/* * Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014 Nicira, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "match.h" #include #include "byte-order.h" #include "dynamic-string.h" #include "ofp-util.h" #include "packets.h" /* Converts the flow in 'flow' into a match in 'match', with the given * 'wildcards'. */ void match_init(struct match *match, const struct flow *flow, const struct flow_wildcards *wc) { match->flow = *flow; match->wc = *wc; match_zero_wildcarded_fields(match); } /* Converts a flow into a match. It sets the wildcard masks based on * the packet contents. It will not set the mask for fields that do not * make sense for the packet type. */ void match_wc_init(struct match *match, const struct flow *flow) { struct flow_wildcards *wc; int i; match->flow = *flow; wc = &match->wc; memset(&wc->masks, 0x0, sizeof wc->masks); memset(&wc->masks.dl_type, 0xff, sizeof wc->masks.dl_type); if (flow->nw_proto) { memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto); } if (flow->skb_priority) { memset(&wc->masks.skb_priority, 0xff, sizeof wc->masks.skb_priority); } if (flow->pkt_mark) { memset(&wc->masks.pkt_mark, 0xff, sizeof wc->masks.pkt_mark); } for (i = 0; i < FLOW_N_REGS; i++) { if (flow->regs[i]) { memset(&wc->masks.regs[i], 0xff, sizeof wc->masks.regs[i]); } } if (flow->tunnel.ip_dst) { if (flow->tunnel.flags & FLOW_TNL_F_KEY) { memset(&wc->masks.tunnel.tun_id, 0xff, sizeof wc->masks.tunnel.tun_id); } memset(&wc->masks.tunnel.ip_src, 0xff, sizeof wc->masks.tunnel.ip_src); memset(&wc->masks.tunnel.ip_dst, 0xff, sizeof wc->masks.tunnel.ip_dst); memset(&wc->masks.tunnel.flags, 0xff, sizeof wc->masks.tunnel.flags); memset(&wc->masks.tunnel.ip_tos, 0xff, sizeof wc->masks.tunnel.ip_tos); memset(&wc->masks.tunnel.ip_ttl, 0xff, sizeof wc->masks.tunnel.ip_ttl); } else if (flow->tunnel.tun_id) { memset(&wc->masks.tunnel.tun_id, 0xff, sizeof wc->masks.tunnel.tun_id); } memset(&wc->masks.metadata, 0xff, sizeof wc->masks.metadata); memset(&wc->masks.in_port, 0xff, sizeof wc->masks.in_port); memset(&wc->masks.vlan_tci, 0xff, sizeof wc->masks.vlan_tci); memset(&wc->masks.dl_src, 0xff, sizeof wc->masks.dl_src); memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst); if (flow->dl_type == htons(ETH_TYPE_IPV6)) { memset(&wc->masks.ipv6_src, 0xff, sizeof wc->masks.ipv6_src); memset(&wc->masks.ipv6_dst, 0xff, sizeof wc->masks.ipv6_dst); memset(&wc->masks.ipv6_label, 0xff, sizeof wc->masks.ipv6_label); } else if (flow->dl_type == htons(ETH_TYPE_IP) || (flow->dl_type == htons(ETH_TYPE_ARP)) || (flow->dl_type == htons(ETH_TYPE_RARP))) { memset(&wc->masks.nw_src, 0xff, sizeof wc->masks.nw_src); memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst); } else if (eth_type_mpls(flow->dl_type)) { int i; for (i = 0; i < FLOW_MAX_MPLS_LABELS; i++) { wc->masks.mpls_lse[i] = OVS_BE32_MAX; if (flow->mpls_lse[i] & htonl(MPLS_BOS_MASK)) { break; } } } if (flow->dl_type == htons(ETH_TYPE_ARP) || flow->dl_type == htons(ETH_TYPE_RARP)) { memset(&wc->masks.arp_sha, 0xff, sizeof wc->masks.arp_sha); memset(&wc->masks.arp_tha, 0xff, sizeof wc->masks.arp_tha); } if (is_ip_any(flow)) { memset(&wc->masks.nw_tos, 0xff, sizeof wc->masks.nw_tos); memset(&wc->masks.nw_ttl, 0xff, sizeof wc->masks.nw_ttl); if (flow->nw_frag) { memset(&wc->masks.nw_frag, 0xff, sizeof wc->masks.nw_frag); if (flow->nw_frag & FLOW_NW_FRAG_LATER) { /* No transport layer header in later fragments. */ return; } } if (flow->nw_proto == IPPROTO_ICMP || flow->nw_proto == IPPROTO_ICMPV6 || (flow->tp_src || flow->tp_dst)) { memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src); memset(&wc->masks.tp_dst, 0xff, sizeof wc->masks.tp_dst); } if (flow->nw_proto == IPPROTO_TCP) { memset(&wc->masks.tcp_flags, 0xff, sizeof wc->masks.tcp_flags); } if (flow->nw_proto == IPPROTO_ICMPV6) { memset(&wc->masks.arp_sha, 0xff, sizeof wc->masks.arp_sha); memset(&wc->masks.arp_tha, 0xff, sizeof wc->masks.arp_tha); } } return; } /* Initializes 'match' as a "catch-all" match that matches every packet. */ void match_init_catchall(struct match *match) { memset(&match->flow, 0, sizeof match->flow); flow_wildcards_init_catchall(&match->wc); } /* For each bit or field wildcarded in 'match', sets the corresponding bit or * field in 'flow' to all-0-bits. It is important to maintain this invariant * in a match that might be inserted into a classifier. * * It is never necessary to call this function directly for a match that is * initialized or modified only by match_*() functions. It is useful to * restore the invariant in a match whose 'wc' member is modified by hand. */ void match_zero_wildcarded_fields(struct match *match) { flow_zero_wildcards(&match->flow, &match->wc); } void match_set_dp_hash(struct match *match, uint32_t value) { match_set_dp_hash_masked(match, value, UINT32_MAX); } void match_set_dp_hash_masked(struct match *match, uint32_t value, uint32_t mask) { match->wc.masks.dp_hash = mask; match->flow.dp_hash = value & mask; } void match_set_recirc_id(struct match *match, uint32_t value) { match->flow.recirc_id = value; match->wc.masks.recirc_id = UINT32_MAX; } void match_set_reg(struct match *match, unsigned int reg_idx, uint32_t value) { match_set_reg_masked(match, reg_idx, value, UINT32_MAX); } void match_set_reg_masked(struct match *match, unsigned int reg_idx, uint32_t value, uint32_t mask) { ovs_assert(reg_idx < FLOW_N_REGS); flow_wildcards_set_reg_mask(&match->wc, reg_idx, mask); match->flow.regs[reg_idx] = value & mask; } void match_set_metadata(struct match *match, ovs_be64 metadata) { match_set_metadata_masked(match, metadata, OVS_BE64_MAX); } void match_set_metadata_masked(struct match *match, ovs_be64 metadata, ovs_be64 mask) { match->wc.masks.metadata = mask; match->flow.metadata = metadata & mask; } void match_set_tun_id(struct match *match, ovs_be64 tun_id) { match_set_tun_id_masked(match, tun_id, OVS_BE64_MAX); } void match_set_tun_id_masked(struct match *match, ovs_be64 tun_id, ovs_be64 mask) { match->wc.masks.tunnel.tun_id = mask; match->flow.tunnel.tun_id = tun_id & mask; } void match_set_tun_src(struct match *match, ovs_be32 src) { match_set_tun_src_masked(match, src, OVS_BE32_MAX); } void match_set_tun_src_masked(struct match *match, ovs_be32 src, ovs_be32 mask) { match->wc.masks.tunnel.ip_src = mask; match->flow.tunnel.ip_src = src & mask; } void match_set_tun_dst(struct match *match, ovs_be32 dst) { match_set_tun_dst_masked(match, dst, OVS_BE32_MAX); } void match_set_tun_dst_masked(struct match *match, ovs_be32 dst, ovs_be32 mask) { match->wc.masks.tunnel.ip_dst = mask; match->flow.tunnel.ip_dst = dst & mask; } void match_set_tun_ttl(struct match *match, uint8_t ttl) { match_set_tun_ttl_masked(match, ttl, UINT8_MAX); } void match_set_tun_ttl_masked(struct match *match, uint8_t ttl, uint8_t mask) { match->wc.masks.tunnel.ip_ttl = mask; match->flow.tunnel.ip_ttl = ttl & mask; } void match_set_tun_tos(struct match *match, uint8_t tos) { match_set_tun_tos_masked(match, tos, UINT8_MAX); } void match_set_tun_tos_masked(struct match *match, uint8_t tos, uint8_t mask) { match->wc.masks.tunnel.ip_tos = mask; match->flow.tunnel.ip_tos = tos & mask; } void match_set_tun_flags(struct match *match, uint16_t flags) { match_set_tun_flags_masked(match, flags, UINT16_MAX); } void match_set_tun_flags_masked(struct match *match, uint16_t flags, uint16_t mask) { match->wc.masks.tunnel.flags = mask; match->flow.tunnel.flags = flags & mask; } void match_set_in_port(struct match *match, ofp_port_t ofp_port) { match->wc.masks.in_port.ofp_port = u16_to_ofp(UINT16_MAX); match->flow.in_port.ofp_port = ofp_port; } void match_set_skb_priority(struct match *match, uint32_t skb_priority) { match->wc.masks.skb_priority = UINT32_MAX; match->flow.skb_priority = skb_priority; } void match_set_pkt_mark(struct match *match, uint32_t pkt_mark) { match_set_pkt_mark_masked(match, pkt_mark, UINT32_MAX); } void match_set_pkt_mark_masked(struct match *match, uint32_t pkt_mark, uint32_t mask) { match->flow.pkt_mark = pkt_mark & mask; match->wc.masks.pkt_mark = mask; } void match_set_dl_type(struct match *match, ovs_be16 dl_type) { match->wc.masks.dl_type = OVS_BE16_MAX; match->flow.dl_type = dl_type; } /* Modifies 'value_src' so that the Ethernet address must match 'value_dst' * exactly. 'mask_dst' is set to all 1s. */ static void set_eth(const uint8_t value_src[ETH_ADDR_LEN], uint8_t value_dst[ETH_ADDR_LEN], uint8_t mask_dst[ETH_ADDR_LEN]) { memcpy(value_dst, value_src, ETH_ADDR_LEN); memset(mask_dst, 0xff, ETH_ADDR_LEN); } /* Modifies 'value_src' so that the Ethernet address must match 'value_src' * after each byte is ANDed with the appropriate byte in 'mask_src'. * 'mask_dst' is set to 'mask_src' */ static void set_eth_masked(const uint8_t value_src[ETH_ADDR_LEN], const uint8_t mask_src[ETH_ADDR_LEN], uint8_t value_dst[ETH_ADDR_LEN], uint8_t mask_dst[ETH_ADDR_LEN]) { size_t i; for (i = 0; i < ETH_ADDR_LEN; i++) { value_dst[i] = value_src[i] & mask_src[i]; mask_dst[i] = mask_src[i]; } } /* Modifies 'rule' so that the source Ethernet address must match 'dl_src' * exactly. */ void match_set_dl_src(struct match *match, const uint8_t dl_src[ETH_ADDR_LEN]) { set_eth(dl_src, match->flow.dl_src, match->wc.masks.dl_src); } /* Modifies 'rule' so that the source Ethernet address must match 'dl_src' * after each byte is ANDed with the appropriate byte in 'mask'. */ void match_set_dl_src_masked(struct match *match, const uint8_t dl_src[ETH_ADDR_LEN], const uint8_t mask[ETH_ADDR_LEN]) { set_eth_masked(dl_src, mask, match->flow.dl_src, match->wc.masks.dl_src); } /* Modifies 'match' so that the Ethernet address must match 'dl_dst' * exactly. */ void match_set_dl_dst(struct match *match, const uint8_t dl_dst[ETH_ADDR_LEN]) { set_eth(dl_dst, match->flow.dl_dst, match->wc.masks.dl_dst); } /* Modifies 'match' so that the Ethernet address must match 'dl_dst' after each * byte is ANDed with the appropriate byte in 'mask'. * * This function will assert-fail if 'mask' is invalid. Only 'mask' values * accepted by flow_wildcards_is_dl_dst_mask_valid() are allowed. */ void match_set_dl_dst_masked(struct match *match, const uint8_t dl_dst[ETH_ADDR_LEN], const uint8_t mask[ETH_ADDR_LEN]) { set_eth_masked(dl_dst, mask, match->flow.dl_dst, match->wc.masks.dl_dst); } void match_set_dl_tci(struct match *match, ovs_be16 tci) { match_set_dl_tci_masked(match, tci, htons(0xffff)); } void match_set_dl_tci_masked(struct match *match, ovs_be16 tci, ovs_be16 mask) { match->flow.vlan_tci = tci & mask; match->wc.masks.vlan_tci = mask; } /* Modifies 'match' so that the VLAN VID is wildcarded. If the PCP is already * wildcarded, then 'match' will match a packet regardless of whether it has an * 802.1Q header or not. */ void match_set_any_vid(struct match *match) { if (match->wc.masks.vlan_tci & htons(VLAN_PCP_MASK)) { match->wc.masks.vlan_tci &= ~htons(VLAN_VID_MASK); match->flow.vlan_tci &= ~htons(VLAN_VID_MASK); } else { match_set_dl_tci_masked(match, htons(0), htons(0)); } } /* Modifies 'match' depending on 'dl_vlan': * * - If 'dl_vlan' is htons(OFP_VLAN_NONE), makes 'match' match only packets * without an 802.1Q header. * * - Otherwise, makes 'match' match only packets with an 802.1Q header whose * VID equals the low 12 bits of 'dl_vlan'. */ void match_set_dl_vlan(struct match *match, ovs_be16 dl_vlan) { flow_set_dl_vlan(&match->flow, dl_vlan); if (dl_vlan == htons(OFP10_VLAN_NONE)) { match->wc.masks.vlan_tci = OVS_BE16_MAX; } else { match->wc.masks.vlan_tci |= htons(VLAN_VID_MASK | VLAN_CFI); } } /* Sets the VLAN VID that 'match' matches to 'vid', which is interpreted as an * OpenFlow 1.2 "vlan_vid" value, that is, the low 13 bits of 'vlan_tci' (VID * plus CFI). */ void match_set_vlan_vid(struct match *match, ovs_be16 vid) { match_set_vlan_vid_masked(match, vid, htons(VLAN_VID_MASK | VLAN_CFI)); } /* Sets the VLAN VID that 'flow' matches to 'vid', which is interpreted as an * OpenFlow 1.2 "vlan_vid" value, that is, the low 13 bits of 'vlan_tci' (VID * plus CFI), with the corresponding 'mask'. */ void match_set_vlan_vid_masked(struct match *match, ovs_be16 vid, ovs_be16 mask) { ovs_be16 pcp_mask = htons(VLAN_PCP_MASK); ovs_be16 vid_mask = htons(VLAN_VID_MASK | VLAN_CFI); mask &= vid_mask; flow_set_vlan_vid(&match->flow, vid & mask); match->wc.masks.vlan_tci = mask | (match->wc.masks.vlan_tci & pcp_mask); } /* Modifies 'match' so that the VLAN PCP is wildcarded. If the VID is already * wildcarded, then 'match' will match a packet regardless of whether it has an * 802.1Q header or not. */ void match_set_any_pcp(struct match *match) { if (match->wc.masks.vlan_tci & htons(VLAN_VID_MASK)) { match->wc.masks.vlan_tci &= ~htons(VLAN_PCP_MASK); match->flow.vlan_tci &= ~htons(VLAN_PCP_MASK); } else { match_set_dl_tci_masked(match, htons(0), htons(0)); } } /* Modifies 'match' so that it matches only packets with an 802.1Q header whose * PCP equals the low 3 bits of 'dl_vlan_pcp'. */ void match_set_dl_vlan_pcp(struct match *match, uint8_t dl_vlan_pcp) { flow_set_vlan_pcp(&match->flow, dl_vlan_pcp); match->wc.masks.vlan_tci |= htons(VLAN_CFI | VLAN_PCP_MASK); } /* Modifies 'match' so that the MPLS label 'idx' matches 'lse' exactly. */ void match_set_mpls_lse(struct match *match, int idx, ovs_be32 lse) { match->wc.masks.mpls_lse[idx] = OVS_BE32_MAX; match->flow.mpls_lse[idx] = lse; } /* Modifies 'match' so that the MPLS label is wildcarded. */ void match_set_any_mpls_label(struct match *match, int idx) { match->wc.masks.mpls_lse[idx] &= ~htonl(MPLS_LABEL_MASK); flow_set_mpls_label(&match->flow, idx, htonl(0)); } /* Modifies 'match' so that it matches only packets with an MPLS header whose * label equals the low 20 bits of 'mpls_label'. */ void match_set_mpls_label(struct match *match, int idx, ovs_be32 mpls_label) { match->wc.masks.mpls_lse[idx] |= htonl(MPLS_LABEL_MASK); flow_set_mpls_label(&match->flow, idx, mpls_label); } /* Modifies 'match' so that the MPLS TC is wildcarded. */ void match_set_any_mpls_tc(struct match *match, int idx) { match->wc.masks.mpls_lse[idx] &= ~htonl(MPLS_TC_MASK); flow_set_mpls_tc(&match->flow, idx, 0); } /* Modifies 'match' so that it matches only packets with an MPLS header whose * Traffic Class equals the low 3 bits of 'mpls_tc'. */ void match_set_mpls_tc(struct match *match, int idx, uint8_t mpls_tc) { match->wc.masks.mpls_lse[idx] |= htonl(MPLS_TC_MASK); flow_set_mpls_tc(&match->flow, idx, mpls_tc); } /* Modifies 'match' so that the MPLS stack flag is wildcarded. */ void match_set_any_mpls_bos(struct match *match, int idx) { match->wc.masks.mpls_lse[idx] &= ~htonl(MPLS_BOS_MASK); flow_set_mpls_bos(&match->flow, idx, 0); } /* Modifies 'match' so that it matches only packets with an MPLS header whose * Stack Flag equals the lower bit of 'mpls_bos' */ void match_set_mpls_bos(struct match *match, int idx, uint8_t mpls_bos) { match->wc.masks.mpls_lse[idx] |= htonl(MPLS_BOS_MASK); flow_set_mpls_bos(&match->flow, idx, mpls_bos); } /* Modifies 'match' so that the MPLS LSE is wildcarded. */ void match_set_any_mpls_lse(struct match *match, int idx) { match->wc.masks.mpls_lse[idx] = htonl(0); flow_set_mpls_lse(&match->flow, idx, htonl(0)); } void match_set_tp_src(struct match *match, ovs_be16 tp_src) { match_set_tp_src_masked(match, tp_src, OVS_BE16_MAX); } void match_set_tp_src_masked(struct match *match, ovs_be16 port, ovs_be16 mask) { match->flow.tp_src = port & mask; match->wc.masks.tp_src = mask; } void match_set_tp_dst(struct match *match, ovs_be16 tp_dst) { match_set_tp_dst_masked(match, tp_dst, OVS_BE16_MAX); } void match_set_tp_dst_masked(struct match *match, ovs_be16 port, ovs_be16 mask) { match->flow.tp_dst = port & mask; match->wc.masks.tp_dst = mask; } void match_set_tcp_flags(struct match *match, ovs_be16 flags) { match_set_tcp_flags_masked(match, flags, OVS_BE16_MAX); } void match_set_tcp_flags_masked(struct match *match, ovs_be16 flags, ovs_be16 mask) { match->flow.tcp_flags = flags & mask; match->wc.masks.tcp_flags = mask; } void match_set_nw_proto(struct match *match, uint8_t nw_proto) { match->flow.nw_proto = nw_proto; match->wc.masks.nw_proto = UINT8_MAX; } void match_set_nw_src(struct match *match, ovs_be32 nw_src) { match->flow.nw_src = nw_src; match->wc.masks.nw_src = OVS_BE32_MAX; } void match_set_nw_src_masked(struct match *match, ovs_be32 nw_src, ovs_be32 mask) { match->flow.nw_src = nw_src & mask; match->wc.masks.nw_src = mask; } void match_set_nw_dst(struct match *match, ovs_be32 nw_dst) { match->flow.nw_dst = nw_dst; match->wc.masks.nw_dst = OVS_BE32_MAX; } void match_set_nw_dst_masked(struct match *match, ovs_be32 ip, ovs_be32 mask) { match->flow.nw_dst = ip & mask; match->wc.masks.nw_dst = mask; } void match_set_nw_dscp(struct match *match, uint8_t nw_dscp) { match->wc.masks.nw_tos |= IP_DSCP_MASK; match->flow.nw_tos &= ~IP_DSCP_MASK; match->flow.nw_tos |= nw_dscp & IP_DSCP_MASK; } void match_set_nw_ecn(struct match *match, uint8_t nw_ecn) { match->wc.masks.nw_tos |= IP_ECN_MASK; match->flow.nw_tos &= ~IP_ECN_MASK; match->flow.nw_tos |= nw_ecn & IP_ECN_MASK; } void match_set_nw_ttl(struct match *match, uint8_t nw_ttl) { match->wc.masks.nw_ttl = UINT8_MAX; match->flow.nw_ttl = nw_ttl; } void match_set_nw_frag(struct match *match, uint8_t nw_frag) { match->wc.masks.nw_frag |= FLOW_NW_FRAG_MASK; match->flow.nw_frag = nw_frag; } void match_set_nw_frag_masked(struct match *match, uint8_t nw_frag, uint8_t mask) { match->flow.nw_frag = nw_frag & mask; match->wc.masks.nw_frag = mask; } void match_set_icmp_type(struct match *match, uint8_t icmp_type) { match_set_tp_src(match, htons(icmp_type)); } void match_set_icmp_code(struct match *match, uint8_t icmp_code) { match_set_tp_dst(match, htons(icmp_code)); } void match_set_arp_sha(struct match *match, const uint8_t sha[ETH_ADDR_LEN]) { memcpy(match->flow.arp_sha, sha, ETH_ADDR_LEN); memset(match->wc.masks.arp_sha, UINT8_MAX, ETH_ADDR_LEN); } void match_set_arp_sha_masked(struct match *match, const uint8_t arp_sha[ETH_ADDR_LEN], const uint8_t mask[ETH_ADDR_LEN]) { set_eth_masked(arp_sha, mask, match->flow.arp_sha, match->wc.masks.arp_sha); } void match_set_arp_tha(struct match *match, const uint8_t tha[ETH_ADDR_LEN]) { memcpy(match->flow.arp_tha, tha, ETH_ADDR_LEN); memset(match->wc.masks.arp_tha, UINT8_MAX, ETH_ADDR_LEN); } void match_set_arp_tha_masked(struct match *match, const uint8_t arp_tha[ETH_ADDR_LEN], const uint8_t mask[ETH_ADDR_LEN]) { set_eth_masked(arp_tha, mask, match->flow.arp_tha, match->wc.masks.arp_tha); } void match_set_ipv6_src(struct match *match, const struct in6_addr *src) { match->flow.ipv6_src = *src; match->wc.masks.ipv6_src = in6addr_exact; } void match_set_ipv6_src_masked(struct match *match, const struct in6_addr *src, const struct in6_addr *mask) { match->flow.ipv6_src = ipv6_addr_bitand(src, mask); match->wc.masks.ipv6_src = *mask; } void match_set_ipv6_dst(struct match *match, const struct in6_addr *dst) { match->flow.ipv6_dst = *dst; match->wc.masks.ipv6_dst = in6addr_exact; } void match_set_ipv6_dst_masked(struct match *match, const struct in6_addr *dst, const struct in6_addr *mask) { match->flow.ipv6_dst = ipv6_addr_bitand(dst, mask); match->wc.masks.ipv6_dst = *mask; } void match_set_ipv6_label(struct match *match, ovs_be32 ipv6_label) { match->wc.masks.ipv6_label = OVS_BE32_MAX; match->flow.ipv6_label = ipv6_label; } void match_set_ipv6_label_masked(struct match *match, ovs_be32 ipv6_label, ovs_be32 mask) { match->flow.ipv6_label = ipv6_label & mask; match->wc.masks.ipv6_label = mask; } void match_set_nd_target(struct match *match, const struct in6_addr *target) { match->flow.nd_target = *target; match->wc.masks.nd_target = in6addr_exact; } void match_set_nd_target_masked(struct match *match, const struct in6_addr *target, const struct in6_addr *mask) { match->flow.nd_target = ipv6_addr_bitand(target, mask); match->wc.masks.nd_target = *mask; } /* Returns true if 'a' and 'b' wildcard the same fields and have the same * values for fixed fields, otherwise false. */ bool match_equal(const struct match *a, const struct match *b) { return (flow_wildcards_equal(&a->wc, &b->wc) && flow_equal(&a->flow, &b->flow)); } /* Returns a hash value for the flow and wildcards in 'match', starting from * 'basis'. */ uint32_t match_hash(const struct match *match, uint32_t basis) { return flow_wildcards_hash(&match->wc, flow_hash(&match->flow, basis)); } static bool match_has_default_recirc_id(const struct match *m) { return m->flow.recirc_id == 0 && (m->wc.masks.recirc_id == UINT32_MAX || m->wc.masks.recirc_id == 0); } static bool match_has_default_dp_hash(const struct match *m) { return ((m->flow.dp_hash | m->wc.masks.dp_hash) == 0); } /* Return true if the hidden fields of the match are set to the default values. * The default values equals to those set up by match_init_hidden_fields(). */ bool match_has_default_hidden_fields(const struct match *m) { return match_has_default_recirc_id(m) && match_has_default_dp_hash(m); } void match_init_hidden_fields(struct match *m) { match_set_recirc_id(m, 0); match_set_dp_hash_masked(m, 0, 0); } static void format_eth_masked(struct ds *s, const char *name, const uint8_t eth[6], const uint8_t mask[6]) { if (!eth_addr_is_zero(mask)) { ds_put_format(s, "%s=", name); eth_format_masked(eth, mask, s); ds_put_char(s, ','); } } static void format_ip_netmask(struct ds *s, const char *name, ovs_be32 ip, ovs_be32 netmask) { if (netmask) { ds_put_format(s, "%s=", name); ip_format_masked(ip, netmask, s); ds_put_char(s, ','); } } static void format_ipv6_netmask(struct ds *s, const char *name, const struct in6_addr *addr, const struct in6_addr *netmask) { if (!ipv6_mask_is_any(netmask)) { ds_put_format(s, "%s=", name); print_ipv6_masked(s, addr, netmask); ds_put_char(s, ','); } } static void format_be16_masked(struct ds *s, const char *name, ovs_be16 value, ovs_be16 mask) { if (mask != htons(0)) { ds_put_format(s, "%s=", name); if (mask == OVS_BE16_MAX) { ds_put_format(s, "%"PRIu16, ntohs(value)); } else { ds_put_format(s, "0x%"PRIx16"/0x%"PRIx16, ntohs(value), ntohs(mask)); } ds_put_char(s, ','); } } static void format_be32_masked(struct ds *s, const char *name, ovs_be32 value, ovs_be32 mask) { if (mask != htonl(0)) { ds_put_format(s, "%s=", name); if (mask == OVS_BE32_MAX) { ds_put_format(s, "%"PRIu32, ntohl(value)); } else { ds_put_format(s, "0x%"PRIx32"/0x%"PRIx32, ntohl(value), ntohl(mask)); } ds_put_char(s, ','); } } static void format_uint32_masked(struct ds *s, const char *name, uint32_t value, uint32_t mask) { if (mask) { ds_put_format(s, "%s=%#"PRIx32, name, value); if (mask != UINT32_MAX) { ds_put_format(s, "/%#"PRIx32, mask); } ds_put_char(s, ','); } } static void format_be64_masked(struct ds *s, const char *name, ovs_be64 value, ovs_be64 mask) { if (mask != htonll(0)) { ds_put_format(s, "%s=%#"PRIx64, name, ntohll(value)); if (mask != OVS_BE64_MAX) { ds_put_format(s, "/%#"PRIx64, ntohll(mask)); } ds_put_char(s, ','); } } static void format_flow_tunnel(struct ds *s, const struct match *match) { const struct flow_wildcards *wc = &match->wc; const struct flow_tnl *tnl = &match->flow.tunnel; format_be64_masked(s, "tun_id", tnl->tun_id, wc->masks.tunnel.tun_id); format_ip_netmask(s, "tun_src", tnl->ip_src, wc->masks.tunnel.ip_src); format_ip_netmask(s, "tun_dst", tnl->ip_dst, wc->masks.tunnel.ip_dst); if (wc->masks.tunnel.ip_tos) { ds_put_format(s, "tun_tos=%"PRIx8",", tnl->ip_tos); } if (wc->masks.tunnel.ip_ttl) { ds_put_format(s, "tun_ttl=%"PRIu8",", tnl->ip_ttl); } if (wc->masks.tunnel.flags) { format_flags(s, flow_tun_flag_to_string, tnl->flags, '|'); ds_put_char(s, ','); } } /* Appends a string representation of 'match' to 's'. If 'priority' is * different from OFP_DEFAULT_PRIORITY, includes it in 's'. */ void match_format(const struct match *match, struct ds *s, unsigned int priority) { const struct flow_wildcards *wc = &match->wc; size_t start_len = s->length; const struct flow *f = &match->flow; bool skip_type = false; bool skip_proto = false; int i; BUILD_ASSERT_DECL(FLOW_WC_SEQ == 26); if (priority != OFP_DEFAULT_PRIORITY) { ds_put_format(s, "priority=%u,", priority); } format_uint32_masked(s, "pkt_mark", f->pkt_mark, wc->masks.pkt_mark); if (wc->masks.recirc_id) { format_uint32_masked(s, "recirc_id", f->recirc_id, wc->masks.recirc_id); } if (f->dp_hash && wc->masks.dp_hash) { format_uint32_masked(s, "dp_hash", f->dp_hash, wc->masks.dp_hash); } if (wc->masks.skb_priority) { ds_put_format(s, "skb_priority=%#"PRIx32",", f->skb_priority); } if (wc->masks.dl_type) { skip_type = true; if (f->dl_type == htons(ETH_TYPE_IP)) { if (wc->masks.nw_proto) { skip_proto = true; if (f->nw_proto == IPPROTO_ICMP) { ds_put_cstr(s, "icmp,"); } else if (f->nw_proto == IPPROTO_TCP) { ds_put_cstr(s, "tcp,"); } else if (f->nw_proto == IPPROTO_UDP) { ds_put_cstr(s, "udp,"); } else if (f->nw_proto == IPPROTO_SCTP) { ds_put_cstr(s, "sctp,"); } else { ds_put_cstr(s, "ip,"); skip_proto = false; } } else { ds_put_cstr(s, "ip,"); } } else if (f->dl_type == htons(ETH_TYPE_IPV6)) { if (wc->masks.nw_proto) { skip_proto = true; if (f->nw_proto == IPPROTO_ICMPV6) { ds_put_cstr(s, "icmp6,"); } else if (f->nw_proto == IPPROTO_TCP) { ds_put_cstr(s, "tcp6,"); } else if (f->nw_proto == IPPROTO_UDP) { ds_put_cstr(s, "udp6,"); } else if (f->nw_proto == IPPROTO_SCTP) { ds_put_cstr(s, "sctp6,"); } else { ds_put_cstr(s, "ipv6,"); skip_proto = false; } } else { ds_put_cstr(s, "ipv6,"); } } else if (f->dl_type == htons(ETH_TYPE_ARP)) { ds_put_cstr(s, "arp,"); } else if (f->dl_type == htons(ETH_TYPE_RARP)) { ds_put_cstr(s, "rarp,"); } else if (f->dl_type == htons(ETH_TYPE_MPLS)) { ds_put_cstr(s, "mpls,"); } else if (f->dl_type == htons(ETH_TYPE_MPLS_MCAST)) { ds_put_cstr(s, "mplsm,"); } else { skip_type = false; } } for (i = 0; i < FLOW_N_REGS; i++) { #define REGNAME_LEN 20 char regname[REGNAME_LEN]; if (snprintf(regname, REGNAME_LEN, "reg%d", i) >= REGNAME_LEN) { strcpy(regname, "reg?"); } format_uint32_masked(s, regname, f->regs[i], wc->masks.regs[i]); } format_flow_tunnel(s, match); format_be64_masked(s, "metadata", f->metadata, wc->masks.metadata); if (wc->masks.in_port.ofp_port) { ds_put_cstr(s, "in_port="); ofputil_format_port(f->in_port.ofp_port, s); ds_put_char(s, ','); } if (wc->masks.vlan_tci) { ovs_be16 vid_mask = wc->masks.vlan_tci & htons(VLAN_VID_MASK); ovs_be16 pcp_mask = wc->masks.vlan_tci & htons(VLAN_PCP_MASK); ovs_be16 cfi = wc->masks.vlan_tci & htons(VLAN_CFI); if (cfi && f->vlan_tci & htons(VLAN_CFI) && (!vid_mask || vid_mask == htons(VLAN_VID_MASK)) && (!pcp_mask || pcp_mask == htons(VLAN_PCP_MASK)) && (vid_mask || pcp_mask)) { if (vid_mask) { ds_put_format(s, "dl_vlan=%"PRIu16",", vlan_tci_to_vid(f->vlan_tci)); } if (pcp_mask) { ds_put_format(s, "dl_vlan_pcp=%d,", vlan_tci_to_pcp(f->vlan_tci)); } } else if (wc->masks.vlan_tci == htons(0xffff)) { ds_put_format(s, "vlan_tci=0x%04"PRIx16",", ntohs(f->vlan_tci)); } else { ds_put_format(s, "vlan_tci=0x%04"PRIx16"/0x%04"PRIx16",", ntohs(f->vlan_tci), ntohs(wc->masks.vlan_tci)); } } format_eth_masked(s, "dl_src", f->dl_src, wc->masks.dl_src); format_eth_masked(s, "dl_dst", f->dl_dst, wc->masks.dl_dst); if (!skip_type && wc->masks.dl_type) { ds_put_format(s, "dl_type=0x%04"PRIx16",", ntohs(f->dl_type)); } if (f->dl_type == htons(ETH_TYPE_IPV6)) { format_ipv6_netmask(s, "ipv6_src", &f->ipv6_src, &wc->masks.ipv6_src); format_ipv6_netmask(s, "ipv6_dst", &f->ipv6_dst, &wc->masks.ipv6_dst); if (wc->masks.ipv6_label) { if (wc->masks.ipv6_label == OVS_BE32_MAX) { ds_put_format(s, "ipv6_label=0x%05"PRIx32",", ntohl(f->ipv6_label)); } else { ds_put_format(s, "ipv6_label=0x%05"PRIx32"/0x%05"PRIx32",", ntohl(f->ipv6_label), ntohl(wc->masks.ipv6_label)); } } } else if (f->dl_type == htons(ETH_TYPE_ARP) || f->dl_type == htons(ETH_TYPE_RARP)) { format_ip_netmask(s, "arp_spa", f->nw_src, wc->masks.nw_src); format_ip_netmask(s, "arp_tpa", f->nw_dst, wc->masks.nw_dst); } else { format_ip_netmask(s, "nw_src", f->nw_src, wc->masks.nw_src); format_ip_netmask(s, "nw_dst", f->nw_dst, wc->masks.nw_dst); } if (!skip_proto && wc->masks.nw_proto) { if (f->dl_type == htons(ETH_TYPE_ARP) || f->dl_type == htons(ETH_TYPE_RARP)) { ds_put_format(s, "arp_op=%"PRIu8",", f->nw_proto); } else { ds_put_format(s, "nw_proto=%"PRIu8",", f->nw_proto); } } if (f->dl_type == htons(ETH_TYPE_ARP) || f->dl_type == htons(ETH_TYPE_RARP)) { format_eth_masked(s, "arp_sha", f->arp_sha, wc->masks.arp_sha); format_eth_masked(s, "arp_tha", f->arp_tha, wc->masks.arp_tha); } if (wc->masks.nw_tos & IP_DSCP_MASK) { ds_put_format(s, "nw_tos=%"PRIu8",", f->nw_tos & IP_DSCP_MASK); } if (wc->masks.nw_tos & IP_ECN_MASK) { ds_put_format(s, "nw_ecn=%"PRIu8",", f->nw_tos & IP_ECN_MASK); } if (wc->masks.nw_ttl) { ds_put_format(s, "nw_ttl=%"PRIu8",", f->nw_ttl); } if (wc->masks.mpls_lse[0] & htonl(MPLS_LABEL_MASK)) { ds_put_format(s, "mpls_label=%"PRIu32",", mpls_lse_to_label(f->mpls_lse[0])); } if (wc->masks.mpls_lse[0] & htonl(MPLS_TC_MASK)) { ds_put_format(s, "mpls_tc=%"PRIu8",", mpls_lse_to_tc(f->mpls_lse[0])); } if (wc->masks.mpls_lse[0] & htonl(MPLS_TTL_MASK)) { ds_put_format(s, "mpls_ttl=%"PRIu8",", mpls_lse_to_ttl(f->mpls_lse[0])); } if (wc->masks.mpls_lse[0] & htonl(MPLS_BOS_MASK)) { ds_put_format(s, "mpls_bos=%"PRIu8",", mpls_lse_to_bos(f->mpls_lse[0])); } format_be32_masked(s, "mpls_lse1", f->mpls_lse[1], wc->masks.mpls_lse[1]); format_be32_masked(s, "mpls_lse2", f->mpls_lse[2], wc->masks.mpls_lse[2]); switch (wc->masks.nw_frag) { case FLOW_NW_FRAG_ANY | FLOW_NW_FRAG_LATER: ds_put_format(s, "nw_frag=%s,", f->nw_frag & FLOW_NW_FRAG_ANY ? (f->nw_frag & FLOW_NW_FRAG_LATER ? "later" : "first") : (f->nw_frag & FLOW_NW_FRAG_LATER ? "" : "no")); break; case FLOW_NW_FRAG_ANY: ds_put_format(s, "nw_frag=%s,", f->nw_frag & FLOW_NW_FRAG_ANY ? "yes" : "no"); break; case FLOW_NW_FRAG_LATER: ds_put_format(s, "nw_frag=%s,", f->nw_frag & FLOW_NW_FRAG_LATER ? "later" : "not_later"); break; } if (f->dl_type == htons(ETH_TYPE_IP) && f->nw_proto == IPPROTO_ICMP) { format_be16_masked(s, "icmp_type", f->tp_src, wc->masks.tp_src); format_be16_masked(s, "icmp_code", f->tp_dst, wc->masks.tp_dst); } else if (f->dl_type == htons(ETH_TYPE_IPV6) && f->nw_proto == IPPROTO_ICMPV6) { format_be16_masked(s, "icmp_type", f->tp_src, wc->masks.tp_src); format_be16_masked(s, "icmp_code", f->tp_dst, wc->masks.tp_dst); format_ipv6_netmask(s, "nd_target", &f->nd_target, &wc->masks.nd_target); format_eth_masked(s, "nd_sll", f->arp_sha, wc->masks.arp_sha); format_eth_masked(s, "nd_tll", f->arp_tha, wc->masks.arp_tha); } else { format_be16_masked(s, "tp_src", f->tp_src, wc->masks.tp_src); format_be16_masked(s, "tp_dst", f->tp_dst, wc->masks.tp_dst); } if (is_ip_any(f) && f->nw_proto == IPPROTO_TCP && wc->masks.tcp_flags) { uint16_t mask = TCP_FLAGS(wc->masks.tcp_flags); if (mask == TCP_FLAGS(OVS_BE16_MAX)) { ds_put_format(s, "tcp_flags=0x%03"PRIx16",", ntohs(f->tcp_flags)); } else { format_flags_masked(s, "tcp_flags", packet_tcp_flag_to_string, ntohs(f->tcp_flags), mask); } } if (s->length > start_len && ds_last(s) == ',') { s->length--; } } /* Converts 'match' to a string and returns the string. If 'priority' is * different from OFP_DEFAULT_PRIORITY, includes it in the string. The caller * must free the string (with free()). */ char * match_to_string(const struct match *match, unsigned int priority) { struct ds s = DS_EMPTY_INITIALIZER; match_format(match, &s, priority); return ds_steal_cstr(&s); } void match_print(const struct match *match) { char *s = match_to_string(match, OFP_DEFAULT_PRIORITY); puts(s); free(s); } /* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst' * with minimatch_destroy(). */ void minimatch_init(struct minimatch *dst, const struct match *src) { minimask_init(&dst->mask, &src->wc); miniflow_init_with_minimask(&dst->flow, &src->flow, &dst->mask); } /* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst' * with minimatch_destroy(). */ void minimatch_clone(struct minimatch *dst, const struct minimatch *src) { miniflow_clone(&dst->flow, &src->flow); minimask_clone(&dst->mask, &src->mask); } /* Initializes 'dst' with the data in 'src', destroying 'src'. The caller must * eventually free 'dst' with minimatch_destroy(). */ void minimatch_move(struct minimatch *dst, struct minimatch *src) { miniflow_move(&dst->flow, &src->flow); minimask_move(&dst->mask, &src->mask); } /* Frees any memory owned by 'match'. Does not free the storage in which * 'match' itself resides; the caller is responsible for that. */ void minimatch_destroy(struct minimatch *match) { miniflow_destroy(&match->flow); minimask_destroy(&match->mask); } /* Initializes 'dst' as a copy of 'src'. */ void minimatch_expand(const struct minimatch *src, struct match *dst) { miniflow_expand(&src->flow, &dst->flow); minimask_expand(&src->mask, &dst->wc); } /* Returns true if 'a' and 'b' match the same packets, false otherwise. */ bool minimatch_equal(const struct minimatch *a, const struct minimatch *b) { return (miniflow_equal(&a->flow, &b->flow) && minimask_equal(&a->mask, &b->mask)); } /* Returns true if 'target' satisifies 'match', that is, if each bit for which * 'match' specifies a particular value has the correct value in 'target'. * * This function is equivalent to miniflow_equal_flow_in_minimask(&match->flow, * target, &match->mask) but it is faster because of the invariant that * match->flow.map and match->mask.map are the same. */ bool minimatch_matches_flow(const struct minimatch *match, const struct flow *target) { const uint32_t *target_u32 = (const uint32_t *) target; const uint32_t *flowp = miniflow_get_u32_values(&match->flow); const uint32_t *maskp = miniflow_get_u32_values(&match->mask.masks); uint64_t map; for (map = match->flow.map; map; map = zero_rightmost_1bit(map)) { if ((*flowp++ ^ target_u32[raw_ctz(map)]) & *maskp++) { return false; } } return true; } /* Appends a string representation of 'match' to 's'. If 'priority' is * different from OFP_DEFAULT_PRIORITY, includes it in 's'. */ void minimatch_format(const struct minimatch *match, struct ds *s, unsigned int priority) { struct match megamatch; minimatch_expand(match, &megamatch); match_format(&megamatch, s, priority); } /* Converts 'match' to a string and returns the string. If 'priority' is * different from OFP_DEFAULT_PRIORITY, includes it in the string. The caller * must free the string (with free()). */ char * minimatch_to_string(const struct minimatch *match, unsigned int priority) { struct match megamatch; minimatch_expand(match, &megamatch); return match_to_string(&megamatch, priority); }