/* * Copyright (c) 2008, 2009, 2010, 2011 Nicira Networks. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include "flow.h" #include #include #include #include #include #include #include #include "byte-order.h" #include "coverage.h" #include "dpif.h" #include "dynamic-string.h" #include "hash.h" #include "ofpbuf.h" #include "openflow/openflow.h" #include "openvswitch/datapath-protocol.h" #include "packets.h" #include "unaligned.h" #include "vlog.h" VLOG_DEFINE_THIS_MODULE(flow); COVERAGE_DEFINE(flow_extract); static struct arp_eth_header * pull_arp(struct ofpbuf *packet) { return ofpbuf_try_pull(packet, ARP_ETH_HEADER_LEN); } static struct ip_header * pull_ip(struct ofpbuf *packet) { if (packet->size >= IP_HEADER_LEN) { struct ip_header *ip = packet->data; int ip_len = IP_IHL(ip->ip_ihl_ver) * 4; if (ip_len >= IP_HEADER_LEN && packet->size >= ip_len) { return ofpbuf_pull(packet, ip_len); } } return NULL; } static struct tcp_header * pull_tcp(struct ofpbuf *packet) { if (packet->size >= TCP_HEADER_LEN) { struct tcp_header *tcp = packet->data; int tcp_len = TCP_OFFSET(tcp->tcp_ctl) * 4; if (tcp_len >= TCP_HEADER_LEN && packet->size >= tcp_len) { return ofpbuf_pull(packet, tcp_len); } } return NULL; } static struct udp_header * pull_udp(struct ofpbuf *packet) { return ofpbuf_try_pull(packet, UDP_HEADER_LEN); } static struct icmp_header * pull_icmp(struct ofpbuf *packet) { return ofpbuf_try_pull(packet, ICMP_HEADER_LEN); } static struct icmp6_hdr * pull_icmpv6(struct ofpbuf *packet) { return ofpbuf_try_pull(packet, sizeof(struct icmp6_hdr)); } static void parse_vlan(struct ofpbuf *b, struct flow *flow) { struct qtag_prefix { ovs_be16 eth_type; /* ETH_TYPE_VLAN */ ovs_be16 tci; }; if (b->size >= sizeof(struct qtag_prefix) + sizeof(ovs_be16)) { struct qtag_prefix *qp = ofpbuf_pull(b, sizeof *qp); flow->vlan_tci = qp->tci | htons(VLAN_CFI); } } static ovs_be16 parse_ethertype(struct ofpbuf *b) { struct llc_snap_header *llc; ovs_be16 proto; proto = *(ovs_be16 *) ofpbuf_pull(b, sizeof proto); if (ntohs(proto) >= ETH_TYPE_MIN) { return proto; } if (b->size < sizeof *llc) { return htons(FLOW_DL_TYPE_NONE); } llc = b->data; if (llc->llc.llc_dsap != LLC_DSAP_SNAP || llc->llc.llc_ssap != LLC_SSAP_SNAP || llc->llc.llc_cntl != LLC_CNTL_SNAP || memcmp(llc->snap.snap_org, SNAP_ORG_ETHERNET, sizeof llc->snap.snap_org)) { return htons(FLOW_DL_TYPE_NONE); } ofpbuf_pull(b, sizeof *llc); return llc->snap.snap_type; } static int parse_ipv6(struct ofpbuf *packet, struct flow *flow) { const struct ip6_hdr *nh; ovs_be32 tc_flow; int nexthdr; nh = ofpbuf_try_pull(packet, sizeof *nh); if (!nh) { return EINVAL; } nexthdr = nh->ip6_nxt; flow->ipv6_src = nh->ip6_src; flow->ipv6_dst = nh->ip6_dst; tc_flow = get_unaligned_be32(&nh->ip6_flow); flow->nw_tos = (ntohl(tc_flow) >> 4) & IP_DSCP_MASK; flow->nw_proto = IPPROTO_NONE; while (1) { if ((nexthdr != IPPROTO_HOPOPTS) && (nexthdr != IPPROTO_ROUTING) && (nexthdr != IPPROTO_DSTOPTS) && (nexthdr != IPPROTO_AH) && (nexthdr != IPPROTO_FRAGMENT)) { /* It's either a terminal header (e.g., TCP, UDP) or one we * don't understand. In either case, we're done with the * packet, so use it to fill in 'nw_proto'. */ break; } /* We only verify that at least 8 bytes of the next header are * available, but many of these headers are longer. Ensure that * accesses within the extension header are within those first 8 * bytes. All extension headers are required to be at least 8 * bytes. */ if (packet->size < 8) { return EINVAL; } if ((nexthdr == IPPROTO_HOPOPTS) || (nexthdr == IPPROTO_ROUTING) || (nexthdr == IPPROTO_DSTOPTS)) { /* These headers, while different, have the fields we care about * in the same location and with the same interpretation. */ const struct ip6_ext *ext_hdr = (struct ip6_ext *)packet->data; nexthdr = ext_hdr->ip6e_nxt; if (!ofpbuf_try_pull(packet, (ext_hdr->ip6e_len + 1) * 8)) { return EINVAL; } } else if (nexthdr == IPPROTO_AH) { /* A standard AH definition isn't available, but the fields * we care about are in the same location as the generic * option header--only the header length is calculated * differently. */ const struct ip6_ext *ext_hdr = (struct ip6_ext *)packet->data; nexthdr = ext_hdr->ip6e_nxt; if (!ofpbuf_try_pull(packet, (ext_hdr->ip6e_len + 2) * 4)) { return EINVAL; } } else if (nexthdr == IPPROTO_FRAGMENT) { const struct ip6_frag *frag_hdr = (struct ip6_frag *)packet->data; nexthdr = frag_hdr->ip6f_nxt; if (!ofpbuf_try_pull(packet, sizeof *frag_hdr)) { return EINVAL; } /* We only process the first fragment. */ if ((frag_hdr->ip6f_offlg & IP6F_OFF_MASK) != htons(0)) { nexthdr = IPPROTO_FRAGMENT; break; } } } flow->nw_proto = nexthdr; return 0; } static void parse_tcp(struct ofpbuf *packet, struct ofpbuf *b, struct flow *flow) { const struct tcp_header *tcp = pull_tcp(b); if (tcp) { flow->tp_src = tcp->tcp_src; flow->tp_dst = tcp->tcp_dst; packet->l7 = b->data; } } static void parse_udp(struct ofpbuf *packet, struct ofpbuf *b, struct flow *flow) { const struct udp_header *udp = pull_udp(b); if (udp) { flow->tp_src = udp->udp_src; flow->tp_dst = udp->udp_dst; packet->l7 = b->data; } } static bool parse_icmpv6(struct ofpbuf *b, struct flow *flow) { const struct icmp6_hdr *icmp = pull_icmpv6(b); if (!icmp) { return false; } /* The ICMPv6 type and code fields use the 16-bit transport port * fields, so we need to store them in 16-bit network byte order. */ flow->icmp_type = htons(icmp->icmp6_type); flow->icmp_code = htons(icmp->icmp6_code); if (icmp->icmp6_code == 0 && (icmp->icmp6_type == ND_NEIGHBOR_SOLICIT || icmp->icmp6_type == ND_NEIGHBOR_ADVERT)) { const struct in6_addr *nd_target; nd_target = ofpbuf_try_pull(b, sizeof *nd_target); if (!nd_target) { return false; } flow->nd_target = *nd_target; while (b->size >= 8) { /* The minimum size of an option is 8 bytes, which also is * the size of Ethernet link-layer options. */ const struct nd_opt_hdr *nd_opt = b->data; int opt_len = nd_opt->nd_opt_len * 8; if (!opt_len || opt_len > b->size) { goto invalid; } /* Store the link layer address if the appropriate option is * provided. It is considered an error if the same link * layer option is specified twice. */ if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LINKADDR && opt_len == 8) { if (eth_addr_is_zero(flow->arp_sha)) { memcpy(flow->arp_sha, nd_opt + 1, ETH_ADDR_LEN); } else { goto invalid; } } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LINKADDR && opt_len == 8) { if (eth_addr_is_zero(flow->arp_tha)) { memcpy(flow->arp_tha, nd_opt + 1, ETH_ADDR_LEN); } else { goto invalid; } } if (!ofpbuf_try_pull(b, opt_len)) { goto invalid; } } } return true; invalid: memset(&flow->nd_target, 0, sizeof(flow->nd_target)); memset(flow->arp_sha, 0, sizeof(flow->arp_sha)); memset(flow->arp_tha, 0, sizeof(flow->arp_tha)); return false; } /* Initializes 'flow' members from 'packet', 'tun_id', and 'in_port. * Initializes 'packet' header pointers as follows: * * - packet->l2 to the start of the Ethernet header. * * - packet->l3 to just past the Ethernet header, or just past the * vlan_header if one is present, to the first byte of the payload of the * Ethernet frame. * * - packet->l4 to just past the IPv4 header, if one is present and has a * correct length, and otherwise NULL. * * - packet->l7 to just past the TCP or UDP or ICMP header, if one is * present and has a correct length, and otherwise NULL. */ int flow_extract(struct ofpbuf *packet, ovs_be64 tun_id, uint16_t in_port, struct flow *flow) { struct ofpbuf b = *packet; struct eth_header *eth; int retval = 0; COVERAGE_INC(flow_extract); memset(flow, 0, sizeof *flow); flow->tun_id = tun_id; flow->in_port = in_port; packet->l2 = b.data; packet->l3 = NULL; packet->l4 = NULL; packet->l7 = NULL; if (b.size < sizeof *eth) { return 0; } /* Link layer. */ eth = b.data; memcpy(flow->dl_src, eth->eth_src, ETH_ADDR_LEN); memcpy(flow->dl_dst, eth->eth_dst, ETH_ADDR_LEN); /* dl_type, vlan_tci. */ ofpbuf_pull(&b, ETH_ADDR_LEN * 2); if (eth->eth_type == htons(ETH_TYPE_VLAN)) { parse_vlan(&b, flow); } flow->dl_type = parse_ethertype(&b); /* Network layer. */ packet->l3 = b.data; if (flow->dl_type == htons(ETH_TYPE_IP)) { const struct ip_header *nh = pull_ip(&b); if (nh) { flow->nw_src = get_unaligned_be32(&nh->ip_src); flow->nw_dst = get_unaligned_be32(&nh->ip_dst); flow->nw_tos = nh->ip_tos & IP_DSCP_MASK; flow->nw_proto = nh->ip_proto; packet->l4 = b.data; if (!IP_IS_FRAGMENT(nh->ip_frag_off)) { if (flow->nw_proto == IPPROTO_TCP) { parse_tcp(packet, &b, flow); } else if (flow->nw_proto == IPPROTO_UDP) { parse_udp(packet, &b, flow); } else if (flow->nw_proto == IPPROTO_ICMP) { const struct icmp_header *icmp = pull_icmp(&b); if (icmp) { flow->icmp_type = htons(icmp->icmp_type); flow->icmp_code = htons(icmp->icmp_code); packet->l7 = b.data; } } } else { retval = 1; } } } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) { retval = parse_ipv6(&b, flow); if (retval) { return 0; } packet->l4 = b.data; if (flow->nw_proto == IPPROTO_TCP) { parse_tcp(packet, &b, flow); } else if (flow->nw_proto == IPPROTO_UDP) { parse_udp(packet, &b, flow); } else if (flow->nw_proto == IPPROTO_ICMPV6) { if (parse_icmpv6(&b, flow)) { packet->l7 = b.data; } } } else if (flow->dl_type == htons(ETH_TYPE_ARP)) { const struct arp_eth_header *arp = pull_arp(&b); if (arp && arp->ar_hrd == htons(1) && arp->ar_pro == htons(ETH_TYPE_IP) && arp->ar_hln == ETH_ADDR_LEN && arp->ar_pln == 4) { /* We only match on the lower 8 bits of the opcode. */ if (ntohs(arp->ar_op) <= 0xff) { flow->nw_proto = ntohs(arp->ar_op); } if ((flow->nw_proto == ARP_OP_REQUEST) || (flow->nw_proto == ARP_OP_REPLY)) { flow->nw_src = arp->ar_spa; flow->nw_dst = arp->ar_tpa; memcpy(flow->arp_sha, arp->ar_sha, ETH_ADDR_LEN); memcpy(flow->arp_tha, arp->ar_tha, ETH_ADDR_LEN); } } } return retval; } /* Extracts the flow stats for a packet. The 'flow' and 'packet' * arguments must have been initialized through a call to flow_extract(). */ void flow_extract_stats(const struct flow *flow, struct ofpbuf *packet, struct dpif_flow_stats *stats) { memset(stats, 0, sizeof(*stats)); if ((flow->dl_type == htons(ETH_TYPE_IP)) && packet->l4) { if ((flow->nw_proto == IPPROTO_TCP) && packet->l7) { struct tcp_header *tcp = packet->l4; stats->tcp_flags = TCP_FLAGS(tcp->tcp_ctl); } } stats->n_bytes = packet->size; stats->n_packets = 1; } char * flow_to_string(const struct flow *flow) { struct ds ds = DS_EMPTY_INITIALIZER; flow_format(&ds, flow); return ds_cstr(&ds); } void flow_format(struct ds *ds, const struct flow *flow) { ds_put_format(ds, "tunnel%#"PRIx64":in_port%04"PRIx16":tci(", flow->tun_id, flow->in_port); if (flow->vlan_tci) { ds_put_format(ds, "vlan%"PRIu16",pcp%d", vlan_tci_to_vid(flow->vlan_tci), vlan_tci_to_pcp(flow->vlan_tci)); } else { ds_put_char(ds, '0'); } ds_put_format(ds, ") mac"ETH_ADDR_FMT"->"ETH_ADDR_FMT " type%04"PRIx16, ETH_ADDR_ARGS(flow->dl_src), ETH_ADDR_ARGS(flow->dl_dst), ntohs(flow->dl_type)); if (flow->dl_type == htons(ETH_TYPE_IPV6)) { ds_put_format(ds, " proto%"PRIu8" tos%"PRIu8" ipv6", flow->nw_proto, flow->nw_tos); print_ipv6_addr(ds, &flow->ipv6_src); ds_put_cstr(ds, "->"); print_ipv6_addr(ds, &flow->ipv6_dst); } else { ds_put_format(ds, " proto%"PRIu8 " tos%"PRIu8 " ip"IP_FMT"->"IP_FMT, flow->nw_proto, flow->nw_tos, IP_ARGS(&flow->nw_src), IP_ARGS(&flow->nw_dst)); } if (flow->tp_src || flow->tp_dst) { ds_put_format(ds, " port%"PRIu16"->%"PRIu16, ntohs(flow->tp_src), ntohs(flow->tp_dst)); } if (!eth_addr_is_zero(flow->arp_sha) || !eth_addr_is_zero(flow->arp_tha)) { ds_put_format(ds, " arp_ha"ETH_ADDR_FMT"->"ETH_ADDR_FMT, ETH_ADDR_ARGS(flow->arp_sha), ETH_ADDR_ARGS(flow->arp_tha)); } } void flow_print(FILE *stream, const struct flow *flow) { char *s = flow_to_string(flow); fputs(s, stream); free(s); } /* flow_wildcards functions. */ /* Initializes 'wc' as a set of wildcards that matches every packet. */ void flow_wildcards_init_catchall(struct flow_wildcards *wc) { wc->wildcards = FWW_ALL; wc->tun_id_mask = htonll(0); wc->nw_src_mask = htonl(0); wc->nw_dst_mask = htonl(0); wc->ipv6_src_mask = in6addr_any; wc->ipv6_dst_mask = in6addr_any; memset(wc->reg_masks, 0, sizeof wc->reg_masks); wc->vlan_tci_mask = htons(0); wc->zero = 0; } /* Initializes 'wc' as an exact-match set of wildcards; that is, 'wc' does not * wildcard any bits or fields. */ void flow_wildcards_init_exact(struct flow_wildcards *wc) { wc->wildcards = 0; wc->tun_id_mask = htonll(UINT64_MAX); wc->nw_src_mask = htonl(UINT32_MAX); wc->nw_dst_mask = htonl(UINT32_MAX); wc->ipv6_src_mask = in6addr_exact; wc->ipv6_dst_mask = in6addr_exact; memset(wc->reg_masks, 0xff, sizeof wc->reg_masks); wc->vlan_tci_mask = htons(UINT16_MAX); wc->zero = 0; } /* Returns true if 'wc' is exact-match, false if 'wc' wildcards any bits or * fields. */ bool flow_wildcards_is_exact(const struct flow_wildcards *wc) { int i; if (wc->wildcards || wc->tun_id_mask != htonll(UINT64_MAX) || wc->nw_src_mask != htonl(UINT32_MAX) || wc->nw_dst_mask != htonl(UINT32_MAX) || wc->vlan_tci_mask != htons(UINT16_MAX) || !ipv6_mask_is_exact(&wc->ipv6_src_mask) || !ipv6_mask_is_exact(&wc->ipv6_dst_mask)) { return false; } for (i = 0; i < FLOW_N_REGS; i++) { if (wc->reg_masks[i] != htonl(UINT32_MAX)) { return false; } } return true; } /* Initializes 'dst' as the combination of wildcards in 'src1' and 'src2'. * That is, a bit or a field is wildcarded in 'dst' if it is wildcarded in * 'src1' or 'src2' or both. */ void flow_wildcards_combine(struct flow_wildcards *dst, const struct flow_wildcards *src1, const struct flow_wildcards *src2) { int i; dst->wildcards = src1->wildcards | src2->wildcards; dst->tun_id_mask = src1->tun_id_mask & src2->tun_id_mask; dst->nw_src_mask = src1->nw_src_mask & src2->nw_src_mask; dst->nw_dst_mask = src1->nw_dst_mask & src2->nw_dst_mask; dst->ipv6_src_mask = ipv6_addr_bitand(&src1->ipv6_src_mask, &src2->ipv6_src_mask); dst->ipv6_dst_mask = ipv6_addr_bitand(&src1->ipv6_dst_mask, &src2->ipv6_dst_mask); for (i = 0; i < FLOW_N_REGS; i++) { dst->reg_masks[i] = src1->reg_masks[i] & src2->reg_masks[i]; } dst->vlan_tci_mask = src1->vlan_tci_mask & src2->vlan_tci_mask; } /* Returns a hash of the wildcards in 'wc'. */ uint32_t flow_wildcards_hash(const struct flow_wildcards *wc) { /* If you change struct flow_wildcards and thereby trigger this * assertion, please check that the new struct flow_wildcards has no holes * in it before you update the assertion. */ BUILD_ASSERT_DECL(sizeof *wc == 56 + FLOW_N_REGS * 4); return hash_bytes(wc, sizeof *wc, 0); } /* Returns true if 'a' and 'b' represent the same wildcards, false if they are * different. */ bool flow_wildcards_equal(const struct flow_wildcards *a, const struct flow_wildcards *b) { int i; if (a->wildcards != b->wildcards || a->tun_id_mask != b->tun_id_mask || a->nw_src_mask != b->nw_src_mask || a->nw_dst_mask != b->nw_dst_mask || a->vlan_tci_mask != b->vlan_tci_mask || !ipv6_addr_equals(&a->ipv6_src_mask, &b->ipv6_src_mask) || !ipv6_addr_equals(&a->ipv6_dst_mask, &b->ipv6_dst_mask)) { return false; } for (i = 0; i < FLOW_N_REGS; i++) { if (a->reg_masks[i] != b->reg_masks[i]) { return false; } } return true; } /* Returns true if at least one bit or field is wildcarded in 'a' but not in * 'b', false otherwise. */ bool flow_wildcards_has_extra(const struct flow_wildcards *a, const struct flow_wildcards *b) { int i; struct in6_addr ipv6_masked; for (i = 0; i < FLOW_N_REGS; i++) { if ((a->reg_masks[i] & b->reg_masks[i]) != b->reg_masks[i]) { return true; } } ipv6_masked = ipv6_addr_bitand(&a->ipv6_src_mask, &b->ipv6_src_mask); if (!ipv6_addr_equals(&ipv6_masked, &b->ipv6_src_mask)) { return true; } ipv6_masked = ipv6_addr_bitand(&a->ipv6_dst_mask, &b->ipv6_dst_mask); if (!ipv6_addr_equals(&ipv6_masked, &b->ipv6_dst_mask)) { return true; } return (a->wildcards & ~b->wildcards || (a->tun_id_mask & b->tun_id_mask) != b->tun_id_mask || (a->nw_src_mask & b->nw_src_mask) != b->nw_src_mask || (a->nw_dst_mask & b->nw_dst_mask) != b->nw_dst_mask || (a->vlan_tci_mask & b->vlan_tci_mask) != b->vlan_tci_mask); } static bool set_nw_mask(ovs_be32 *maskp, ovs_be32 mask) { if (ip_is_cidr(mask)) { *maskp = mask; return true; } else { return false; } } /* Sets the IP (or ARP) source wildcard mask to CIDR 'mask' (consisting of N * high-order 1-bit and 32-N low-order 0-bits). Returns true if successful, * false if 'mask' is not a CIDR mask. */ bool flow_wildcards_set_nw_src_mask(struct flow_wildcards *wc, ovs_be32 mask) { return set_nw_mask(&wc->nw_src_mask, mask); } /* Sets the IP (or ARP) destination wildcard mask to CIDR 'mask' (consisting of * N high-order 1-bit and 32-N low-order 0-bits). Returns true if successful, * false if 'mask' is not a CIDR mask. */ bool flow_wildcards_set_nw_dst_mask(struct flow_wildcards *wc, ovs_be32 mask) { return set_nw_mask(&wc->nw_dst_mask, mask); } static bool set_ipv6_mask(struct in6_addr *maskp, const struct in6_addr *mask) { if (ipv6_is_cidr(mask)) { *maskp = *mask; return true; } else { return false; } } /* Sets the IPv6 source wildcard mask to CIDR 'mask' (consisting of N * high-order 1-bit and 128-N low-order 0-bits). Returns true if successful, * false if 'mask' is not a CIDR mask. */ bool flow_wildcards_set_ipv6_src_mask(struct flow_wildcards *wc, const struct in6_addr *mask) { return set_ipv6_mask(&wc->ipv6_src_mask, mask); } /* Sets the IPv6 destination wildcard mask to CIDR 'mask' (consisting of * N high-order 1-bit and 128-N low-order 0-bits). Returns true if * successful, false if 'mask' is not a CIDR mask. */ bool flow_wildcards_set_ipv6_dst_mask(struct flow_wildcards *wc, const struct in6_addr *mask) { return set_ipv6_mask(&wc->ipv6_dst_mask, mask); } /* Sets the wildcard mask for register 'idx' in 'wc' to 'mask'. * (A 0-bit indicates a wildcard bit.) */ void flow_wildcards_set_reg_mask(struct flow_wildcards *wc, int idx, uint32_t mask) { wc->reg_masks[idx] = mask; } /* Hashes 'flow' based on its L2 through L4 protocol information. */ uint32_t flow_hash_symmetric_l4(const struct flow *flow, uint32_t basis) { struct { union { ovs_be32 ipv4_addr; struct in6_addr ipv6_addr; }; ovs_be16 eth_type; ovs_be16 vlan_tci; ovs_be16 tp_addr; uint8_t eth_addr[ETH_ADDR_LEN]; uint8_t ip_proto; } fields; int i; memset(&fields, 0, sizeof fields); for (i = 0; i < ETH_ADDR_LEN; i++) { fields.eth_addr[i] = flow->dl_src[i] ^ flow->dl_dst[i]; } fields.vlan_tci = flow->vlan_tci & htons(VLAN_VID_MASK); fields.eth_type = flow->dl_type; if (fields.eth_type == htons(ETH_TYPE_IP)) { fields.ipv4_addr = flow->nw_src ^ flow->nw_dst; fields.ip_proto = flow->nw_proto; if (fields.ip_proto == IPPROTO_TCP || fields.ip_proto == IPPROTO_UDP) { fields.tp_addr = flow->tp_src ^ flow->tp_dst; } } else if (fields.eth_type == htons(ETH_TYPE_IPV6)) { const uint8_t *a = &flow->ipv6_src.s6_addr[0]; const uint8_t *b = &flow->ipv6_dst.s6_addr[0]; uint8_t *ipv6_addr = &fields.ipv6_addr.s6_addr[0]; for (i=0; i<16; i++) { ipv6_addr[i] = a[i] ^ b[i]; } fields.ip_proto = flow->nw_proto; if (fields.ip_proto == IPPROTO_TCP || fields.ip_proto == IPPROTO_UDP) { fields.tp_addr = flow->tp_src ^ flow->tp_dst; } } return hash_bytes(&fields, sizeof fields, basis); }