/* * Copyright (c) 2008, 2009, 2010, 2011, 2012, 2013, 2014 Nicira, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include "flow.h" #include #include #include #include #include #include #include #include #include #include "byte-order.h" #include "coverage.h" #include "csum.h" #include "dynamic-string.h" #include "hash.h" #include "jhash.h" #include "match.h" #include "ofpbuf.h" #include "openflow/openflow.h" #include "packets.h" #include "odp-util.h" #include "random.h" #include "unaligned.h" COVERAGE_DEFINE(flow_extract); COVERAGE_DEFINE(miniflow_malloc); /* U32 indices for segmented flow classification. */ const uint8_t flow_segment_u32s[4] = { FLOW_SEGMENT_1_ENDS_AT / 4, FLOW_SEGMENT_2_ENDS_AT / 4, FLOW_SEGMENT_3_ENDS_AT / 4, FLOW_U32S }; /* miniflow_extract() assumes the following to be true to optimize the * extraction process. */ BUILD_ASSERT_DECL(offsetof(struct flow, dl_type) + 2 == offsetof(struct flow, vlan_tci) && offsetof(struct flow, dl_type) / 4 == offsetof(struct flow, vlan_tci) / 4 ); BUILD_ASSERT_DECL(offsetof(struct flow, nw_frag) + 3 == offsetof(struct flow, nw_proto) && offsetof(struct flow, nw_tos) + 2 == offsetof(struct flow, nw_proto) && offsetof(struct flow, nw_ttl) + 1 == offsetof(struct flow, nw_proto) && offsetof(struct flow, nw_frag) / 4 == offsetof(struct flow, nw_tos) / 4 && offsetof(struct flow, nw_ttl) / 4 == offsetof(struct flow, nw_tos) / 4 && offsetof(struct flow, nw_proto) / 4 == offsetof(struct flow, nw_tos) / 4); /* TCP flags in the first half of a BE32, zeroes in the other half. */ BUILD_ASSERT_DECL(offsetof(struct flow, tcp_flags) + 2 == offsetof(struct flow, pad) && offsetof(struct flow, tcp_flags) / 4 == offsetof(struct flow, pad) / 4); #if WORDS_BIGENDIAN #define TCP_FLAGS_BE32(tcp_ctl) ((OVS_FORCE ovs_be32)TCP_FLAGS_BE16(tcp_ctl) \ << 16) #else #define TCP_FLAGS_BE32(tcp_ctl) ((OVS_FORCE ovs_be32)TCP_FLAGS_BE16(tcp_ctl)) #endif BUILD_ASSERT_DECL(offsetof(struct flow, tp_src) + 2 == offsetof(struct flow, tp_dst) && offsetof(struct flow, tp_src) / 4 == offsetof(struct flow, tp_dst) / 4); /* Removes 'size' bytes from the head end of '*datap', of size '*sizep', which * must contain at least 'size' bytes of data. Returns the first byte of data * removed. */ static inline const void * data_pull(void **datap, size_t *sizep, size_t size) { char *data = (char *)*datap; *datap = data + size; *sizep -= size; return data; } /* If '*datap' has at least 'size' bytes of data, removes that many bytes from * the head end of '*datap' and returns the first byte removed. Otherwise, * returns a null pointer without modifying '*datap'. */ static inline const void * data_try_pull(void **datap, size_t *sizep, size_t size) { return OVS_LIKELY(*sizep >= size) ? data_pull(datap, sizep, size) : NULL; } /* Context for pushing data to a miniflow. */ struct mf_ctx { uint64_t map; uint32_t *data; uint32_t * const end; }; /* miniflow_push_* macros allow filling in a miniflow data values in order. * Assertions are needed only when the layout of the struct flow is modified. * 'ofs' is a compile-time constant, which allows most of the code be optimized * away. Some GCC versions gave warnigns on ALWAYS_INLINE, so these are * defined as macros. */ #if (FLOW_WC_SEQ != 26) #define MINIFLOW_ASSERT(X) ovs_assert(X) #else #define MINIFLOW_ASSERT(X) #endif #define miniflow_push_uint32_(MF, OFS, VALUE) \ { \ MINIFLOW_ASSERT(MF.data < MF.end && (OFS) % 4 == 0 \ && !(MF.map & (UINT64_MAX << (OFS) / 4))); \ *MF.data++ = VALUE; \ MF.map |= UINT64_C(1) << (OFS) / 4; \ } #define miniflow_push_be32_(MF, OFS, VALUE) \ miniflow_push_uint32_(MF, OFS, (OVS_FORCE uint32_t)(VALUE)) #define miniflow_push_uint16_(MF, OFS, VALUE) \ { \ MINIFLOW_ASSERT(MF.data < MF.end && \ (((OFS) % 4 == 0 && !(MF.map & (UINT64_MAX << (OFS) / 4))) \ || ((OFS) % 4 == 2 && MF.map & (UINT64_C(1) << (OFS) / 4) \ && !(MF.map & (UINT64_MAX << ((OFS) / 4 + 1)))))); \ \ if ((OFS) % 4 == 0) { \ *(uint16_t *)MF.data = VALUE; \ MF.map |= UINT64_C(1) << (OFS) / 4; \ } else if ((OFS) % 4 == 2) { \ *((uint16_t *)MF.data + 1) = VALUE; \ MF.data++; \ } \ } #define miniflow_push_be16_(MF, OFS, VALUE) \ miniflow_push_uint16_(MF, OFS, (OVS_FORCE uint16_t)VALUE); /* Data at 'valuep' may be unaligned. */ #define miniflow_push_words_(MF, OFS, VALUEP, N_WORDS) \ { \ int ofs32 = (OFS) / 4; \ \ MINIFLOW_ASSERT(MF.data + (N_WORDS) <= MF.end && (OFS) % 4 == 0 \ && !(MF.map & (UINT64_MAX << ofs32))); \ \ memcpy(MF.data, (VALUEP), (N_WORDS) * sizeof *MF.data); \ MF.data += (N_WORDS); \ MF.map |= ((UINT64_MAX >> (64 - (N_WORDS))) << ofs32); \ } #define miniflow_push_uint32(MF, FIELD, VALUE) \ miniflow_push_uint32_(MF, offsetof(struct flow, FIELD), VALUE) #define miniflow_push_be32(MF, FIELD, VALUE) \ miniflow_push_be32_(MF, offsetof(struct flow, FIELD), VALUE) #define miniflow_push_uint32_check(MF, FIELD, VALUE) \ { if (OVS_LIKELY(VALUE)) { \ miniflow_push_uint32_(MF, offsetof(struct flow, FIELD), VALUE); \ } \ } #define miniflow_push_be32_check(MF, FIELD, VALUE) \ { if (OVS_LIKELY(VALUE)) { \ miniflow_push_be32_(MF, offsetof(struct flow, FIELD), VALUE); \ } \ } #define miniflow_push_uint16(MF, FIELD, VALUE) \ miniflow_push_uint16_(MF, offsetof(struct flow, FIELD), VALUE) #define miniflow_push_be16(MF, FIELD, VALUE) \ miniflow_push_be16_(MF, offsetof(struct flow, FIELD), VALUE) #define miniflow_push_words(MF, FIELD, VALUEP, N_WORDS) \ miniflow_push_words_(MF, offsetof(struct flow, FIELD), VALUEP, N_WORDS) /* Pulls the MPLS headers at '*datap' and returns the count of them. */ static inline int parse_mpls(void **datap, size_t *sizep) { const struct mpls_hdr *mh; int count = 0; while ((mh = data_try_pull(datap, sizep, sizeof *mh))) { count++; if (mh->mpls_lse.lo & htons(1 << MPLS_BOS_SHIFT)) { break; } } return MAX(count, FLOW_MAX_MPLS_LABELS); } static inline ovs_be16 parse_vlan(void **datap, size_t *sizep) { const struct eth_header *eth = *datap; struct qtag_prefix { ovs_be16 eth_type; /* ETH_TYPE_VLAN */ ovs_be16 tci; }; data_pull(datap, sizep, ETH_ADDR_LEN * 2); if (eth->eth_type == htons(ETH_TYPE_VLAN)) { if (OVS_LIKELY(*sizep >= sizeof(struct qtag_prefix) + sizeof(ovs_be16))) { const struct qtag_prefix *qp = data_pull(datap, sizep, sizeof *qp); return qp->tci | htons(VLAN_CFI); } } return 0; } static inline ovs_be16 parse_ethertype(void **datap, size_t *sizep) { const struct llc_snap_header *llc; ovs_be16 proto; proto = *(ovs_be16 *) data_pull(datap, sizep, sizeof proto); if (OVS_LIKELY(ntohs(proto) >= ETH_TYPE_MIN)) { return proto; } if (OVS_UNLIKELY(*sizep < sizeof *llc)) { return htons(FLOW_DL_TYPE_NONE); } llc = *datap; if (OVS_UNLIKELY(llc->llc.llc_dsap != LLC_DSAP_SNAP || llc->llc.llc_ssap != LLC_SSAP_SNAP || llc->llc.llc_cntl != LLC_CNTL_SNAP || memcmp(llc->snap.snap_org, SNAP_ORG_ETHERNET, sizeof llc->snap.snap_org))) { return htons(FLOW_DL_TYPE_NONE); } data_pull(datap, sizep, sizeof *llc); if (OVS_LIKELY(ntohs(llc->snap.snap_type) >= ETH_TYPE_MIN)) { return llc->snap.snap_type; } return htons(FLOW_DL_TYPE_NONE); } static inline bool parse_icmpv6(void **datap, size_t *sizep, const struct icmp6_hdr *icmp, const struct in6_addr **nd_target, uint8_t arp_buf[2][ETH_ADDR_LEN]) { if (icmp->icmp6_code == 0 && (icmp->icmp6_type == ND_NEIGHBOR_SOLICIT || icmp->icmp6_type == ND_NEIGHBOR_ADVERT)) { *nd_target = data_try_pull(datap, sizep, sizeof *nd_target); if (OVS_UNLIKELY(!*nd_target)) { return false; } while (*sizep >= 8) { /* The minimum size of an option is 8 bytes, which also is * the size of Ethernet link-layer options. */ const struct nd_opt_hdr *nd_opt = *datap; int opt_len = nd_opt->nd_opt_len * 8; if (!opt_len || opt_len > *sizep) { goto invalid; } /* Store the link layer address if the appropriate option is * provided. It is considered an error if the same link * layer option is specified twice. */ if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LINKADDR && opt_len == 8) { if (OVS_LIKELY(eth_addr_is_zero(arp_buf[0]))) { memcpy(arp_buf[0], nd_opt + 1, ETH_ADDR_LEN); } else { goto invalid; } } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LINKADDR && opt_len == 8) { if (OVS_LIKELY(eth_addr_is_zero(arp_buf[1]))) { memcpy(arp_buf[1], nd_opt + 1, ETH_ADDR_LEN); } else { goto invalid; } } if (OVS_UNLIKELY(!data_try_pull(datap, sizep, opt_len))) { goto invalid; } } } return true; invalid: return false; } /* Initializes 'flow' members from 'packet' and 'md' * * Initializes 'packet' header l2 pointer to the start of the Ethernet * header, and the layer offsets as follows: * * - packet->l2_5_ofs to the start of the MPLS shim header, or UINT16_MAX * when there is no MPLS shim header. * * - packet->l3_ofs to just past the Ethernet header, or just past the * vlan_header if one is present, to the first byte of the payload of the * Ethernet frame. UINT16_MAX if the frame is too short to contain an * Ethernet header. * * - packet->l4_ofs to just past the IPv4 header, if one is present and * has at least the content used for the fields of interest for the flow, * otherwise UINT16_MAX. */ void flow_extract(struct ofpbuf *packet, const struct pkt_metadata *md, struct flow *flow) { struct { struct miniflow mf; uint32_t buf[FLOW_U32S]; } m; COVERAGE_INC(flow_extract); miniflow_initialize(&m.mf, m.buf); miniflow_extract(packet, md, &m.mf); miniflow_expand(&m.mf, flow); } /* Caller is responsible for initializing 'dst' with enough storage for * FLOW_U32S * 4 bytes. */ void miniflow_extract(struct ofpbuf *packet, const struct pkt_metadata *md, struct miniflow *dst) { void *data = ofpbuf_data(packet); size_t size = ofpbuf_size(packet); uint32_t *values = miniflow_values(dst); struct mf_ctx mf = { 0, values, values + FLOW_U32S }; char *l2; ovs_be16 dl_type; uint8_t nw_frag, nw_tos, nw_ttl, nw_proto; /* Metadata. */ if (md) { if (md->tunnel.ip_dst) { miniflow_push_words(mf, tunnel, &md->tunnel, sizeof md->tunnel / 4); } miniflow_push_uint32_check(mf, skb_priority, md->skb_priority); miniflow_push_uint32_check(mf, pkt_mark, md->pkt_mark); miniflow_push_uint32_check(mf, recirc_id, md->recirc_id); miniflow_push_uint32(mf, in_port, odp_to_u32(md->in_port.odp_port)); } /* Initialize packet's layer pointer and offsets. */ l2 = data; ofpbuf_set_frame(packet, data); /* Must have full Ethernet header to proceed. */ if (OVS_UNLIKELY(size < sizeof(struct eth_header))) { goto out; } else { ovs_be16 vlan_tci; /* Link layer. */ BUILD_ASSERT(offsetof(struct flow, dl_dst) + 6 == offsetof(struct flow, dl_src)); miniflow_push_words(mf, dl_dst, data, ETH_ADDR_LEN * 2 / 4); /* dl_type, vlan_tci. */ vlan_tci = parse_vlan(&data, &size); dl_type = parse_ethertype(&data, &size); miniflow_push_be16(mf, dl_type, dl_type); miniflow_push_be16(mf, vlan_tci, vlan_tci); } /* Parse mpls. */ if (OVS_UNLIKELY(eth_type_mpls(dl_type))) { int count; const void *mpls = data; packet->l2_5_ofs = (char *)data - l2; count = parse_mpls(&data, &size); miniflow_push_words(mf, mpls_lse, mpls, count); } /* Network layer. */ packet->l3_ofs = (char *)data - l2; nw_frag = 0; if (OVS_LIKELY(dl_type == htons(ETH_TYPE_IP))) { const struct ip_header *nh = data; int ip_len; if (OVS_UNLIKELY(size < IP_HEADER_LEN)) { goto out; } ip_len = IP_IHL(nh->ip_ihl_ver) * 4; if (OVS_UNLIKELY(ip_len < IP_HEADER_LEN)) { goto out; } /* Push both source and destination address at once. */ miniflow_push_words(mf, nw_src, &nh->ip_src, 2); nw_tos = nh->ip_tos; nw_ttl = nh->ip_ttl; nw_proto = nh->ip_proto; if (OVS_UNLIKELY(IP_IS_FRAGMENT(nh->ip_frag_off))) { nw_frag = FLOW_NW_FRAG_ANY; if (nh->ip_frag_off & htons(IP_FRAG_OFF_MASK)) { nw_frag |= FLOW_NW_FRAG_LATER; } } if (OVS_UNLIKELY(size < ip_len)) { goto out; } data_pull(&data, &size, ip_len); } else if (dl_type == htons(ETH_TYPE_IPV6)) { const struct ovs_16aligned_ip6_hdr *nh; ovs_be32 tc_flow; if (OVS_UNLIKELY(size < sizeof *nh)) { goto out; } nh = data_pull(&data, &size, sizeof *nh); miniflow_push_words(mf, ipv6_src, &nh->ip6_src, sizeof nh->ip6_src / 4); miniflow_push_words(mf, ipv6_dst, &nh->ip6_dst, sizeof nh->ip6_dst / 4); tc_flow = get_16aligned_be32(&nh->ip6_flow); { ovs_be32 label = tc_flow & htonl(IPV6_LABEL_MASK); miniflow_push_be32_check(mf, ipv6_label, label); } nw_tos = ntohl(tc_flow) >> 20; nw_ttl = nh->ip6_hlim; nw_proto = nh->ip6_nxt; while (1) { if (OVS_LIKELY((nw_proto != IPPROTO_HOPOPTS) && (nw_proto != IPPROTO_ROUTING) && (nw_proto != IPPROTO_DSTOPTS) && (nw_proto != IPPROTO_AH) && (nw_proto != IPPROTO_FRAGMENT))) { /* It's either a terminal header (e.g., TCP, UDP) or one we * don't understand. In either case, we're done with the * packet, so use it to fill in 'nw_proto'. */ break; } /* We only verify that at least 8 bytes of the next header are * available, but many of these headers are longer. Ensure that * accesses within the extension header are within those first 8 * bytes. All extension headers are required to be at least 8 * bytes. */ if (OVS_UNLIKELY(size < 8)) { goto out; } if ((nw_proto == IPPROTO_HOPOPTS) || (nw_proto == IPPROTO_ROUTING) || (nw_proto == IPPROTO_DSTOPTS)) { /* These headers, while different, have the fields we care * about in the same location and with the same * interpretation. */ const struct ip6_ext *ext_hdr = data; nw_proto = ext_hdr->ip6e_nxt; if (OVS_UNLIKELY(!data_try_pull(&data, &size, (ext_hdr->ip6e_len + 1) * 8))) { goto out; } } else if (nw_proto == IPPROTO_AH) { /* A standard AH definition isn't available, but the fields * we care about are in the same location as the generic * option header--only the header length is calculated * differently. */ const struct ip6_ext *ext_hdr = data; nw_proto = ext_hdr->ip6e_nxt; if (OVS_UNLIKELY(!data_try_pull(&data, &size, (ext_hdr->ip6e_len + 2) * 4))) { goto out; } } else if (nw_proto == IPPROTO_FRAGMENT) { const struct ovs_16aligned_ip6_frag *frag_hdr = data; nw_proto = frag_hdr->ip6f_nxt; if (!data_try_pull(&data, &size, sizeof *frag_hdr)) { goto out; } /* We only process the first fragment. */ if (frag_hdr->ip6f_offlg != htons(0)) { nw_frag = FLOW_NW_FRAG_ANY; if ((frag_hdr->ip6f_offlg & IP6F_OFF_MASK) != htons(0)) { nw_frag |= FLOW_NW_FRAG_LATER; nw_proto = IPPROTO_FRAGMENT; break; } } } } } else { if (dl_type == htons(ETH_TYPE_ARP) || dl_type == htons(ETH_TYPE_RARP)) { uint8_t arp_buf[2][ETH_ADDR_LEN]; const struct arp_eth_header *arp = (const struct arp_eth_header *) data_try_pull(&data, &size, ARP_ETH_HEADER_LEN); if (OVS_LIKELY(arp) && OVS_LIKELY(arp->ar_hrd == htons(1)) && OVS_LIKELY(arp->ar_pro == htons(ETH_TYPE_IP)) && OVS_LIKELY(arp->ar_hln == ETH_ADDR_LEN) && OVS_LIKELY(arp->ar_pln == 4)) { miniflow_push_words(mf, nw_src, &arp->ar_spa, 1); miniflow_push_words(mf, nw_dst, &arp->ar_tpa, 1); /* We only match on the lower 8 bits of the opcode. */ if (OVS_LIKELY(ntohs(arp->ar_op) <= 0xff)) { miniflow_push_be32(mf, nw_frag, htonl(ntohs(arp->ar_op))); } /* Must be adjacent. */ BUILD_ASSERT(offsetof(struct flow, arp_sha) + 6 == offsetof(struct flow, arp_tha)); memcpy(arp_buf[0], arp->ar_sha, ETH_ADDR_LEN); memcpy(arp_buf[1], arp->ar_tha, ETH_ADDR_LEN); miniflow_push_words(mf, arp_sha, arp_buf, ETH_ADDR_LEN * 2 / 4); } } goto out; } packet->l4_ofs = (char *)data - l2; miniflow_push_be32(mf, nw_frag, BYTES_TO_BE32(nw_frag, nw_tos, nw_ttl, nw_proto)); if (OVS_LIKELY(!(nw_frag & FLOW_NW_FRAG_LATER))) { if (OVS_LIKELY(nw_proto == IPPROTO_TCP)) { if (OVS_LIKELY(size >= TCP_HEADER_LEN)) { const struct tcp_header *tcp = data; miniflow_push_be32(mf, tcp_flags, TCP_FLAGS_BE32(tcp->tcp_ctl)); miniflow_push_words(mf, tp_src, &tcp->tcp_src, 1); } } else if (OVS_LIKELY(nw_proto == IPPROTO_UDP)) { if (OVS_LIKELY(size >= UDP_HEADER_LEN)) { const struct udp_header *udp = data; miniflow_push_words(mf, tp_src, &udp->udp_src, 1); } } else if (OVS_LIKELY(nw_proto == IPPROTO_SCTP)) { if (OVS_LIKELY(size >= SCTP_HEADER_LEN)) { const struct sctp_header *sctp = data; miniflow_push_words(mf, tp_src, &sctp->sctp_src, 1); } } else if (OVS_LIKELY(nw_proto == IPPROTO_ICMP)) { if (OVS_LIKELY(size >= ICMP_HEADER_LEN)) { const struct icmp_header *icmp = data; miniflow_push_be16(mf, tp_src, htons(icmp->icmp_type)); miniflow_push_be16(mf, tp_dst, htons(icmp->icmp_code)); } } else if (OVS_LIKELY(nw_proto == IPPROTO_ICMPV6)) { if (OVS_LIKELY(size >= sizeof(struct icmp6_hdr))) { const struct in6_addr *nd_target = NULL; uint8_t arp_buf[2][ETH_ADDR_LEN]; const struct icmp6_hdr *icmp = data_pull(&data, &size, sizeof *icmp); memset(arp_buf, 0, sizeof arp_buf); if (OVS_LIKELY(parse_icmpv6(&data, &size, icmp, &nd_target, arp_buf))) { if (nd_target) { miniflow_push_words(mf, nd_target, nd_target, sizeof *nd_target / 4); } miniflow_push_words(mf, arp_sha, arp_buf, ETH_ADDR_LEN * 2 / 4); miniflow_push_be16(mf, tp_src, htons(icmp->icmp6_type)); miniflow_push_be16(mf, tp_dst, htons(icmp->icmp6_code)); } } } } if (md) { miniflow_push_uint32_check(mf, dp_hash, md->dp_hash); } out: dst->map = mf.map; } /* For every bit of a field that is wildcarded in 'wildcards', sets the * corresponding bit in 'flow' to zero. */ void flow_zero_wildcards(struct flow *flow, const struct flow_wildcards *wildcards) { uint32_t *flow_u32 = (uint32_t *) flow; const uint32_t *wc_u32 = (const uint32_t *) &wildcards->masks; size_t i; for (i = 0; i < FLOW_U32S; i++) { flow_u32[i] &= wc_u32[i]; } } void flow_unwildcard_tp_ports(const struct flow *flow, struct flow_wildcards *wc) { if (flow->nw_proto != IPPROTO_ICMP) { memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src); memset(&wc->masks.tp_dst, 0xff, sizeof wc->masks.tp_dst); } else { wc->masks.tp_src = htons(0xff); wc->masks.tp_dst = htons(0xff); } } /* Initializes 'fmd' with the metadata found in 'flow'. */ void flow_get_metadata(const struct flow *flow, struct flow_metadata *fmd) { BUILD_ASSERT_DECL(FLOW_WC_SEQ == 26); fmd->dp_hash = flow->dp_hash; fmd->recirc_id = flow->recirc_id; fmd->tun_id = flow->tunnel.tun_id; fmd->tun_src = flow->tunnel.ip_src; fmd->tun_dst = flow->tunnel.ip_dst; fmd->metadata = flow->metadata; memcpy(fmd->regs, flow->regs, sizeof fmd->regs); fmd->pkt_mark = flow->pkt_mark; fmd->in_port = flow->in_port.ofp_port; } char * flow_to_string(const struct flow *flow) { struct ds ds = DS_EMPTY_INITIALIZER; flow_format(&ds, flow); return ds_cstr(&ds); } const char * flow_tun_flag_to_string(uint32_t flags) { switch (flags) { case FLOW_TNL_F_DONT_FRAGMENT: return "df"; case FLOW_TNL_F_CSUM: return "csum"; case FLOW_TNL_F_KEY: return "key"; default: return NULL; } } void format_flags(struct ds *ds, const char *(*bit_to_string)(uint32_t), uint32_t flags, char del) { uint32_t bad = 0; if (!flags) { return; } while (flags) { uint32_t bit = rightmost_1bit(flags); const char *s; s = bit_to_string(bit); if (s) { ds_put_format(ds, "%s%c", s, del); } else { bad |= bit; } flags &= ~bit; } if (bad) { ds_put_format(ds, "0x%"PRIx32"%c", bad, del); } ds_chomp(ds, del); } void format_flags_masked(struct ds *ds, const char *name, const char *(*bit_to_string)(uint32_t), uint32_t flags, uint32_t mask) { if (name) { ds_put_format(ds, "%s=", name); } while (mask) { uint32_t bit = rightmost_1bit(mask); const char *s = bit_to_string(bit); ds_put_format(ds, "%s%s", (flags & bit) ? "+" : "-", s ? s : "[Unknown]"); mask &= ~bit; } } void flow_format(struct ds *ds, const struct flow *flow) { struct match match; match_wc_init(&match, flow); match_format(&match, ds, OFP_DEFAULT_PRIORITY); } void flow_print(FILE *stream, const struct flow *flow) { char *s = flow_to_string(flow); fputs(s, stream); free(s); } /* flow_wildcards functions. */ /* Initializes 'wc' as a set of wildcards that matches every packet. */ void flow_wildcards_init_catchall(struct flow_wildcards *wc) { memset(&wc->masks, 0, sizeof wc->masks); } /* Clear the metadata and register wildcard masks. They are not packet * header fields. */ void flow_wildcards_clear_non_packet_fields(struct flow_wildcards *wc) { memset(&wc->masks.metadata, 0, sizeof wc->masks.metadata); memset(&wc->masks.regs, 0, sizeof wc->masks.regs); } /* Returns true if 'wc' matches every packet, false if 'wc' fixes any bits or * fields. */ bool flow_wildcards_is_catchall(const struct flow_wildcards *wc) { const uint32_t *wc_u32 = (const uint32_t *) &wc->masks; size_t i; for (i = 0; i < FLOW_U32S; i++) { if (wc_u32[i]) { return false; } } return true; } /* Sets 'dst' as the bitwise AND of wildcards in 'src1' and 'src2'. * That is, a bit or a field is wildcarded in 'dst' if it is wildcarded * in 'src1' or 'src2' or both. */ void flow_wildcards_and(struct flow_wildcards *dst, const struct flow_wildcards *src1, const struct flow_wildcards *src2) { uint32_t *dst_u32 = (uint32_t *) &dst->masks; const uint32_t *src1_u32 = (const uint32_t *) &src1->masks; const uint32_t *src2_u32 = (const uint32_t *) &src2->masks; size_t i; for (i = 0; i < FLOW_U32S; i++) { dst_u32[i] = src1_u32[i] & src2_u32[i]; } } /* Sets 'dst' as the bitwise OR of wildcards in 'src1' and 'src2'. That * is, a bit or a field is wildcarded in 'dst' if it is neither * wildcarded in 'src1' nor 'src2'. */ void flow_wildcards_or(struct flow_wildcards *dst, const struct flow_wildcards *src1, const struct flow_wildcards *src2) { uint32_t *dst_u32 = (uint32_t *) &dst->masks; const uint32_t *src1_u32 = (const uint32_t *) &src1->masks; const uint32_t *src2_u32 = (const uint32_t *) &src2->masks; size_t i; for (i = 0; i < FLOW_U32S; i++) { dst_u32[i] = src1_u32[i] | src2_u32[i]; } } /* Returns a hash of the wildcards in 'wc'. */ uint32_t flow_wildcards_hash(const struct flow_wildcards *wc, uint32_t basis) { return flow_hash(&wc->masks, basis); } /* Returns true if 'a' and 'b' represent the same wildcards, false if they are * different. */ bool flow_wildcards_equal(const struct flow_wildcards *a, const struct flow_wildcards *b) { return flow_equal(&a->masks, &b->masks); } /* Returns true if at least one bit or field is wildcarded in 'a' but not in * 'b', false otherwise. */ bool flow_wildcards_has_extra(const struct flow_wildcards *a, const struct flow_wildcards *b) { const uint32_t *a_u32 = (const uint32_t *) &a->masks; const uint32_t *b_u32 = (const uint32_t *) &b->masks; size_t i; for (i = 0; i < FLOW_U32S; i++) { if ((a_u32[i] & b_u32[i]) != b_u32[i]) { return true; } } return false; } /* Returns true if 'a' and 'b' are equal, except that 0-bits (wildcarded bits) * in 'wc' do not need to be equal in 'a' and 'b'. */ bool flow_equal_except(const struct flow *a, const struct flow *b, const struct flow_wildcards *wc) { const uint32_t *a_u32 = (const uint32_t *) a; const uint32_t *b_u32 = (const uint32_t *) b; const uint32_t *wc_u32 = (const uint32_t *) &wc->masks; size_t i; for (i = 0; i < FLOW_U32S; i++) { if ((a_u32[i] ^ b_u32[i]) & wc_u32[i]) { return false; } } return true; } /* Sets the wildcard mask for register 'idx' in 'wc' to 'mask'. * (A 0-bit indicates a wildcard bit.) */ void flow_wildcards_set_reg_mask(struct flow_wildcards *wc, int idx, uint32_t mask) { wc->masks.regs[idx] = mask; } /* Calculates the 5-tuple hash from the given miniflow. * This returns the same value as flow_hash_5tuple for the corresponding * flow. */ uint32_t miniflow_hash_5tuple(const struct miniflow *flow, uint32_t basis) { uint32_t hash = basis; if (flow) { ovs_be16 dl_type = MINIFLOW_GET_BE16(flow, dl_type); hash = mhash_add(hash, MINIFLOW_GET_U8(flow, nw_proto)); /* Separate loops for better optimization. */ if (dl_type == htons(ETH_TYPE_IPV6)) { uint64_t map = MINIFLOW_MAP(ipv6_src) | MINIFLOW_MAP(ipv6_dst) | MINIFLOW_MAP(tp_src); /* Covers both ports */ uint32_t value; MINIFLOW_FOR_EACH_IN_MAP(value, flow, map) { hash = mhash_add(hash, value); } } else { uint64_t map = MINIFLOW_MAP(nw_src) | MINIFLOW_MAP(nw_dst) | MINIFLOW_MAP(tp_src); /* Covers both ports */ uint32_t value; MINIFLOW_FOR_EACH_IN_MAP(value, flow, map) { hash = mhash_add(hash, value); } } hash = mhash_finish(hash, 42); /* Arbitrary number. */ } return hash; } BUILD_ASSERT_DECL(offsetof(struct flow, tp_src) + 2 == offsetof(struct flow, tp_dst) && offsetof(struct flow, tp_src) / 4 == offsetof(struct flow, tp_dst) / 4); BUILD_ASSERT_DECL(offsetof(struct flow, ipv6_src) + 16 == offsetof(struct flow, ipv6_dst)); /* Calculates the 5-tuple hash from the given flow. */ uint32_t flow_hash_5tuple(const struct flow *flow, uint32_t basis) { uint32_t hash = basis; if (flow) { const uint32_t *flow_u32 = (const uint32_t *)flow; hash = mhash_add(hash, flow->nw_proto); if (flow->dl_type == htons(ETH_TYPE_IPV6)) { int ofs = offsetof(struct flow, ipv6_src) / 4; int end = ofs + 2 * sizeof flow->ipv6_src / 4; while (ofs < end) { hash = mhash_add(hash, flow_u32[ofs++]); } } else { hash = mhash_add(hash, (OVS_FORCE uint32_t) flow->nw_src); hash = mhash_add(hash, (OVS_FORCE uint32_t) flow->nw_dst); } hash = mhash_add(hash, flow_u32[offsetof(struct flow, tp_src) / 4]); hash = mhash_finish(hash, 42); /* Arbitrary number. */ } return hash; } /* Hashes 'flow' based on its L2 through L4 protocol information. */ uint32_t flow_hash_symmetric_l4(const struct flow *flow, uint32_t basis) { struct { union { ovs_be32 ipv4_addr; struct in6_addr ipv6_addr; }; ovs_be16 eth_type; ovs_be16 vlan_tci; ovs_be16 tp_port; uint8_t eth_addr[ETH_ADDR_LEN]; uint8_t ip_proto; } fields; int i; memset(&fields, 0, sizeof fields); for (i = 0; i < ETH_ADDR_LEN; i++) { fields.eth_addr[i] = flow->dl_src[i] ^ flow->dl_dst[i]; } fields.vlan_tci = flow->vlan_tci & htons(VLAN_VID_MASK); fields.eth_type = flow->dl_type; /* UDP source and destination port are not taken into account because they * will not necessarily be symmetric in a bidirectional flow. */ if (fields.eth_type == htons(ETH_TYPE_IP)) { fields.ipv4_addr = flow->nw_src ^ flow->nw_dst; fields.ip_proto = flow->nw_proto; if (fields.ip_proto == IPPROTO_TCP || fields.ip_proto == IPPROTO_SCTP) { fields.tp_port = flow->tp_src ^ flow->tp_dst; } } else if (fields.eth_type == htons(ETH_TYPE_IPV6)) { const uint8_t *a = &flow->ipv6_src.s6_addr[0]; const uint8_t *b = &flow->ipv6_dst.s6_addr[0]; uint8_t *ipv6_addr = &fields.ipv6_addr.s6_addr[0]; for (i=0; i<16; i++) { ipv6_addr[i] = a[i] ^ b[i]; } fields.ip_proto = flow->nw_proto; if (fields.ip_proto == IPPROTO_TCP || fields.ip_proto == IPPROTO_SCTP) { fields.tp_port = flow->tp_src ^ flow->tp_dst; } } return jhash_bytes(&fields, sizeof fields, basis); } /* Initialize a flow with random fields that matter for nx_hash_fields. */ void flow_random_hash_fields(struct flow *flow) { uint16_t rnd = random_uint16(); /* Initialize to all zeros. */ memset(flow, 0, sizeof *flow); eth_addr_random(flow->dl_src); eth_addr_random(flow->dl_dst); flow->vlan_tci = (OVS_FORCE ovs_be16) (random_uint16() & VLAN_VID_MASK); /* Make most of the random flows IPv4, some IPv6, and rest random. */ flow->dl_type = rnd < 0x8000 ? htons(ETH_TYPE_IP) : rnd < 0xc000 ? htons(ETH_TYPE_IPV6) : (OVS_FORCE ovs_be16)rnd; if (dl_type_is_ip_any(flow->dl_type)) { if (flow->dl_type == htons(ETH_TYPE_IP)) { flow->nw_src = (OVS_FORCE ovs_be32)random_uint32(); flow->nw_dst = (OVS_FORCE ovs_be32)random_uint32(); } else { random_bytes(&flow->ipv6_src, sizeof flow->ipv6_src); random_bytes(&flow->ipv6_dst, sizeof flow->ipv6_dst); } /* Make most of IP flows TCP, some UDP or SCTP, and rest random. */ rnd = random_uint16(); flow->nw_proto = rnd < 0x8000 ? IPPROTO_TCP : rnd < 0xc000 ? IPPROTO_UDP : rnd < 0xd000 ? IPPROTO_SCTP : (uint8_t)rnd; if (flow->nw_proto == IPPROTO_TCP || flow->nw_proto == IPPROTO_UDP || flow->nw_proto == IPPROTO_SCTP) { flow->tp_src = (OVS_FORCE ovs_be16)random_uint16(); flow->tp_dst = (OVS_FORCE ovs_be16)random_uint16(); } } } /* Masks the fields in 'wc' that are used by the flow hash 'fields'. */ void flow_mask_hash_fields(const struct flow *flow, struct flow_wildcards *wc, enum nx_hash_fields fields) { switch (fields) { case NX_HASH_FIELDS_ETH_SRC: memset(&wc->masks.dl_src, 0xff, sizeof wc->masks.dl_src); break; case NX_HASH_FIELDS_SYMMETRIC_L4: memset(&wc->masks.dl_src, 0xff, sizeof wc->masks.dl_src); memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst); if (flow->dl_type == htons(ETH_TYPE_IP)) { memset(&wc->masks.nw_src, 0xff, sizeof wc->masks.nw_src); memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst); } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) { memset(&wc->masks.ipv6_src, 0xff, sizeof wc->masks.ipv6_src); memset(&wc->masks.ipv6_dst, 0xff, sizeof wc->masks.ipv6_dst); } if (is_ip_any(flow)) { memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto); flow_unwildcard_tp_ports(flow, wc); } wc->masks.vlan_tci |= htons(VLAN_VID_MASK | VLAN_CFI); break; default: OVS_NOT_REACHED(); } } /* Hashes the portions of 'flow' designated by 'fields'. */ uint32_t flow_hash_fields(const struct flow *flow, enum nx_hash_fields fields, uint16_t basis) { switch (fields) { case NX_HASH_FIELDS_ETH_SRC: return jhash_bytes(flow->dl_src, sizeof flow->dl_src, basis); case NX_HASH_FIELDS_SYMMETRIC_L4: return flow_hash_symmetric_l4(flow, basis); } OVS_NOT_REACHED(); } /* Returns a string representation of 'fields'. */ const char * flow_hash_fields_to_str(enum nx_hash_fields fields) { switch (fields) { case NX_HASH_FIELDS_ETH_SRC: return "eth_src"; case NX_HASH_FIELDS_SYMMETRIC_L4: return "symmetric_l4"; default: return ""; } } /* Returns true if the value of 'fields' is supported. Otherwise false. */ bool flow_hash_fields_valid(enum nx_hash_fields fields) { return fields == NX_HASH_FIELDS_ETH_SRC || fields == NX_HASH_FIELDS_SYMMETRIC_L4; } /* Returns a hash value for the bits of 'flow' that are active based on * 'wc', given 'basis'. */ uint32_t flow_hash_in_wildcards(const struct flow *flow, const struct flow_wildcards *wc, uint32_t basis) { const uint32_t *wc_u32 = (const uint32_t *) &wc->masks; const uint32_t *flow_u32 = (const uint32_t *) flow; uint32_t hash; size_t i; hash = basis; for (i = 0; i < FLOW_U32S; i++) { hash = mhash_add(hash, flow_u32[i] & wc_u32[i]); } return mhash_finish(hash, 4 * FLOW_U32S); } /* Sets the VLAN VID that 'flow' matches to 'vid', which is interpreted as an * OpenFlow 1.0 "dl_vlan" value: * * - If it is in the range 0...4095, 'flow->vlan_tci' is set to match * that VLAN. Any existing PCP match is unchanged (it becomes 0 if * 'flow' previously matched packets without a VLAN header). * * - If it is OFP_VLAN_NONE, 'flow->vlan_tci' is set to match a packet * without a VLAN tag. * * - Other values of 'vid' should not be used. */ void flow_set_dl_vlan(struct flow *flow, ovs_be16 vid) { if (vid == htons(OFP10_VLAN_NONE)) { flow->vlan_tci = htons(0); } else { vid &= htons(VLAN_VID_MASK); flow->vlan_tci &= ~htons(VLAN_VID_MASK); flow->vlan_tci |= htons(VLAN_CFI) | vid; } } /* Sets the VLAN VID that 'flow' matches to 'vid', which is interpreted as an * OpenFlow 1.2 "vlan_vid" value, that is, the low 13 bits of 'vlan_tci' (VID * plus CFI). */ void flow_set_vlan_vid(struct flow *flow, ovs_be16 vid) { ovs_be16 mask = htons(VLAN_VID_MASK | VLAN_CFI); flow->vlan_tci &= ~mask; flow->vlan_tci |= vid & mask; } /* Sets the VLAN PCP that 'flow' matches to 'pcp', which should be in the * range 0...7. * * This function has no effect on the VLAN ID that 'flow' matches. * * After calling this function, 'flow' will not match packets without a VLAN * header. */ void flow_set_vlan_pcp(struct flow *flow, uint8_t pcp) { pcp &= 0x07; flow->vlan_tci &= ~htons(VLAN_PCP_MASK); flow->vlan_tci |= htons((pcp << VLAN_PCP_SHIFT) | VLAN_CFI); } /* Returns the number of MPLS LSEs present in 'flow' * * Returns 0 if the 'dl_type' of 'flow' is not an MPLS ethernet type. * Otherwise traverses 'flow''s MPLS label stack stopping at the * first entry that has the BoS bit set. If no such entry exists then * the maximum number of LSEs that can be stored in 'flow' is returned. */ int flow_count_mpls_labels(const struct flow *flow, struct flow_wildcards *wc) { if (wc) { wc->masks.dl_type = OVS_BE16_MAX; } if (eth_type_mpls(flow->dl_type)) { int i; int len = FLOW_MAX_MPLS_LABELS; for (i = 0; i < len; i++) { if (wc) { wc->masks.mpls_lse[i] |= htonl(MPLS_BOS_MASK); } if (flow->mpls_lse[i] & htonl(MPLS_BOS_MASK)) { return i + 1; } } return len; } else { return 0; } } /* Returns the number consecutive of MPLS LSEs, starting at the * innermost LSE, that are common in 'a' and 'b'. * * 'an' must be flow_count_mpls_labels(a). * 'bn' must be flow_count_mpls_labels(b). */ int flow_count_common_mpls_labels(const struct flow *a, int an, const struct flow *b, int bn, struct flow_wildcards *wc) { int min_n = MIN(an, bn); if (min_n == 0) { return 0; } else { int common_n = 0; int a_last = an - 1; int b_last = bn - 1; int i; for (i = 0; i < min_n; i++) { if (wc) { wc->masks.mpls_lse[a_last - i] = OVS_BE32_MAX; wc->masks.mpls_lse[b_last - i] = OVS_BE32_MAX; } if (a->mpls_lse[a_last - i] != b->mpls_lse[b_last - i]) { break; } else { common_n++; } } return common_n; } } /* Adds a new outermost MPLS label to 'flow' and changes 'flow''s Ethernet type * to 'mpls_eth_type', which must be an MPLS Ethertype. * * If the new label is the first MPLS label in 'flow', it is generated as; * * - label: 2, if 'flow' is IPv6, otherwise 0. * * - TTL: IPv4 or IPv6 TTL, if present and nonzero, otherwise 64. * * - TC: IPv4 or IPv6 TOS, if present, otherwise 0. * * - BoS: 1. * * If the new label is the second or label MPLS label in 'flow', it is * generated as; * * - label: Copied from outer label. * * - TTL: Copied from outer label. * * - TC: Copied from outer label. * * - BoS: 0. * * 'n' must be flow_count_mpls_labels(flow). 'n' must be less than * FLOW_MAX_MPLS_LABELS (because otherwise flow->mpls_lse[] would overflow). */ void flow_push_mpls(struct flow *flow, int n, ovs_be16 mpls_eth_type, struct flow_wildcards *wc) { ovs_assert(eth_type_mpls(mpls_eth_type)); ovs_assert(n < FLOW_MAX_MPLS_LABELS); memset(wc->masks.mpls_lse, 0xff, sizeof wc->masks.mpls_lse); if (n) { int i; for (i = n; i >= 1; i--) { flow->mpls_lse[i] = flow->mpls_lse[i - 1]; } flow->mpls_lse[0] = (flow->mpls_lse[1] & htonl(~MPLS_BOS_MASK)); } else { int label = 0; /* IPv4 Explicit Null. */ int tc = 0; int ttl = 64; if (flow->dl_type == htons(ETH_TYPE_IPV6)) { label = 2; } if (is_ip_any(flow)) { tc = (flow->nw_tos & IP_DSCP_MASK) >> 2; wc->masks.nw_tos |= IP_DSCP_MASK; if (flow->nw_ttl) { ttl = flow->nw_ttl; } wc->masks.nw_ttl = 0xff; } flow->mpls_lse[0] = set_mpls_lse_values(ttl, tc, 1, htonl(label)); /* Clear all L3 and L4 fields. */ BUILD_ASSERT(FLOW_WC_SEQ == 26); memset((char *) flow + FLOW_SEGMENT_2_ENDS_AT, 0, sizeof(struct flow) - FLOW_SEGMENT_2_ENDS_AT); } flow->dl_type = mpls_eth_type; } /* Tries to remove the outermost MPLS label from 'flow'. Returns true if * successful, false otherwise. On success, sets 'flow''s Ethernet type to * 'eth_type'. * * 'n' must be flow_count_mpls_labels(flow). */ bool flow_pop_mpls(struct flow *flow, int n, ovs_be16 eth_type, struct flow_wildcards *wc) { int i; if (n == 0) { /* Nothing to pop. */ return false; } else if (n == FLOW_MAX_MPLS_LABELS && !(flow->mpls_lse[n - 1] & htonl(MPLS_BOS_MASK))) { /* Can't pop because we don't know what to fill in mpls_lse[n - 1]. */ return false; } memset(wc->masks.mpls_lse, 0xff, sizeof wc->masks.mpls_lse); for (i = 1; i < n; i++) { flow->mpls_lse[i - 1] = flow->mpls_lse[i]; } flow->mpls_lse[n - 1] = 0; flow->dl_type = eth_type; return true; } /* Sets the MPLS Label that 'flow' matches to 'label', which is interpreted * as an OpenFlow 1.1 "mpls_label" value. */ void flow_set_mpls_label(struct flow *flow, int idx, ovs_be32 label) { set_mpls_lse_label(&flow->mpls_lse[idx], label); } /* Sets the MPLS TTL that 'flow' matches to 'ttl', which should be in the * range 0...255. */ void flow_set_mpls_ttl(struct flow *flow, int idx, uint8_t ttl) { set_mpls_lse_ttl(&flow->mpls_lse[idx], ttl); } /* Sets the MPLS TC that 'flow' matches to 'tc', which should be in the * range 0...7. */ void flow_set_mpls_tc(struct flow *flow, int idx, uint8_t tc) { set_mpls_lse_tc(&flow->mpls_lse[idx], tc); } /* Sets the MPLS BOS bit that 'flow' matches to which should be 0 or 1. */ void flow_set_mpls_bos(struct flow *flow, int idx, uint8_t bos) { set_mpls_lse_bos(&flow->mpls_lse[idx], bos); } /* Sets the entire MPLS LSE. */ void flow_set_mpls_lse(struct flow *flow, int idx, ovs_be32 lse) { flow->mpls_lse[idx] = lse; } static size_t flow_compose_l4(struct ofpbuf *b, const struct flow *flow) { size_t l4_len = 0; if (!(flow->nw_frag & FLOW_NW_FRAG_ANY) || !(flow->nw_frag & FLOW_NW_FRAG_LATER)) { if (flow->nw_proto == IPPROTO_TCP) { struct tcp_header *tcp; l4_len = sizeof *tcp; tcp = ofpbuf_put_zeros(b, l4_len); tcp->tcp_src = flow->tp_src; tcp->tcp_dst = flow->tp_dst; tcp->tcp_ctl = TCP_CTL(ntohs(flow->tcp_flags), 5); } else if (flow->nw_proto == IPPROTO_UDP) { struct udp_header *udp; l4_len = sizeof *udp; udp = ofpbuf_put_zeros(b, l4_len); udp->udp_src = flow->tp_src; udp->udp_dst = flow->tp_dst; } else if (flow->nw_proto == IPPROTO_SCTP) { struct sctp_header *sctp; l4_len = sizeof *sctp; sctp = ofpbuf_put_zeros(b, l4_len); sctp->sctp_src = flow->tp_src; sctp->sctp_dst = flow->tp_dst; } else if (flow->nw_proto == IPPROTO_ICMP) { struct icmp_header *icmp; l4_len = sizeof *icmp; icmp = ofpbuf_put_zeros(b, l4_len); icmp->icmp_type = ntohs(flow->tp_src); icmp->icmp_code = ntohs(flow->tp_dst); icmp->icmp_csum = csum(icmp, ICMP_HEADER_LEN); } else if (flow->nw_proto == IPPROTO_ICMPV6) { struct icmp6_hdr *icmp; l4_len = sizeof *icmp; icmp = ofpbuf_put_zeros(b, l4_len); icmp->icmp6_type = ntohs(flow->tp_src); icmp->icmp6_code = ntohs(flow->tp_dst); if (icmp->icmp6_code == 0 && (icmp->icmp6_type == ND_NEIGHBOR_SOLICIT || icmp->icmp6_type == ND_NEIGHBOR_ADVERT)) { struct in6_addr *nd_target; struct nd_opt_hdr *nd_opt; l4_len += sizeof *nd_target; nd_target = ofpbuf_put_zeros(b, sizeof *nd_target); *nd_target = flow->nd_target; if (!eth_addr_is_zero(flow->arp_sha)) { l4_len += 8; nd_opt = ofpbuf_put_zeros(b, 8); nd_opt->nd_opt_len = 1; nd_opt->nd_opt_type = ND_OPT_SOURCE_LINKADDR; memcpy(nd_opt + 1, flow->arp_sha, ETH_ADDR_LEN); } if (!eth_addr_is_zero(flow->arp_tha)) { l4_len += 8; nd_opt = ofpbuf_put_zeros(b, 8); nd_opt->nd_opt_len = 1; nd_opt->nd_opt_type = ND_OPT_TARGET_LINKADDR; memcpy(nd_opt + 1, flow->arp_tha, ETH_ADDR_LEN); } } icmp->icmp6_cksum = (OVS_FORCE uint16_t) csum(icmp, (char *)ofpbuf_tail(b) - (char *)icmp); } } return l4_len; } /* Puts into 'b' a packet that flow_extract() would parse as having the given * 'flow'. * * (This is useful only for testing, obviously, and the packet isn't really * valid. It hasn't got some checksums filled in, for one, and lots of fields * are just zeroed.) */ void flow_compose(struct ofpbuf *b, const struct flow *flow) { size_t l4_len; /* eth_compose() sets l3 pointer and makes sure it is 32-bit aligned. */ eth_compose(b, flow->dl_dst, flow->dl_src, ntohs(flow->dl_type), 0); if (flow->dl_type == htons(FLOW_DL_TYPE_NONE)) { struct eth_header *eth = ofpbuf_l2(b); eth->eth_type = htons(ofpbuf_size(b)); return; } if (flow->vlan_tci & htons(VLAN_CFI)) { eth_push_vlan(b, htons(ETH_TYPE_VLAN), flow->vlan_tci); } if (flow->dl_type == htons(ETH_TYPE_IP)) { struct ip_header *ip; ip = ofpbuf_put_zeros(b, sizeof *ip); ip->ip_ihl_ver = IP_IHL_VER(5, 4); ip->ip_tos = flow->nw_tos; ip->ip_ttl = flow->nw_ttl; ip->ip_proto = flow->nw_proto; put_16aligned_be32(&ip->ip_src, flow->nw_src); put_16aligned_be32(&ip->ip_dst, flow->nw_dst); if (flow->nw_frag & FLOW_NW_FRAG_ANY) { ip->ip_frag_off |= htons(IP_MORE_FRAGMENTS); if (flow->nw_frag & FLOW_NW_FRAG_LATER) { ip->ip_frag_off |= htons(100); } } ofpbuf_set_l4(b, ofpbuf_tail(b)); l4_len = flow_compose_l4(b, flow); ip->ip_tot_len = htons(b->l4_ofs - b->l3_ofs + l4_len); ip->ip_csum = csum(ip, sizeof *ip); } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) { struct ovs_16aligned_ip6_hdr *nh; nh = ofpbuf_put_zeros(b, sizeof *nh); put_16aligned_be32(&nh->ip6_flow, htonl(6 << 28) | htonl(flow->nw_tos << 20) | flow->ipv6_label); nh->ip6_hlim = flow->nw_ttl; nh->ip6_nxt = flow->nw_proto; memcpy(&nh->ip6_src, &flow->ipv6_src, sizeof(nh->ip6_src)); memcpy(&nh->ip6_dst, &flow->ipv6_dst, sizeof(nh->ip6_dst)); ofpbuf_set_l4(b, ofpbuf_tail(b)); l4_len = flow_compose_l4(b, flow); nh->ip6_plen = htons(l4_len); } else if (flow->dl_type == htons(ETH_TYPE_ARP) || flow->dl_type == htons(ETH_TYPE_RARP)) { struct arp_eth_header *arp; arp = ofpbuf_put_zeros(b, sizeof *arp); ofpbuf_set_l3(b, arp); arp->ar_hrd = htons(1); arp->ar_pro = htons(ETH_TYPE_IP); arp->ar_hln = ETH_ADDR_LEN; arp->ar_pln = 4; arp->ar_op = htons(flow->nw_proto); if (flow->nw_proto == ARP_OP_REQUEST || flow->nw_proto == ARP_OP_REPLY) { put_16aligned_be32(&arp->ar_spa, flow->nw_src); put_16aligned_be32(&arp->ar_tpa, flow->nw_dst); memcpy(arp->ar_sha, flow->arp_sha, ETH_ADDR_LEN); memcpy(arp->ar_tha, flow->arp_tha, ETH_ADDR_LEN); } } if (eth_type_mpls(flow->dl_type)) { int n; b->l2_5_ofs = b->l3_ofs; for (n = 1; n < FLOW_MAX_MPLS_LABELS; n++) { if (flow->mpls_lse[n - 1] & htonl(MPLS_BOS_MASK)) { break; } } while (n > 0) { push_mpls(b, flow->dl_type, flow->mpls_lse[--n]); } } } /* Compressed flow. */ static int miniflow_n_values(const struct miniflow *flow) { return count_1bits(flow->map); } static uint32_t * miniflow_alloc_values(struct miniflow *flow, int n) { int size = MINIFLOW_VALUES_SIZE(n); if (size <= sizeof flow->inline_values) { flow->values_inline = true; return flow->inline_values; } else { COVERAGE_INC(miniflow_malloc); flow->values_inline = false; flow->offline_values = xmalloc(size); return flow->offline_values; } } /* Completes an initialization of 'dst' as a miniflow copy of 'src' begun by * the caller. The caller must have already initialized 'dst->map' properly * to indicate the significant uint32_t elements of 'src'. 'n' must be the * number of 1-bits in 'dst->map'. * * Normally the significant elements are the ones that are non-zero. However, * when a miniflow is initialized from a (mini)mask, the values can be zeroes, * so that the flow and mask always have the same maps. * * This function initializes values (either inline if possible or with * malloc() otherwise) and copies the uint32_t elements of 'src' indicated by * 'dst->map' into it. */ static void miniflow_init__(struct miniflow *dst, const struct flow *src, int n) { const uint32_t *src_u32 = (const uint32_t *) src; uint32_t *dst_u32 = miniflow_alloc_values(dst, n); uint64_t map; for (map = dst->map; map; map = zero_rightmost_1bit(map)) { *dst_u32++ = src_u32[raw_ctz(map)]; } } /* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst' * with miniflow_destroy(). * Always allocates offline storage. */ void miniflow_init(struct miniflow *dst, const struct flow *src) { const uint32_t *src_u32 = (const uint32_t *) src; unsigned int i; int n; /* Initialize dst->map, counting the number of nonzero elements. */ n = 0; dst->map = 0; for (i = 0; i < FLOW_U32S; i++) { if (src_u32[i]) { dst->map |= UINT64_C(1) << i; n++; } } miniflow_init__(dst, src, n); } /* Initializes 'dst' as a copy of 'src', using 'mask->map' as 'dst''s map. The * caller must eventually free 'dst' with miniflow_destroy(). */ void miniflow_init_with_minimask(struct miniflow *dst, const struct flow *src, const struct minimask *mask) { dst->map = mask->masks.map; miniflow_init__(dst, src, miniflow_n_values(dst)); } /* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst' * with miniflow_destroy(). */ void miniflow_clone(struct miniflow *dst, const struct miniflow *src) { int size = MINIFLOW_VALUES_SIZE(miniflow_n_values(src)); uint32_t *values; dst->map = src->map; if (size <= sizeof dst->inline_values) { dst->values_inline = true; values = dst->inline_values; } else { dst->values_inline = false; COVERAGE_INC(miniflow_malloc); dst->offline_values = xmalloc(size); values = dst->offline_values; } memcpy(values, miniflow_get_values(src), size); } /* Initializes 'dst' as a copy of 'src'. The caller must have allocated * 'dst' to have inline space all data in 'src'. */ void miniflow_clone_inline(struct miniflow *dst, const struct miniflow *src, size_t n_values) { dst->values_inline = true; dst->map = src->map; memcpy(dst->inline_values, miniflow_get_values(src), MINIFLOW_VALUES_SIZE(n_values)); } /* Initializes 'dst' with the data in 'src', destroying 'src'. * The caller must eventually free 'dst' with miniflow_destroy(). * 'dst' must be regularly sized miniflow, but 'src' can have * larger than default inline values. */ void miniflow_move(struct miniflow *dst, struct miniflow *src) { int size = MINIFLOW_VALUES_SIZE(miniflow_n_values(src)); dst->map = src->map; if (size <= sizeof dst->inline_values) { dst->values_inline = true; memcpy(dst->inline_values, miniflow_get_values(src), size); miniflow_destroy(src); } else if (src->values_inline) { dst->values_inline = false; COVERAGE_INC(miniflow_malloc); dst->offline_values = xmalloc(size); memcpy(dst->offline_values, src->inline_values, size); } else { dst->values_inline = false; dst->offline_values = src->offline_values; } } /* Frees any memory owned by 'flow'. Does not free the storage in which 'flow' * itself resides; the caller is responsible for that. */ void miniflow_destroy(struct miniflow *flow) { if (!flow->values_inline) { free(flow->offline_values); } } /* Initializes 'dst' as a copy of 'src'. */ void miniflow_expand(const struct miniflow *src, struct flow *dst) { memset(dst, 0, sizeof *dst); flow_union_with_miniflow(dst, src); } /* Returns the uint32_t that would be at byte offset '4 * u32_ofs' if 'flow' * were expanded into a "struct flow". */ static uint32_t miniflow_get(const struct miniflow *flow, unsigned int u32_ofs) { return (flow->map & UINT64_C(1) << u32_ofs) ? *(miniflow_get_u32_values(flow) + count_1bits(flow->map & ((UINT64_C(1) << u32_ofs) - 1))) : 0; } /* Returns true if 'a' and 'b' are the same flow, false otherwise. */ bool miniflow_equal(const struct miniflow *a, const struct miniflow *b) { const uint32_t *ap = miniflow_get_u32_values(a); const uint32_t *bp = miniflow_get_u32_values(b); const uint64_t a_map = a->map; const uint64_t b_map = b->map; if (OVS_LIKELY(a_map == b_map)) { int count = miniflow_n_values(a); while (count--) { if (*ap++ != *bp++) { return false; } } } else { uint64_t map; for (map = a_map | b_map; map; map = zero_rightmost_1bit(map)) { uint64_t bit = rightmost_1bit(map); uint64_t a_value = a_map & bit ? *ap++ : 0; uint64_t b_value = b_map & bit ? *bp++ : 0; if (a_value != b_value) { return false; } } } return true; } /* Returns true if 'a' and 'b' are equal at the places where there are 1-bits * in 'mask', false if they differ. */ bool miniflow_equal_in_minimask(const struct miniflow *a, const struct miniflow *b, const struct minimask *mask) { const uint32_t *p = miniflow_get_u32_values(&mask->masks); uint64_t map; for (map = mask->masks.map; map; map = zero_rightmost_1bit(map)) { int ofs = raw_ctz(map); if ((miniflow_get(a, ofs) ^ miniflow_get(b, ofs)) & *p++) { return false; } } return true; } /* Returns true if 'a' and 'b' are equal at the places where there are 1-bits * in 'mask', false if they differ. */ bool miniflow_equal_flow_in_minimask(const struct miniflow *a, const struct flow *b, const struct minimask *mask) { const uint32_t *b_u32 = (const uint32_t *) b; const uint32_t *p = miniflow_get_u32_values(&mask->masks); uint64_t map; for (map = mask->masks.map; map; map = zero_rightmost_1bit(map)) { int ofs = raw_ctz(map); if ((miniflow_get(a, ofs) ^ b_u32[ofs]) & *p++) { return false; } } return true; } /* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst' * with minimask_destroy(). */ void minimask_init(struct minimask *mask, const struct flow_wildcards *wc) { miniflow_init(&mask->masks, &wc->masks); } /* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst' * with minimask_destroy(). */ void minimask_clone(struct minimask *dst, const struct minimask *src) { miniflow_clone(&dst->masks, &src->masks); } /* Initializes 'dst' with the data in 'src', destroying 'src'. * The caller must eventually free 'dst' with minimask_destroy(). */ void minimask_move(struct minimask *dst, struct minimask *src) { miniflow_move(&dst->masks, &src->masks); } /* Initializes 'dst_' as the bit-wise "and" of 'a_' and 'b_'. * * The caller must provide room for FLOW_U32S "uint32_t"s in 'storage', for use * by 'dst_'. The caller must *not* free 'dst_' with minimask_destroy(). */ void minimask_combine(struct minimask *dst_, const struct minimask *a_, const struct minimask *b_, uint32_t storage[FLOW_U32S]) { struct miniflow *dst = &dst_->masks; uint32_t *dst_values = storage; const struct miniflow *a = &a_->masks; const struct miniflow *b = &b_->masks; uint64_t map; int n = 0; dst->values_inline = false; dst->offline_values = storage; dst->map = 0; for (map = a->map & b->map; map; map = zero_rightmost_1bit(map)) { int ofs = raw_ctz(map); uint32_t mask = miniflow_get(a, ofs) & miniflow_get(b, ofs); if (mask) { dst->map |= rightmost_1bit(map); dst_values[n++] = mask; } } } /* Frees any memory owned by 'mask'. Does not free the storage in which 'mask' * itself resides; the caller is responsible for that. */ void minimask_destroy(struct minimask *mask) { miniflow_destroy(&mask->masks); } /* Initializes 'dst' as a copy of 'src'. */ void minimask_expand(const struct minimask *mask, struct flow_wildcards *wc) { miniflow_expand(&mask->masks, &wc->masks); } /* Returns the uint32_t that would be at byte offset '4 * u32_ofs' if 'mask' * were expanded into a "struct flow_wildcards". */ uint32_t minimask_get(const struct minimask *mask, unsigned int u32_ofs) { return miniflow_get(&mask->masks, u32_ofs); } /* Returns true if 'a' and 'b' are the same flow mask, false otherwise. */ bool minimask_equal(const struct minimask *a, const struct minimask *b) { return miniflow_equal(&a->masks, &b->masks); } /* Returns true if at least one bit matched by 'b' is wildcarded by 'a', * false otherwise. */ bool minimask_has_extra(const struct minimask *a, const struct minimask *b) { const uint32_t *p = miniflow_get_u32_values(&b->masks); uint64_t map; for (map = b->masks.map; map; map = zero_rightmost_1bit(map)) { uint32_t a_u32 = minimask_get(a, raw_ctz(map)); uint32_t b_u32 = *p++; if ((a_u32 & b_u32) != b_u32) { return true; } } return false; }