/* * Copyright (c) 2008, 2009, 2010, 2011, 2012, 2013, 2014 Nicira, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef FLOW_H #define FLOW_H 1 #include #include #include #include #include #include "byte-order.h" #include "openflow/nicira-ext.h" #include "openflow/openflow.h" #include "packets.h" #include "hash.h" #include "util.h" struct dpif_flow_stats; struct ds; struct flow_wildcards; struct minimask; struct ofpbuf; struct pkt_metadata; /* This sequence number should be incremented whenever anything involving flows * or the wildcarding of flows changes. This will cause build assertion * failures in places which likely need to be updated. */ #define FLOW_WC_SEQ 26 #define FLOW_N_REGS 8 BUILD_ASSERT_DECL(FLOW_N_REGS <= NXM_NX_MAX_REGS); /* Used for struct flow's dl_type member for frames that have no Ethernet * type, that is, pure 802.2 frames. */ #define FLOW_DL_TYPE_NONE 0x5ff /* Fragment bits, used for IPv4 and IPv6, always zero for non-IP flows. */ #define FLOW_NW_FRAG_ANY (1 << 0) /* Set for any IP frag. */ #define FLOW_NW_FRAG_LATER (1 << 1) /* Set for IP frag with nonzero offset. */ #define FLOW_NW_FRAG_MASK (FLOW_NW_FRAG_ANY | FLOW_NW_FRAG_LATER) BUILD_ASSERT_DECL(FLOW_NW_FRAG_ANY == NX_IP_FRAG_ANY); BUILD_ASSERT_DECL(FLOW_NW_FRAG_LATER == NX_IP_FRAG_LATER); #define FLOW_TNL_F_DONT_FRAGMENT (1 << 0) #define FLOW_TNL_F_CSUM (1 << 1) #define FLOW_TNL_F_KEY (1 << 2) const char *flow_tun_flag_to_string(uint32_t flags); /* Maximum number of supported MPLS labels. */ #define FLOW_MAX_MPLS_LABELS 3 /* * A flow in the network. * * Must be initialized to all zeros to make any compiler-induced padding * zeroed. Helps also in keeping unused fields (such as mutually exclusive * IPv4 and IPv6 addresses) zeroed out. * * The meaning of 'in_port' is context-dependent. In most cases, it is a * 16-bit OpenFlow 1.0 port number. In the software datapath interface (dpif) * layer and its implementations (e.g. dpif-linux, dpif-netdev), it is instead * a 32-bit datapath port number. * * The fields are organized in four segments to facilitate staged lookup, where * lower layer fields are first used to determine if the later fields need to * be looked at. This enables better wildcarding for datapath flows. * * NOTE: Order of the fields is significant, any change in the order must be * reflected in miniflow_extract()! */ struct flow { /* L1 */ struct flow_tnl tunnel; /* Encapsulating tunnel parameters. */ ovs_be64 metadata; /* OpenFlow Metadata. */ uint32_t regs[FLOW_N_REGS]; /* Registers. */ uint32_t skb_priority; /* Packet priority for QoS. */ uint32_t pkt_mark; /* Packet mark. */ uint32_t recirc_id; /* Must be exact match. */ union flow_in_port in_port; /* Input port.*/ /* L2, Order the same as in the Ethernet header! */ uint8_t dl_dst[6]; /* Ethernet destination address. */ uint8_t dl_src[6]; /* Ethernet source address. */ ovs_be16 dl_type; /* Ethernet frame type. */ ovs_be16 vlan_tci; /* If 802.1Q, TCI | VLAN_CFI; otherwise 0. */ ovs_be32 mpls_lse[FLOW_MAX_MPLS_LABELS]; /* MPLS label stack entry. */ /* L3 */ struct in6_addr ipv6_src; /* IPv6 source address. */ struct in6_addr ipv6_dst; /* IPv6 destination address. */ ovs_be32 ipv6_label; /* IPv6 flow label. */ ovs_be32 nw_src; /* IPv4 source address. */ ovs_be32 nw_dst; /* IPv4 destination address. */ uint8_t nw_frag; /* FLOW_FRAG_* flags. */ uint8_t nw_tos; /* IP ToS (including DSCP and ECN). */ uint8_t nw_ttl; /* IP TTL/Hop Limit. */ uint8_t nw_proto; /* IP protocol or low 8 bits of ARP opcode. */ uint8_t arp_sha[6]; /* ARP/ND source hardware address. */ uint8_t arp_tha[6]; /* ARP/ND target hardware address. */ struct in6_addr nd_target; /* IPv6 neighbor discovery (ND) target. */ ovs_be16 tcp_flags; /* TCP flags. With L3 to avoid matching L4. */ ovs_be16 pad; /* Padding. */ /* L4 */ ovs_be16 tp_src; /* TCP/UDP/SCTP source port. */ ovs_be16 tp_dst; /* TCP/UDP/SCTP destination port. * Keep last for the BUILD_ASSERT_DECL below */ uint32_t dp_hash; /* Datapath computed hash value. The exact computation is opaque to the user space.*/ }; BUILD_ASSERT_DECL(sizeof(struct flow) % 4 == 0); #define FLOW_U32S (sizeof(struct flow) / 4) /* Remember to update FLOW_WC_SEQ when changing 'struct flow'. */ BUILD_ASSERT_DECL(offsetof(struct flow, dp_hash) + sizeof(uint32_t) == sizeof(struct flow_tnl) + 172 && FLOW_WC_SEQ == 26); /* Incremental points at which flow classification may be performed in * segments. * This is located here since this is dependent on the structure of the * struct flow defined above: * Each offset must be on a distinct, successive U32 boundary strictly * within the struct flow. */ enum { FLOW_SEGMENT_1_ENDS_AT = offsetof(struct flow, dl_dst), FLOW_SEGMENT_2_ENDS_AT = offsetof(struct flow, ipv6_src), FLOW_SEGMENT_3_ENDS_AT = offsetof(struct flow, tp_src), }; BUILD_ASSERT_DECL(FLOW_SEGMENT_1_ENDS_AT % 4 == 0); BUILD_ASSERT_DECL(FLOW_SEGMENT_2_ENDS_AT % 4 == 0); BUILD_ASSERT_DECL(FLOW_SEGMENT_3_ENDS_AT % 4 == 0); BUILD_ASSERT_DECL( 0 < FLOW_SEGMENT_1_ENDS_AT); BUILD_ASSERT_DECL(FLOW_SEGMENT_1_ENDS_AT < FLOW_SEGMENT_2_ENDS_AT); BUILD_ASSERT_DECL(FLOW_SEGMENT_2_ENDS_AT < FLOW_SEGMENT_3_ENDS_AT); BUILD_ASSERT_DECL(FLOW_SEGMENT_3_ENDS_AT < sizeof(struct flow)); extern const uint8_t flow_segment_u32s[]; /* Represents the metadata fields of struct flow. */ struct flow_metadata { uint32_t dp_hash; /* Datapath computed hash field. */ uint32_t recirc_id; /* Recirculation ID. */ ovs_be64 tun_id; /* Encapsulating tunnel ID. */ ovs_be32 tun_src; /* Tunnel outer IPv4 src addr */ ovs_be32 tun_dst; /* Tunnel outer IPv4 dst addr */ ovs_be64 metadata; /* OpenFlow 1.1+ metadata field. */ uint32_t regs[FLOW_N_REGS]; /* Registers. */ uint32_t pkt_mark; /* Packet mark. */ ofp_port_t in_port; /* OpenFlow port or zero. */ }; void flow_extract(struct ofpbuf *, const struct pkt_metadata *md, struct flow *); void flow_zero_wildcards(struct flow *, const struct flow_wildcards *); void flow_unwildcard_tp_ports(const struct flow *, struct flow_wildcards *); void flow_get_metadata(const struct flow *, struct flow_metadata *); char *flow_to_string(const struct flow *); void format_flags(struct ds *ds, const char *(*bit_to_string)(uint32_t), uint32_t flags, char del); void format_flags_masked(struct ds *ds, const char *name, const char *(*bit_to_string)(uint32_t), uint32_t flags, uint32_t mask); void flow_format(struct ds *, const struct flow *); void flow_print(FILE *, const struct flow *); static inline int flow_compare_3way(const struct flow *, const struct flow *); static inline bool flow_equal(const struct flow *, const struct flow *); static inline size_t flow_hash(const struct flow *, uint32_t basis); void flow_set_dl_vlan(struct flow *, ovs_be16 vid); void flow_set_vlan_vid(struct flow *, ovs_be16 vid); void flow_set_vlan_pcp(struct flow *, uint8_t pcp); int flow_count_mpls_labels(const struct flow *, struct flow_wildcards *); int flow_count_common_mpls_labels(const struct flow *a, int an, const struct flow *b, int bn, struct flow_wildcards *wc); void flow_push_mpls(struct flow *, int n, ovs_be16 mpls_eth_type, struct flow_wildcards *); bool flow_pop_mpls(struct flow *, int n, ovs_be16 eth_type, struct flow_wildcards *); void flow_set_mpls_label(struct flow *, int idx, ovs_be32 label); void flow_set_mpls_ttl(struct flow *, int idx, uint8_t ttl); void flow_set_mpls_tc(struct flow *, int idx, uint8_t tc); void flow_set_mpls_bos(struct flow *, int idx, uint8_t stack); void flow_set_mpls_lse(struct flow *, int idx, ovs_be32 lse); void flow_compose(struct ofpbuf *, const struct flow *); static inline int flow_compare_3way(const struct flow *a, const struct flow *b) { return memcmp(a, b, sizeof *a); } static inline bool flow_equal(const struct flow *a, const struct flow *b) { return !flow_compare_3way(a, b); } static inline size_t flow_hash(const struct flow *flow, uint32_t basis) { return hash_words((const uint32_t *) flow, sizeof *flow / 4, basis); } static inline uint16_t ofp_to_u16(ofp_port_t ofp_port) { return (OVS_FORCE uint16_t) ofp_port; } static inline uint32_t odp_to_u32(odp_port_t odp_port) { return (OVS_FORCE uint32_t) odp_port; } static inline uint32_t ofp11_to_u32(ofp11_port_t ofp11_port) { return (OVS_FORCE uint32_t) ofp11_port; } static inline ofp_port_t u16_to_ofp(uint16_t port) { return OFP_PORT_C(port); } static inline odp_port_t u32_to_odp(uint32_t port) { return ODP_PORT_C(port); } static inline ofp11_port_t u32_to_ofp11(uint32_t port) { return OFP11_PORT_C(port); } static inline uint32_t hash_ofp_port(ofp_port_t ofp_port) { return hash_int(ofp_to_u16(ofp_port), 0); } static inline uint32_t hash_odp_port(odp_port_t odp_port) { return hash_int(odp_to_u32(odp_port), 0); } /* Wildcards for a flow. * * A 1-bit in each bit in 'masks' indicates that the corresponding bit of * the flow is significant (must match). A 0-bit indicates that the * corresponding bit of the flow is wildcarded (need not match). */ struct flow_wildcards { struct flow masks; }; void flow_wildcards_init_catchall(struct flow_wildcards *); void flow_wildcards_clear_non_packet_fields(struct flow_wildcards *); bool flow_wildcards_is_catchall(const struct flow_wildcards *); void flow_wildcards_set_reg_mask(struct flow_wildcards *, int idx, uint32_t mask); void flow_wildcards_and(struct flow_wildcards *dst, const struct flow_wildcards *src1, const struct flow_wildcards *src2); void flow_wildcards_or(struct flow_wildcards *dst, const struct flow_wildcards *src1, const struct flow_wildcards *src2); bool flow_wildcards_has_extra(const struct flow_wildcards *, const struct flow_wildcards *); uint32_t flow_wildcards_hash(const struct flow_wildcards *, uint32_t basis); bool flow_wildcards_equal(const struct flow_wildcards *, const struct flow_wildcards *); uint32_t flow_hash_5tuple(const struct flow *flow, uint32_t basis); uint32_t flow_hash_symmetric_l4(const struct flow *flow, uint32_t basis); /* Initialize a flow with random fields that matter for nx_hash_fields. */ void flow_random_hash_fields(struct flow *); void flow_mask_hash_fields(const struct flow *, struct flow_wildcards *, enum nx_hash_fields); uint32_t flow_hash_fields(const struct flow *, enum nx_hash_fields, uint16_t basis); const char *flow_hash_fields_to_str(enum nx_hash_fields); bool flow_hash_fields_valid(enum nx_hash_fields); uint32_t flow_hash_in_wildcards(const struct flow *, const struct flow_wildcards *, uint32_t basis); bool flow_equal_except(const struct flow *a, const struct flow *b, const struct flow_wildcards *); /* Compressed flow. */ #define MINI_N_INLINE (sizeof(void *) == 4 ? 7 : 8) BUILD_ASSERT_DECL(FLOW_U32S <= 63); /* A sparse representation of a "struct flow". * * A "struct flow" is fairly large and tends to be mostly zeros. Sparse * representation has two advantages. First, it saves memory. Second, it * saves time when the goal is to iterate over only the nonzero parts of the * struct. * * The 'map' member holds one bit for each uint32_t in a "struct flow". Each * 0-bit indicates that the corresponding uint32_t is zero, each 1-bit that it * *may* be nonzero (see below how this applies to minimasks). * * The 'values_inline' boolean member indicates that the values are at * 'inline_values'. If 'values_inline' is zero, then the values are * offline at 'offline_values'. In either case, values is an array that has * one element for each 1-bit in 'map'. The least-numbered 1-bit is in * the first element of the values array, the next 1-bit is in the next array * element, and so on. * * Elements in values array are allowed to be zero. This is useful for "struct * minimatch", for which ensuring that the miniflow and minimask members have * same 'map' allows optimization. This allowance applies only to a miniflow * that is not a mask. That is, a minimask may NOT have zero elements in * its 'values'. */ struct miniflow { uint64_t map:63; uint64_t values_inline:1; union { uint32_t *offline_values; uint32_t inline_values[MINI_N_INLINE]; }; }; #define MINIFLOW_VALUES_SIZE(COUNT) ((COUNT) * sizeof(uint32_t)) static inline uint32_t *miniflow_values(struct miniflow *mf) { return OVS_LIKELY(mf->values_inline) ? mf->inline_values : mf->offline_values; } static inline const uint32_t *miniflow_get_values(const struct miniflow *mf) { return OVS_LIKELY(mf->values_inline) ? mf->inline_values : mf->offline_values; } static inline const uint32_t *miniflow_get_u32_values(const struct miniflow *mf) { return miniflow_get_values(mf); } static inline const ovs_be32 *miniflow_get_be32_values(const struct miniflow *mf) { return (OVS_FORCE const ovs_be32 *)miniflow_get_values(mf); } /* This is useful for initializing a miniflow for a miniflow_extract() call. */ static inline void miniflow_initialize(struct miniflow *mf, uint32_t buf[FLOW_U32S]) { mf->map = 0; mf->values_inline = (buf == (uint32_t *)(mf + 1)); if (!mf->values_inline) { mf->offline_values = buf; } } struct pkt_metadata; /* The 'dst->values' must be initialized with a buffer with space for * FLOW_U32S. 'dst->map' is ignored on input and set on output to * indicate which fields were extracted. */ void miniflow_extract(struct ofpbuf *packet, const struct pkt_metadata *, struct miniflow *dst); void miniflow_init(struct miniflow *, const struct flow *); void miniflow_init_with_minimask(struct miniflow *, const struct flow *, const struct minimask *); void miniflow_clone(struct miniflow *, const struct miniflow *); void miniflow_clone_inline(struct miniflow *, const struct miniflow *, size_t n_values); void miniflow_move(struct miniflow *dst, struct miniflow *); void miniflow_destroy(struct miniflow *); void miniflow_expand(const struct miniflow *, struct flow *); static inline uint32_t flow_get_next_in_map(const struct flow *flow, uint64_t map, uint32_t *value) { if (map) { *value = ((const uint32_t *)flow)[raw_ctz(map)]; return true; } return false; } /* Iterate through all flow u32 values specified by 'MAP'. * This works as the first statement in a block.*/ #define FLOW_FOR_EACH_IN_MAP(VALUE, FLOW, MAP) \ uint64_t map_; \ for (map_ = (MAP); \ flow_get_next_in_map(FLOW, map_, &(VALUE)); \ map_ = zero_rightmost_1bit(map_)) #define FLOW_U32_SIZE(FIELD) \ DIV_ROUND_UP(sizeof(((struct flow *)0)->FIELD), sizeof(uint32_t)) #define MINIFLOW_MAP(FIELD) \ (((UINT64_C(1) << FLOW_U32_SIZE(FIELD)) - 1) \ << (offsetof(struct flow, FIELD) / 4)) static inline uint32_t mf_get_next_in_map(uint64_t *fmap, uint64_t rm1bit, const uint32_t **fp, uint32_t *value) { *value = 0; if (*fmap & rm1bit) { uint64_t trash = *fmap & (rm1bit - 1); if (trash) { *fmap -= trash; *fp += count_1bits(trash); } *value = **fp; } return rm1bit != 0; } /* Iterate through all miniflow u32 values specified by 'MAP'. * This works as the first statement in a block.*/ #define MINIFLOW_FOR_EACH_IN_MAP(VALUE, FLOW, MAP) \ const uint32_t *fp_ = miniflow_get_u32_values(FLOW); \ uint64_t rm1bit_, fmap_, map_; \ for (fmap_ = (FLOW)->map, map_ = (MAP), rm1bit_ = rightmost_1bit(map_); \ mf_get_next_in_map(&fmap_, rm1bit_, &fp_, &(VALUE)); \ map_ -= rm1bit_, rm1bit_ = rightmost_1bit(map_)) /* Get the value of 'FIELD' of an up to 4 byte wide integer type 'TYPE' of * a miniflow. */ #define MINIFLOW_GET_TYPE(MF, TYPE, OFS) \ (((MF)->map & (UINT64_C(1) << (OFS) / 4)) \ ? ((OVS_FORCE const TYPE *) \ (miniflow_get_u32_values(MF) \ + count_1bits((MF)->map & ((UINT64_C(1) << (OFS) / 4) - 1)))) \ [(OFS) % 4 / sizeof(TYPE)] \ : 0) \ #define MINIFLOW_GET_U8(FLOW, FIELD) \ MINIFLOW_GET_TYPE(FLOW, uint8_t, offsetof(struct flow, FIELD)) #define MINIFLOW_GET_U16(FLOW, FIELD) \ MINIFLOW_GET_TYPE(FLOW, uint16_t, offsetof(struct flow, FIELD)) #define MINIFLOW_GET_BE16(FLOW, FIELD) \ MINIFLOW_GET_TYPE(FLOW, ovs_be16, offsetof(struct flow, FIELD)) #define MINIFLOW_GET_U32(FLOW, FIELD) \ MINIFLOW_GET_TYPE(FLOW, uint32_t, offsetof(struct flow, FIELD)) #define MINIFLOW_GET_BE32(FLOW, FIELD) \ MINIFLOW_GET_TYPE(FLOW, ovs_be32, offsetof(struct flow, FIELD)) static inline uint16_t miniflow_get_vid(const struct miniflow *); static inline uint16_t miniflow_get_tcp_flags(const struct miniflow *); static inline ovs_be64 miniflow_get_metadata(const struct miniflow *); bool miniflow_equal(const struct miniflow *a, const struct miniflow *b); bool miniflow_equal_in_minimask(const struct miniflow *a, const struct miniflow *b, const struct minimask *); bool miniflow_equal_flow_in_minimask(const struct miniflow *a, const struct flow *b, const struct minimask *); uint32_t miniflow_hash_5tuple(const struct miniflow *flow, uint32_t basis); /* Compressed flow wildcards. */ /* A sparse representation of a "struct flow_wildcards". * * See the large comment on struct miniflow for details. * * Note: While miniflow can have zero data for a 1-bit in the map, * a minimask may not! We rely on this in the implementation. */ struct minimask { struct miniflow masks; }; void minimask_init(struct minimask *, const struct flow_wildcards *); void minimask_clone(struct minimask *, const struct minimask *); void minimask_move(struct minimask *dst, struct minimask *src); void minimask_combine(struct minimask *dst, const struct minimask *a, const struct minimask *b, uint32_t storage[FLOW_U32S]); void minimask_destroy(struct minimask *); void minimask_expand(const struct minimask *, struct flow_wildcards *); uint32_t minimask_get(const struct minimask *, unsigned int u32_ofs); static inline uint16_t minimask_get_vid_mask(const struct minimask *); static inline ovs_be64 minimask_get_metadata_mask(const struct minimask *); bool minimask_equal(const struct minimask *a, const struct minimask *b); bool minimask_has_extra(const struct minimask *, const struct minimask *); /* Returns true if 'mask' matches every packet, false if 'mask' fixes any bits * or fields. */ static inline bool minimask_is_catchall(const struct minimask *mask) { /* For every 1-bit in mask's map, the corresponding value is non-zero, * so the only way the mask can not fix any bits or fields is for the * map the be zero. */ return mask->masks.map == 0; } /* Returns the VID within the vlan_tci member of the "struct flow" represented * by 'flow'. */ static inline uint16_t miniflow_get_vid(const struct miniflow *flow) { ovs_be16 tci = MINIFLOW_GET_BE16(flow, vlan_tci); return vlan_tci_to_vid(tci); } /* Returns the VID mask within the vlan_tci member of the "struct * flow_wildcards" represented by 'mask'. */ static inline uint16_t minimask_get_vid_mask(const struct minimask *mask) { return miniflow_get_vid(&mask->masks); } /* Returns the value of the "tcp_flags" field in 'flow'. */ static inline uint16_t miniflow_get_tcp_flags(const struct miniflow *flow) { return ntohs(MINIFLOW_GET_BE16(flow, tcp_flags)); } /* Returns the value of the OpenFlow 1.1+ "metadata" field in 'flow'. */ static inline ovs_be64 miniflow_get_metadata(const struct miniflow *flow) { union { ovs_be64 be64; struct { ovs_be32 hi; ovs_be32 lo; }; } value; enum { MD_OFS = offsetof(struct flow, metadata) }; BUILD_ASSERT_DECL(MD_OFS % sizeof(uint32_t) == 0); value.hi = MINIFLOW_GET_TYPE(flow, ovs_be32, MD_OFS); value.lo = MINIFLOW_GET_TYPE(flow, ovs_be32, MD_OFS + 4); return value.be64; } /* Returns the mask for the OpenFlow 1.1+ "metadata" field in 'mask'. * * The return value is all-1-bits if 'mask' matches on the whole value of the * metadata field, all-0-bits if 'mask' entirely wildcards the metadata field, * or some other value if the metadata field is partially matched, partially * wildcarded. */ static inline ovs_be64 minimask_get_metadata_mask(const struct minimask *mask) { return miniflow_get_metadata(&mask->masks); } /* Perform a bitwise OR of miniflow 'src' flow data with the equivalent * fields in 'dst', storing the result in 'dst'. */ static inline void flow_union_with_miniflow(struct flow *dst, const struct miniflow *src) { uint32_t *dst_u32 = (uint32_t *) dst; const uint32_t *p = miniflow_get_u32_values(src); uint64_t map; for (map = src->map; map; map = zero_rightmost_1bit(map)) { dst_u32[raw_ctz(map)] |= *p++; } } static inline struct pkt_metadata pkt_metadata_from_flow(const struct flow *flow) { struct pkt_metadata md; md.recirc_id = flow->recirc_id; md.dp_hash = flow->dp_hash; md.tunnel = flow->tunnel; md.skb_priority = flow->skb_priority; md.pkt_mark = flow->pkt_mark; md.in_port = flow->in_port; return md; } static inline bool is_ip_any(const struct flow *flow) { return dl_type_is_ip_any(flow->dl_type); } static inline bool is_icmpv4(const struct flow *flow) { return (flow->dl_type == htons(ETH_TYPE_IP) && flow->nw_proto == IPPROTO_ICMP); } static inline bool is_icmpv6(const struct flow *flow) { return (flow->dl_type == htons(ETH_TYPE_IPV6) && flow->nw_proto == IPPROTO_ICMPV6); } static inline bool is_stp(const struct flow *flow) { return (eth_addr_equals(flow->dl_dst, eth_addr_stp) && flow->dl_type == htons(FLOW_DL_TYPE_NONE)); } #endif /* flow.h */