/* * Copyright (c) 2008, 2009, 2010, 2011, 2012, 2013, 2014 Nicira, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include "flow.h" #include #include #include #include #include #include #include #include #include #include "byte-order.h" #include "coverage.h" #include "csum.h" #include "dynamic-string.h" #include "hash.h" #include "jhash.h" #include "match.h" #include "ofpbuf.h" #include "openflow/openflow.h" #include "packets.h" #include "odp-util.h" #include "random.h" #include "unaligned.h" COVERAGE_DEFINE(flow_extract); COVERAGE_DEFINE(miniflow_malloc); /* U32 indices for segmented flow classification. */ const uint8_t flow_segment_u32s[4] = { FLOW_SEGMENT_1_ENDS_AT / 4, FLOW_SEGMENT_2_ENDS_AT / 4, FLOW_SEGMENT_3_ENDS_AT / 4, FLOW_U32S }; static struct arp_eth_header * pull_arp(struct ofpbuf *packet) { return ofpbuf_try_pull(packet, ARP_ETH_HEADER_LEN); } static struct ip_header * pull_ip(struct ofpbuf *packet) { if (ofpbuf_size(packet) >= IP_HEADER_LEN) { struct ip_header *ip = ofpbuf_data(packet); int ip_len = IP_IHL(ip->ip_ihl_ver) * 4; if (ip_len >= IP_HEADER_LEN && ofpbuf_size(packet) >= ip_len) { return ofpbuf_pull(packet, ip_len); } } return NULL; } static struct icmp_header * pull_icmp(struct ofpbuf *packet) { return ofpbuf_try_pull(packet, ICMP_HEADER_LEN); } static struct icmp6_hdr * pull_icmpv6(struct ofpbuf *packet) { return ofpbuf_try_pull(packet, sizeof(struct icmp6_hdr)); } static void parse_mpls(struct ofpbuf *b, struct flow *flow) { struct mpls_hdr *mh; int idx = 0; while ((mh = ofpbuf_try_pull(b, sizeof *mh))) { ovs_be32 mpls_lse = get_16aligned_be32(&mh->mpls_lse); if (idx < FLOW_MAX_MPLS_LABELS) { flow->mpls_lse[idx++] = mpls_lse; } if (mpls_lse & htonl(MPLS_BOS_MASK)) { break; } } } static void parse_vlan(struct ofpbuf *b, struct flow *flow) { struct qtag_prefix { ovs_be16 eth_type; /* ETH_TYPE_VLAN */ ovs_be16 tci; }; if (ofpbuf_size(b) >= sizeof(struct qtag_prefix) + sizeof(ovs_be16)) { struct qtag_prefix *qp = ofpbuf_pull(b, sizeof *qp); flow->vlan_tci = qp->tci | htons(VLAN_CFI); } } static ovs_be16 parse_ethertype(struct ofpbuf *b) { struct llc_snap_header *llc; ovs_be16 proto; proto = *(ovs_be16 *) ofpbuf_pull(b, sizeof proto); if (ntohs(proto) >= ETH_TYPE_MIN) { return proto; } if (ofpbuf_size(b) < sizeof *llc) { return htons(FLOW_DL_TYPE_NONE); } llc = ofpbuf_data(b); if (llc->llc.llc_dsap != LLC_DSAP_SNAP || llc->llc.llc_ssap != LLC_SSAP_SNAP || llc->llc.llc_cntl != LLC_CNTL_SNAP || memcmp(llc->snap.snap_org, SNAP_ORG_ETHERNET, sizeof llc->snap.snap_org)) { return htons(FLOW_DL_TYPE_NONE); } ofpbuf_pull(b, sizeof *llc); if (ntohs(llc->snap.snap_type) >= ETH_TYPE_MIN) { return llc->snap.snap_type; } return htons(FLOW_DL_TYPE_NONE); } static int parse_ipv6(struct ofpbuf *packet, struct flow *flow) { const struct ovs_16aligned_ip6_hdr *nh; ovs_be32 tc_flow; int nexthdr; nh = ofpbuf_try_pull(packet, sizeof *nh); if (!nh) { return EINVAL; } nexthdr = nh->ip6_nxt; memcpy(&flow->ipv6_src, &nh->ip6_src, sizeof flow->ipv6_src); memcpy(&flow->ipv6_dst, &nh->ip6_dst, sizeof flow->ipv6_dst); tc_flow = get_16aligned_be32(&nh->ip6_flow); flow->nw_tos = ntohl(tc_flow) >> 20; flow->ipv6_label = tc_flow & htonl(IPV6_LABEL_MASK); flow->nw_ttl = nh->ip6_hlim; flow->nw_proto = IPPROTO_NONE; while (1) { if ((nexthdr != IPPROTO_HOPOPTS) && (nexthdr != IPPROTO_ROUTING) && (nexthdr != IPPROTO_DSTOPTS) && (nexthdr != IPPROTO_AH) && (nexthdr != IPPROTO_FRAGMENT)) { /* It's either a terminal header (e.g., TCP, UDP) or one we * don't understand. In either case, we're done with the * packet, so use it to fill in 'nw_proto'. */ break; } /* We only verify that at least 8 bytes of the next header are * available, but many of these headers are longer. Ensure that * accesses within the extension header are within those first 8 * bytes. All extension headers are required to be at least 8 * bytes. */ if (ofpbuf_size(packet) < 8) { return EINVAL; } if ((nexthdr == IPPROTO_HOPOPTS) || (nexthdr == IPPROTO_ROUTING) || (nexthdr == IPPROTO_DSTOPTS)) { /* These headers, while different, have the fields we care about * in the same location and with the same interpretation. */ const struct ip6_ext *ext_hdr = ofpbuf_data(packet); nexthdr = ext_hdr->ip6e_nxt; if (!ofpbuf_try_pull(packet, (ext_hdr->ip6e_len + 1) * 8)) { return EINVAL; } } else if (nexthdr == IPPROTO_AH) { /* A standard AH definition isn't available, but the fields * we care about are in the same location as the generic * option header--only the header length is calculated * differently. */ const struct ip6_ext *ext_hdr = ofpbuf_data(packet); nexthdr = ext_hdr->ip6e_nxt; if (!ofpbuf_try_pull(packet, (ext_hdr->ip6e_len + 2) * 4)) { return EINVAL; } } else if (nexthdr == IPPROTO_FRAGMENT) { const struct ovs_16aligned_ip6_frag *frag_hdr = ofpbuf_data(packet); nexthdr = frag_hdr->ip6f_nxt; if (!ofpbuf_try_pull(packet, sizeof *frag_hdr)) { return EINVAL; } /* We only process the first fragment. */ if (frag_hdr->ip6f_offlg != htons(0)) { flow->nw_frag = FLOW_NW_FRAG_ANY; if ((frag_hdr->ip6f_offlg & IP6F_OFF_MASK) != htons(0)) { flow->nw_frag |= FLOW_NW_FRAG_LATER; nexthdr = IPPROTO_FRAGMENT; break; } } } } flow->nw_proto = nexthdr; return 0; } static void parse_tcp(struct ofpbuf *b, struct flow *flow) { if (ofpbuf_size(b) >= TCP_HEADER_LEN) { const struct tcp_header *tcp = ofpbuf_data(b); flow->tp_src = tcp->tcp_src; flow->tp_dst = tcp->tcp_dst; flow->tcp_flags = tcp->tcp_ctl & htons(0x0fff); } } static void parse_udp(struct ofpbuf *b, struct flow *flow) { if (ofpbuf_size(b) >= UDP_HEADER_LEN) { const struct udp_header *udp = ofpbuf_data(b); flow->tp_src = udp->udp_src; flow->tp_dst = udp->udp_dst; } } static void parse_sctp(struct ofpbuf *b, struct flow *flow) { if (ofpbuf_size(b) >= SCTP_HEADER_LEN) { const struct sctp_header *sctp = ofpbuf_data(b); flow->tp_src = sctp->sctp_src; flow->tp_dst = sctp->sctp_dst; } } static void parse_icmpv6(struct ofpbuf *b, struct flow *flow) { const struct icmp6_hdr *icmp = pull_icmpv6(b); if (!icmp) { return; } /* The ICMPv6 type and code fields use the 16-bit transport port * fields, so we need to store them in 16-bit network byte order. */ flow->tp_src = htons(icmp->icmp6_type); flow->tp_dst = htons(icmp->icmp6_code); if (icmp->icmp6_code == 0 && (icmp->icmp6_type == ND_NEIGHBOR_SOLICIT || icmp->icmp6_type == ND_NEIGHBOR_ADVERT)) { const struct in6_addr *nd_target; nd_target = ofpbuf_try_pull(b, sizeof *nd_target); if (!nd_target) { return; } flow->nd_target = *nd_target; while (ofpbuf_size(b) >= 8) { /* The minimum size of an option is 8 bytes, which also is * the size of Ethernet link-layer options. */ const struct nd_opt_hdr *nd_opt = ofpbuf_data(b); int opt_len = nd_opt->nd_opt_len * 8; if (!opt_len || opt_len > ofpbuf_size(b)) { goto invalid; } /* Store the link layer address if the appropriate option is * provided. It is considered an error if the same link * layer option is specified twice. */ if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LINKADDR && opt_len == 8) { if (eth_addr_is_zero(flow->arp_sha)) { memcpy(flow->arp_sha, nd_opt + 1, ETH_ADDR_LEN); } else { goto invalid; } } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LINKADDR && opt_len == 8) { if (eth_addr_is_zero(flow->arp_tha)) { memcpy(flow->arp_tha, nd_opt + 1, ETH_ADDR_LEN); } else { goto invalid; } } if (!ofpbuf_try_pull(b, opt_len)) { goto invalid; } } } return; invalid: memset(&flow->nd_target, 0, sizeof(flow->nd_target)); memset(flow->arp_sha, 0, sizeof(flow->arp_sha)); memset(flow->arp_tha, 0, sizeof(flow->arp_tha)); return; } /* Initializes 'flow' members from 'packet' and 'md' * * Initializes 'packet' header l2 pointer to the start of the Ethernet * header, and the layer offsets as follows: * * - packet->l2_5_ofs to the start of the MPLS shim header, or UINT16_MAX * when there is no MPLS shim header. * * - packet->l3_ofs to just past the Ethernet header, or just past the * vlan_header if one is present, to the first byte of the payload of the * Ethernet frame. UINT16_MAX if the frame is too short to contain an * Ethernet header. * * - packet->l4_ofs to just past the IPv4 header, if one is present and * has at least the content used for the fields of interest for the flow, * otherwise UINT16_MAX. */ void flow_extract(struct ofpbuf *packet, const struct pkt_metadata *md, struct flow *flow) { struct ofpbuf b = *packet; struct eth_header *eth; COVERAGE_INC(flow_extract); memset(flow, 0, sizeof *flow); if (md) { flow->tunnel = md->tunnel; flow->in_port = md->in_port; flow->skb_priority = md->skb_priority; flow->pkt_mark = md->pkt_mark; flow->recirc_id = md->recirc_id; flow->dp_hash = md->dp_hash; } ofpbuf_set_frame(packet, ofpbuf_data(packet)); if (ofpbuf_size(&b) < sizeof *eth) { return; } /* Link layer. */ eth = ofpbuf_data(&b); memcpy(flow->dl_src, eth->eth_src, ETH_ADDR_LEN); memcpy(flow->dl_dst, eth->eth_dst, ETH_ADDR_LEN); /* dl_type, vlan_tci. */ ofpbuf_pull(&b, ETH_ADDR_LEN * 2); if (eth->eth_type == htons(ETH_TYPE_VLAN)) { parse_vlan(&b, flow); } flow->dl_type = parse_ethertype(&b); /* Parse mpls, copy l3 ttl. */ if (eth_type_mpls(flow->dl_type)) { ofpbuf_set_l2_5(packet, ofpbuf_data(&b)); parse_mpls(&b, flow); } /* Network layer. */ ofpbuf_set_l3(packet, ofpbuf_data(&b)); if (flow->dl_type == htons(ETH_TYPE_IP)) { const struct ip_header *nh = pull_ip(&b); if (nh) { ofpbuf_set_l4(packet, ofpbuf_data(&b)); flow->nw_src = get_16aligned_be32(&nh->ip_src); flow->nw_dst = get_16aligned_be32(&nh->ip_dst); flow->nw_proto = nh->ip_proto; flow->nw_tos = nh->ip_tos; if (IP_IS_FRAGMENT(nh->ip_frag_off)) { flow->nw_frag = FLOW_NW_FRAG_ANY; if (nh->ip_frag_off & htons(IP_FRAG_OFF_MASK)) { flow->nw_frag |= FLOW_NW_FRAG_LATER; } } flow->nw_ttl = nh->ip_ttl; if (!(nh->ip_frag_off & htons(IP_FRAG_OFF_MASK))) { if (flow->nw_proto == IPPROTO_TCP) { parse_tcp(&b, flow); } else if (flow->nw_proto == IPPROTO_UDP) { parse_udp(&b, flow); } else if (flow->nw_proto == IPPROTO_SCTP) { parse_sctp(&b, flow); } else if (flow->nw_proto == IPPROTO_ICMP) { const struct icmp_header *icmp = pull_icmp(&b); if (icmp) { flow->tp_src = htons(icmp->icmp_type); flow->tp_dst = htons(icmp->icmp_code); } } } } } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) { if (parse_ipv6(&b, flow)) { return; } ofpbuf_set_l4(packet, ofpbuf_data(&b)); if (flow->nw_proto == IPPROTO_TCP) { parse_tcp(&b, flow); } else if (flow->nw_proto == IPPROTO_UDP) { parse_udp(&b, flow); } else if (flow->nw_proto == IPPROTO_SCTP) { parse_sctp(&b, flow); } else if (flow->nw_proto == IPPROTO_ICMPV6) { parse_icmpv6(&b, flow); } } else if (flow->dl_type == htons(ETH_TYPE_ARP) || flow->dl_type == htons(ETH_TYPE_RARP)) { const struct arp_eth_header *arp = pull_arp(&b); if (arp && arp->ar_hrd == htons(1) && arp->ar_pro == htons(ETH_TYPE_IP) && arp->ar_hln == ETH_ADDR_LEN && arp->ar_pln == 4) { /* We only match on the lower 8 bits of the opcode. */ if (ntohs(arp->ar_op) <= 0xff) { flow->nw_proto = ntohs(arp->ar_op); } flow->nw_src = get_16aligned_be32(&arp->ar_spa); flow->nw_dst = get_16aligned_be32(&arp->ar_tpa); memcpy(flow->arp_sha, arp->ar_sha, ETH_ADDR_LEN); memcpy(flow->arp_tha, arp->ar_tha, ETH_ADDR_LEN); } } } /* For every bit of a field that is wildcarded in 'wildcards', sets the * corresponding bit in 'flow' to zero. */ void flow_zero_wildcards(struct flow *flow, const struct flow_wildcards *wildcards) { uint32_t *flow_u32 = (uint32_t *) flow; const uint32_t *wc_u32 = (const uint32_t *) &wildcards->masks; size_t i; for (i = 0; i < FLOW_U32S; i++) { flow_u32[i] &= wc_u32[i]; } } void flow_unwildcard_tp_ports(const struct flow *flow, struct flow_wildcards *wc) { if (flow->nw_proto != IPPROTO_ICMP) { memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src); memset(&wc->masks.tp_dst, 0xff, sizeof wc->masks.tp_dst); } else { wc->masks.tp_src = htons(0xff); wc->masks.tp_dst = htons(0xff); } } /* Initializes 'fmd' with the metadata found in 'flow'. */ void flow_get_metadata(const struct flow *flow, struct flow_metadata *fmd) { BUILD_ASSERT_DECL(FLOW_WC_SEQ == 25); fmd->dp_hash = flow->dp_hash; fmd->recirc_id = flow->recirc_id; fmd->tun_id = flow->tunnel.tun_id; fmd->tun_src = flow->tunnel.ip_src; fmd->tun_dst = flow->tunnel.ip_dst; fmd->metadata = flow->metadata; memcpy(fmd->regs, flow->regs, sizeof fmd->regs); fmd->pkt_mark = flow->pkt_mark; fmd->in_port = flow->in_port.ofp_port; } char * flow_to_string(const struct flow *flow) { struct ds ds = DS_EMPTY_INITIALIZER; flow_format(&ds, flow); return ds_cstr(&ds); } const char * flow_tun_flag_to_string(uint32_t flags) { switch (flags) { case FLOW_TNL_F_DONT_FRAGMENT: return "df"; case FLOW_TNL_F_CSUM: return "csum"; case FLOW_TNL_F_KEY: return "key"; default: return NULL; } } void format_flags(struct ds *ds, const char *(*bit_to_string)(uint32_t), uint32_t flags, char del) { uint32_t bad = 0; if (!flags) { return; } while (flags) { uint32_t bit = rightmost_1bit(flags); const char *s; s = bit_to_string(bit); if (s) { ds_put_format(ds, "%s%c", s, del); } else { bad |= bit; } flags &= ~bit; } if (bad) { ds_put_format(ds, "0x%"PRIx32"%c", bad, del); } ds_chomp(ds, del); } void format_flags_masked(struct ds *ds, const char *name, const char *(*bit_to_string)(uint32_t), uint32_t flags, uint32_t mask) { if (name) { ds_put_format(ds, "%s=", name); } while (mask) { uint32_t bit = rightmost_1bit(mask); const char *s = bit_to_string(bit); ds_put_format(ds, "%s%s", (flags & bit) ? "+" : "-", s ? s : "[Unknown]"); mask &= ~bit; } } void flow_format(struct ds *ds, const struct flow *flow) { struct match match; match_wc_init(&match, flow); match_format(&match, ds, OFP_DEFAULT_PRIORITY); } void flow_print(FILE *stream, const struct flow *flow) { char *s = flow_to_string(flow); fputs(s, stream); free(s); } /* flow_wildcards functions. */ /* Initializes 'wc' as a set of wildcards that matches every packet. */ void flow_wildcards_init_catchall(struct flow_wildcards *wc) { memset(&wc->masks, 0, sizeof wc->masks); } /* Clear the metadata and register wildcard masks. They are not packet * header fields. */ void flow_wildcards_clear_non_packet_fields(struct flow_wildcards *wc) { memset(&wc->masks.metadata, 0, sizeof wc->masks.metadata); memset(&wc->masks.regs, 0, sizeof wc->masks.regs); } /* Returns true if 'wc' matches every packet, false if 'wc' fixes any bits or * fields. */ bool flow_wildcards_is_catchall(const struct flow_wildcards *wc) { const uint32_t *wc_u32 = (const uint32_t *) &wc->masks; size_t i; for (i = 0; i < FLOW_U32S; i++) { if (wc_u32[i]) { return false; } } return true; } /* Sets 'dst' as the bitwise AND of wildcards in 'src1' and 'src2'. * That is, a bit or a field is wildcarded in 'dst' if it is wildcarded * in 'src1' or 'src2' or both. */ void flow_wildcards_and(struct flow_wildcards *dst, const struct flow_wildcards *src1, const struct flow_wildcards *src2) { uint32_t *dst_u32 = (uint32_t *) &dst->masks; const uint32_t *src1_u32 = (const uint32_t *) &src1->masks; const uint32_t *src2_u32 = (const uint32_t *) &src2->masks; size_t i; for (i = 0; i < FLOW_U32S; i++) { dst_u32[i] = src1_u32[i] & src2_u32[i]; } } /* Sets 'dst' as the bitwise OR of wildcards in 'src1' and 'src2'. That * is, a bit or a field is wildcarded in 'dst' if it is neither * wildcarded in 'src1' nor 'src2'. */ void flow_wildcards_or(struct flow_wildcards *dst, const struct flow_wildcards *src1, const struct flow_wildcards *src2) { uint32_t *dst_u32 = (uint32_t *) &dst->masks; const uint32_t *src1_u32 = (const uint32_t *) &src1->masks; const uint32_t *src2_u32 = (const uint32_t *) &src2->masks; size_t i; for (i = 0; i < FLOW_U32S; i++) { dst_u32[i] = src1_u32[i] | src2_u32[i]; } } /* Perform a bitwise OR of miniflow 'src' flow data with the equivalent * fields in 'dst', storing the result in 'dst'. */ static void flow_union_with_miniflow(struct flow *dst, const struct miniflow *src) { uint32_t *dst_u32 = (uint32_t *) dst; const uint32_t *p = src->values; uint64_t map; for (map = src->map; map; map = zero_rightmost_1bit(map)) { dst_u32[raw_ctz(map)] |= *p++; } } /* Fold minimask 'mask''s wildcard mask into 'wc's wildcard mask. */ void flow_wildcards_fold_minimask(struct flow_wildcards *wc, const struct minimask *mask) { flow_union_with_miniflow(&wc->masks, &mask->masks); } uint64_t miniflow_get_map_in_range(const struct miniflow *miniflow, uint8_t start, uint8_t end, unsigned int *offset) { uint64_t map = miniflow->map; *offset = 0; if (start > 0) { uint64_t msk = (UINT64_C(1) << start) - 1; /* 'start' LSBs set */ *offset = count_1bits(map & msk); map &= ~msk; } if (end < FLOW_U32S) { uint64_t msk = (UINT64_C(1) << end) - 1; /* 'end' LSBs set */ map &= msk; } return map; } /* Fold minimask 'mask''s wildcard mask into 'wc's wildcard mask * in range [start, end). */ void flow_wildcards_fold_minimask_range(struct flow_wildcards *wc, const struct minimask *mask, uint8_t start, uint8_t end) { uint32_t *dst_u32 = (uint32_t *)&wc->masks; unsigned int offset; uint64_t map = miniflow_get_map_in_range(&mask->masks, start, end, &offset); const uint32_t *p = mask->masks.values + offset; for (; map; map = zero_rightmost_1bit(map)) { dst_u32[raw_ctz(map)] |= *p++; } } /* Returns a hash of the wildcards in 'wc'. */ uint32_t flow_wildcards_hash(const struct flow_wildcards *wc, uint32_t basis) { return flow_hash(&wc->masks, basis); } /* Returns true if 'a' and 'b' represent the same wildcards, false if they are * different. */ bool flow_wildcards_equal(const struct flow_wildcards *a, const struct flow_wildcards *b) { return flow_equal(&a->masks, &b->masks); } /* Returns true if at least one bit or field is wildcarded in 'a' but not in * 'b', false otherwise. */ bool flow_wildcards_has_extra(const struct flow_wildcards *a, const struct flow_wildcards *b) { const uint32_t *a_u32 = (const uint32_t *) &a->masks; const uint32_t *b_u32 = (const uint32_t *) &b->masks; size_t i; for (i = 0; i < FLOW_U32S; i++) { if ((a_u32[i] & b_u32[i]) != b_u32[i]) { return true; } } return false; } /* Returns true if 'a' and 'b' are equal, except that 0-bits (wildcarded bits) * in 'wc' do not need to be equal in 'a' and 'b'. */ bool flow_equal_except(const struct flow *a, const struct flow *b, const struct flow_wildcards *wc) { const uint32_t *a_u32 = (const uint32_t *) a; const uint32_t *b_u32 = (const uint32_t *) b; const uint32_t *wc_u32 = (const uint32_t *) &wc->masks; size_t i; for (i = 0; i < FLOW_U32S; i++) { if ((a_u32[i] ^ b_u32[i]) & wc_u32[i]) { return false; } } return true; } /* Sets the wildcard mask for register 'idx' in 'wc' to 'mask'. * (A 0-bit indicates a wildcard bit.) */ void flow_wildcards_set_reg_mask(struct flow_wildcards *wc, int idx, uint32_t mask) { wc->masks.regs[idx] = mask; } /* Calculates the 5-tuple hash from the given flow. */ uint32_t flow_hash_5tuple(const struct flow *flow, uint32_t basis) { uint32_t hash = 0; if (!flow) { return 0; } hash = mhash_add(basis, (OVS_FORCE uint32_t) flow->nw_src); hash = mhash_add(hash, (OVS_FORCE uint32_t) flow->nw_dst); hash = mhash_add(hash, ((OVS_FORCE uint32_t) flow->tp_src << 16) | (OVS_FORCE uint32_t) flow->tp_dst); hash = mhash_add(hash, flow->nw_proto); return mhash_finish(hash, 13); } /* Hashes 'flow' based on its L2 through L4 protocol information. */ uint32_t flow_hash_symmetric_l4(const struct flow *flow, uint32_t basis) { struct { union { ovs_be32 ipv4_addr; struct in6_addr ipv6_addr; }; ovs_be16 eth_type; ovs_be16 vlan_tci; ovs_be16 tp_port; uint8_t eth_addr[ETH_ADDR_LEN]; uint8_t ip_proto; } fields; int i; memset(&fields, 0, sizeof fields); for (i = 0; i < ETH_ADDR_LEN; i++) { fields.eth_addr[i] = flow->dl_src[i] ^ flow->dl_dst[i]; } fields.vlan_tci = flow->vlan_tci & htons(VLAN_VID_MASK); fields.eth_type = flow->dl_type; /* UDP source and destination port are not taken into account because they * will not necessarily be symmetric in a bidirectional flow. */ if (fields.eth_type == htons(ETH_TYPE_IP)) { fields.ipv4_addr = flow->nw_src ^ flow->nw_dst; fields.ip_proto = flow->nw_proto; if (fields.ip_proto == IPPROTO_TCP || fields.ip_proto == IPPROTO_SCTP) { fields.tp_port = flow->tp_src ^ flow->tp_dst; } } else if (fields.eth_type == htons(ETH_TYPE_IPV6)) { const uint8_t *a = &flow->ipv6_src.s6_addr[0]; const uint8_t *b = &flow->ipv6_dst.s6_addr[0]; uint8_t *ipv6_addr = &fields.ipv6_addr.s6_addr[0]; for (i=0; i<16; i++) { ipv6_addr[i] = a[i] ^ b[i]; } fields.ip_proto = flow->nw_proto; if (fields.ip_proto == IPPROTO_TCP || fields.ip_proto == IPPROTO_SCTP) { fields.tp_port = flow->tp_src ^ flow->tp_dst; } } return jhash_bytes(&fields, sizeof fields, basis); } /* Initialize a flow with random fields that matter for nx_hash_fields. */ void flow_random_hash_fields(struct flow *flow) { uint16_t rnd = random_uint16(); /* Initialize to all zeros. */ memset(flow, 0, sizeof *flow); eth_addr_random(flow->dl_src); eth_addr_random(flow->dl_dst); flow->vlan_tci = (OVS_FORCE ovs_be16) (random_uint16() & VLAN_VID_MASK); /* Make most of the random flows IPv4, some IPv6, and rest random. */ flow->dl_type = rnd < 0x8000 ? htons(ETH_TYPE_IP) : rnd < 0xc000 ? htons(ETH_TYPE_IPV6) : (OVS_FORCE ovs_be16)rnd; if (dl_type_is_ip_any(flow->dl_type)) { if (flow->dl_type == htons(ETH_TYPE_IP)) { flow->nw_src = (OVS_FORCE ovs_be32)random_uint32(); flow->nw_dst = (OVS_FORCE ovs_be32)random_uint32(); } else { random_bytes(&flow->ipv6_src, sizeof flow->ipv6_src); random_bytes(&flow->ipv6_dst, sizeof flow->ipv6_dst); } /* Make most of IP flows TCP, some UDP or SCTP, and rest random. */ rnd = random_uint16(); flow->nw_proto = rnd < 0x8000 ? IPPROTO_TCP : rnd < 0xc000 ? IPPROTO_UDP : rnd < 0xd000 ? IPPROTO_SCTP : (uint8_t)rnd; if (flow->nw_proto == IPPROTO_TCP || flow->nw_proto == IPPROTO_UDP || flow->nw_proto == IPPROTO_SCTP) { flow->tp_src = (OVS_FORCE ovs_be16)random_uint16(); flow->tp_dst = (OVS_FORCE ovs_be16)random_uint16(); } } } /* Masks the fields in 'wc' that are used by the flow hash 'fields'. */ void flow_mask_hash_fields(const struct flow *flow, struct flow_wildcards *wc, enum nx_hash_fields fields) { switch (fields) { case NX_HASH_FIELDS_ETH_SRC: memset(&wc->masks.dl_src, 0xff, sizeof wc->masks.dl_src); break; case NX_HASH_FIELDS_SYMMETRIC_L4: memset(&wc->masks.dl_src, 0xff, sizeof wc->masks.dl_src); memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst); if (flow->dl_type == htons(ETH_TYPE_IP)) { memset(&wc->masks.nw_src, 0xff, sizeof wc->masks.nw_src); memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst); } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) { memset(&wc->masks.ipv6_src, 0xff, sizeof wc->masks.ipv6_src); memset(&wc->masks.ipv6_dst, 0xff, sizeof wc->masks.ipv6_dst); } if (is_ip_any(flow)) { memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto); flow_unwildcard_tp_ports(flow, wc); } wc->masks.vlan_tci |= htons(VLAN_VID_MASK | VLAN_CFI); break; default: OVS_NOT_REACHED(); } } /* Hashes the portions of 'flow' designated by 'fields'. */ uint32_t flow_hash_fields(const struct flow *flow, enum nx_hash_fields fields, uint16_t basis) { switch (fields) { case NX_HASH_FIELDS_ETH_SRC: return jhash_bytes(flow->dl_src, sizeof flow->dl_src, basis); case NX_HASH_FIELDS_SYMMETRIC_L4: return flow_hash_symmetric_l4(flow, basis); } OVS_NOT_REACHED(); } /* Returns a string representation of 'fields'. */ const char * flow_hash_fields_to_str(enum nx_hash_fields fields) { switch (fields) { case NX_HASH_FIELDS_ETH_SRC: return "eth_src"; case NX_HASH_FIELDS_SYMMETRIC_L4: return "symmetric_l4"; default: return ""; } } /* Returns true if the value of 'fields' is supported. Otherwise false. */ bool flow_hash_fields_valid(enum nx_hash_fields fields) { return fields == NX_HASH_FIELDS_ETH_SRC || fields == NX_HASH_FIELDS_SYMMETRIC_L4; } /* Returns a hash value for the bits of 'flow' that are active based on * 'wc', given 'basis'. */ uint32_t flow_hash_in_wildcards(const struct flow *flow, const struct flow_wildcards *wc, uint32_t basis) { const uint32_t *wc_u32 = (const uint32_t *) &wc->masks; const uint32_t *flow_u32 = (const uint32_t *) flow; uint32_t hash; size_t i; hash = basis; for (i = 0; i < FLOW_U32S; i++) { hash = mhash_add(hash, flow_u32[i] & wc_u32[i]); } return mhash_finish(hash, 4 * FLOW_U32S); } /* Sets the VLAN VID that 'flow' matches to 'vid', which is interpreted as an * OpenFlow 1.0 "dl_vlan" value: * * - If it is in the range 0...4095, 'flow->vlan_tci' is set to match * that VLAN. Any existing PCP match is unchanged (it becomes 0 if * 'flow' previously matched packets without a VLAN header). * * - If it is OFP_VLAN_NONE, 'flow->vlan_tci' is set to match a packet * without a VLAN tag. * * - Other values of 'vid' should not be used. */ void flow_set_dl_vlan(struct flow *flow, ovs_be16 vid) { if (vid == htons(OFP10_VLAN_NONE)) { flow->vlan_tci = htons(0); } else { vid &= htons(VLAN_VID_MASK); flow->vlan_tci &= ~htons(VLAN_VID_MASK); flow->vlan_tci |= htons(VLAN_CFI) | vid; } } /* Sets the VLAN VID that 'flow' matches to 'vid', which is interpreted as an * OpenFlow 1.2 "vlan_vid" value, that is, the low 13 bits of 'vlan_tci' (VID * plus CFI). */ void flow_set_vlan_vid(struct flow *flow, ovs_be16 vid) { ovs_be16 mask = htons(VLAN_VID_MASK | VLAN_CFI); flow->vlan_tci &= ~mask; flow->vlan_tci |= vid & mask; } /* Sets the VLAN PCP that 'flow' matches to 'pcp', which should be in the * range 0...7. * * This function has no effect on the VLAN ID that 'flow' matches. * * After calling this function, 'flow' will not match packets without a VLAN * header. */ void flow_set_vlan_pcp(struct flow *flow, uint8_t pcp) { pcp &= 0x07; flow->vlan_tci &= ~htons(VLAN_PCP_MASK); flow->vlan_tci |= htons((pcp << VLAN_PCP_SHIFT) | VLAN_CFI); } /* Returns the number of MPLS LSEs present in 'flow' * * Returns 0 if the 'dl_type' of 'flow' is not an MPLS ethernet type. * Otherwise traverses 'flow''s MPLS label stack stopping at the * first entry that has the BoS bit set. If no such entry exists then * the maximum number of LSEs that can be stored in 'flow' is returned. */ int flow_count_mpls_labels(const struct flow *flow, struct flow_wildcards *wc) { if (wc) { wc->masks.dl_type = OVS_BE16_MAX; } if (eth_type_mpls(flow->dl_type)) { int i; int len = FLOW_MAX_MPLS_LABELS; for (i = 0; i < len; i++) { if (wc) { wc->masks.mpls_lse[i] |= htonl(MPLS_BOS_MASK); } if (flow->mpls_lse[i] & htonl(MPLS_BOS_MASK)) { return i + 1; } } return len; } else { return 0; } } /* Returns the number consecutive of MPLS LSEs, starting at the * innermost LSE, that are common in 'a' and 'b'. * * 'an' must be flow_count_mpls_labels(a). * 'bn' must be flow_count_mpls_labels(b). */ int flow_count_common_mpls_labels(const struct flow *a, int an, const struct flow *b, int bn, struct flow_wildcards *wc) { int min_n = MIN(an, bn); if (min_n == 0) { return 0; } else { int common_n = 0; int a_last = an - 1; int b_last = bn - 1; int i; for (i = 0; i < min_n; i++) { if (wc) { wc->masks.mpls_lse[a_last - i] = OVS_BE32_MAX; wc->masks.mpls_lse[b_last - i] = OVS_BE32_MAX; } if (a->mpls_lse[a_last - i] != b->mpls_lse[b_last - i]) { break; } else { common_n++; } } return common_n; } } /* Adds a new outermost MPLS label to 'flow' and changes 'flow''s Ethernet type * to 'mpls_eth_type', which must be an MPLS Ethertype. * * If the new label is the first MPLS label in 'flow', it is generated as; * * - label: 2, if 'flow' is IPv6, otherwise 0. * * - TTL: IPv4 or IPv6 TTL, if present and nonzero, otherwise 64. * * - TC: IPv4 or IPv6 TOS, if present, otherwise 0. * * - BoS: 1. * * If the new label is the second or label MPLS label in 'flow', it is * generated as; * * - label: Copied from outer label. * * - TTL: Copied from outer label. * * - TC: Copied from outer label. * * - BoS: 0. * * 'n' must be flow_count_mpls_labels(flow). 'n' must be less than * FLOW_MAX_MPLS_LABELS (because otherwise flow->mpls_lse[] would overflow). */ void flow_push_mpls(struct flow *flow, int n, ovs_be16 mpls_eth_type, struct flow_wildcards *wc) { ovs_assert(eth_type_mpls(mpls_eth_type)); ovs_assert(n < FLOW_MAX_MPLS_LABELS); memset(wc->masks.mpls_lse, 0xff, sizeof wc->masks.mpls_lse); if (n) { int i; for (i = n; i >= 1; i--) { flow->mpls_lse[i] = flow->mpls_lse[i - 1]; } flow->mpls_lse[0] = (flow->mpls_lse[1] & htonl(~MPLS_BOS_MASK)); } else { int label = 0; /* IPv4 Explicit Null. */ int tc = 0; int ttl = 64; if (flow->dl_type == htons(ETH_TYPE_IPV6)) { label = 2; } if (is_ip_any(flow)) { tc = (flow->nw_tos & IP_DSCP_MASK) >> 2; wc->masks.nw_tos |= IP_DSCP_MASK; if (flow->nw_ttl) { ttl = flow->nw_ttl; } wc->masks.nw_ttl = 0xff; } flow->mpls_lse[0] = set_mpls_lse_values(ttl, tc, 1, htonl(label)); /* Clear all L3 and L4 fields. */ BUILD_ASSERT(FLOW_WC_SEQ == 25); memset((char *) flow + FLOW_SEGMENT_2_ENDS_AT, 0, sizeof(struct flow) - FLOW_SEGMENT_2_ENDS_AT); } flow->dl_type = mpls_eth_type; } /* Tries to remove the outermost MPLS label from 'flow'. Returns true if * successful, false otherwise. On success, sets 'flow''s Ethernet type to * 'eth_type'. * * 'n' must be flow_count_mpls_labels(flow). */ bool flow_pop_mpls(struct flow *flow, int n, ovs_be16 eth_type, struct flow_wildcards *wc) { int i; if (n == 0) { /* Nothing to pop. */ return false; } else if (n == FLOW_MAX_MPLS_LABELS && !(flow->mpls_lse[n - 1] & htonl(MPLS_BOS_MASK))) { /* Can't pop because we don't know what to fill in mpls_lse[n - 1]. */ return false; } memset(wc->masks.mpls_lse, 0xff, sizeof wc->masks.mpls_lse); for (i = 1; i < n; i++) { flow->mpls_lse[i - 1] = flow->mpls_lse[i]; } flow->mpls_lse[n - 1] = 0; flow->dl_type = eth_type; return true; } /* Sets the MPLS Label that 'flow' matches to 'label', which is interpreted * as an OpenFlow 1.1 "mpls_label" value. */ void flow_set_mpls_label(struct flow *flow, int idx, ovs_be32 label) { set_mpls_lse_label(&flow->mpls_lse[idx], label); } /* Sets the MPLS TTL that 'flow' matches to 'ttl', which should be in the * range 0...255. */ void flow_set_mpls_ttl(struct flow *flow, int idx, uint8_t ttl) { set_mpls_lse_ttl(&flow->mpls_lse[idx], ttl); } /* Sets the MPLS TC that 'flow' matches to 'tc', which should be in the * range 0...7. */ void flow_set_mpls_tc(struct flow *flow, int idx, uint8_t tc) { set_mpls_lse_tc(&flow->mpls_lse[idx], tc); } /* Sets the MPLS BOS bit that 'flow' matches to which should be 0 or 1. */ void flow_set_mpls_bos(struct flow *flow, int idx, uint8_t bos) { set_mpls_lse_bos(&flow->mpls_lse[idx], bos); } /* Sets the entire MPLS LSE. */ void flow_set_mpls_lse(struct flow *flow, int idx, ovs_be32 lse) { flow->mpls_lse[idx] = lse; } static size_t flow_compose_l4(struct ofpbuf *b, const struct flow *flow) { size_t l4_len = 0; if (!(flow->nw_frag & FLOW_NW_FRAG_ANY) || !(flow->nw_frag & FLOW_NW_FRAG_LATER)) { if (flow->nw_proto == IPPROTO_TCP) { struct tcp_header *tcp; l4_len = sizeof *tcp; tcp = ofpbuf_put_zeros(b, l4_len); tcp->tcp_src = flow->tp_src; tcp->tcp_dst = flow->tp_dst; tcp->tcp_ctl = TCP_CTL(ntohs(flow->tcp_flags), 5); } else if (flow->nw_proto == IPPROTO_UDP) { struct udp_header *udp; l4_len = sizeof *udp; udp = ofpbuf_put_zeros(b, l4_len); udp->udp_src = flow->tp_src; udp->udp_dst = flow->tp_dst; } else if (flow->nw_proto == IPPROTO_SCTP) { struct sctp_header *sctp; l4_len = sizeof *sctp; sctp = ofpbuf_put_zeros(b, l4_len); sctp->sctp_src = flow->tp_src; sctp->sctp_dst = flow->tp_dst; } else if (flow->nw_proto == IPPROTO_ICMP) { struct icmp_header *icmp; l4_len = sizeof *icmp; icmp = ofpbuf_put_zeros(b, l4_len); icmp->icmp_type = ntohs(flow->tp_src); icmp->icmp_code = ntohs(flow->tp_dst); icmp->icmp_csum = csum(icmp, ICMP_HEADER_LEN); } else if (flow->nw_proto == IPPROTO_ICMPV6) { struct icmp6_hdr *icmp; l4_len = sizeof *icmp; icmp = ofpbuf_put_zeros(b, l4_len); icmp->icmp6_type = ntohs(flow->tp_src); icmp->icmp6_code = ntohs(flow->tp_dst); if (icmp->icmp6_code == 0 && (icmp->icmp6_type == ND_NEIGHBOR_SOLICIT || icmp->icmp6_type == ND_NEIGHBOR_ADVERT)) { struct in6_addr *nd_target; struct nd_opt_hdr *nd_opt; l4_len += sizeof *nd_target; nd_target = ofpbuf_put_zeros(b, sizeof *nd_target); *nd_target = flow->nd_target; if (!eth_addr_is_zero(flow->arp_sha)) { l4_len += 8; nd_opt = ofpbuf_put_zeros(b, 8); nd_opt->nd_opt_len = 1; nd_opt->nd_opt_type = ND_OPT_SOURCE_LINKADDR; memcpy(nd_opt + 1, flow->arp_sha, ETH_ADDR_LEN); } if (!eth_addr_is_zero(flow->arp_tha)) { l4_len += 8; nd_opt = ofpbuf_put_zeros(b, 8); nd_opt->nd_opt_len = 1; nd_opt->nd_opt_type = ND_OPT_TARGET_LINKADDR; memcpy(nd_opt + 1, flow->arp_tha, ETH_ADDR_LEN); } } icmp->icmp6_cksum = (OVS_FORCE uint16_t) csum(icmp, (char *)ofpbuf_tail(b) - (char *)icmp); } } return l4_len; } /* Puts into 'b' a packet that flow_extract() would parse as having the given * 'flow'. * * (This is useful only for testing, obviously, and the packet isn't really * valid. It hasn't got some checksums filled in, for one, and lots of fields * are just zeroed.) */ void flow_compose(struct ofpbuf *b, const struct flow *flow) { size_t l4_len; /* eth_compose() sets l3 pointer and makes sure it is 32-bit aligned. */ eth_compose(b, flow->dl_dst, flow->dl_src, ntohs(flow->dl_type), 0); if (flow->dl_type == htons(FLOW_DL_TYPE_NONE)) { struct eth_header *eth = ofpbuf_l2(b); eth->eth_type = htons(ofpbuf_size(b)); return; } if (flow->vlan_tci & htons(VLAN_CFI)) { eth_push_vlan(b, htons(ETH_TYPE_VLAN), flow->vlan_tci); } if (flow->dl_type == htons(ETH_TYPE_IP)) { struct ip_header *ip; ip = ofpbuf_put_zeros(b, sizeof *ip); ip->ip_ihl_ver = IP_IHL_VER(5, 4); ip->ip_tos = flow->nw_tos; ip->ip_ttl = flow->nw_ttl; ip->ip_proto = flow->nw_proto; put_16aligned_be32(&ip->ip_src, flow->nw_src); put_16aligned_be32(&ip->ip_dst, flow->nw_dst); if (flow->nw_frag & FLOW_NW_FRAG_ANY) { ip->ip_frag_off |= htons(IP_MORE_FRAGMENTS); if (flow->nw_frag & FLOW_NW_FRAG_LATER) { ip->ip_frag_off |= htons(100); } } ofpbuf_set_l4(b, ofpbuf_tail(b)); l4_len = flow_compose_l4(b, flow); ip->ip_tot_len = htons(b->l4_ofs - b->l3_ofs + l4_len); ip->ip_csum = csum(ip, sizeof *ip); } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) { struct ovs_16aligned_ip6_hdr *nh; nh = ofpbuf_put_zeros(b, sizeof *nh); put_16aligned_be32(&nh->ip6_flow, htonl(6 << 28) | htonl(flow->nw_tos << 20) | flow->ipv6_label); nh->ip6_hlim = flow->nw_ttl; nh->ip6_nxt = flow->nw_proto; memcpy(&nh->ip6_src, &flow->ipv6_src, sizeof(nh->ip6_src)); memcpy(&nh->ip6_dst, &flow->ipv6_dst, sizeof(nh->ip6_dst)); ofpbuf_set_l4(b, ofpbuf_tail(b)); l4_len = flow_compose_l4(b, flow); nh->ip6_plen = htons(l4_len); } else if (flow->dl_type == htons(ETH_TYPE_ARP) || flow->dl_type == htons(ETH_TYPE_RARP)) { struct arp_eth_header *arp; arp = ofpbuf_put_zeros(b, sizeof *arp); ofpbuf_set_l3(b, arp); arp->ar_hrd = htons(1); arp->ar_pro = htons(ETH_TYPE_IP); arp->ar_hln = ETH_ADDR_LEN; arp->ar_pln = 4; arp->ar_op = htons(flow->nw_proto); if (flow->nw_proto == ARP_OP_REQUEST || flow->nw_proto == ARP_OP_REPLY) { put_16aligned_be32(&arp->ar_spa, flow->nw_src); put_16aligned_be32(&arp->ar_tpa, flow->nw_dst); memcpy(arp->ar_sha, flow->arp_sha, ETH_ADDR_LEN); memcpy(arp->ar_tha, flow->arp_tha, ETH_ADDR_LEN); } } if (eth_type_mpls(flow->dl_type)) { int n; b->l2_5_ofs = b->l3_ofs; for (n = 1; n < FLOW_MAX_MPLS_LABELS; n++) { if (flow->mpls_lse[n - 1] & htonl(MPLS_BOS_MASK)) { break; } } while (n > 0) { push_mpls(b, flow->dl_type, flow->mpls_lse[--n]); } } } /* Compressed flow. */ static int miniflow_n_values(const struct miniflow *flow) { return count_1bits(flow->map); } static uint32_t * miniflow_alloc_values(struct miniflow *flow, int n) { if (n <= MINI_N_INLINE) { return flow->inline_values; } else { COVERAGE_INC(miniflow_malloc); return xmalloc(n * sizeof *flow->values); } } /* Completes an initialization of 'dst' as a miniflow copy of 'src' begun by * the caller. The caller must have already initialized 'dst->map' properly * to indicate the significant uint32_t elements of 'src'. 'n' must be the * number of 1-bits in 'dst->map'. * * Normally the significant elements are the ones that are non-zero. However, * when a miniflow is initialized from a (mini)mask, the values can be zeroes, * so that the flow and mask always have the same maps. * * This function initializes 'dst->values' (either inline if possible or with * malloc() otherwise) and copies the uint32_t elements of 'src' indicated by * 'dst->map' into it. */ static void miniflow_init__(struct miniflow *dst, const struct flow *src, int n) { const uint32_t *src_u32 = (const uint32_t *) src; unsigned int ofs; uint64_t map; dst->values = miniflow_alloc_values(dst, n); ofs = 0; for (map = dst->map; map; map = zero_rightmost_1bit(map)) { dst->values[ofs++] = src_u32[raw_ctz(map)]; } } /* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst' * with miniflow_destroy(). */ void miniflow_init(struct miniflow *dst, const struct flow *src) { const uint32_t *src_u32 = (const uint32_t *) src; unsigned int i; int n; /* Initialize dst->map, counting the number of nonzero elements. */ n = 0; dst->map = 0; for (i = 0; i < FLOW_U32S; i++) { if (src_u32[i]) { dst->map |= UINT64_C(1) << i; n++; } } miniflow_init__(dst, src, n); } /* Initializes 'dst' as a copy of 'src', using 'mask->map' as 'dst''s map. The * caller must eventually free 'dst' with miniflow_destroy(). */ void miniflow_init_with_minimask(struct miniflow *dst, const struct flow *src, const struct minimask *mask) { dst->map = mask->masks.map; miniflow_init__(dst, src, miniflow_n_values(dst)); } /* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst' * with miniflow_destroy(). */ void miniflow_clone(struct miniflow *dst, const struct miniflow *src) { int n = miniflow_n_values(src); dst->map = src->map; dst->values = miniflow_alloc_values(dst, n); memcpy(dst->values, src->values, n * sizeof *dst->values); } /* Initializes 'dst' with the data in 'src', destroying 'src'. * The caller must eventually free 'dst' with miniflow_destroy(). */ void miniflow_move(struct miniflow *dst, struct miniflow *src) { if (src->values == src->inline_values) { dst->values = dst->inline_values; memcpy(dst->values, src->values, miniflow_n_values(src) * sizeof *dst->values); } else { dst->values = src->values; } dst->map = src->map; } /* Frees any memory owned by 'flow'. Does not free the storage in which 'flow' * itself resides; the caller is responsible for that. */ void miniflow_destroy(struct miniflow *flow) { if (flow->values != flow->inline_values) { free(flow->values); } } /* Initializes 'dst' as a copy of 'src'. */ void miniflow_expand(const struct miniflow *src, struct flow *dst) { memset(dst, 0, sizeof *dst); flow_union_with_miniflow(dst, src); } static const uint32_t * miniflow_get__(const struct miniflow *flow, unsigned int u32_ofs) { if (!(flow->map & (UINT64_C(1) << u32_ofs))) { static const uint32_t zero = 0; return &zero; } return flow->values + count_1bits(flow->map & ((UINT64_C(1) << u32_ofs) - 1)); } /* Returns the uint32_t that would be at byte offset '4 * u32_ofs' if 'flow' * were expanded into a "struct flow". */ uint32_t miniflow_get(const struct miniflow *flow, unsigned int u32_ofs) { return *miniflow_get__(flow, u32_ofs); } /* Returns the ovs_be16 that would be at byte offset 'u8_ofs' if 'flow' were * expanded into a "struct flow". */ static ovs_be16 miniflow_get_be16(const struct miniflow *flow, unsigned int u8_ofs) { const uint32_t *u32p = miniflow_get__(flow, u8_ofs / 4); const ovs_be16 *be16p = (const ovs_be16 *) u32p; return be16p[u8_ofs % 4 != 0]; } /* Returns the VID within the vlan_tci member of the "struct flow" represented * by 'flow'. */ uint16_t miniflow_get_vid(const struct miniflow *flow) { ovs_be16 tci = miniflow_get_be16(flow, offsetof(struct flow, vlan_tci)); return vlan_tci_to_vid(tci); } /* Returns true if 'a' and 'b' are the same flow, false otherwise. */ bool miniflow_equal(const struct miniflow *a, const struct miniflow *b) { const uint32_t *ap = a->values; const uint32_t *bp = b->values; const uint64_t a_map = a->map; const uint64_t b_map = b->map; uint64_t map; if (a_map == b_map) { for (map = a_map; map; map = zero_rightmost_1bit(map)) { if (*ap++ != *bp++) { return false; } } } else { for (map = a_map | b_map; map; map = zero_rightmost_1bit(map)) { uint64_t bit = rightmost_1bit(map); uint64_t a_value = a_map & bit ? *ap++ : 0; uint64_t b_value = b_map & bit ? *bp++ : 0; if (a_value != b_value) { return false; } } } return true; } /* Returns true if 'a' and 'b' are equal at the places where there are 1-bits * in 'mask', false if they differ. */ bool miniflow_equal_in_minimask(const struct miniflow *a, const struct miniflow *b, const struct minimask *mask) { const uint32_t *p; uint64_t map; p = mask->masks.values; for (map = mask->masks.map; map; map = zero_rightmost_1bit(map)) { int ofs = raw_ctz(map); if ((miniflow_get(a, ofs) ^ miniflow_get(b, ofs)) & *p) { return false; } p++; } return true; } /* Returns true if 'a' and 'b' are equal at the places where there are 1-bits * in 'mask', false if they differ. */ bool miniflow_equal_flow_in_minimask(const struct miniflow *a, const struct flow *b, const struct minimask *mask) { const uint32_t *b_u32 = (const uint32_t *) b; const uint32_t *p; uint64_t map; p = mask->masks.values; for (map = mask->masks.map; map; map = zero_rightmost_1bit(map)) { int ofs = raw_ctz(map); if ((miniflow_get(a, ofs) ^ b_u32[ofs]) & *p) { return false; } p++; } return true; } /* Returns a hash value for 'flow', given 'basis'. */ uint32_t miniflow_hash(const struct miniflow *flow, uint32_t basis) { const uint32_t *p = flow->values; uint32_t hash = basis; uint64_t hash_map = 0; uint64_t map; for (map = flow->map; map; map = zero_rightmost_1bit(map)) { if (*p) { hash = mhash_add(hash, *p); hash_map |= rightmost_1bit(map); } p++; } hash = mhash_add(hash, hash_map); hash = mhash_add(hash, hash_map >> 32); return mhash_finish(hash, p - flow->values); } /* Returns a hash value for the bits of 'flow' where there are 1-bits in * 'mask', given 'basis'. * * The hash values returned by this function are the same as those returned by * flow_hash_in_minimask(), only the form of the arguments differ. */ uint32_t miniflow_hash_in_minimask(const struct miniflow *flow, const struct minimask *mask, uint32_t basis) { const uint32_t *p = mask->masks.values; uint32_t hash; uint64_t map; hash = basis; for (map = mask->masks.map; map; map = zero_rightmost_1bit(map)) { hash = mhash_add(hash, miniflow_get(flow, raw_ctz(map)) & *p++); } return mhash_finish(hash, (p - mask->masks.values) * 4); } /* Returns a hash value for the bits of 'flow' where there are 1-bits in * 'mask', given 'basis'. * * The hash values returned by this function are the same as those returned by * miniflow_hash_in_minimask(), only the form of the arguments differ. */ uint32_t flow_hash_in_minimask(const struct flow *flow, const struct minimask *mask, uint32_t basis) { const uint32_t *flow_u32 = (const uint32_t *)flow; const uint32_t *p = mask->masks.values; uint32_t hash; uint64_t map; hash = basis; for (map = mask->masks.map; map; map = zero_rightmost_1bit(map)) { hash = mhash_add(hash, flow_u32[raw_ctz(map)] & *p++); } return mhash_finish(hash, (p - mask->masks.values) * 4); } /* Returns a hash value for the bits of range [start, end) in 'flow', * where there are 1-bits in 'mask', given 'hash'. * * The hash values returned by this function are the same as those returned by * minimatch_hash_range(), only the form of the arguments differ. */ uint32_t flow_hash_in_minimask_range(const struct flow *flow, const struct minimask *mask, uint8_t start, uint8_t end, uint32_t *basis) { const uint32_t *flow_u32 = (const uint32_t *)flow; unsigned int offset; uint64_t map = miniflow_get_map_in_range(&mask->masks, start, end, &offset); const uint32_t *p = mask->masks.values + offset; uint32_t hash = *basis; for (; map; map = zero_rightmost_1bit(map)) { hash = mhash_add(hash, flow_u32[raw_ctz(map)] & *p++); } *basis = hash; /* Allow continuation from the unfinished value. */ return mhash_finish(hash, (p - mask->masks.values) * 4); } /* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst' * with minimask_destroy(). */ void minimask_init(struct minimask *mask, const struct flow_wildcards *wc) { miniflow_init(&mask->masks, &wc->masks); } /* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst' * with minimask_destroy(). */ void minimask_clone(struct minimask *dst, const struct minimask *src) { miniflow_clone(&dst->masks, &src->masks); } /* Initializes 'dst' with the data in 'src', destroying 'src'. * The caller must eventually free 'dst' with minimask_destroy(). */ void minimask_move(struct minimask *dst, struct minimask *src) { miniflow_move(&dst->masks, &src->masks); } /* Initializes 'dst_' as the bit-wise "and" of 'a_' and 'b_'. * * The caller must provide room for FLOW_U32S "uint32_t"s in 'storage', for use * by 'dst_'. The caller must *not* free 'dst_' with minimask_destroy(). */ void minimask_combine(struct minimask *dst_, const struct minimask *a_, const struct minimask *b_, uint32_t storage[FLOW_U32S]) { struct miniflow *dst = &dst_->masks; const struct miniflow *a = &a_->masks; const struct miniflow *b = &b_->masks; uint64_t map; int n = 0; dst->values = storage; dst->map = 0; for (map = a->map & b->map; map; map = zero_rightmost_1bit(map)) { int ofs = raw_ctz(map); uint32_t mask = miniflow_get(a, ofs) & miniflow_get(b, ofs); if (mask) { dst->map |= rightmost_1bit(map); dst->values[n++] = mask; } } } /* Frees any memory owned by 'mask'. Does not free the storage in which 'mask' * itself resides; the caller is responsible for that. */ void minimask_destroy(struct minimask *mask) { miniflow_destroy(&mask->masks); } /* Initializes 'dst' as a copy of 'src'. */ void minimask_expand(const struct minimask *mask, struct flow_wildcards *wc) { miniflow_expand(&mask->masks, &wc->masks); } /* Returns the uint32_t that would be at byte offset '4 * u32_ofs' if 'mask' * were expanded into a "struct flow_wildcards". */ uint32_t minimask_get(const struct minimask *mask, unsigned int u32_ofs) { return miniflow_get(&mask->masks, u32_ofs); } /* Returns the VID mask within the vlan_tci member of the "struct * flow_wildcards" represented by 'mask'. */ uint16_t minimask_get_vid_mask(const struct minimask *mask) { return miniflow_get_vid(&mask->masks); } /* Returns true if 'a' and 'b' are the same flow mask, false otherwise. */ bool minimask_equal(const struct minimask *a, const struct minimask *b) { return miniflow_equal(&a->masks, &b->masks); } /* Returns a hash value for 'mask', given 'basis'. */ uint32_t minimask_hash(const struct minimask *mask, uint32_t basis) { return miniflow_hash(&mask->masks, basis); } /* Returns true if at least one bit is wildcarded in 'a_' but not in 'b_', * false otherwise. */ bool minimask_has_extra(const struct minimask *a_, const struct minimask *b_) { const struct miniflow *a = &a_->masks; const struct miniflow *b = &b_->masks; uint64_t map; for (map = a->map | b->map; map; map = zero_rightmost_1bit(map)) { int ofs = raw_ctz(map); uint32_t a_u32 = miniflow_get(a, ofs); uint32_t b_u32 = miniflow_get(b, ofs); if ((a_u32 & b_u32) != b_u32) { return true; } } return false; } /* Returns true if 'mask' matches every packet, false if 'mask' fixes any bits * or fields. */ bool minimask_is_catchall(const struct minimask *mask_) { const struct miniflow *mask = &mask_->masks; const uint32_t *p = mask->values; uint64_t map; for (map = mask->map; map; map = zero_rightmost_1bit(map)) { if (*p++) { return false; } } return true; }