto reload; } for (i = 0; i < poll_cnt; i++) { port_unref(poll_list[i].port); } free(poll_list); return NULL; } static void dp_netdev_set_pmd_threads(struct dp_netdev *dp, int n) { int i; if (n == dp->n_pmd_threads) { return; } /* Stop existing threads. */ latch_set(&dp->exit_latch); dp_netdev_reload_pmd_threads(dp); for (i = 0; i < dp->n_pmd_threads; i++) { struct pmd_thread *f = &dp->pmd_threads[i]; xpthread_join(f->thread, NULL); } latch_poll(&dp->exit_latch); free(dp->pmd_threads); /* Start new threads. */ dp->pmd_threads = xmalloc(n * sizeof *dp->pmd_threads); dp->n_pmd_threads = n; for (i = 0; i < n; i++) { struct pmd_thread *f = &dp->pmd_threads[i]; f->dp = dp; f->id = i; atomic_store(&f->change_seq, 1); /* Each thread will distribute all devices rx-queues among * themselves. */ f->thread = ovs_thread_create("pmd", pmd_thread_main, f); } } static void * dp_netdev_flow_stats_new_cb(void) { struct dp_netdev_flow_stats *bucket = xzalloc_cacheline(sizeof *bucket); ovs_mutex_init(&bucket->mutex); return bucket; } static void dp_netdev_flow_used(struct dp_netdev_flow *netdev_flow, const struct ofpbuf *packet, const struct miniflow *key) { uint16_t tcp_flags = miniflow_get_tcp_flags(key); long long int now = time_msec(); struct dp_netdev_flow_stats *bucket; bucket = ovsthread_stats_bucket_get(&netdev_flow->stats, dp_netdev_flow_stats_new_cb); ovs_mutex_lock(&bucket->mutex); bucket->used = MAX(now, bucket->used); bucket->packet_count++; bucket->byte_count += ofpbuf_size(packet); bucket->tcp_flags |= tcp_flags; ovs_mutex_unlock(&bucket->mutex); } static void * dp_netdev_stats_new_cb(void) { struct dp_netdev_stats *bucket = xzalloc_cacheline(sizeof *bucket); ovs_mutex_init(&bucket->mutex); return bucket; } static void dp_netdev_count_packet(struct dp_netdev *dp, enum dp_stat_type type) { struct dp_netdev_stats *bucket; bucket = ovsthread_stats_bucket_get(&dp->stats, dp_netdev_stats_new_cb); ovs_mutex_lock(&bucket->mutex); bucket->n[type]++; ovs_mutex_unlock(&bucket->mutex); } static void dp_netdev_input(struct dp_netdev *dp, struct ofpbuf *packet, struct pkt_metadata *md) OVS_REQ_RDLOCK(dp->port_rwlock) { struct dp_netdev_flow *netdev_flow; struct { struct miniflow flow; uint32_t buf[FLOW_U32S]; } key; if (ofpbuf_size(packet) < ETH_HEADER_LEN) { ofpbuf_delete(packet); return; } miniflow_initialize(&key.flow, key.buf); miniflow_extract(packet, md, &key.flow); netdev_flow = dp_netdev_lookup_flow(dp, &key.flow); if (netdev_flow) { struct dp_netdev_actions *actions; dp_netdev_flow_used(netdev_flow, packet, &key.flow); actions = dp_netdev_flow_get_actions(netdev_flow); dp_netdev_execute_actions(dp, &key.flow, packet, true, md, actions->actions, actions->size); dp_netdev_count_packet(dp, DP_STAT_HIT); } else if (dp->handler_queues) { dp_netdev_count_packet(dp, DP_STAT_MISS); dp_netdev_output_userspace(dp, packet, miniflow_hash_5tuple(&key.flow, 0) % dp->n_handlers, DPIF_UC_MISS, &key.flow, NULL); ofpbuf_delete(packet); } } static void dp_netdev_port_input(struct dp_netdev *dp, struct ofpbuf *packet, struct pkt_metadata *md) OVS_REQ_RDLOCK(dp->port_rwlock) { uint32_t *recirc_depth = recirc_depth_get(); *recirc_depth = 0; dp_netdev_input(dp, packet, md); } static int dp_netdev_output_userspace(struct dp_netdev *dp, struct ofpbuf *packet, int queue_no, int type, const struct miniflow *key, const struct nlattr *userdata) { struct dp_netdev_queue *q; int error; fat_rwlock_rdlock(&dp->queue_rwlock); q = &dp->handler_queues[queue_no]; ovs_mutex_lock(&q->mutex); if (q->head - q->tail < MAX_QUEUE_LEN) { struct dp_netdev_upcall *u = &q->upcalls[q->head++ & QUEUE_MASK]; struct dpif_upcall *upcall = &u->upcall; struct ofpbuf *buf = &u->buf; size_t buf_size; struct flow flow; upcall->type = type; /* Allocate buffer big enough for everything. */ buf_size = ODPUTIL_FLOW_KEY_BYTES; if (userdata) { buf_size += NLA_ALIGN(userdata->nla_len); } buf_size += ofpbuf_size(packet); ofpbuf_init(buf, buf_size); /* Put ODP flow. */ miniflow_expand(key, &flow); odp_flow_key_from_flow(buf, &flow, NULL, flow.in_port.odp_port); upcall->key = ofpbuf_data(buf); upcall->key_len = ofpbuf_size(buf); /* Put userdata. */ if (userdata) { upcall->userdata = ofpbuf_put(buf, userdata, NLA_ALIGN(userdata->nla_len)); } ofpbuf_set_data(&upcall->packet, ofpbuf_put(buf, ofpbuf_data(packet), ofpbuf_size(packet))); ofpbuf_set_size(&upcall->packet, ofpbuf_size(packet)); seq_change(q->seq); error = 0; } else { dp_netdev_count_packet(dp, DP_STAT_LOST); error = ENOBUFS; } ovs_mutex_unlock(&q->mutex); fat_rwlock_unlock(&dp->queue_rwlock); return error; } struct dp_netdev_execute_aux { struct dp_netdev *dp; const struct miniflow *key; }; static void dp_execute_cb(void *aux_, struct ofpbuf *packet, struct pkt_metadata *md, const struct nlattr *a, bool may_steal) OVS_NO_THREAD_SAFETY_ANALYSIS { struct dp_netdev_execute_aux *aux = aux_; int type = nl_attr_type(a); struct dp_netdev_port *p; uint32_t *depth = recirc_depth_get(); switch ((enum ovs_action_attr)type) { case OVS_ACTION_ATTR_OUTPUT: p = dp_netdev_lookup_port(aux->dp, u32_to_odp(nl_attr_get_u32(a))); if (p) { netdev_send(p->netdev, packet, may_steal); } break; case OVS_ACTION_ATTR_USERSPACE: { const struct nlattr *userdata; userdata = nl_attr_find_nested(a, OVS_USERSPACE_ATTR_USERDATA); dp_netdev_output_userspace(aux->dp, packet, miniflow_hash_5tuple(aux->key, 0) % aux->dp->n_handlers, DPIF_UC_ACTION, aux->key, userdata); if (may_steal) { ofpbuf_delete(packet); } break; } case OVS_ACTION_ATTR_HASH: { const struct ovs_action_hash *hash_act; uint32_t hash; hash_act = nl_attr_get(a); if (hash_act->hash_alg == OVS_HASH_ALG_L4) { /* Hash need not be symmetric, nor does it need to include * L2 fields. */ hash = miniflow_hash_5tuple(aux->key, hash_act->hash_basis); if (!hash) { hash = 1; /* 0 is not valid */ } } else { VLOG_WARN("Unknown hash algorithm specified for the hash action."); hash = 2; } md->dp_hash = hash; break; } case OVS_ACTION_ATTR_RECIRC: if (*depth < MAX_RECIRC_DEPTH) { struct pkt_metadata recirc_md = *md; struct ofpbuf *recirc_packet; recirc_packet = may_steal ? packet : ofpbuf_clone(packet); recirc_md.recirc_id = nl_attr_get_u32(a); (*depth)++; dp_netdev_input(aux->dp, recirc_packet, &recirc_md); (*depth)--; break; } else { VLOG_WARN("Packet dropped. Max recirculation depth exceeded."); } break; case OVS_ACTION_ATTR_PUSH_VLAN: case OVS_ACTION_ATTR_POP_VLAN: case OVS_ACTION_ATTR_PUSH_MPLS: case OVS_ACTION_ATTR_POP_MPLS: case OVS_ACTION_ATTR_SET: case OVS_ACTION_ATTR_SAMPLE: case OVS_ACTION_ATTR_UNSPEC: case __OVS_ACTION_ATTR_MAX: OVS_NOT_REACHED(); } } static void dp_netdev_execute_actions(struct dp_netdev *dp, const struct miniflow *key, struct ofpbuf *packet, bool may_steal, struct pkt_metadata *md, const struct nlattr *actions, size_t actions_len) { struct dp_netdev_execute_aux aux = {dp, key}; odp_execute_actions(&aux, packet, may_steal, md, actions, actions_len, dp_execute_cb); } #define DPIF_NETDEV_CLASS_FUNCTIONS \ dpif_netdev_enumerate, \ dpif_netdev_port_open_type, \ dpif_netdev_open, \ dpif_netdev_close, \ dpif_netdev_destroy, \ dpif_netdev_run, \ dpif_netdev_wait, \ dpif_netdev_get_stats, \ dpif_netdev_port_add, \ dpif_netdev_port_del, \ dpif_netdev_port_query_by_number, \ dpif_netdev_port_query_by_name, \ NULL, /* port_get_pid */ \ dpif_netdev_port_dump_start, \ dpif_netdev_port_dump_next, \ dpif_netdev_port_dump_done, \ dpif_netdev_port_poll, \ dpif_netdev_port_poll_wait, \ dpif_netdev_flow_get, \ dpif_netdev_flow_put, \ dpif_netdev_flow_del, \ dpif_netdev_flow_flush, \ dpif_netdev_flow_dump_state_init, \ dpif_netdev_flow_dump_start, \ dpif_netdev_flow_dump_next, \ NULL, \ dpif_netdev_flow_dump_done, \ dpif_netdev_flow_dump_state_uninit, \ dpif_netdev_execute, \ NULL, /* operate */ \ dpif_netdev_recv_set, \ dpif_netdev_handlers_set, \ dpif_netdev_queue_to_priority, \ dpif_netdev_recv, \ dpif_netdev_recv_wait, \ dpif_netdev_recv_purge, \ const struct dpif_class dpif_netdev_class = { "netdev", DPIF_NETDEV_CLASS_FUNCTIONS }; const struct dpif_class dpif_planetlab_class = { "planetlab", DPIF_NETDEV_CLASS_FUNCTIONS }; static void dpif_dummy_change_port_number(struct unixctl_conn *conn, int argc OVS_UNUSED, const char *argv[], void *aux OVS_UNUSED) { struct dp_netdev_port *port; struct dp_netdev *dp; odp_port_t port_no; ovs_mutex_lock(&dp_netdev_mutex); dp = shash_find_data(&dp_netdevs, argv[1]); if (!dp || !dpif_netdev_class_is_dummy(dp->class)) { ovs_mutex_unlock(&dp_netdev_mutex); unixctl_command_reply_error(conn, "unknown datapath or not a dummy"); return; } ovs_refcount_ref(&dp->ref_cnt); ovs_mutex_unlock(&dp_netdev_mutex); ovs_rwlock_wrlock(&dp->port_rwlock); if (get_port_by_name(dp, argv[2], &port)) { unixctl_command_reply_error(conn, "unknown port"); goto exit; } port_no = u32_to_odp(atoi(argv[3])); if (!port_no || port_no == ODPP_NONE) { unixctl_command_reply_error(conn, "bad port number"); goto exit; } if (dp_netdev_lookup_port(dp, port_no)) { unixctl_command_reply_error(conn, "port number already in use"); goto exit; } hmap_remove(&dp->ports, &port->node); port->port_no = port_no; hmap_insert(&dp->ports, &port->node, hash_int(odp_to_u32(port_no), 0)); seq_change(dp->port_seq); unixctl_command_reply(conn, NULL); exit: ovs_rwlock_unlock(&dp->port_rwlock); dp_netdev_unref(dp); } static void dpif_dummy_register__(const char *type) { struct dpif_class *class; class = xmalloc(sizeof *class); *class = dpif_netdev_class; class->type = xstrdup(type); dp_register_provider(class); } void dpif_dummy_register(bool override) { if (override) { struct sset types; const char *type; sset_init(&types); dp_enumerate_types(&types); SSET_FOR_EACH (type, &types) { if (!dp_unregister_provider(type)) { dpif_dummy_register__(type); } } sset_destroy(&types); } dpif_dummy_register__("dummy"); unixctl_command_register("dpif-dummy/change-port-number", "DP PORT NEW-NUMBER", 3, 3, dpif_dummy_change_port_number, NULL); }