/* * Copyright (c) 2013, 2014 Nicira, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "ovs-thread.h" #include #include #include #include #include "compiler.h" #include "hash.h" #include "ovs-rcu.h" #include "poll-loop.h" #include "socket-util.h" #include "util.h" #ifdef __CHECKER__ /* Omit the definitions in this file because they are somewhat difficult to * write without prompting "sparse" complaints, without ugliness or * cut-and-paste. Since "sparse" is just a checker, not a compiler, it * doesn't matter that we don't define them. */ #else #include "vlog.h" VLOG_DEFINE_THIS_MODULE(ovs_thread); /* If there is a reason that we cannot fork anymore (unless the fork will be * immediately followed by an exec), then this points to a string that * explains why. */ static const char *must_not_fork; /* True if we created any threads beyond the main initial thread. */ static bool multithreaded; #define LOCK_FUNCTION(TYPE, FUN) \ void \ ovs_##TYPE##_##FUN##_at(const struct ovs_##TYPE *l_, \ const char *where) \ OVS_NO_THREAD_SAFETY_ANALYSIS \ { \ struct ovs_##TYPE *l = CONST_CAST(struct ovs_##TYPE *, l_); \ int error; \ \ /* Verify that 'l' was initialized. */ \ ovs_assert(l->where); \ \ error = pthread_##TYPE##_##FUN(&l->lock); \ if (OVS_UNLIKELY(error)) { \ ovs_abort(error, "pthread_%s_%s failed", #TYPE, #FUN); \ } \ l->where = where; \ } LOCK_FUNCTION(mutex, lock); LOCK_FUNCTION(rwlock, rdlock); LOCK_FUNCTION(rwlock, wrlock); #define TRY_LOCK_FUNCTION(TYPE, FUN) \ int \ ovs_##TYPE##_##FUN##_at(const struct ovs_##TYPE *l_, \ const char *where) \ OVS_NO_THREAD_SAFETY_ANALYSIS \ { \ struct ovs_##TYPE *l = CONST_CAST(struct ovs_##TYPE *, l_); \ int error; \ \ /* Verify that 'l' was initialized. */ \ ovs_assert(l->where); \ \ error = pthread_##TYPE##_##FUN(&l->lock); \ if (OVS_UNLIKELY(error) && error != EBUSY) { \ ovs_abort(error, "pthread_%s_%s failed", #TYPE, #FUN); \ } \ if (!error) { \ l->where = where; \ } \ return error; \ } TRY_LOCK_FUNCTION(mutex, trylock); TRY_LOCK_FUNCTION(rwlock, tryrdlock); TRY_LOCK_FUNCTION(rwlock, trywrlock); #define UNLOCK_FUNCTION(TYPE, FUN, WHERE) \ void \ ovs_##TYPE##_##FUN(const struct ovs_##TYPE *l_) \ OVS_NO_THREAD_SAFETY_ANALYSIS \ { \ struct ovs_##TYPE *l = CONST_CAST(struct ovs_##TYPE *, l_); \ int error; \ \ /* Verify that 'l' was initialized. */ \ ovs_assert(l->where); \ \ l->where = WHERE; \ error = pthread_##TYPE##_##FUN(&l->lock); \ if (OVS_UNLIKELY(error)) { \ ovs_abort(error, "pthread_%s_%sfailed", #TYPE, #FUN); \ } \ } UNLOCK_FUNCTION(mutex, unlock, ""); UNLOCK_FUNCTION(mutex, destroy, NULL); UNLOCK_FUNCTION(rwlock, unlock, ""); UNLOCK_FUNCTION(rwlock, destroy, NULL); #define XPTHREAD_FUNC1(FUNCTION, PARAM1) \ void \ x##FUNCTION(PARAM1 arg1) \ { \ int error = FUNCTION(arg1); \ if (OVS_UNLIKELY(error)) { \ ovs_abort(error, "%s failed", #FUNCTION); \ } \ } #define XPTHREAD_FUNC2(FUNCTION, PARAM1, PARAM2) \ void \ x##FUNCTION(PARAM1 arg1, PARAM2 arg2) \ { \ int error = FUNCTION(arg1, arg2); \ if (OVS_UNLIKELY(error)) { \ ovs_abort(error, "%s failed", #FUNCTION); \ } \ } #define XPTHREAD_FUNC3(FUNCTION, PARAM1, PARAM2, PARAM3)\ void \ x##FUNCTION(PARAM1 arg1, PARAM2 arg2, PARAM3 arg3) \ { \ int error = FUNCTION(arg1, arg2, arg3); \ if (OVS_UNLIKELY(error)) { \ ovs_abort(error, "%s failed", #FUNCTION); \ } \ } XPTHREAD_FUNC1(pthread_mutex_lock, pthread_mutex_t *); XPTHREAD_FUNC1(pthread_mutex_unlock, pthread_mutex_t *); XPTHREAD_FUNC1(pthread_mutexattr_init, pthread_mutexattr_t *); XPTHREAD_FUNC1(pthread_mutexattr_destroy, pthread_mutexattr_t *); XPTHREAD_FUNC2(pthread_mutexattr_settype, pthread_mutexattr_t *, int); XPTHREAD_FUNC2(pthread_mutexattr_gettype, pthread_mutexattr_t *, int *); XPTHREAD_FUNC1(pthread_rwlockattr_init, pthread_rwlockattr_t *); XPTHREAD_FUNC1(pthread_rwlockattr_destroy, pthread_rwlockattr_t *); #ifdef PTHREAD_RWLOCK_WRITER_NONRECURSIVE_INITIALIZER_NP XPTHREAD_FUNC2(pthread_rwlockattr_setkind_np, pthread_rwlockattr_t *, int); #endif XPTHREAD_FUNC2(pthread_cond_init, pthread_cond_t *, pthread_condattr_t *); XPTHREAD_FUNC1(pthread_cond_destroy, pthread_cond_t *); XPTHREAD_FUNC1(pthread_cond_signal, pthread_cond_t *); XPTHREAD_FUNC1(pthread_cond_broadcast, pthread_cond_t *); XPTHREAD_FUNC3(pthread_barrier_init, pthread_barrier_t *, pthread_barrierattr_t *, unsigned int); XPTHREAD_FUNC1(pthread_barrier_destroy, pthread_barrier_t *); XPTHREAD_FUNC2(pthread_join, pthread_t, void **); typedef void destructor_func(void *); XPTHREAD_FUNC2(pthread_key_create, pthread_key_t *, destructor_func *); XPTHREAD_FUNC1(pthread_key_delete, pthread_key_t); XPTHREAD_FUNC2(pthread_setspecific, pthread_key_t, const void *); static void ovs_mutex_init__(const struct ovs_mutex *l_, int type) { struct ovs_mutex *l = CONST_CAST(struct ovs_mutex *, l_); pthread_mutexattr_t attr; int error; l->where = ""; xpthread_mutexattr_init(&attr); xpthread_mutexattr_settype(&attr, type); error = pthread_mutex_init(&l->lock, &attr); if (OVS_UNLIKELY(error)) { ovs_abort(error, "pthread_mutex_init failed"); } xpthread_mutexattr_destroy(&attr); } /* Initializes 'mutex' as a normal (non-recursive) mutex. */ void ovs_mutex_init(const struct ovs_mutex *mutex) { ovs_mutex_init__(mutex, PTHREAD_MUTEX_ERRORCHECK); } /* Initializes 'mutex' as a recursive mutex. */ void ovs_mutex_init_recursive(const struct ovs_mutex *mutex) { ovs_mutex_init__(mutex, PTHREAD_MUTEX_RECURSIVE); } /* Initializes 'mutex' as a recursive mutex. */ void ovs_mutex_init_adaptive(const struct ovs_mutex *mutex) { #ifdef PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP ovs_mutex_init__(mutex, PTHREAD_MUTEX_ADAPTIVE_NP); #else ovs_mutex_init(mutex); #endif } void ovs_rwlock_init(const struct ovs_rwlock *l_) { struct ovs_rwlock *l = CONST_CAST(struct ovs_rwlock *, l_); pthread_rwlockattr_t attr; int error; l->where = ""; xpthread_rwlockattr_init(&attr); #ifdef PTHREAD_RWLOCK_WRITER_NONRECURSIVE_INITIALIZER_NP xpthread_rwlockattr_setkind_np( &attr, PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP); #endif error = pthread_rwlock_init(&l->lock, NULL); if (OVS_UNLIKELY(error)) { ovs_abort(error, "pthread_rwlock_init failed"); } xpthread_rwlockattr_destroy(&attr); } void ovs_mutex_cond_wait(pthread_cond_t *cond, const struct ovs_mutex *mutex_) { struct ovs_mutex *mutex = CONST_CAST(struct ovs_mutex *, mutex_); int error; ovsrcu_quiesce_start(); error = pthread_cond_wait(cond, &mutex->lock); ovsrcu_quiesce_end(); if (OVS_UNLIKELY(error)) { ovs_abort(error, "pthread_cond_wait failed"); } } int xpthread_barrier_wait(pthread_barrier_t *barrier) { int error; ovsrcu_quiesce_start(); error = pthread_barrier_wait(barrier); ovsrcu_quiesce_end(); if (error && OVS_UNLIKELY(error != PTHREAD_BARRIER_SERIAL_THREAD)) { ovs_abort(error, "pthread_barrier_wait failed"); } return error; } DEFINE_EXTERN_PER_THREAD_DATA(ovsthread_id, 0); struct ovsthread_aux { void *(*start)(void *); void *arg; char name[16]; }; static void * ovsthread_wrapper(void *aux_) { static atomic_uint next_id = ATOMIC_VAR_INIT(1); struct ovsthread_aux *auxp = aux_; struct ovsthread_aux aux; unsigned int id; atomic_add(&next_id, 1, &id); *ovsthread_id_get() = id; aux = *auxp; free(auxp); /* The order of the following calls is important, because * ovsrcu_quiesce_end() saves a copy of the thread name. */ set_subprogram_name("%s%u", aux.name, id); ovsrcu_quiesce_end(); return aux.start(aux.arg); } /* Starts a thread that calls 'start(arg)'. Sets the thread's name to 'name' * (suffixed by its ovsthread_id()). Returns the new thread's pthread_t. */ pthread_t ovs_thread_create(const char *name, void *(*start)(void *), void *arg) { struct ovsthread_aux *aux; pthread_t thread; int error; forbid_forking("multiple threads exist"); multithreaded = true; ovsrcu_quiesce_end(); aux = xmalloc(sizeof *aux); aux->start = start; aux->arg = arg; ovs_strlcpy(aux->name, name, sizeof aux->name); error = pthread_create(&thread, NULL, ovsthread_wrapper, aux); if (error) { ovs_abort(error, "pthread_create failed"); } return thread; } bool ovsthread_once_start__(struct ovsthread_once *once) { ovs_mutex_lock(&once->mutex); if (!ovsthread_once_is_done__(once)) { return false; } ovs_mutex_unlock(&once->mutex); return true; } void ovsthread_once_done(struct ovsthread_once *once) { atomic_store(&once->done, true); ovs_mutex_unlock(&once->mutex); } bool single_threaded(void) { return !multithreaded; } /* Asserts that the process has not yet created any threads (beyond the initial * thread). * * ('where' is used in logging. Commonly one would use * assert_single_threaded() to automatically provide the caller's source file * and line number for 'where'.) */ void assert_single_threaded_at(const char *where) { if (multithreaded) { VLOG_FATAL("%s: attempted operation not allowed when multithreaded", where); } } #ifndef _WIN32 /* Forks the current process (checking that this is allowed). Aborts with * VLOG_FATAL if fork() returns an error, and otherwise returns the value * returned by fork(). * * ('where' is used in logging. Commonly one would use xfork() to * automatically provide the caller's source file and line number for * 'where'.) */ pid_t xfork_at(const char *where) { pid_t pid; if (must_not_fork) { VLOG_FATAL("%s: attempted to fork but forking not allowed (%s)", where, must_not_fork); } pid = fork(); if (pid < 0) { VLOG_FATAL("%s: fork failed (%s)", where, ovs_strerror(errno)); } return pid; } #endif /* Notes that the process must not call fork() from now on, for the specified * 'reason'. (The process may still fork() if it execs itself immediately * afterward.) */ void forbid_forking(const char *reason) { ovs_assert(reason != NULL); must_not_fork = reason; } /* Returns true if the process is allowed to fork, false otherwise. */ bool may_fork(void) { return !must_not_fork; } /* ovsthread_stats. */ void ovsthread_stats_init(struct ovsthread_stats *stats) { int i; ovs_mutex_init(&stats->mutex); for (i = 0; i < ARRAY_SIZE(stats->buckets); i++) { stats->buckets[i] = NULL; } } void ovsthread_stats_destroy(struct ovsthread_stats *stats) { ovs_mutex_destroy(&stats->mutex); } void * ovsthread_stats_bucket_get(struct ovsthread_stats *stats, void *(*new_bucket)(void)) { unsigned int idx = ovsthread_id_self() & (ARRAY_SIZE(stats->buckets) - 1); void *bucket = stats->buckets[idx]; if (!bucket) { ovs_mutex_lock(&stats->mutex); bucket = stats->buckets[idx]; if (!bucket) { bucket = stats->buckets[idx] = new_bucket(); } ovs_mutex_unlock(&stats->mutex); } return bucket; } size_t ovs_thread_stats_next_bucket(const struct ovsthread_stats *stats, size_t i) { for (; i < ARRAY_SIZE(stats->buckets); i++) { if (stats->buckets[i]) { break; } } return i; } /* Parses /proc/cpuinfo for the total number of physical cores on this system * across all CPU packages, not counting hyper-threads. * * Sets *n_cores to the total number of cores on this system, or 0 if the * number cannot be determined. */ static void parse_cpuinfo(long int *n_cores) { static const char file_name[] = "/proc/cpuinfo"; char line[128]; uint64_t cpu = 0; /* Support up to 64 CPU packages on a single system. */ long int cores = 0; FILE *stream; stream = fopen(file_name, "r"); if (!stream) { VLOG_DBG("%s: open failed (%s)", file_name, ovs_strerror(errno)); return; } while (fgets(line, sizeof line, stream)) { unsigned int id; /* Find the next CPU package. */ if (ovs_scan(line, "physical id%*[^:]: %u", &id)) { if (id > 63) { VLOG_WARN("Counted over 64 CPU packages on this system. " "Parsing %s for core count may be inaccurate.", file_name); cores = 0; break; } if (cpu & (1 << id)) { /* We've already counted this package's cores. */ continue; } cpu |= 1 << id; /* Find the number of cores for this package. */ while (fgets(line, sizeof line, stream)) { int count; if (ovs_scan(line, "cpu cores%*[^:]: %u", &count)) { cores += count; break; } } } } fclose(stream); *n_cores = cores; } /* Returns the total number of cores on this system, or 0 if the number cannot * be determined. * * Tries not to count hyper-threads, but may be inaccurate - particularly on * platforms that do not provide /proc/cpuinfo, but also if /proc/cpuinfo is * formatted different to the layout that parse_cpuinfo() expects. */ int count_cpu_cores(void) { static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER; static long int n_cores; if (ovsthread_once_start(&once)) { #ifndef _WIN32 parse_cpuinfo(&n_cores); if (!n_cores) { n_cores = sysconf(_SC_NPROCESSORS_ONLN); } #else SYSTEM_INFO sysinfo; GetSystemInfo(&sysinfo); n_cores = sysinfo.dwNumberOfProcessors; #endif ovsthread_once_done(&once); } return n_cores > 0 ? n_cores : 0; } /* ovsthread_key. */ #define L1_SIZE 1024 #define L2_SIZE 1024 #define MAX_KEYS (L1_SIZE * L2_SIZE) /* A piece of thread-specific data. */ struct ovsthread_key { struct list list_node; /* In 'inuse_keys' or 'free_keys'. */ void (*destructor)(void *); /* Called at thread exit. */ /* Indexes into the per-thread array in struct ovsthread_key_slots. * This key's data is stored in p1[index / L2_SIZE][index % L2_SIZE]. */ unsigned int index; }; /* Per-thread data structure. */ struct ovsthread_key_slots { struct list list_node; /* In 'slots_list'. */ void **p1[L1_SIZE]; }; /* Contains "struct ovsthread_key_slots *". */ static pthread_key_t tsd_key; /* Guards data structures below. */ static struct ovs_mutex key_mutex = OVS_MUTEX_INITIALIZER; /* 'inuse_keys' holds "struct ovsthread_key"s that have been created and not * yet destroyed. * * 'free_keys' holds "struct ovsthread_key"s that have been deleted and are * ready for reuse. (We keep them around only to be able to easily locate * free indexes.) * * Together, 'inuse_keys' and 'free_keys' hold an ovsthread_key for every index * from 0 to n_keys - 1, inclusive. */ static struct list inuse_keys OVS_GUARDED_BY(key_mutex) = LIST_INITIALIZER(&inuse_keys); static struct list free_keys OVS_GUARDED_BY(key_mutex) = LIST_INITIALIZER(&free_keys); static unsigned int n_keys OVS_GUARDED_BY(key_mutex); /* All existing struct ovsthread_key_slots. */ static struct list slots_list OVS_GUARDED_BY(key_mutex) = LIST_INITIALIZER(&slots_list); static void * clear_slot(struct ovsthread_key_slots *slots, unsigned int index) { void **p2 = slots->p1[index / L2_SIZE]; if (p2) { void **valuep = &p2[index % L2_SIZE]; void *value = *valuep; *valuep = NULL; return value; } else { return NULL; } } static void ovsthread_key_destruct__(void *slots_) { struct ovsthread_key_slots *slots = slots_; struct ovsthread_key *key; unsigned int n; int i; ovs_mutex_lock(&key_mutex); list_remove(&slots->list_node); LIST_FOR_EACH (key, list_node, &inuse_keys) { void *value = clear_slot(slots, key->index); if (value && key->destructor) { key->destructor(value); } } n = n_keys; ovs_mutex_unlock(&key_mutex); for (i = 0; i < n / L2_SIZE; i++) { free(slots->p1[i]); } free(slots); } /* Initializes '*keyp' as a thread-specific data key. The data items are * initially null in all threads. * * If a thread exits with non-null data, then 'destructor', if nonnull, will be * called passing the final data value as its argument. 'destructor' must not * call any thread-specific data functions in this API. * * This function is similar to xpthread_key_create(). */ void ovsthread_key_create(ovsthread_key_t *keyp, void (*destructor)(void *)) { static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER; struct ovsthread_key *key; if (ovsthread_once_start(&once)) { xpthread_key_create(&tsd_key, ovsthread_key_destruct__); ovsthread_once_done(&once); } ovs_mutex_lock(&key_mutex); if (list_is_empty(&free_keys)) { key = xmalloc(sizeof *key); key->index = n_keys++; if (key->index >= MAX_KEYS) { abort(); } } else { key = CONTAINER_OF(list_pop_back(&free_keys), struct ovsthread_key, list_node); } list_push_back(&inuse_keys, &key->list_node); key->destructor = destructor; ovs_mutex_unlock(&key_mutex); *keyp = key; } /* Frees 'key'. The destructor supplied to ovsthread_key_create(), if any, is * not called. * * This function is similar to xpthread_key_delete(). */ void ovsthread_key_delete(ovsthread_key_t key) { struct ovsthread_key_slots *slots; ovs_mutex_lock(&key_mutex); /* Move 'key' from 'inuse_keys' to 'free_keys'. */ list_remove(&key->list_node); list_push_back(&free_keys, &key->list_node); /* Clear this slot in all threads. */ LIST_FOR_EACH (slots, list_node, &slots_list) { clear_slot(slots, key->index); } ovs_mutex_unlock(&key_mutex); } static void ** ovsthread_key_lookup__(const struct ovsthread_key *key) { struct ovsthread_key_slots *slots; void **p2; slots = pthread_getspecific(tsd_key); if (!slots) { slots = xzalloc(sizeof *slots); ovs_mutex_lock(&key_mutex); pthread_setspecific(tsd_key, slots); list_push_back(&slots_list, &slots->list_node); ovs_mutex_unlock(&key_mutex); } p2 = slots->p1[key->index / L2_SIZE]; if (!p2) { p2 = xzalloc(L2_SIZE * sizeof *p2); slots->p1[key->index / L2_SIZE] = p2; } return &p2[key->index % L2_SIZE]; } /* Sets the value of thread-specific data item 'key', in the current thread, to * 'value'. * * This function is similar to pthread_setspecific(). */ void ovsthread_setspecific(ovsthread_key_t key, const void *value) { *ovsthread_key_lookup__(key) = CONST_CAST(void *, value); } /* Returns the value of thread-specific data item 'key' in the current thread. * * This function is similar to pthread_getspecific(). */ void * ovsthread_getspecific(ovsthread_key_t key) { return *ovsthread_key_lookup__(key); } #endif