/* * Copyright (c) 2008, 2009, 2010, 2011 Nicira Networks. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "netlink-socket.h" #include #include #include #include #include #include #include "coverage.h" #include "dynamic-string.h" #include "hash.h" #include "hmap.h" #include "netlink.h" #include "netlink-protocol.h" #include "ofpbuf.h" #include "poll-loop.h" #include "socket-util.h" #include "stress.h" #include "vlog.h" VLOG_DEFINE_THIS_MODULE(netlink_socket); COVERAGE_DEFINE(netlink_overflow); COVERAGE_DEFINE(netlink_received); COVERAGE_DEFINE(netlink_recv_retry); COVERAGE_DEFINE(netlink_send); COVERAGE_DEFINE(netlink_sent); /* Linux header file confusion causes this to be undefined. */ #ifndef SOL_NETLINK #define SOL_NETLINK 270 #endif /* A single (bad) Netlink message can in theory dump out many, many log * messages, so the burst size is set quite high here to avoid missing useful * information. Also, at high logging levels we log *all* Netlink messages. */ static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(60, 600); static void log_nlmsg(const char *function, int error, const void *message, size_t size, int protocol); /* Netlink sockets. */ struct nl_sock { int fd; uint32_t pid; int protocol; bool any_groups; struct nl_dump *dump; }; static int alloc_pid(uint32_t *); static void free_pid(uint32_t); static int nl_sock_cow__(struct nl_sock *); /* Creates a new netlink socket for the given netlink 'protocol' * (NETLINK_ROUTE, NETLINK_GENERIC, ...). Returns 0 and sets '*sockp' to the * new socket if successful, otherwise returns a positive errno value. */ int nl_sock_create(int protocol, struct nl_sock **sockp) { struct nl_sock *sock; struct sockaddr_nl local, remote; int retval = 0; *sockp = NULL; sock = malloc(sizeof *sock); if (sock == NULL) { return ENOMEM; } sock->fd = socket(AF_NETLINK, SOCK_RAW, protocol); if (sock->fd < 0) { VLOG_ERR("fcntl: %s", strerror(errno)); goto error; } sock->protocol = protocol; sock->any_groups = false; sock->dump = NULL; retval = alloc_pid(&sock->pid); if (retval) { goto error; } /* Bind local address as our selected pid. */ memset(&local, 0, sizeof local); local.nl_family = AF_NETLINK; local.nl_pid = sock->pid; if (bind(sock->fd, (struct sockaddr *) &local, sizeof local) < 0) { VLOG_ERR("bind(%"PRIu32"): %s", sock->pid, strerror(errno)); goto error_free_pid; } /* Bind remote address as the kernel (pid 0). */ memset(&remote, 0, sizeof remote); remote.nl_family = AF_NETLINK; remote.nl_pid = 0; if (connect(sock->fd, (struct sockaddr *) &remote, sizeof remote) < 0) { VLOG_ERR("connect(0): %s", strerror(errno)); goto error_free_pid; } *sockp = sock; return 0; error_free_pid: free_pid(sock->pid); error: if (retval == 0) { retval = errno; if (retval == 0) { retval = EINVAL; } } if (sock->fd >= 0) { close(sock->fd); } free(sock); return retval; } /* Creates a new netlink socket for the same protocol as 'src'. Returns 0 and * sets '*sockp' to the new socket if successful, otherwise returns a positive * errno value. */ int nl_sock_clone(const struct nl_sock *src, struct nl_sock **sockp) { return nl_sock_create(src->protocol, sockp); } /* Destroys netlink socket 'sock'. */ void nl_sock_destroy(struct nl_sock *sock) { if (sock) { if (sock->dump) { sock->dump = NULL; } else { close(sock->fd); free_pid(sock->pid); free(sock); } } } /* Tries to add 'sock' as a listener for 'multicast_group'. Returns 0 if * successful, otherwise a positive errno value. * * Multicast group numbers are always positive. * * It is not an error to attempt to join a multicast group to which a socket * already belongs. */ int nl_sock_join_mcgroup(struct nl_sock *sock, unsigned int multicast_group) { int error = nl_sock_cow__(sock); if (error) { return error; } if (setsockopt(sock->fd, SOL_NETLINK, NETLINK_ADD_MEMBERSHIP, &multicast_group, sizeof multicast_group) < 0) { VLOG_WARN("could not join multicast group %u (%s)", multicast_group, strerror(errno)); return errno; } sock->any_groups = true; return 0; } /* Tries to make 'sock' stop listening to 'multicast_group'. Returns 0 if * successful, otherwise a positive errno value. * * Multicast group numbers are always positive. * * It is not an error to attempt to leave a multicast group to which a socket * does not belong. * * On success, reading from 'sock' will still return any messages that were * received on 'multicast_group' before the group was left. */ int nl_sock_leave_mcgroup(struct nl_sock *sock, unsigned int multicast_group) { assert(!sock->dump); if (setsockopt(sock->fd, SOL_NETLINK, NETLINK_DROP_MEMBERSHIP, &multicast_group, sizeof multicast_group) < 0) { VLOG_WARN("could not leave multicast group %u (%s)", multicast_group, strerror(errno)); return errno; } return 0; } static int nl_sock_send__(struct nl_sock *sock, const struct ofpbuf *msg, bool wait) { struct nlmsghdr *nlmsg = nl_msg_nlmsghdr(msg); int error; nlmsg->nlmsg_len = msg->size; nlmsg->nlmsg_pid = sock->pid; do { int retval; retval = send(sock->fd, msg->data, msg->size, wait ? 0 : MSG_DONTWAIT); error = retval < 0 ? errno : 0; } while (error == EINTR); log_nlmsg(__func__, error, msg->data, msg->size, sock->protocol); if (!error) { COVERAGE_INC(netlink_sent); } return error; } /* Tries to send 'msg', which must contain a Netlink message, to the kernel on * 'sock'. nlmsg_len in 'msg' will be finalized to match msg->size, and * nlmsg_pid will be set to 'sock''s pid, before the message is sent. * * Returns 0 if successful, otherwise a positive errno value. If * 'wait' is true, then the send will wait until buffer space is ready; * otherwise, returns EAGAIN if the 'sock' send buffer is full. */ int nl_sock_send(struct nl_sock *sock, const struct ofpbuf *msg, bool wait) { int error = nl_sock_cow__(sock); if (error) { return error; } return nl_sock_send__(sock, msg, wait); } /* Tries to send the 'n_iov' chunks of data in 'iov' to the kernel on 'sock' as * a single Netlink message. (The message must be fully formed and not require * finalization of its nlmsg_len or nlmsg_pid fields.) * * Returns 0 if successful, otherwise a positive errno value. If 'wait' is * true, then the send will wait until buffer space is ready; otherwise, * returns EAGAIN if the 'sock' send buffer is full. */ int nl_sock_sendv(struct nl_sock *sock, const struct iovec iov[], size_t n_iov, bool wait) { struct msghdr msg; int error; COVERAGE_INC(netlink_send); memset(&msg, 0, sizeof msg); msg.msg_iov = (struct iovec *) iov; msg.msg_iovlen = n_iov; do { int retval; retval = sendmsg(sock->fd, &msg, wait ? 0 : MSG_DONTWAIT); error = retval < 0 ? errno : 0; } while (error == EINTR); if (error != EAGAIN) { log_nlmsg(__func__, error, iov[0].iov_base, iov[0].iov_len, sock->protocol); if (!error) { COVERAGE_INC(netlink_sent); } } return error; } /* This stress option is useful for testing that OVS properly tolerates * -ENOBUFS on NetLink sockets. Such errors are unavoidable because they can * occur if the kernel cannot temporarily allocate enough GFP_ATOMIC memory to * reply to a request. They can also occur if messages arrive on a multicast * channel faster than OVS can process them. */ STRESS_OPTION( netlink_overflow, "simulate netlink socket receive buffer overflow", 5, 1, -1, 100); static int nl_sock_recv__(struct nl_sock *sock, struct ofpbuf **bufp, bool wait) { uint8_t tmp; ssize_t bufsize = 2048; ssize_t nbytes, nbytes2; struct ofpbuf *buf; struct nlmsghdr *nlmsghdr; struct iovec iov; struct msghdr msg = { .msg_name = NULL, .msg_namelen = 0, .msg_iov = &iov, .msg_iovlen = 1, .msg_control = NULL, .msg_controllen = 0, .msg_flags = 0 }; buf = ofpbuf_new(bufsize); *bufp = NULL; try_again: /* Attempt to read the message. We don't know the size of the data * yet, so we take a guess at 2048. If we're wrong, we keep trying * and doubling the buffer size each time. */ nlmsghdr = ofpbuf_put_uninit(buf, bufsize); iov.iov_base = nlmsghdr; iov.iov_len = bufsize; do { nbytes = recvmsg(sock->fd, &msg, (wait ? 0 : MSG_DONTWAIT) | MSG_PEEK); } while (nbytes < 0 && errno == EINTR); if (nbytes < 0) { ofpbuf_delete(buf); return errno; } if (msg.msg_flags & MSG_TRUNC) { COVERAGE_INC(netlink_recv_retry); bufsize *= 2; ofpbuf_reinit(buf, bufsize); goto try_again; } buf->size = nbytes; /* We successfully read the message, so recv again to clear the queue */ iov.iov_base = &tmp; iov.iov_len = 1; do { nbytes2 = recvmsg(sock->fd, &msg, MSG_DONTWAIT); } while (nbytes2 < 0 && errno == EINTR); if (nbytes2 < 0) { if (errno == ENOBUFS) { /* The kernel is notifying us that a message it tried to send to us * was dropped. We have to pass this along to the caller in case * it wants to retry a request. So kill the buffer, which we can * re-read next time. */ COVERAGE_INC(netlink_overflow); ofpbuf_delete(buf); return ENOBUFS; } else { VLOG_ERR_RL(&rl, "failed to remove nlmsg from socket: %s\n", strerror(errno)); } } if (nbytes < sizeof *nlmsghdr || nlmsghdr->nlmsg_len < sizeof *nlmsghdr || nlmsghdr->nlmsg_len > nbytes) { VLOG_ERR_RL(&rl, "received invalid nlmsg (%zd bytes < %d)", bufsize, NLMSG_HDRLEN); ofpbuf_delete(buf); return EPROTO; } if (STRESS(netlink_overflow)) { ofpbuf_delete(buf); return ENOBUFS; } *bufp = buf; log_nlmsg(__func__, 0, buf->data, buf->size, sock->protocol); COVERAGE_INC(netlink_received); return 0; } /* Tries to receive a netlink message from the kernel on 'sock'. If * successful, stores the received message into '*bufp' and returns 0. The * caller is responsible for destroying the message with ofpbuf_delete(). On * failure, returns a positive errno value and stores a null pointer into * '*bufp'. * * If 'wait' is true, nl_sock_recv waits for a message to be ready; otherwise, * returns EAGAIN if the 'sock' receive buffer is empty. */ int nl_sock_recv(struct nl_sock *sock, struct ofpbuf **bufp, bool wait) { int error = nl_sock_cow__(sock); if (error) { return error; } return nl_sock_recv__(sock, bufp, wait); } /* Sends 'request' to the kernel via 'sock' and waits for a response. If * successful, returns 0. On failure, returns a positive errno value. * * If 'replyp' is nonnull, then on success '*replyp' is set to the kernel's * reply, which the caller is responsible for freeing with ofpbuf_delete(), and * on failure '*replyp' is set to NULL. If 'replyp' is null, then the kernel's * reply, if any, is discarded. * * nlmsg_len in 'msg' will be finalized to match msg->size, and nlmsg_pid will * be set to 'sock''s pid, before the message is sent. NLM_F_ACK will be set * in nlmsg_flags. * * The caller is responsible for destroying 'request'. * * Bare Netlink is an unreliable transport protocol. This function layers * reliable delivery and reply semantics on top of bare Netlink. * * In Netlink, sending a request to the kernel is reliable enough, because the * kernel will tell us if the message cannot be queued (and we will in that * case put it on the transmit queue and wait until it can be delivered). * * Receiving the reply is the real problem: if the socket buffer is full when * the kernel tries to send the reply, the reply will be dropped. However, the * kernel sets a flag that a reply has been dropped. The next call to recv * then returns ENOBUFS. We can then re-send the request. * * Caveats: * * 1. Netlink depends on sequence numbers to match up requests and * replies. The sender of a request supplies a sequence number, and * the reply echos back that sequence number. * * This is fine, but (1) some kernel netlink implementations are * broken, in that they fail to echo sequence numbers and (2) this * function will drop packets with non-matching sequence numbers, so * that only a single request can be usefully transacted at a time. * * 2. Resending the request causes it to be re-executed, so the request * needs to be idempotent. */ int nl_sock_transact(struct nl_sock *sock, const struct ofpbuf *request, struct ofpbuf **replyp) { uint32_t seq = nl_msg_nlmsghdr(request)->nlmsg_seq; struct nlmsghdr *nlmsghdr; struct ofpbuf *reply; int retval; if (replyp) { *replyp = NULL; } /* Ensure that we get a reply even if this message doesn't ordinarily call * for one. */ nl_msg_nlmsghdr(request)->nlmsg_flags |= NLM_F_ACK; send: retval = nl_sock_send(sock, request, true); if (retval) { return retval; } recv: retval = nl_sock_recv(sock, &reply, true); if (retval) { if (retval == ENOBUFS) { COVERAGE_INC(netlink_overflow); VLOG_DBG_RL(&rl, "receive buffer overflow, resending request"); goto send; } else { return retval; } } nlmsghdr = nl_msg_nlmsghdr(reply); if (seq != nlmsghdr->nlmsg_seq) { VLOG_DBG_RL(&rl, "ignoring seq %#"PRIx32" != expected %#"PRIx32, nl_msg_nlmsghdr(reply)->nlmsg_seq, seq); ofpbuf_delete(reply); goto recv; } /* If the reply is an error, discard the reply and return the error code. * * Except: if the reply is just an acknowledgement (error code of 0), and * the caller is interested in the reply (replyp != NULL), pass the reply * up to the caller. Otherwise the caller will get a return value of 0 * and null '*replyp', which makes unwary callers likely to segfault. */ if (nl_msg_nlmsgerr(reply, &retval) && (retval || !replyp)) { ofpbuf_delete(reply); if (retval) { VLOG_DBG_RL(&rl, "received NAK error=%d (%s)", retval, strerror(retval)); } return retval != EAGAIN ? retval : EPROTO; } if (replyp) { *replyp = reply; } else { ofpbuf_delete(reply); } return 0; } /* Drain all the messages currently in 'sock''s receive queue. */ int nl_sock_drain(struct nl_sock *sock) { int error = nl_sock_cow__(sock); if (error) { return error; } return drain_rcvbuf(sock->fd); } /* The client is attempting some operation on 'sock'. If 'sock' has an ongoing * dump operation, then replace 'sock''s fd with a new socket and hand 'sock''s * old fd over to the dump. */ static int nl_sock_cow__(struct nl_sock *sock) { struct nl_sock *copy; uint32_t tmp_pid; int tmp_fd; int error; if (!sock->dump) { return 0; } error = nl_sock_clone(sock, ©); if (error) { return error; } tmp_fd = sock->fd; sock->fd = copy->fd; copy->fd = tmp_fd; tmp_pid = sock->pid; sock->pid = copy->pid; copy->pid = tmp_pid; sock->dump->sock = copy; sock->dump = NULL; return 0; } /* Starts a Netlink "dump" operation, by sending 'request' to the kernel via * 'sock', and initializes 'dump' to reflect the state of the operation. * * nlmsg_len in 'msg' will be finalized to match msg->size, and nlmsg_pid will * be set to 'sock''s pid, before the message is sent. NLM_F_DUMP and * NLM_F_ACK will be set in nlmsg_flags. * * This Netlink socket library is designed to ensure that the dump is reliable * and that it will not interfere with other operations on 'sock', including * destroying or sending and receiving messages on 'sock'. One corner case is * not handled: * * - If 'sock' has been used to send a request (e.g. with nl_sock_send()) * whose response has not yet been received (e.g. with nl_sock_recv()). * This is unusual: usually nl_sock_transact() is used to send a message * and receive its reply all in one go. * * This function provides no status indication. An error status for the entire * dump operation is provided when it is completed by calling nl_dump_done(). * * The caller is responsible for destroying 'request'. * * The new 'dump' is independent of 'sock'. 'sock' and 'dump' may be destroyed * in either order. */ void nl_dump_start(struct nl_dump *dump, struct nl_sock *sock, const struct ofpbuf *request) { struct nlmsghdr *nlmsghdr = nl_msg_nlmsghdr(request); nlmsghdr->nlmsg_flags |= NLM_F_DUMP | NLM_F_ACK; dump->seq = nlmsghdr->nlmsg_seq; dump->buffer = NULL; if (sock->any_groups || sock->dump) { /* 'sock' might belong to some multicast group, or it already has an * onoging dump. Clone the socket to avoid possibly intermixing * multicast messages or previous dump results with our results. */ dump->status = nl_sock_clone(sock, &dump->sock); if (dump->status) { return; } } else { sock->dump = dump; dump->sock = sock; dump->status = 0; } dump->status = nl_sock_send__(sock, request, true); } /* Helper function for nl_dump_next(). */ static int nl_dump_recv(struct nl_dump *dump, struct ofpbuf **bufferp) { struct nlmsghdr *nlmsghdr; struct ofpbuf *buffer; int retval; retval = nl_sock_recv__(dump->sock, bufferp, true); if (retval) { return retval == EINTR ? EAGAIN : retval; } buffer = *bufferp; nlmsghdr = nl_msg_nlmsghdr(buffer); if (dump->seq != nlmsghdr->nlmsg_seq) { VLOG_DBG_RL(&rl, "ignoring seq %#"PRIx32" != expected %#"PRIx32, nlmsghdr->nlmsg_seq, dump->seq); return EAGAIN; } if (nl_msg_nlmsgerr(buffer, &retval)) { VLOG_INFO_RL(&rl, "netlink dump request error (%s)", strerror(retval)); return retval && retval != EAGAIN ? retval : EPROTO; } return 0; } /* Attempts to retrieve another reply from 'dump', which must have been * initialized with nl_dump_start(). * * If successful, returns true and points 'reply->data' and 'reply->size' to * the message that was retrieved. The caller must not modify 'reply' (because * it points into the middle of a larger buffer). * * On failure, returns false and sets 'reply->data' to NULL and 'reply->size' * to 0. Failure might indicate an actual error or merely the end of replies. * An error status for the entire dump operation is provided when it is * completed by calling nl_dump_done(). */ bool nl_dump_next(struct nl_dump *dump, struct ofpbuf *reply) { struct nlmsghdr *nlmsghdr; reply->data = NULL; reply->size = 0; if (dump->status) { return false; } if (dump->buffer && !dump->buffer->size) { ofpbuf_delete(dump->buffer); dump->buffer = NULL; } while (!dump->buffer) { int retval = nl_dump_recv(dump, &dump->buffer); if (retval) { ofpbuf_delete(dump->buffer); dump->buffer = NULL; if (retval != EAGAIN) { dump->status = retval; return false; } } } nlmsghdr = nl_msg_next(dump->buffer, reply); if (!nlmsghdr) { VLOG_WARN_RL(&rl, "netlink dump reply contains message fragment"); dump->status = EPROTO; return false; } else if (nlmsghdr->nlmsg_type == NLMSG_DONE) { dump->status = EOF; return false; } return true; } /* Completes Netlink dump operation 'dump', which must have been initialized * with nl_dump_start(). Returns 0 if the dump operation was error-free, * otherwise a positive errno value describing the problem. */ int nl_dump_done(struct nl_dump *dump) { /* Drain any remaining messages that the client didn't read. Otherwise the * kernel will continue to queue them up and waste buffer space. */ while (!dump->status) { struct ofpbuf reply; if (!nl_dump_next(dump, &reply)) { assert(dump->status); } } if (dump->sock) { if (dump->sock->dump) { dump->sock->dump = NULL; } else { nl_sock_destroy(dump->sock); } } ofpbuf_delete(dump->buffer); return dump->status == EOF ? 0 : dump->status; } /* Causes poll_block() to wake up when any of the specified 'events' (which is * a OR'd combination of POLLIN, POLLOUT, etc.) occur on 'sock'. */ void nl_sock_wait(const struct nl_sock *sock, short int events) { poll_fd_wait(sock->fd, events); } /* Miscellaneous. */ struct genl_family { struct hmap_node hmap_node; uint16_t id; char *name; }; static struct hmap genl_families = HMAP_INITIALIZER(&genl_families); static const struct nl_policy family_policy[CTRL_ATTR_MAX + 1] = { [CTRL_ATTR_FAMILY_ID] = {.type = NL_A_U16}, }; static struct genl_family * find_genl_family_by_id(uint16_t id) { struct genl_family *family; HMAP_FOR_EACH_IN_BUCKET (family, hmap_node, hash_int(id, 0), &genl_families) { if (family->id == id) { return family; } } return NULL; } static void define_genl_family(uint16_t id, const char *name) { struct genl_family *family = find_genl_family_by_id(id); if (family) { if (!strcmp(family->name, name)) { return; } free(family->name); } else { family = xmalloc(sizeof *family); family->id = id; hmap_insert(&genl_families, &family->hmap_node, hash_int(id, 0)); } family->name = xstrdup(name); } static const char * genl_family_to_name(uint16_t id) { if (id == GENL_ID_CTRL) { return "control"; } else { struct genl_family *family = find_genl_family_by_id(id); return family ? family->name : "unknown"; } } static int do_lookup_genl_family(const char *name) { struct nl_sock *sock; struct ofpbuf request, *reply; struct nlattr *attrs[ARRAY_SIZE(family_policy)]; int retval; retval = nl_sock_create(NETLINK_GENERIC, &sock); if (retval) { return -retval; } ofpbuf_init(&request, 0); nl_msg_put_genlmsghdr(&request, 0, GENL_ID_CTRL, NLM_F_REQUEST, CTRL_CMD_GETFAMILY, 1); nl_msg_put_string(&request, CTRL_ATTR_FAMILY_NAME, name); retval = nl_sock_transact(sock, &request, &reply); ofpbuf_uninit(&request); if (retval) { nl_sock_destroy(sock); return -retval; } if (!nl_policy_parse(reply, NLMSG_HDRLEN + GENL_HDRLEN, family_policy, attrs, ARRAY_SIZE(family_policy))) { nl_sock_destroy(sock); ofpbuf_delete(reply); return -EPROTO; } retval = nl_attr_get_u16(attrs[CTRL_ATTR_FAMILY_ID]); if (retval == 0) { retval = -EPROTO; } else { define_genl_family(retval, name); } nl_sock_destroy(sock); ofpbuf_delete(reply); return retval; } /* If '*number' is 0, translates the given Generic Netlink family 'name' to a * number and stores it in '*number'. If successful, returns 0 and the caller * may use '*number' as the family number. On failure, returns a positive * errno value and '*number' caches the errno value. */ int nl_lookup_genl_family(const char *name, int *number) { if (*number == 0) { *number = do_lookup_genl_family(name); assert(*number != 0); } return *number > 0 ? 0 : -*number; } /* Netlink PID. * * Every Netlink socket must be bound to a unique 32-bit PID. By convention, * programs that have a single Netlink socket use their Unix process ID as PID, * and programs with multiple Netlink sockets add a unique per-socket * identifier in the bits above the Unix process ID. * * The kernel has Netlink PID 0. */ /* Parameters for how many bits in the PID should come from the Unix process ID * and how many unique per-socket. */ #define SOCKET_BITS 10 #define MAX_SOCKETS (1u << SOCKET_BITS) #define PROCESS_BITS (32 - SOCKET_BITS) #define MAX_PROCESSES (1u << PROCESS_BITS) #define PROCESS_MASK ((uint32_t) (MAX_PROCESSES - 1)) /* Bit vector of unused socket identifiers. */ static uint32_t avail_sockets[ROUND_UP(MAX_SOCKETS, 32)]; /* Allocates and returns a new Netlink PID. */ static int alloc_pid(uint32_t *pid) { int i; for (i = 0; i < MAX_SOCKETS; i++) { if ((avail_sockets[i / 32] & (1u << (i % 32))) == 0) { avail_sockets[i / 32] |= 1u << (i % 32); *pid = (getpid() & PROCESS_MASK) | (i << PROCESS_BITS); return 0; } } VLOG_ERR("netlink pid space exhausted"); return ENOBUFS; } /* Makes the specified 'pid' available for reuse. */ static void free_pid(uint32_t pid) { int sock = pid >> PROCESS_BITS; assert(avail_sockets[sock / 32] & (1u << (sock % 32))); avail_sockets[sock / 32] &= ~(1u << (sock % 32)); } static void nlmsghdr_to_string(const struct nlmsghdr *h, int protocol, struct ds *ds) { struct nlmsg_flag { unsigned int bits; const char *name; }; static const struct nlmsg_flag flags[] = { { NLM_F_REQUEST, "REQUEST" }, { NLM_F_MULTI, "MULTI" }, { NLM_F_ACK, "ACK" }, { NLM_F_ECHO, "ECHO" }, { NLM_F_DUMP, "DUMP" }, { NLM_F_ROOT, "ROOT" }, { NLM_F_MATCH, "MATCH" }, { NLM_F_ATOMIC, "ATOMIC" }, }; const struct nlmsg_flag *flag; uint16_t flags_left; ds_put_format(ds, "nl(len:%"PRIu32", type=%"PRIu16, h->nlmsg_len, h->nlmsg_type); if (h->nlmsg_type == NLMSG_NOOP) { ds_put_cstr(ds, "(no-op)"); } else if (h->nlmsg_type == NLMSG_ERROR) { ds_put_cstr(ds, "(error)"); } else if (h->nlmsg_type == NLMSG_DONE) { ds_put_cstr(ds, "(done)"); } else if (h->nlmsg_type == NLMSG_OVERRUN) { ds_put_cstr(ds, "(overrun)"); } else if (h->nlmsg_type < NLMSG_MIN_TYPE) { ds_put_cstr(ds, "(reserved)"); } else if (protocol == NETLINK_GENERIC) { ds_put_format(ds, "(%s)", genl_family_to_name(h->nlmsg_type)); } else { ds_put_cstr(ds, "(family-defined)"); } ds_put_format(ds, ", flags=%"PRIx16, h->nlmsg_flags); flags_left = h->nlmsg_flags; for (flag = flags; flag < &flags[ARRAY_SIZE(flags)]; flag++) { if ((flags_left & flag->bits) == flag->bits) { ds_put_format(ds, "[%s]", flag->name); flags_left &= ~flag->bits; } } if (flags_left) { ds_put_format(ds, "[OTHER:%"PRIx16"]", flags_left); } ds_put_format(ds, ", seq=%"PRIx32", pid=%"PRIu32"(%d:%d))", h->nlmsg_seq, h->nlmsg_pid, (int) (h->nlmsg_pid & PROCESS_MASK), (int) (h->nlmsg_pid >> PROCESS_BITS)); } static char * nlmsg_to_string(const struct ofpbuf *buffer, int protocol) { struct ds ds = DS_EMPTY_INITIALIZER; const struct nlmsghdr *h = ofpbuf_at(buffer, 0, NLMSG_HDRLEN); if (h) { nlmsghdr_to_string(h, protocol, &ds); if (h->nlmsg_type == NLMSG_ERROR) { const struct nlmsgerr *e; e = ofpbuf_at(buffer, NLMSG_HDRLEN, NLMSG_ALIGN(sizeof(struct nlmsgerr))); if (e) { ds_put_format(&ds, " error(%d", e->error); if (e->error < 0) { ds_put_format(&ds, "(%s)", strerror(-e->error)); } ds_put_cstr(&ds, ", in-reply-to("); nlmsghdr_to_string(&e->msg, protocol, &ds); ds_put_cstr(&ds, "))"); } else { ds_put_cstr(&ds, " error(truncated)"); } } else if (h->nlmsg_type == NLMSG_DONE) { int *error = ofpbuf_at(buffer, NLMSG_HDRLEN, sizeof *error); if (error) { ds_put_format(&ds, " done(%d", *error); if (*error < 0) { ds_put_format(&ds, "(%s)", strerror(-*error)); } ds_put_cstr(&ds, ")"); } else { ds_put_cstr(&ds, " done(truncated)"); } } else if (protocol == NETLINK_GENERIC) { struct genlmsghdr *genl = nl_msg_genlmsghdr(buffer); if (genl) { ds_put_format(&ds, ",genl(cmd=%"PRIu8",version=%"PRIu8")", genl->cmd, genl->version); } } } else { ds_put_cstr(&ds, "nl(truncated)"); } return ds.string; } static void log_nlmsg(const char *function, int error, const void *message, size_t size, int protocol) { struct ofpbuf buffer; char *nlmsg; if (!VLOG_IS_DBG_ENABLED()) { return; } ofpbuf_use_const(&buffer, message, size); nlmsg = nlmsg_to_string(&buffer, protocol); VLOG_DBG_RL(&rl, "%s (%s): %s", function, strerror(error), nlmsg); free(nlmsg); }